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José Camacho-Collados, Mohammad Taher Pilehvar and Roberto Navigli
Department of Computer Science

Sapienza University of Rome
{collados,pilehvar,navigli}@di.uniroma1.it

Abstract

Despite being one of the most popular
tasks in lexical semantics, word similar-
ity has often been limited to the English
language. Other languages, even those
that are widely spoken such as Span-
ish, do not have a reliable word similar-
ity evaluation framework. We put for-
ward robust methodologies for the ex-
tension of existing English datasets to
other languages, both at monolingual and
cross-lingual levels. We propose an au-
tomatic standardization for the construc-
tion of cross-lingual similarity datasets,
and provide an evaluation, demonstrating
its reliability and robustness. Based on
our procedure and taking the RG-65 word
similarity dataset as a reference, we re-
lease two high-quality Spanish and Farsi
(Persian) monolingual datasets, and fifteen
cross-lingual datasets for six languages:
English, Spanish, French, German, Por-
tuguese, and Farsi.

1 Introduction

Semantic similarity is a field of Natural Lan-
guage Processing which measures the extent to
which two linguistic items are similar. In par-
ticular, word similarity is one of the most pop-
ular benchmarks for the evaluation of word or
sense representations. Applications of word sim-
ilarity range from Word Sense Disambiguation
(Patwardhan et al., 2003) to Machine Translation
(Lavie and Denkowski, 2009), Information Re-
trieval (Hliaoutakis et al., 2006), Question An-
swering (Mohler et al., 2011), Text Summarization
(Mohammad and Hirst, 2012), Ontology Align-
ment (Pilehvar and Navigli, 2014), and Lexical
Substitution (McCarthy and Navigli, 2009).

However, due to the lack of standard multi-
lingual benchmarks, word similarity systems had

in the main been limited to the English lan-
guage (Mihalcea and Moldovan, 1999; Agirre and
Lopez, 2003; Agirre and de Lacalle, 2004; Strube
and Ponzetto, 2006; Gabrilovich and Markovitch,
2007; Mihalcea, 2007; Pilehvar et al., 2013; Ba-
roni et al., 2014), up until the recent creation
of datasets built by translating the English RG-
65 dataset (Rubenstein and Goodenough, 1965)
into French (Joubarne and Inkpen, 2011), Ger-
man (Gurevych, 2005), and Portuguese (Granada
et al., 2014). And what is more, cross-lingual
applications have grown in importance over the
last few years (Hassan and Mihalcea, 2009; Nav-
igli and Ponzetto, 2012; Franco-Salvador et al.,
2014; Camacho-Collados et al., 2015b). Unfor-
tunately, very few reliable datasets exist for evalu-
ating cross-lingual systems.

This paper provides two contributions: Firstly,
we construct Spanish and Farsi versions of the
standard RG-65 dataset scored by twelve annota-
tors with high inter-annotator agreements of 0.83
and 0.88, respectively, in terms of Pearson correla-
tion, and secondly, we create fifteen cross-lingual
word similarity datasets based on RG-65, cover-
ing six languages, by proposing an improved ver-
sion of the approach of Kennedy and Hirst (2012)
for the automatic construction of cross-lingual
datasets from aligned monolingual datasets.

The paper is structured as follows. We first
briefly review some of the major monolingual and
cross-lingual word similarity datasets in Section
2. We then discuss the details of our procedure
for the construction of the Spanish and Farsi word
similarity datasets in Section 3. Section 4 provides
the details of our algorithm for the automatic con-
struction of the cross-lingual datasets. We report
the results of the evaluation performed on the gen-
erated datasets in Section 5. Finally, we specify
the released resources in Section 6, followed by
concluding remarks in Section 7.
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2 Related Work

Multiple word similarity datasets have been con-
structed for the English language: MC-30 (Miller
and Charles, 1991), WordSim-353 (Finkelstein et
al., 2002), MEN (Bruni et al., 2014), and Simlex-
999 (Hill et al., 2014). The RG-65 dataset (Ruben-
stein and Goodenough, 1965) is one of the old-
est and most popular word similarity datasets, and
has been used as a standard benchmark for mea-
suring the reliability of word and sense represen-
tations (Agirre and de Lacalle, 2004; Gabrilovich
and Markovitch, 2007; Hassan and Mihalcea,
2011; Pilehvar et al., 2013; Baroni et al., 2014;
Camacho-Collados et al., 2015a). The original
RG-65 dataset was constructed with the aim of
evaluating the degree to which contextual infor-
mation is correlated with semantic similarity for
the English language. Rubenstein and Goode-
nough (1965) reported an inter-annotator agree-
ment of 0.85 for a subset of fifteen judges (no final
inter-annotator agreement for the total fifty-one
judges was calculated). The original English RG-
65 has also been used as a base for different lan-
guages: French (Joubarne and Inkpen, 2011), Ger-
man (Gurevych, 2005), and Portuguese (Granada
et al., 2014). No inter-annotator agreement was
calculated for the French version, while the Ger-
man and Portuguese were reported to have the re-
spective inter-annotator agreements of 0.81 and
0.71 in terms of average pairwise Pearson corre-
lation. Our Spanish version of the RG-65 dataset
reports a high inter-annotator agreement of 0.83,
while the Farsi version achieves 0.88.

A few works have also focused on the con-
struction of cross-lingual resources. Hassan and
Mihalcea (2009) built two sets of cross-lingual
datasets by translating the English MC-30 (Miller
and Charles, 1991) and the WordSim-353 (Finkel-
stein et al., 2002) datasets into three languages.
However, these datasets have several issues due to
their construction procedure. The main problem
arises from keeping the original scores from the
English dataset in the translated datasets. For in-
stance, the Spanish dataset contains the identical
pair mediodia-mediodia with a similarity score of
3.42 (in the 0-4 scale). Furthermore, the datasets
contain orthographic errors such as despliege and
the previously mentioned mediodia (instead of de-
spliegue and mediodı́a), and nouns translated into
words with a different part of speech (e.g., imple-
ment from the English noun dataset MC-30 trans-

lated to the Spanish verb implementar). Addition-
ally, the selection of the datasets was not ideal:
MC-30 is a small subset of RG-65 and WordSim-
353 has been criticized for its annotation scheme,
which conflates similarity and relatedness (Hill et
al., 2014).

Kennedy and Hirst (2012) proposed an auto-
matic procedure for the construction of a French-
English version of RG-65. We refine their ap-
proach by also dealing with some issues that may
arise in the automatic process. Additionally, we
provide an evaluation of the automatic procedure
on different languages.

3 Building Monolingual Word Similarity
Datasets

In this section we explain our methodology for the
construction of the Spanish and Farsi versions of
the English RG-65 dataset (Rubenstein and Good-
enough, 1965). The methodology is divided into
two main steps: First, the original English dataset
is translated into the target language (Section 3.1)
and then, the newly translated pairs are scored by
human annotators (Section 3.2).

3.1 Translating from English to
Spanish/Farsi

The translation of RG-65 from English to Span-
ish and Farsi was performed by, respectively, three
English-Spanish and three English-Farsi annota-
tors who were fluent English speakers and native
speakers of the target language. The translation
procedure was as follows. First, two annotators
translated each English pair in the dataset into the
target language. Then a third annotator checked
for disagreements between the first two transla-
tors and picked the more appropriate translation
among the two options.

Finally, all three translators met and performed
a final check, with specific focus on the following
two cases: (1) duplicate pairs in the dataset, and
(2) pairs with repeated words. Our goal was to re-
duce these two cases as much as possible. A final
adjudication was performed accordingly. We note
that there remain three pairs with identical words
in both Spanish and Farsi datasets, as no suitable
translation could be found to distinguish the words
in the English pair. For instance, the two words in
the pair midday-noon translate to the same Span-
ish word mediodı́a.
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noon string 0.04 

cemetery woodland 0.79 

mound shore 0.97 

food rooster 1.09 

bird woodland 1.24 

glass jewel 1.78 

bird crane 2.63 

autograph signature 3.59 

automobile car 3.92 

   

mediodía cuerda 0.00 

cementerio bosque 1.18 

loma orilla 1.21 

comida gallo 1.54 

pájaro bosque 1.67 

cristal joya 1.96 

pájaro grulla 2.92 

autógrafo firma 3.46 

automóvil coche 3.92 

   

0.00 

0.50 

1.17 

1.00 

1.79 

1.29 

2.83 

4.00 

3.88 

English Spanish Farsi 

Table 1: Sample word pairs from the English and the newly created Spanish and Farsi RG-65 datasets.

3.2 Scoring the dataset

Twelve native Spanish speakers were asked to
evaluate the similarity for the Spanish translations.
In order to obtain a more global distribution of
judges, we included judges both both Spain and
Latin America. As far as the Farsi dataset was
concerned, twelve Farsi native speakers scored the
newly translated pairs. The guidelines provided
to the annotators were based on the recent Se-
mEval task on Cross-Level Semantic Similarity
(Jurgens et al., 2014), which provides clear indica-
tions in order to distinguish similarity and related-
ness. The annotators were allowed to give scores
from 0 to 4, with a step size of 0.5.

Table 1 shows example pairs with their corre-
sponding scores from the English and the newly
created Spanish and Farsi versions of the RG-
65 dataset. As we can see from the table, the
scores across languages are not necessarily iden-
tical, with small, in a few cases significant, differ-
ences between the corresponding scores. This is
due to the fact that associated senses with words
do not hold one-to-one correspondence across dif-
ferent languages. This renders the approach of
Hassan and Mihalcea (2009) insufficiently accu-
rate for handling these differences.

4 Automatic Creation of Cross-lingual
Similarity Datasets

In this section we present our automatic method
for building cross-lingual datasets. Although
being targeted at building semantic similarity
datasets, the algorithm is task-independent, so it
may also be used for any task which measures any

kind of relation between two linguistic items in a
numerical way.

Kennedy and Hirst (2012) proposed a method
which exploits two aligned monolingual word
similarity datasets for the construction of a
French-English cross-lingual dataset. We fol-
lowed their initial idea and proposed a generaliza-
tion of the approach which would be capable of
automatically constructing reliable cross-lingual
similarity datasets for any pair of languages.

Algorithm. Algorithm 1 shows our procedure
for constructing a cross-lingual dataset starting
from two monolingual datasets. Note that the
pairs in the two monolingual datasets should be
previously aligned. Specifically, we refer to each
dataset D as {PD, SD}, where PD is the set of
pairs and SD is a function mapping each pair
in PD to a value on a similarity scale (0-4 for
RG-65). For each two aligned pairs a-b and a’-b’
across the two datasets, if the difference in the
corresponding scores is greater than a quarter
of the similarity scale size (1.0 in RG-65), the
pairs are not considered (line 7) and therefore
discarded. Otherwise, two new pairs a-b’ and
a’-b are created with a score equal to the average
of the two original pairs’ scores (lines 8-11 and
15-18). In the case of repeated pairs, we merge
them into a single pair with a similarity equal to
their average score (lines 12-14 and lines 19-21).

By following this procedure we created fifteen
cross-lingual datasets based on the RG-65 word
similarity datasets for English, French, German,
Spanish, Portuguese, and Farsi. Table 2 shows
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Algorithm 1 Automatic construction of cross-
lingual similarity datasets
Input: two aligned datasets D = {PD, SD} and D′ =

{PD′ , SD′}, where PX is the set of pairs in dataset X

and SX is the mapping of these pairs to their correspond-
ing scores.

Output: a cross-lingual semantic similarity dataset C =

{PC , SC}
1: PC ← ∅
2: Define Cnt, which counts how many times an output

cross-lingual pair is repeated
3: for each aligned pairs (a, b) ∈ PD, (a′, b′) ∈ PD′

4: score = SD(a, b)

5: score′ = SD′(a′, b′)
6: avg score = (score + score′)/2

7: if |score− score′| ≤ size(sim scale)/4 then
8: if (a, b′) 6∈ PC then
9: PC ← PC ∪ {(a, b′)}

10: SC(a, b′) = avg score

11: Cnt(a, b′) = 1

12: else
13: SC(a, b′) = (SC(a,b′)×Cnt(a,b′))+avg score

Cnt(a,b′)+1

14: Cnt(a, b′) + +

15: if (a′, b) 6∈ PC then
16: PC ← PC ∪ {(a′, b)}
17: SC(a′, b) = avg score

18: Cnt(a′, b) = 1

19: else
20: SC(a′, b) = (SC(a′,b)×Cnt(a′,b))+avg score

Cnt(a′,b)+1

21: Cnt(a′, b) + +

22: return {PC , SC}

the number of word pairs for each cross-lingual
dataset. Note that there is not a single pair of lan-
guages whose total count reaches the maximum
number of possible word pairs, i.e., 130. This is
due, on the one hand, to language peculiarities re-
sulting in some pairs having significant score dif-
ference across languages (higher than 1 on the 0-4
scale), and, on the other hand, to the repetition of
some pairs occurring as a result of the automatic
creation process, a problem which is handled by
our algorithm.

Table 3 shows sample pairs with their cor-
responding similarity scores from four of the
cross-lingual datasets: Spanish-English, Spanish-
French, Spanish-German, and English-Farsi.
These cross-lingual datasets are constructed on the
basis of our newly-generated Spanish and Farsi
monolingual datasets (see Section 3). The quality
of these four datasets is evaluated in Section 5.2.

FR DE ES PT FA
EN 100 125 126 120 120

FR - 96 103 92 100

DE - - 125 118 122

ES - - - 113 122

PT - - - - 122

Table 2: Number of word pairs for each cross-
lingual dataset (EN: English, FR: French, DE:
German, ES: Spanish, PT: Portuguese, FA: Farsi).

5 Evaluation

5.1 Spanish and Farsi Monolingual Datasets

The inter-annotator agreements according to the
average pairwise Pearson correlation among the
judges for the newly created Spanish and Farsi
datasets are, respectively, 0.83 and 0.88, which
may be used as upper bounds for evaluating auto-
matic systems. Our further analysis revealed that
for both datasets no annotator obtained an aver-
age Pearson correlation with the rest of the an-
notators lower than 0.80, which attests to the re-
liability of our judges and guidelines. The Ger-
man (Gurevych, 2005) and Portuguese (Granada
et al., 2014) versions of the RG-65 dataset re-
ported a lower inter-annotator agreement of 0.81
and 0.71, respectively, whereas the original En-
glish RG-65 (Rubenstein and Goodenough, 1965)
reported an inter-annotator agreement of 0.85 for a
subset of fifteen judges. As also mentioned earlier,
the French version (Joubarne and Inkpen, 2011)
did not report any inter-annotator agreement.

5.2 Cross-lingual Datasets

Along with the monolingual evaluation, we also
performed an evaluation on four of the automati-
cally created cross-lingual datasets. The evaluated
language pairs were Spanish-English, Spanish-
French, Spanish-German, and English-Farsi. In
each case a proficient speaker of both languages
was selected to carry out the evaluation. The
Pearson correlations of the human judges with
the automatically generated scores were 0.89 for
Spanish-English, 0.94 for Spanish-French, 0.91
for Spanish-German, and 0.92 for English-Farsi,
showing the reliability of our cross-lingual dataset
creation process and reinforcing the quality of the
newly created monolingual datasets.
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ES EN  

monje assylum 0.41 

bosque bird 1.46 

viaje car 1.74 

hermano monk 2.25 

pollo rooster 3.36 

cementerio  graveyard 3.94 

   

   

   

ES FR  

cuerda midi 0.00 

chico sage 0.54 

comida coq 1.08 

hermano gars 1.71 

grulla oiseau 2.67 

chaval garḉon 3.88 

   

   

   

EN FA  

mound 0.07 

coast 1.03 

journey 1.53 

food 2.56 

stove 3.10 

car 3.90 

 

 

 

ES DE  

orilla autogramm 0.02 

caldera werkzeug 1.04 

pájaro wald 1.65 

coche fahrt 2.34 

cojín kissen 3.21 

colina berg 3.61 

   

   

   

Table 3: Example pairs from the Spanish-English, Spanish-French, Spanish-German, and English-Farsi
cross-lingual word similarity datasets (EN: English, FR: French, DE: German, ES: Spanish, FA: Farsi).

6 Release of the Resources

All the resources obtained as a result of this
work are freely downloadable and available
to the research community at http://lcl.
uniroma1.it/similarity-datasets/.

Among these resources we include the newly
created Spanish and Farsi word similarity datasets,
together with the annotation guidelines used dur-
ing the creation of the datasets. Our algo-
rithm for the automatic creation of cross-lingual
datasets (Algorithm 1) is provided as an easy-to-
use Python script. Finally, we also release the fif-
teen cross-lingual datasets built by using this al-
gorithm, including Spanish, English, French, Ger-
man, Portuguese, and Farsi languages.

7 Conclusion

We developed two versions of the standard RG-65
dataset in Spanish and Farsi. We also proposed
and evaluated an automatic method for creating
cross-lingual semantic similarity datasets. Thanks
to this method, we release fifteen cross-lingual
datasets for pairs of languages including English,
Spanish, French, German, Portuguese, and Farsi.
All these datasets are intended for use as a stan-

dard benchmark (as RG-65 already is for the En-
glish language) for evaluating word or sense rep-
resentations and, more specifically, word similar-
ity systems, not only for languages other than En-
glish, but also across different languages.
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Abstract

Computing pairwise word semantic simi-
larity is widely used and serves as a build-
ing block in many tasks in NLP. In this
paper, we explore the embedding of the
shortest-path metrics from a knowledge
base (Wordnet) into the Hamming hyper-
cube, in order to enhance the computa-
tion performance. We show that, although
an isometric embedding is untractable, it
is possible to achieve good non-isometric
embeddings. We report a speedup of
three orders of magnitude for the task of
computing Leacock and Chodorow (LCH)
similarity while keeping strong correla-
tions (r = .819, ρ = .826).

1 Introduction

Among semantic relatedness measures, seman-
tic similarity encodes the conceptual distance be-
tween two units of language – this goes beyond
lexical ressemblance. When words are the speech
units, semantic similarity is at the very core of
many NLP problems. It has proven to be essen-
tial for word sense disambiguation (Mavroeidis et
al., 2005; Basile et al., 2014), open domain ques-
tion answering (Yih et al., 2014), and informa-
tion retrieval on the Web (Varelas et al., 2005),
to name a few. Two established strategies to es-
timate pairwise word semantic similarity includes
knowledge-based and distributional semantics.

Knowledge-based approaches exploit the struc-
ture of the taxonomy ((Leacock and Chodorow,
1998; Hirst and St-Onge, 1998; Wu and Palmer,
1994)), its content ((Banerjee and Pedersen,
2002)), or both (Resnik, 1995; Lin, 1998). In
the earliest applications, Wordnet-based semantic
similarity played a predominant role so that se-
mantic similarity measures reckon with informa-
tion from the lexical hierarchy. It therefore ignores

contextual information on word occurrences and
relies on humans to encode such hierarchies – a
tedious task in practice. In contrast, well-known
distributional semantics strategies encode seman-
tic similarity using the correlation of statistical ob-
servations on the occurrences of words in a textual
corpora (Lin, 1998).

While providing a significant impact on a
broad range of applications, (Herbelot and Gane-
salingam, 2013; Lazaridou et al., 2013; Beltagy
et al., 2014; Bernardi et al., 2013; Goyal et al.,
2013; Lebret et al., 2013), distributional semantics
– similarly to knowledge-based strategies – strug-
gle to process the ever-increasing size of textual
corpora in a reasonable amount of time. As an an-
swer, embedding high-dimensional distributional
semantics models for words into low-dimensional
spaces (henceforth word embedding (Collobert
and Weston, 2008)) has emerged as a popular
method. Word embedding utilizes deep learn-
ing to learn a real-valued vector representation of
words so that any vector distance – usually the
cosine similarity – encodes the word-to-word se-
mantic similarity. Although word embedding was
successfully applied for several NLP tasks (Her-
mann et al., 2014; Andreas and Klein, 2014; Clin-
chant and Perronnin, 2013; Xu et al., 2014; Li
and Liu, 2014; Goyal et al., 2013), it implies a
slow training phase – measured in days (Collobert
and Weston, 2008; Mnih and Kavukcuoglu, 2013;
Mikolov et al., 2013), though re-embedding words
seems promising (Labutov and Lipson, 2013).
There is another usually under-considered issue:
the tractability of the pairwise similarity computa-
tion in the vector space for large volume of data.
Despite these limitations, the current enthusiasm
for word embedding certainly echoes the need
for lightning fast word-to-word semantic similar-
ity computation.

In this context, it is surprising that embedding
semantic similarity of words in low dimensional
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spaces for knowledge-based approaches is under-
studied. This oversight may well condemn the
word-to-word semantic similarity task to remain
corpus-dependant – i.e. ignoring the background
knowledge provided by a lexical hierarchy.

In this paper, we propose an embedding of
knowledge base semantic similarity based on the
shortest path metric (Leacock and Chodorow,
1998), into the Hamming hypercube of size n (the
size of targeted binary codes). The Leacock and
Chodorow semantic similarity is one of the most
meaningful measure. It yields the second rank
for highest correlation with the data collected by
(Miller and Charles, 1991), and the first one within
edge centric approaches, as shown by (Seco et al.,
2004). This method is only surpassed by the infor-
mation theoretic based similarity from (Jiang and
Conrath, 1997). A second study present similar
result (Budanitsky and Hirst, 2006), while a third
one ranks this similarity measure at the first rank
for precision in paraphrase identification (Mihal-
cea et al., 2006).

The hypercube embedding technique benefits
from the execution of Hamming distance within a
few cycles on modern CPUs. This allows the com-
putation of several millions distances per second.
Multi-index techniques allows the very fast com-
putation of top-k queries (Norouzi et al., 2012) on
the Hamming space. However, the dimension of
the hypercube (i.e. the number of bits used to
represent an element) should obey the threshold
of few CPU words (64, 128 . . . , bits) to maintain
such efficiency (Heo et al., 2012).

An isometric embedding requires a excessively
high number of dimensions to be feasible. How-
ever, in this paper we show that practical em-
beddings exist and present a method to construct
them. The best embedding presents very strong
correlations (r = .819, ρ = .829) with the Lea-
cock & Chodorow similarity measure (LCH in the
rest of this paper). Our experiments against the
state-of-the art implementation including caching
techniques show that performance is increased by
up to three orders of magnitude.

2 Shortest path metric embedding

Let us first introduce few notations. We denoteHn
2

as an n-dimensional hypercube whose nodes are
labeled by the 2n binary n-tuples. The nodes are
adjacent if and only if their corresponding n-tuples
differ in exactly one position, i.e. their Hamming

distance (`1) is equal to one. In what follows, Qn

denotes the metric space composed ofHn
2 with `1.

We tackle the following problem: We aim
at defining a function f that maps every node
w of the taxonomy (Wordnet for Leacock &
Chodorow) intoQn so that for every pair of nodes:
∀(wi, wj), d(wi, wj) = λ · `1(f(wi), f(wj)),
where λ is a scalar. For practical purposes, the
construction of the mapping should also be rea-
sonable in terms of time complexity.

Theoretical limitations Wordnet with its hyper-
nym relation forms a partially ordered set (poset).
The first approach is to perform an isometric em-
bedding from the poset with shortest path distance
into the Hamming hypercube. Such a mapping
would exactly preserve the original distance in the
embedding. As proven by (Deza and Laurent,
1997), poset lattices, with their shortest path met-
ric, can be isometrically embedded into the hyper-
cube, but the embedding requires 2n dimensions.
The resulting embedding would not fit in the mem-
ory of any existing computer, for a lattice having
more than 60 nodes. Using Wordnet, with tens of
thousands synsets, this embedding is untractable.
The bound given by Deza et al. is not tight, how-
ever it would require a more than severe improve-
ment to be of any practical interest.

Tree embedding To reduce the dimensionality,
we weaken the lattice into a tree. We build a
tree from the Wordnet’s Hyponyms/Hypernyms
poset by cutting 1,300 links, which correspond to
roughly one percent of the edges in the original lat-
tice. The nature of the cut to be performed can be
subject to discussion. In this preliminary research,
we used a simple approach. Since hypernyms are
ordered, we decided to preserve only the first hy-
pernym – semantically more relevant, or at least
statistically – and to cut edges to other hypernyms.

00000

0010010000 01000
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001100 010

A

B C F

D E

A

B C F

D E

Figure 1: Construction of isometric embedding on
a sample tree. For this six nodes tree, the embed-
ding requires five bits.

9



Our experiments in Table 1 shows that using the
obtained tree instead of the lattice keeps a high
correlation (r = .919, ρ = .931) with the origi-
nal LCH distance, thus validating the approach.

(Wilkeit, 1990) showed that any k-ary tree of
size n can be embedded into Qn−1. We give an
isometric embedding algorithm, which is linear
in time and space, exhibiting a much better time
complexity than Winkler’s generic approach for
graphs, running in O(n5) (Winkler, 1984). Start-
ing with an empty binary signature, the algorithm
is the following: at each step of a depth-first pre-
order traversal: if the node has k children, we set
the signature for the i-th child by appending k ze-
roes to the parent’s signature and by setting the i-th
of the k bits to one. An example is given in Figure
1. However, when using real-world datasets such
as Wordnet, the embedding still requires several
thousands of bits to represent a node. This dimen-
sion reduction to tens of kilobits per node remains
far from our goal of several CPU words, and calls
for a task-specific approach.

Looking at the construction of the isometric em-
bedding, the large dimension results from the ap-
pending of bits to all nodes in the tree. This results
in a large number of bits that are rarely set to one.
At the opposite, the optimal embedding in terms
of dimension is given by the approach of (Chen
and Stallmann, 1995) that assigns gray codes to
each node. However, the embedding is not isomet-
ric and introduces a very large error. As shown in
Table 1, this approach gives the most compact em-
bedding with dlog2(87,000)e = 17 bits, but leads
to poor correlations (r = .235 and ρ = .186).

An exhaustive search is also out of reach: for
a fixed dimension n and r nodes in the tree, the
number of combinations C is given by:

C =
(2n)!

(n− r)!
Even with the smallest value of n = 17 and r =
87,000, we have C > 1010,000. With n = 64, to
align to a CPU word, C > 10100,000.

3 Non-isometric Embedding

Our approach is a trade-off between the isomet-
ric embedding and the pre-order gray code solu-
tion. When designing our algorithm, we had to
decide which tree distance we will preserve, either
between parent and children, or among siblings.

Therefore, we take into account the nature of the
tree that we aim to embed into the hypercube. Let
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000
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Value sorting
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Figure 2: Approaches to reduce the tree embed-
ding dimensions.

first analyse the characteristics of the tree obtained
from the cut. The tree has an average branching
factor of 4.9, with a standard deviation of 14 and
96% of the nodes have a branching factor lesser
than 20. At the opposite, the depth is very stable
with an average of 8.5, a standard deviation of 2,
and a maximum of 18. Consequently, we decide
to preserve the parent-children distance over the
very unstable siblings distance. To lower the di-
mensions, we aim at allocating less than k bits for
a node with k children, thus avoiding the signature
extension taking place for every node in the iso-
metric approach. Our approach uses the following
principles.

Branch inheritance: each node inherits the
signature from its father, but contrary to isometric
embedding, the signature extension does not ap-
ply to all the nodes in the tree. This guarantees the
compactness of the structure.

Parentship preservation: when allocating less
bits than required for the isometric embedding,
we introduce an error. Our allocation favours as
much as possible the parentship distance at the
expense of the sibling distance. As a first allo-
cation, for a node with k children, we allocate
dlog2(k + 1)e bits for the signatures, in order to
guarantee the unicity of the signature. Each child
node is assigned a signature extension using a
gray code generation on the dlog2(k + 1)e bits.
The parent node simply extends its signature with
dlog2(k + 1)e zeroes, which is much more com-
pact than the k bits from the isometric embedding
algorithm.

Word alignment: The two previous techniques
give a compact embedding for low-depth trees,
which is the case of Wordnet. The dimension D
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of the embedding is not necessarily aligned to
a CPU word size W : kW ≤ D ≤ (k + 1)W .
We want to exploit the potential (k + 1)W − D
bits that are unused but still processed by the
CPU. For this purpose we rank the nodes along
a value v(i), i ∈ N to decide which nodes are
allowed to use extra bits. Since our approach
favours parent/child distance, we want to allow
additional bits for nodes that are both close to
the root and the head of a large branch. To bal-
ance the two values, we use the following formula:
v(i) = (maxdepth − depth(i)) · log(sizebranch(i))
We therefore enable our approach to take full
advantage of the otherwise unused bits.

In order to enhance the quality of the embed-
ding, we also introduce two potential optimiza-
tions:

The first is called Children-sorting: we allocate
a better preserving signature to children having
larger descents. A better signature is among the
available the 2dlog2(k+1)e available, the one that re-
duces the error with the parent node. We rank the
children by the size of their descent and assign the
signatures accordingly.

The second optimization is named Value-
sorting and is depicted in Figure 2. Among the
2dlog2(k+1)e available signatures, only k + 1 will
be assigned (one for the parent and k for the chil-
dren). For instance in the case of 5 children as
depicted in Figure 2, we allocate 3 bits for 6 signa-
tures. We favor the parentship distance by select-
ing first the signatures where one bit differs from
the parent’s one.

4 Experiments

In this section, we run two experiments to eval-
uate both the soundness and the performance of
our approach. In the first experiment, we test the
quality of our embedding against the tree distance
and the LCH similarity. The goal is to assess the
soundness of our approach and to measure the cor-
relation between the approximate embedding and
the original LCH similarity.

In the second experiment we compare the com-
putational performance of our approach against an
optimized in-memory library that implements the
LCH similarity.

Our algorithm called FSE for Fast Similarity
Embedding, is implemented in Java and avail-
able publicly1. Our testbed is an Intel Xeon E3

1Source code, binaries and instructions to reproduce
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Figure 3: FSE: influence of optimizations and di-
mensions on the correlation over the tree distance
on Wordnet.

1246v3 with 16GB of memory, a 256Go PCI Ex-
press SSD. The system runs a 64-bit Linux 3.13.0
kernel with Oracle’s JDK 7u67.

The FSE algorithm is implemented in various
flavours. FSE-Base denotes the basic algorithm,
containing none of the optimizations detailed in
the previous section. FSE-Base can be aug-
mented with either or both of the optimizations.
This latter version is denoted FSE-Best.

4.1 Embedding

We first measure the correlation of the embedded
distance with the original tree distance, to validate
the approach and to determine the gain induced by
the optimizations. Figure 3 shows the influence
of dimensions and optimizations on the Pearson’s
product moment correlation r. The base version
reaches r = .77 for an embedding of dimension
128. Regarding the optimizations, children sort-
ing is more efficient than value sorting, excepted
for dimensions under 90. Finally, combined opti-
mizations (FSE-Best) exhibit a higher correlation
(r = .89) than the other versions.

We then measure the correlation with the Lea-
cock & Chodorow similarity measure. We com-
pare our approach to the gray codes embedding
from (Chen and Stallmann, 1995) as well as the
isometric embedding. We compute the correlation
on 5 millions distances from the Wordnet-Core
noun pairs2 (Table 1). As expected, the embed-

the experiments are available at http://demo-satin.
telecom-st-etienne.fr/FSE/

2https://wordnet.princeton.edu/
wordnet/download/standoff/
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Embedding Bits Pearson’s r Spearman’s ρ

Chen et al. 17 .235 .186
FSE-Base 84 .699 .707
FSE-Best 128 .819 .829
Isometric 84K .919 .931

Table 1: Correlations between LCH, isometric em-
bedding, and FSE for all distances on all Wordnet-
Core noun pairs (p-values ≤ 10−14).

Algorithm Measure
Amount of pairs (n)

103 104 105 106 107

WS4J 103· ms 0.156 1.196 11.32 123.89 1,129.3

FSE-Best ms 0.04 0.59 14.15 150.58 1,482

speedup ×3900 ×2027 ×800 ×822 ×762

Table 2: Running time in milliseconds for pairwise
similarity computations.

ding obtained using gray codes present a very low
correlation with the original distance.

Similarly to the results obtained on the tree dis-
tance correlation, FSE-Best exhibits the highest
scores with r = .819 and ρ = .829, not far from
the theoretical bound of r = .919 and ρ = .931
for the isometric embedding of the same tree. Our
approach requires 650 times less bits than the iso-
metric one, while keeping strong guarantees on the
correlation with the original LCH distance.

4.2 Speedup

Table 4.2 presents the computation time of the
LCH similarity. This is computed using WS4J3, an
efficient library that enables in-memory caching.

Because of the respective computational com-
plexities of the Hamming distance and the shortest
path algorithms, FSE unsurprisingly boosts LCH
similarity computation by orders of magnitudes.
When the similarity is computed on a small num-
ber of pairs (a situation of the utmost practical in-
terest), the factor of improvement is three orders
of magnitude. This factor decreases to an amount
of 800 times for very large scale applications. The
reason of the decrease is that WS4J caching mech-
anism becomes more efficient for larger numbers
of comparisons. As the caching system stores
shortest path between nodes, these computed val-
ues are more likely to be a subpath of another
query when the number of queries grows.

3https://code.google.com/p/ws4j/

5 Conclusion

We proposed in this paper a novel approach based
on metric embedding to boost the computation of
shortest-path based similarity measures such as
the one of Leacock & Chodorow. We showed that
an isometric embedding of the Wordnet’s hyper-
nym/hyponym lattice does not lead to a practical
solution. To tackle this issue, we weaken the lat-
tice structure into a tree by cutting less relevant
edges. We then devised an algorithm and several
optimizations to embed the tree shortest-path dis-
tance in a word-aligned number of bits. Such an
embedding can be used to boost NLP core algo-
rithms – this was demonstrated here on the com-
putation of LCH for which our approach offers a
factor of improvement of three orders of magni-
tude, with a very strong correlation.

Acknowledgements

This work is supported by the OpenCloudware
project. OpenCloudware is funded by the French
FSN (Fond national pour la Société Numérique),
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Aurélie Herbelot and Mohan Ganesalingam. 2013.
Measuring semantic content in distributional vec-
tors. In Association for Computational Linguistics
(ACL), pages 440–445.

Karl Moritz Hermann, Dipanjan Das, Jason Weston,
and Kuzman Ganchev. 2014. Semantic frame iden-
tification with distributed word representations. In
Association for Computational Linguistics (ACL).

Graeme Hirst and David St-Onge. 1998. Lexical
chains as representations of context for the detec-
tion and correction of malapropisms. WordNet: An
electronic lexical database, 305:305–332.

Jay J Jiang and David W Conrath. 1997. Semantic
similarity based on corpus statistics and lexical tax-
onomy. Proceedings of the 10th Research on Com-
putational Linguistics International Conference.

Igor Labutov and Hod Lipson. 2013. Re-embedding
words. In ACL (2), pages 489–493.

Angeliki Lazaridou, Marco Marelli, Roberto Zampar-
elli, and Marco Baroni. 2013. Compositional-ly
derived representations of morphologically complex
words in distributional semantics. In Association
for Computational Linguistics (ACL), pages 1517–
1526.

Claudia Leacock and Martin Chodorow. 1998. Com-
bining local context and wordnet similarity for word
sense identification. WordNet: An electronic lexical
database, 49(2):265–283.
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Abstract

In recent years, there has been an increas-
ing interest in learning a distributed rep-
resentation of word sense. Traditional
context clustering based models usually
require careful tuning of model parame-
ters, and typically perform worse on infre-
quent word senses. This paper presents a
novel approach which addresses these lim-
itations by first initializing the word sense
embeddings through learning sentence-
level embeddings from WordNet glosses
using a convolutional neural networks.
The initialized word sense embeddings are
used by a context clustering based model
to generate the distributed representations
of word senses. Our learned represen-
tations outperform the publicly available
embeddings on 2 out of 4 metrics in the
word similarity task, and 6 out of 13 sub
tasks in the analogical reasoning task.

1 Introduction

With the rapid development of deep neural net-
works and parallel computing, distributed repre-
sentation of knowledge attracts much research in-
terest. Models for learning distributed representa-
tions of knowledge have been proposed at differ-
ent granularity level, including word sense level
(Huang et al., 2012; Chen et al., 2014; Neelakan-
tan et al., 2014; Tian et al., 2014; Guo et al.,
2014), word level (Rummelhart, 1986; Bengio et
al., 2003; Collobert and Weston, 2008; Mnih and
Hinton, 2009; Mikolov et al., 2010; Mikolov et
al., 2013), phrase level (Socher et al., 2010; Zhang
et al., 2014; Cho et al., 2014), sentence level
(Mikolov et al., 2010; Socher et al., 2013; Kalch-
brenner et al., 2014; Kim, 2014; Le and Mikolov,
2014), discourse level (Ji and Eisenstein, 2014)
and document level (Le and Mikolov, 2014).

In distributed representations of word senses,
each word sense is usually represented by a dense
and real-valued vector in a low-dimensional space
which captures the contextual semantic informa-
tion. Most existing approaches adopted a cluster-
based paradigm, which produces different sense
vectors for each polysemy or homonymy through
clustering the context of a target word. However,
this paradigm usually has two limitations: (1) The
performance of these approaches is sensitive to
the clustering algorithm which requires the setting
of the sense number for each word. For exam-
ple, Neelakantan et al. (2014) proposed two clus-
tering based model: the Multi-Sense Skip-Gram
(MSSG) model and Non-Parametric Multi-Sense
Skip-Gram (NP-MSSG) model. MSSG assumes
each word has the same k-sense (e.g. k = 3),
i.e., the same number of possible senses. How-
ever, the number of senses in WordNet (Miller,
1995) varies from 1 such as “ben” to 75 such as
“break”. As such, fixing the number of senses
for all words would result in poor representations.
NP-MSSG can learn the number of senses for each
word directly from data. But it requires a tuning
of a hyperparameter λ which controls the creation
of cluster centroids during training. Different λ
needs to be tuned for different datasets. (2) The
initial value of sense representation is critical for
most statistical clustering based approaches. How-
ever, previous approaches usually adopted ran-
dom initialization (Neelakantan et al., 2014) or the
mean average of candidate words in a gloss (Chen
et al., 2014). As a result, they may not produce
optimal clustering results for word senses.

Focusing on the aforementioned two problems,
this paper proposes to learn distributed representa-
tions of word senses through WordNet gloss com-
position and context clustering. The basic idea is
that a word sense is represented as a synonym set
(synset) in WordNet. In this way, instead of as-
signing a fixed sense number to each word as in the
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previous methods, different word will be assigned
with different number of senses based on their
corresponding entries in WordNet. Moreover, we
notice that each synset has a textual definition
(named as gloss). Naturally, we use a convolu-
tional neural network (CNN) to learn distributed
representations of these glosses (a.k.a. sense vec-
tors) through sentence composition. Then, we
modify MSSG for context clustering by initial-
izing the sense vectors with the representations
learned by our CNN-based sentence composition
model. We expect that word sense vectors ini-
tialized in this way would potentially lead to bet-
ter representations of word senses generated from
context clustering.

The obtained word sense representations are
evaluated on two tasks. One is word similarity
task, the other is analogical reasoning task pro-
vided by WordRep (Gao et al., 2014). The results
show that our approach attains comparable perfor-
mance on learning distributed representations of
word senses. In specific, our learned represen-
tation outperforms publicly available embeddings
on the globalSim and localSim metrics in word
similarity task, and 6 in 13 subtasks in the ana-
logical reasoning task.

2 Our Approach

Our proposed approach first train a Continuous
Bag-Of-Words (CBOW) model (Mikolov et al.,
2013) from a large collection of raw text to gen-
erate word embeddings. These word embeddings
are then used by a Sentence Composition Model,
which takes glosses in WordNet as positive train-
ing data and randomly replaces part of the sen-
tences as negative training data to construct the
corresponding word sense vectors based on a one-
dimensional CNN. For example, a WordNet gloss
of word star is “an actor who plays a principal
role”. This is taken as a positive training example
when learning the word sense vector for “star”.
We concatenate the word embedding generated by
the CBOW model for each of the words in the
gloss, take the concatenated word embeddings as
an input to CNN, and get the output vector as one
sense vector of word star.

The learned sense vectors are fed into a vari-
ant of the previously proposed Multi-Sense Skip-
Gram Model (MSSG) to generates distributed rep-
resentations of word senses from a text corpus. We
name our approach as CNN-VMSSG.

2.1 Training Sense Vectors From WordNet
Glosses Using CNN

In this step, we learn the distributed representation
of each gloss sentence as the representation of the
corresponding synset. The training objective is to
minimize the ranking loss below:

Gs =
∑
s∈P

max{0, 1− f(s) + f(s′)} (1)

Given a gloss sentence s as a positive training sam-
ple, we randomly replace some words (controlled
by a parameter λ) in s to construct a negative train-
ing sample s′. We compute the scores f(s) and
f(s′) where f(·) is the scoring function represent-
ing the whole CNN architecture without the soft-
max layer. We expect f(s) and f(s′) to be close
to 1 and 0 respectively, and f(s) to be larger than
f(s′) by a margin of 1 for all the sentence in posi-
tive training set P .

The CNN architecture used in this component
follows the architecture proposed by (Kim, 2014)1

which is a slight variant of the architecture pro-
posed by (Collobert and Weston, 2008)2. It takes
a gloss matrix s as input where each column corre-
sponds to the distributed representation vwi ∈ Rd

of a word wi in the sentence.
The idea behind the one-dimensional convolu-

tion is to take the dot product of the vector w
with each n-gram in the sentence to obtain an-
other sequence c, where n is the width of filter
in the convolutional layer. In order to make c to
cover different words in the negative sample cor-
responding a positive sample, in this work, we ran-
domly replace half of the words in a positive train-
ing sample to construct a negative training sample
(λ = 0.5). For example, take the WordNet gloss
“an actor who plays a principal role” as a positive
sample, a negative training sample constructed by
this method may be “x1 actor who x2 x3 principal
x4”, where x1 to x4 are randomly selected words
in a vocabulary collected from a large corpus.

In the pooling layer, a max-overtime pooling
operation (Collobert et al., 2011), which forces the
network to capture the most useful local features
produced by the convolutional layers, is applied.
The model uses multiple filters (with varying win-
dow sizes) to obtain multiple features. These fea-
tures form the penultimate layer and are passed to
a fully connected softmax layer whose output is

1https://github.com/yoonkim/CNN sentence
2http://ronan.collobert.com/senna/
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the probability distribution over labels. The train-
ing error propagates back to fine-tune the parame-
ters of the CNN and the input word vectors. The
vector generated in the penultimate layer of the
CNN architecture is regarded as the sense vector
which captures the semantic content of the input
gloss to a certain degree.

2.2 Context Clustering and VMSSG Model

Neelakantan et al. (2014) proposed the MSSG
model which extends the skip-gram model to learn
multi-prototype word embeddings by clustering
the word embeddings of context words around
each word. In this model, for each word w, the
corresponding word embedding vw ∈ Rd, k-sense
vector vsk

∈ Rd (k = 1, 2, . . . , K) and k-context
cluster with center µk ∈ Rd (k = 1, 2, . . . , K) are
initialized randomly. The sense number K of each
word is a fixed parameter in the training algorithm.

We improve the MSSG model by using the
learned CBOW word embedding to initialize vw

and the sense vector trained by the sentence com-
position model to initialize vsk

. We also use the
sense number of each word in WordNet Kw to re-
place K. We named this model as a variant of the
MSSG (VMSSG) model.

Algorithm 1 Algorithm of VMSSG model
1: Input: D, d,K1, ..., Kw, ..., K|V |, M .
2: Initialize: ∀w ∈ V, k ∈ {1, . . . , Kw}, initial-

ize vw to a pre-trained word vector, vsw
k

to a
pre-trained sense vector for word w with sense
k, and µw

k to a vector of random real value
∈ (−1, 1)d.

3: for each w in D do
4: r ← random number ∈ [1,M ]
5: C ← {wi−r, ..., wi−1, wi+1, ..., wi+r}
6: vc ← 1

2×r

∑
w∈C vw

7: k̂ = arg maxk{sim(µw
k , vc)}

8: Assign C to context cluster k̂.
9: Update µk̂.

10: C ′ = NoisySamples(C)
11: Gradient update on vsw

k
, vw in C, C ′.

12: end for
13: Output: vsw

k
, vw, ∀w ∈ V, k ∈ {1, . . . , Kw}

The training algorithm of the VMSSG model is
shown as Algorithm 1, where D is a text corpus,
V is the vocabulary of D, |V | is the vocabulary
size, M is the size of context window, vw is the
word embedding for w, sw

k is a kth context cluster

of word w, µw
k is the centroid of cluster k for word

w. The function NoisySamples(C) randomly re-
places context words with noisy words from V .

3 Evaluation and Discussion

3.1 Experimental Setup

In all experiments, we train word vectors and
sense vectors on a snapshot of Wikipedia in April
20103 (Shaoul, 2010), previously used in (Huang
et al., 2012; Neelakantan et al., 2014). WordNet
3.1 is used for training the sentence composition
model. A publicly available word vectors trained
by CBOW from Google News4 are used as pre-
trained word vectors for CNN.

For training CNN, we use: rectified linear
units, filter windows of 3, 4, 5 with 100 feature
maps each, AdaDelta decay parameter of 0.95, the
dropout rate of 0.5. For training VMSSG, we use
MSSG-KMeans as the clustering algorithm, and
CBOW for learning sense vectors. We set the size
of word vectors to 300, using boot vectors and
sense vectors. For other parameter, we use default
parameter settings for MSSG.

3.2 Word Similarity Task

We evaluate our embeddings on the Contextual
Word Similarities (SCWS) dataset (Huang et al.,
2012). It contains 2,003 pairs of words and their
sentential contexts. Each pair is associated with
10 to 16 human judgments of similarity on a
scale from 0 to 10. We use the same metrics in
(Neelakantan et al., 2014) to measure the simi-
larity between two words given their respective
context. The avgSim metric computes the aver-
age similarity of all pairs of prototype vectors for
each word, ignoring context. The avgSimC met-
ric weights each similarity term in avgSim by the
likelihood of the word context appearing in its re-
spective cluster. The globalSim metric computes
each word vector ignoring senses. The localSim
metric chooses the most similar sense in context
to estimate the similarity of a words pair.

We report the Spearman’s correlation ρ × 100
between a model’s similarity scores and the human
judgments in Table 1.5

3http://www.psych.ualberta.ca/w̃estburylab/downloads/
westburylab.wikicorp.download.html

4https://drive.google.com/file/d/0B7XkCwpI5KDYNl
NUTTlSS21pQmM/edit?usp=sharing

5The localSim metric of Unified-WSR is not reported in
(Chen et al., 2014).
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Model avgSim avgSimC globalSim localSim
Huang et al. 50d 62.8 65.7 58.6 26.1
Unified-WSR 200d 66.2 68.9 64.2 -
MSSG 300d 67.2 69.3 65.3 57.3
NP-MSSG 300d 67.3 69.1 65.5 59.8
CNN-VMSSG 300d 65.7 66.4 66.3 61.1

Table 1: Experimental results in the SCWS task.

Subtask Word Pairs C&W CBOW MSSG NP-MSSG CNN-VMSSG
Antonym 973 0.28 4.57 0.25 0.10 1.01
Attribute 184 0.22 1.18 0.03 0.15 1.63
Causes 26 0.00 1.08 0.31 0.31 1.23
DerivedFrom 6,119 0.05 0.63 0.09 0.05 0.17
Entails 114 0.05 0.38 0.49 0.34 1.29
HasContext 1,149 0.12 0.35 1.73 1.56 1.41
InstanceOf 1,314 0.08 0.58 2.52 2.34 2.46
IsA 10,615 0.07 0.67 0.15 0.08 0.86
MadeOf 63 0.03 0.72 0.80 0.48 1.28
MemberOf 406 0.08 1.06 0.14 0.86 0.90
PartOf 1,029 0.31 1.27 1.50 0.73 0.48
RelatedTo 102 0.00 0.05 0.12 0.11 1.28
SimilarTo 3,489 0.02 0.29 0.03 0.01 0.12

Table 2: Experimental results in the analogical reasoning task.

It is observed that our model achieves the best
performance on the globalSim and localSim met-
rics. It indicates that the use of pre-trained word
vectors and initializing sense vectors with the em-
beddings learned from WordNet glosses are in-
deed helpful in improving the quality of both
global word vectors and sense-level word vec-
tors. Our approach performs worse on avgSim and
avgSimC. One possible reason is that we set the
number of context clusters for each word to be the
same as the number of its corresponding senses
in WordNet. However, not all senses appear in the
our experimented corpus which could lead to frag-
mented context clustering results. One possible
way to alleviate this problem is to perform post-
processing to merge clusters which have smaller
inter-cluster differences or to remove sense clus-
ters which are under-represented in our data. We
will leave it as our future work.

3.3 Analogical Reasoning Task

The analogical reasoning task introduced by
(Mikolov et al., 2013) consists of questions of the
form “a is to b is as c is to ”, where (a, b) and (c,
) are two word pairs. The goal is to find a word

d∗ in vocabulary V whose representation vector is

the closest to vb − va + vc.
WordRep is a benchmark collection for the re-

search on learning distributed word representa-
tions, which expands the Mikolov et al.’s analog-
ical reasoning questions. In our experiments, we
use one evaluation set in WordRep, the WordNet
collection which consists of 13 sub tasks.

We use the precision p× 100 as metric for each
sub task. Table 2 shows the results on the 13
sub tasks. The Word Pair column is the num-
ber of word pairs of each sub task. The results
of C&W were obtained using the 50-dimensional
word embeddings that were made publicly avail-
able by Turian et al. (2010).6 The CBOW results
were previously reported in (Gao et al., 2014).

It can be observed that among 13 subtasks,
our model outperforms the others by a good mar-
gin in 6 subtasks, Attribute, Causes, Entails, IsA,
MadeOf and RelatedTo.

3.4 Discussion
Although our evaluation results on the word simi-
larity task and the analogical reasoning task show
that our proposed approach outperforms a number
of existing word representation methods in some

6http://metaoptimize.com/projects/wordreprs/
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of the subtasks, it is worth noting that both tasks
do not consider the full spectrum of senses. In spe-
cific, the analogical reasoning task was originally
designed for evaluating single-prototype word rep-
resentations which ignore that a word could have
multiple meanings. Compared to single-prototype
word vectors, evaluating sense vectors requires a
significantly larger search space since each word
could be represented by multiple sense vectors de-
pending on the context. One may also argue that
the analogical reasoning task may not be the most
appropriate one in evaluating multiple-prototype
word vectors since the context information is not
available. In the future, we plan to evaluate our
learned multiple-prototype word vectors in more
relevant NLP tasks such as word sense disam-
biguation and question answering.

Our proposed approach initializes sense vec-
tors using the learned sentence embeddings from
WordNet glosses. In other low resourced lan-
guages, it is still possible to intialize sense vectors
based on, for example, the word meanings found
in language-specific dictionaries.

4 Conclusion and Future Work

This paper presents a method of incorporating
WordNet glosses composition and context cluster-
ing based model for learning distributed represen-
tations of word senses. By initializing sense vec-
tors using the embeddings learned by a sentence
composition from WordNet glosses, the context
clustering method is able to generate better dis-
tributed representations of word senses. The ob-
tained word sense representations achieve state-of-
the-art results on the globalSim and localSim met-
rics in the word similarity task and in 6 sub tasks
of the analogical reasoning task. It shows the ef-
fectiveness of our proposed learning algorithm for
generating word sense distributed representations.

Considering the coverage of word senses in our
training data, in future work we plan to filter out
those sense vectors which are under-represented
in the training corpus. We will also further investi-
gate the feasibility of applying the multi-prototype
word embeddings in a wide range of NLP tasks.
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Abstract

Distributional semantic models have trou-
ble distinguishing strongly contrasting
words (such as antonyms) from highly
compatible ones (such as synonyms), be-
cause both kinds tend to occur in similar
contexts in corpora. We introduce the mul-
titask Lexical Contrast Model (mLCM),
an extension of the effective Skip-gram
method that optimizes semantic vectors
on the joint tasks of predicting corpus
contexts and making the representations
of WordNet synonyms closer than that
of matching WordNet antonyms. mLCM
outperforms Skip-gram both on general
semantic tasks and on synonym/antonym
discrimination, even when no direct lex-
ical contrast information about the test
words is provided during training. mLCM
also shows promising results on the task
of learning a compositional negation oper-
ator mapping adjectives to their antonyms.

1 Introduction

Distributional semantic models (DSMs) extract
vectors representing word meaning by relying on
the distributional hypothesis, that is, the idea that
words that are related in meaning will tend to oc-
cur in similar contexts (Turney and Pantel, 2010).
While extensive work has shown that contextual
similarity is an excellent proxy to semantic simi-
larity, a big problem for DSMs is that both words
with very compatible meanings (e.g., near syn-
onyms) and words with strongly contrasting mean-
ings (e.g., antonyms) tend to occur in the same
contexts. Indeed, Mohammad et al. (2013) have
shown that synonyms and antonyms are indistin-
guishable in terms of their average degree of dis-
tributional similarity.

This is problematic for the application of DSMs
to reasoning tasks such as entailment detection

(black is very close to both dark and white in dis-
tributional semantic space, but it implies the for-
mer while contradicting the latter). Beyond word-
level relations, the same difficulties make it chal-
lenging for compositional extensions of DSMs
to capture the fundamental phenomenon of nega-
tion at the phrasal and sentential levels (the dis-
tributional vectors for good and not good are
nearly identical) (Hermann et al., 2013; Preller
and Sadrzadeh, 2011).

Mohammad and colleagues concluded that
DSMs alone cannot detect semantic contrast, and
proposed an approach that couples them with other
resources. Pure-DSM solutions include isolating
contexts that are expected to be more discrimina-
tive of contrast, tuning the similarity measure to
make it more sensitive to contrast or training a su-
pervised contrast classifier on DSM vectors (Adel
and Schütze, 2014; Santus et al., 2014; Schulte im
Walde and Köper, 2013; Turney, 2008). We pro-
pose instead to induce word vectors using a mul-
titask cost function combining a traditional DSM
context-prediction objective with a term forcing
words to be closer to their WordNet synonyms
than to their antonyms. In this way, we make the
model aware that contrasting words such as hot
and cold, while still semantically related, should
not be nearest neighbours in the space.

In a similar spirit, Yih et al. (2012) devise a
DSM in which the embeddings of the antonyms
of a word are pushed to be the vectors that are
farthest away from its representation. While their
model is able to correctly pick the antonym of a
target item from a list of candidates (since it is
the most dissimilar element in the list), we con-
jecture that their radical strategy produces embed-
dings with poor performance on general semantic
tasks.1 Our method has instead a beneficial global

1Indeed, by simulating their strategy, we were able to in-
ject lexical contrast into word embeddings, but performance
on a general semantic relatedness task decreased dramati-
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effect on semantic vectors, leading to state-of-the-
art results in a challenging similarity task, and en-
abling better learning of a compositional negation
function.

Our work is also closely related to Faruqui et al.
(2015), who propose an algorithm to adapt pre-
trained DSM representations using semantic re-
sources such as WordNet. This post-processing
approach, while extremely effective, has the dis-
advantage that changes only affect words that are
present in the resource, without propagating to
the whole lexicon. Other recent work has instead
adopted multitask objectives similar to ours in or-
der to directly plug in knowledge from structured
resources at DSM induction time (Fried and Duh,
2015; Xu et al., 2014; Yu and Dredze, 2014). Our
main novelties with respect to these proposals are
the focus on capturing semantic contrast, and ex-
plicitly testing the hypothesis that the multitask
objective is also beneficial to words that are not di-
rectly exposed to WordNet evidence during train-
ing.2

2 The multitask Lexical Contrast Model

Skip-gram model The multitask Lexical Con-
trast Model (mLCM) extends the Skip-gram
model (Mikolov et al., 2013). Given an input
text corpus, Skip-gram optimizes word vectors
on the task of approximating, for each word, the
probability of other words to occur in its context.
More specifically, its objective function is:

1
T

T∑
t=1

 ∑
−c≤j≤c,j 6=0

log p(wt+j |wt)

 (1)

where w1, w2, ..., wT is the training corpus,
consisting of a list of target words wt, for which
we want to learn the vector representations (and
serving as contexts of each other), and c is the
window size determining the span of context
words to be considered. p(wt+j |wt), the proba-
bility of a context word given the target word is
computed using softmax:

p(wt+j |wt) =
e
v′

wt+j

T vwt∑W
w′=1 e

v′
w′

T vwt

(2)

cally, with a 25% drop in terms of Spearman correlation.
2After submitting this work, we became aware of Ono et

al. (2015), that implement very similar ideas. However, one
major difference between their work and ours is that their
strategy is in the same direction of (Yih et al., 2012), which
might result in poor performance on general semantic tasks.

where vw and v′w are respectively the target and
context vector representations of word w, and W
is the number of words in the vocabulary. To avoid
the O(|W |) time complexity of the normalization
term in Equation (2), Mikolov et al. (2013) use
either hierarchical softmax or negative sampling.
Here, we adopt the negative sampling method.

Injecting lexical contrast information We
account for lexical contrast by implementing a
2-task strategy, combining the Skip-gram context
prediction objective with a new term:

1
T

T∑
t=1

(Jskipgram(wt) + Jlc(wt)) (3)

The lexical contrast objective Jlc(wt) tries to en-
force the constraint that contrasting pairs should
have lower similarity than compatible ones within
a max-margin framework. Our formulation is in-
spired by Lazaridou et al. (2015), who use a sim-
ilar multitask strategy to induce multimodal em-
beddings. Given a target word w, with sets of
antonyms A(w) and synonyms S(w), the max-
margin objective for lexical contrast is:

−
∑

s∈S(w),a∈A(w)

max(0,∆− cos(vw, vs)

+ cos(vw, va)) (4)

where ∆ is the margin and cos(x, y) stands for
cosine similarity between vectors x and y. Note
that, by equation (3), the Jlc(wt) term is evalu-
ated each time a word is encountered in the corpus.
We extract antonym and synonym sets from Word-
Net (Miller, 1995). If a word wt is not associated
to synonym/antonym information in WordNet, we
set Jlc(wt) = 0.

3 Experimental setup

We compare the performance of mLCM against
Skip-gram. Both models’ parameters are esti-
mated by backpropagation of error via stochastic
gradient descent. Our text corpus is a Wikipedia3

2009 dump comprising approximately 800M to-
kens and 200K distinct word types.4 Other hyper-
parameters, selected without tuning, include: vec-
tor size (300), window size (5), negative sam-
ples (10), sub-sampling to disfavor frequent words
(10−3). For mLCM, we use 7500 antonym pairs

3https://en.wikipedia.org
4We only consider words that occur more than 50 times in

the corpus
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MEN SimLex
Skip-gram 0.73 0.39
mLCM 0.74 0.52

Table 1: Relatedness/similarity tasks

and 15000 synonym pairs; on average, 2.5 pairs
per word and 9000 words are covered.

Both models are evaluated in four tasks:
two lexical tasks testing the general quality of
the learned embeddings and one focusing on
antonymy, and a negation task which verifies the
positive influence of lexical contrast in a composi-
tional setting.

4 Lexical tasks

4.1 Relatedness and similarity
In classic semantic relatedness/similarity tasks,
the models provide cosine scores between pairs of
word vectors that are then compared to human rat-
ings for the same pairs. Performance is evaluated
by Spearman correlation between system and hu-
man scores. For general relatedness, we use the
MEN dataset of Bruni et al. (2014), which con-
sists of 3,000 word pairs comprising 656 nouns,
57 adjectives and 38 verbs. The SimLex dataset
from Hill et al. (2014b), comprising 999 word
pairs (666 noun, 222 verb and 111 adjective pairs)
was explicitly built to test a tighter notion of strict
“semantic” similarity.

Table 1 reports model performance. On MEN,
mLCM outperforms Skip-gram by a small margin,
which shows that the new information, at the very
least, does not have any negative effect on gen-
eral semantic relatedness. On the other hand, lex-
ical contrast information has a strong positive ef-
fect on measuring strict semantic similarity, lead-
ing mLCM to achieve state-of-the-art SimLex per-
formance (Hill et al., 2014a).

4.2 Distinguishing antonyms and synonyms
Having shown that capturing lexical contrast in-
formation results in higher-quality representations
for general purposes, we focus next on the spe-
cific task of distinguishing contrasting words from
highly compatible ones. We use the adjective part
of dataset of Santus et al. (2014), that contains 262
antonym and 364 synonym pairs. We compute co-
sine similarity of all pairs and use the area under
the ROC curve (AUC) to measure model perfor-
mance. Moreover, we directly test mLCM’s abil-

AUC
Skip-gram 0.62
mLCM 0.78
mLCM-propagate 0.66

Table 2: Synonym vs antonym task

ity to propagate lexical contrast across the vocab-
ulary by retraining it without using WordNet in-
formation for any of the words in the dataset, i.e.
the words in the dataset are removed from the syn-
onym or antonym sets of all the adjectives used in
training (mLCM-propagate in the results table).

The results, in Table 2, show that mLCM can
successfully learn to distinguish contrasting words
from synonyms. The performance of the mLCM
model trained without explicit contrast informa-
tion about the dataset words proves moreover that
lexical contrast information is indeed propagated
through the lexical network.

4.3 Vector space structure

To further investigate the effect of lexical con-
trast information, we perform a qualitative anal-
ysis of how it affects the space structure. We pick
20 scalar adjectives denoting spatial or weight-
related aspects of objects and living beings, where
10 indicate the presence of the relevant property
to a great degree (big, long, heavy. . . ), whereas
the remaining 10 suggest that the property is
present in little amounts (little, short, light. . . ).
We project the 300-dimensional vectors of these
adjectives onto a 2-dimensional plane using the
t-SNE toolkit,5 which attempts to preserve the
structure of the original high-dimensional word
neighborhoods. Figure 1 shows that, in Skip-
gram space, pairs at the extreme of the same scale
(light vs heavy, narrow vs wide, fat vs skinny) are
very close to each other compared to other words;
whereas for mLCM the extremes are farther apart
from each other, as expected. Moreover, the ad-
jectives at the two ends of the scales are grouped
together. This is a very nice property, since many
adjectives in one group will tend to characterize
the same objects. Within the two clusters, words
that are more similar (e.g., wide and broad) are
still closer to each other, just as we would expect
them to be.

5http://lvdmaaten.github.io/tsne/
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Figure 1: Arrangement of some scalar adjectives in Skip-gram vs mLCM spaces

5 Learning Negation

Having shown that injecting lexical contrast in-
formation into word embeddings is beneficial for
lexical tasks, we further explore if it can also
help composition. Since mLCM makes contrast-
ing and compatible words more distinguishable
from each other, we conjecture that it would be
easier for compositional DSMs to capture negation
in mLCM space. We perform a proof-of-concept
experiment where we represent not as a function
that is trained to map an adjective to its antonym
(good to bad). That is, by adopting the frame-
work of Baroni et al. (2014), we take not to be
a matrix that, when multiplied with an adjective-
representing vector, returns the vector of an adjec-
tive with the opposite meaning. We realize that
this is capturing only a tiny fraction of the linguis-
tic uses of negation, but it is at least a concrete
starting point.

First, we select a list of adjectives and antonyms
from WordNet; for each adjective, we only pick
the antonym of its first sense. This yields a to-
tal of around 4,000 antonym pairs. Then, we in-
duce the not matrix with least-squares regression
on training pairs. Finally, we assess the learned
negation function by applying it to an adjective
and computing accuracy in the task of retrieving
the correct antonym as nearest neighbour of the
not-composed vector, searching across all Word-
Net adjectives (10K items). The results in Table 3
are obtained by using 10-fold cross-validation on
the 4,000 pairs. We see that mLCM outperforms
Skip-gram by a large margin.

Figure 2 shows heatmaps of the weight matrices
learnt for not by the two models. Intriguingly, for
mLCM, the not matrix has negative values on the
diagonal, that is, it will tend to flip the values in

train test
Skip-gram 0.44 0.02
mLCM 0.87 0.27

Table 3: Average accuracy in retrieving antonym
as nearest neighbour when applying the not com-
position function to 4,000 adjectives.

Skip-Gram

-0.1

0

0.1

0.2

0.3

-0.2
mLCM

Figure 2: Heatmaps of not-composition matrices.

the input vector, not unlike what arithmetic nega-
tion would do. On the other hand, the Skip-gram-
based not matrix is remarkably identity-like, with
large positive values concentrated on the diagonal.
Thus, under this approach, an adjective will be al-
most identical to its antonym, which explains why
it fails completely on the test set data: the nearest
neighbour of not-X will typically be X itself.

6 Conclusion

Given the promise shown by mLCM in the ex-
periments reported here, we plan to test it next
on a range of linguistically interesting phenomena
that are challenging for DSMs and where lexical
contrast information might help. These include
modeling a broader range of negation types (de
Swart, 2010), capturing lexical and phrasal infer-
ence (Levy et al., 2015), deriving adjectival scales
(Kim and de Marneffe, 2013) and distinguishing
semantic similarity from referential compatibility
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(Kruszewski and Baroni, 2015).
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Abstract 

In this paper, we address semi-supervised 

sentiment learning via semi-stacking, which 

integrates two or more semi-supervised 

learning algorithms from an ensemble learn-

ing perspective. Specifically, we apply meta-

learning to predict the unlabeled data given 

the outputs from the member algorithms and 

propose N-fold cross validation to guarantee 

a suitable size of the data for training the 

meta-classifier.  Evaluation on four domains 

shows that such a semi-stacking strategy per-

forms consistently better than its member al-

gorithms.  

1 Introduction 

The past decade has witnessed a huge exploding 

interest in sentiment analysis from the natural lan-

guage processing and data mining communities 

due to its inherent challenges and wide applica-

tions (Pang et al., 2008; Liu, 2012). One funda-

mental task in sentiment analysis is sentiment 

classification, which aims to determine the senti-

mental orientation a piece of text expresses (Pang 

et al., 2002). For instance, the sentence "I abso-

lutely love this product." is supposed to be deter-

mined as a positive expression in sentimental ori-

entation.  

While early studies focus on supervised learn-

ing, where only labeled data are required to train 

the classification model (Pang et al., 2002), recent 

studies devote more and more to reduce the heavy 

dependence on the large amount of labeled data 

by exploiting semi-supervised learning ap-

proaches, such as co-training (Wan, 2009; Li et al., 

2011), label propagation (Sindhwani and Melville, 

2008), and deep learning (Zhou et al., 2013), to 

sentiment classification. Empirical evaluation on 

various domains demonstrates the effectiveness of 

the unlabeled data in enhancing the performance 

                                                 
 * Corresponding author 

of sentiment classification. However, semi-super-

vised sentiment classification remains challeng-

ing due to the following reason. 

Although various semi-supervised learning al-

gorithms are now available and have been shown 

to be successful in exploiting unlabeled data to 

improve the performance in sentiment classifica-

tion, each algorithm has its own characteristic 

with different pros and cons. It is rather difficult 

to tell which performs best in general. Therefore, 

it remains difficult to pick a suitable algorithm for 

a specific domain. For example, as shown in Li et 

al. (2013), the co-training algorithm with personal 

and impersonal views yields better performances 

in two product domains: Book and Kitchen, while 

the label propagation algorithm yields better per-

formances in other two product domains: DVD 

and Electronic. 

In this paper, we overcome the above challenge 

above by combining two or more algorithms in-

stead of picking one of them to perform semi-su-

pervised learning. The basic idea of our algorithm 

ensemble approach is to apply meta-learning to 

re-predict the labels of the unlabeled data after ob-

taining their results from the member algorithms. 

First, a small portion of labeled samples in the in-

itial labeled data, namely meta-samples, are 

picked as unlabeled samples and added into the 

initial unlabeled data to form a new unlabeled data. 

Second, we use the remaining labeled data as the 

new labeled data to perform semi-supervised 

learning with each member algorithm. Third, we 

collect the meta-samples’ probability results from 

all member algorithms to train a meta-learning 

classifier (called meta-classifier). Forth and fi-

nally, we utilize the meta-classifier to re-predict 

the unlabeled samples as new automatically-la-

beled samples. Due to the limited number of la-

beled data in semi-supervised learning, we use N-

fold cross validation to obtain more meta-samples 

for better learning the meta-classifier. In principle, 

the above ensemble learning approach could be 
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seen as an extension of the famous stacking ap-

proach (Džeroski and Ženko, 2004) to semi-su-

pervised learning. For convenience, we call it 

semi-stacking. 

 The remainder of this paper is organized as fol-

lows. Section 2 overviews the related work on 

semi-supervised sentiment classification. Section 

3 proposes our semi-stacking strategy to semi-su-

pervised sentiment classification. Section 4 pro-

poses the data filtering approach to filter low-con-

fident unlabeled samples. Section 5 evaluates our 

approach with a benchmark dataset. Finally, Sec-

tion 6 gives the conclusion and future work. 

2 Related Work  

Early studies on sentiment classification mainly 

focus on supervised learning methods with algo-

rithm designing and feature engineering (Pang et 

al., 2002; Cui et al., 2006; Riloff et al., 2006; Li et 

al., 2009). Recently, most studies on sentiment 

classification aim to improve the performance by 

exploiting unlabeled data in two main aspects: 

semi-supervised learning (Dasgupta and Ng, 2009; 

Wan, 2009; Li et al., 2010) and cross-domain 

learning (Blitzer et al. 2007; He et al. 2011; Li et 

al., 2013). Specifically, existing approaches to 

semi-supervised sentiment classification could be 

categorized into two main groups: bootstrapping-

style and graph-based. 

As for bootstrapping-style approaches, Wan 

(2009) considers two different languages as two 

views and applies co-training to conduct semi-su-

pervised sentiment classification. Similarly, Li et 

al. (2010) propose two views, named personal and 

impersonal views, and apply co-training to use un-

labeled data in a monolingual corpus. More re-

cently, Gao et al. (2014) propose a feature sub-

space-based self-training to semi-supervised sen-

timent classification. Empirical evaluation 

demonstrates that subspace-based self-training 

outperforms co-training with personal and imper-

sonal views. 

As for graph-based approaches, Sindhwani and 

Melville (2008) first construct a document-word 

bipartite graph to describe the relationship among 

the labeled and unlabeled samples and then apply 

label propagation to get the labels of the unlabeled 

samples. 

Unlike above studies, our research on semi-su-

pervised sentiment classification does not merely 

focus on one single semi-supervised learning al-

gorithm but on two or more semi-supervised 

learning algorithms with ensemble learning. To 

the best of our knowledge, this is the first attempt 

to combine two or more semi-supervised learning 

algorithms in semi-supervised sentiment classifi-

cation. 

3 Semi-Stacking for Semi-supervised 

Sentiment Classification 

In semi-supervised sentiment classification, the 

learning algorithm aims to learn a classifier from 

a small scale of labeled samples, named initial la-

beled data, with a large number of unlabeled sam-

ples. In the sequel, we refer the labeled data as 

1{( , )} Ln

i i iL x y   where 
d

ix R  is the d dimen-

sional input vector, and iy is its output label. The 

unlabeled data in the target domain is denoted as 

1{( )} Un

k kU x  . Suppose 
semil  is a semi-supervised 

learning algorithm. The inputs of 
semil  are L  and 

U , and the output is 1' {( , )} Un

k k kU x y   which de-

notes the unlabeled data with automatically as-

signed labels. Besides the labeled results, it is al-

ways possible to obtain the probability results, de-

noted as 
UP

, which contains the posterior proba-

bilities belonging to the positive and negative cat-

egories of each unlabeled sample, i.e., <

( | ), ( | )k kp pos x p neg x >. For clarity, some im-

portant symbols are listed in Table 1. 

Table 1: Symbol definition 

Symbol Definition 

L  Labeled data 

U  Unlabeled data 

U   Unlabeled data with automatically 

assigned labels 

UP

 The probability result of unlabeled 

data 

superl  A supervised learning algorithm 

semil  A semi-supervised learning algo-

rithm 

metac  The meta-classifier obtained from 

meta-learning 

testc  The test classifier for classifying the 

test data 

3.1 Framework Overview  

In our approach, two member semi-supervised 

learning algorithm are involved, namely, 1

semil and 

2

semil  respectively, and the objective is to leverage 

both of them to get a better-performed semi-su-

pervised learning algorithm.  Our basic idea is to 

apply meta-learning to re-predict the labels of the 

unlabeled data given the outputs from the member 

algorithms. Figure 1 shows the framework of our 
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implementation of the basic idea. The core com-

ponent in semi-stacking is the meta-classifier 

learned from the meta-learning process, i.e., metac . 

This classifier aims to make a better prediction on 

the unlabeled samples by combining two different 

probability results from the two member algo-

rithms.  

 

Figure 1: The framework of semi-stacking 

3.2 Meta-learning 

As shown above, meta-classifier is the core com-

ponent in semi-stacking, trained through the meta-

learning process. Here, meta- means the learning 

samples are not represented by traditional descrip-

tive features, e.g., bag-of-words features, but by 

the result features generated from member algo-

rithms. In our approach, the learning samples in 

meta-learning are represented by the posterior 

probabilities of the unlabeled samples belonging 

to the positive and negative categories from mem-

ber algorithms, i.e., 

 
(1) 

Where 1( | )kp pos x  and 1( | )kp neg x  are the pos-

terior probabilities from the first semi-supervised 

learning algorithm while 2 ( | )kp pos x  and  

2 ( | )kp neg x  are the posterior probabilities from 

the second semi-supervised learning algorithm. 

The framework of the meta-learning process is 

shown in Figure 2. In detail, we first split the ini-

tial labeled data into two partitions, newL  and unL  

where newL  is used as the new initial labeled data 

while unL  is merged into the unlabeled data U  to 

form a new set of unlabeled data unL U . Then, 

two semi-supervised algorithms are performed 

with the labeled data newL  and the unlabeled data 

unL U . Third and finally, the probability results 

of unL , together with their real labels are used as 

meta-learning samples to train the meta-classifier. 

The feature representation of each meta-sample is 

defined in Formula (1). 

 

 

Figure 2: The framework of meta-learning 

3.3 Meta-learning with N-fold Cross Valida-

tion 

Input:   Labeled data L ,  Unlabeled data U
 
 

Output:  The meta-classifier 
metac  

Procedure: 

(a) Initialize the meta-sample set metaS   

(b) Split L into N  folds, i.e., 

1 2 NL L L L    

(c) For i  in 1: N : 

        c1) new iL L L  , un iL L  

        c2) Perform 1
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        c3) Perform 2
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        c4) Generate the meta-samples, i

metaS , 

from the probability results of unL  in the above 

two steps. 

        c5) i
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(d) Train the meta-classifier 
metac with metaS  

and 
superl  

Figure 3: The algorithm description of meta-learning 

with N-fold cross validation 

One problem of meta-learning is that the data size 

of 
unL  might be too small to learn a good meta-

classifier. To better use the labeled samples in the 

initial labeled data, we employ N-fold cross vali-

dation to generate more meta- samples. Specifi-

cally, we first split L  into N  folds. Then, we se-

lect one of them as 
unL  and consider the others as 

newL  and generate the meta-learning samples as 

described in Section 3.2; Third and finally, we re-

peat the above step 1N   times by selecting a dif-

ferent fold as 
unL  in each time. In this way, we can 

obtain the meta-learning samples with the same 

size as the initial labeled data.  Figure 3 presents 

the algorithm description of meta-learning with 

N-fold cross validation. In our implementation, 

we set N to be 10.
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 Figure 4: Performance comparison of baseline and three semi-supervised learning approaches 

 

4 Experimentation 

Dataset: The dataset contains product reviews 

from four different domains: Book, DVD, Elec-

tronics and Kitchen appliances (Blitzer et al., 

2007), each of which contains 1000 positive and 

1000 negative labeled reviews. We randomly se-

lect 100 instances as labeled data, 400 instances 

are used as test data and remaining 1500 instances 

as unlabeled data. 

Features: Each review text is treated as a bag-of-

words and transformed into binary vectors encod-

ing the presence or absence of word unigrams and 

bigrams.  

Supervised learning algorithm: The maximum 

entropy (ME) classifier implemented with the 

public tool, Mallet Toolkits (http://mal-

let.cs.umass.edu/), where probability outputs are 

provided. 

Semi-supervised learning algorithms: (1) The 

first member algorithm is called self-trainingFS, 

proposed by Gao et al. (2014). This approach can 

be seen as a special case of self-training. Different 

from the traditional self-training, self-trainingFS 

use the feature-subspace classifier to make the 

prediction on the unlabeled samples instead of us-

ing the whole-space classifier. In our implementa-

tion, we use four random feature subspaces. (2) 

The second member algorithm is called label 

propagation, a graph-based semi-supervised 

learning approach, proposed by Zhu and Ghah-

ramani (2002). In our implementation, the docu-

ment-word bipartite graph is adopted to build the 

document-document graph (Sindhwani and Mel-

ville, 2008).  

Significance testing: We perform t-test to evalu-

ate the significance of the performance difference 

between two systems with different approaches 

(Yang and Liu, 1999) 

Figure 4 compares the performances of the 

baseline approach and three semi-supervised 

learning approaches. Here, the baseline approach 

is the supervised learning approach by using only 

the initial labeled data (i.e. no unlabeled data is 

used). From the figure, we can see that both Self-

trainingFS and label propagation are successful in 

exploiting unlabeled data to improve the perfor-

mances. Self-trainingFS outperforms label propa-

gation in three domains including Book, DVD, 

and Kitchen but it performs worse in Electronic. 

Our approach (semi-stacking) performs much bet-

ter than baseline with an impressive improvement 

of 4.95% on average. Compared to the two mem-

ber algorithms, semi-stacking always yield a bet-

ter performance, although the improvement over 

the better-performed member algorithm is slight, 

only around 1%-2%. Significance test shows that 

our approach performs significantly better than 

worse-performed member algorithm (p-

value<0.01) in all domains and it also performs 

significantly better than better-performed member 

algorithm (p-value<0.05) in three domains, i.e., 

Book, DVD, and Kitchen.  

5 Conclusion 

In this paper, we present a novel ensemble learn-

ing approach named semi-stacking to semi-super-

vised sentiment classification. Semi-stacking is 

implemented by re-predicting the labels of the un-

labeled samples with meta-learning after two or 

more member semi-supervised learning ap-

proaches have been performed. Experimental 

evaluation in four domains demonstrates that 

semi-stacking outperforms both member algo-

rithms.  
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Abstract

We present a general framework for incor-
porating sequential data and arbitrary fea-
tures into language modeling. The general
framework consists of two parts: a hidden
Markov component and a recursive neural
network component. We demonstrate the
effectiveness of our model by applying it
to a specific application: predicting topics
and sentiments in dialogues. Experiments
on real data demonstrate that our method
is substantially more accurate than previ-
ous methods.

1 Introduction

Processing sequential data is a significant research
challenge for natural language processing. In
the past decades, numerous studies have been
conducted on modeling sequential data. Hidden
Markov Models (HMMs) and its variants are rep-
resentative statistical models of sequential data for
the purposes of classification, segmentation, and
clustering (Rabiner, 1989). For most aforemen-
tioned methods, only the dependencies between
consecutive hidden states are modeled. In natural
language processing, however, we find there are
dependencies locally and at a distance. Conser-
vatively using the most recent history to perform
prediction yields overfitting to short-term trends
and missing important long-term effects. Thus, it
is crucial to explore in depth to capture long-term
temporal dynamics in language use.

Numerous real world learning problems are
best characterized by interactions between mul-
tiple causes or factors. Taking sentiment analy-
sis for dialogues as an example, the topic of the
document and the author’s identity are both valu-
able for mining user’s opinions in the conversa-
tion. Specifically, each participant in the dialogue
usually has specific sentiment polarities towards

different topics. However, most existing sequen-
tial data modeling methods are not capable of in-
corporating the information from both the topic
and the author’s identity. More generally, there
is no sufficiently flexible sequential model that al-
lows incorporating an arbitrary set of features.

In this paper, we present a Deep Markov Neu-
ral Network (DMNN) for incorporating sequential
data and arbitrary features into language model-
ing. Our method learns from general sequential
observations. It is also capable of taking the or-
dering of words into account, and collecting in-
formation from arbitrary features associated with
the context. Comparing to traditional HMM-based
method, it explores deeply into the structure of
sentences, and is more flexible in taking exter-
nal features into account. On the other hand, it
doesn’t suffer from the training difficulties of re-
current neural networks, such as the vanishing gra-
dient problem.

The general framework consists of two parts:
a hidden Markov component and a neural net-
work component. In the training phase, the hid-
den Markov model is trained on the sequential ob-
servation, resulting in transition probabilities and
hidden states at each time step. Then, the neural
network is trained, taking words, features and hid-
den state at the previous time step as input, to pre-
dict the hidden states at the present time step. The
procedure is reversed in the testing phase: the neu-
ral network predicts the hidden states using words
and features, then the hidden Markov model pre-
dicts the observation using hidden states.

A key insight of our method is to use hid-
den states as an intermediate representation, as
a bridge to connect sentences and observations.
By using hidden states, we can deal with arbi-
trary observation, without worrying about the is-
sue of discretization and normalization. Hidden
states are robust with respect to the random noise
in the observation. Unlike recurrent neural net-
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work which connects networks between consecu-
tive time steps, the recursive neural network in our
framework connects to the previous time step by
using its hidden states. In the training phase, since
hidden states are inferred by the hidden Markov
model, the training of recursive neural networks
at each time step can be performed separately,
preventing the difficulty of learning an extremely
deep neural network.

We demonstrate the effectiveness of our model
by applying it to a specific application: predicting
topics and sentiments in dialogues. In this exam-
ple, the sequential observation includes topics and
sentiments. The feature includes the identity of
the author. Experiments on real data demonstrate
that our method is substantially more accurate than
previous methods.

2 Related work

Modeling sequential data is an active research field
(Lewis and Gale, 1994; Jain et al., 2000; Ra-
biner, 1989; Baldi and Brunak, 2001; Kum et al.,
2005). The paper proposed by Kum et al. (2005)
describes most of the existing techniques for se-
quential data modeling. Hidden Markov Mod-
els (HMMs) is one of the most successful models
for sequential data that is best known for speech
recognition (Rabiner, 1989). Recently, HMMs
have been applied to a variety of applications out-
side of speech recognition, such as handwriting
recognition (Nag et al., 1986; Kundu and Bahl,
1988) and fault-detection (Smyth, 1994). The
variants and extensions of HMMs also include
language models (Guyon and Pereira, 1995) and
econometrics (Garcia and Perron, 1996).

In order to properly capture more complex lin-
guistic phenomena, a variety of neural networks
have been proposed, such as neural probabilistic
language model (Bengio et al., 2006), recurrent
neural network (Mikolov et al., 2010) and recur-
sive neural tensor network (Socher et al., 2013).
As opposed to the work that only focuses on the
context of the sequential data, some studies have
been proposed to incorporate more general fea-
tures associated with the context. Ghahramani and
Jordan (1997) proposes a factorial HMMs method
and it has been successfully utilized in natural lan-
guage processing (Duh, 2005), computer vision
(Wang and Ji, 2005) and speech processing (Gael
et al., 2009). However, exact inference and param-
eter estimation in factorial HMMs is intractable,

thus the learning algorithm is difficult to imple-
ment and is limited to the study of real-valued data
sets.

3 The DMNN Model

In this section, we describe our general framework
for incorporating sequential data and an arbitrary
set of features into language modeling.

3.1 Generative model

Given a time sequence t = 1, 2, 3, . . . , n, we as-
sociate each time slice with an observation (st, ut)
and a state label yt. Here, st represents the sen-
tence at time t, and ut represents additional fea-
tures. Additional features may include the author
of the sentence, the bag-of-word features and other
semantic features. The label yt is the item that we
want to predict. It might be the topic of the sen-
tence, or the sentiment of the author.

Given tuples (st, ut, yt), it is natural to build a
supervised classification model to predict yt. Re-
current neural networks have been shown effective
in modeling temporal NLP data. However, due to
the depth of the time sequence, training a single
RNN is difficult. When the time sequence length
n is large, the RNN model suffers from many prac-
tical problems, including the vanishing gradient is-
sue which makes the training process inefficient.

We propose a Deep Markov Neural Network
(DMNN) model. The DMNN model introduces
a hidden state variable Ht for each time slice. It
serves as an intermediate layer connecting the la-
bel yt and the observation (st, ut). These hidden
variables disentangle the correlation between neu-
ral networks for each sentence, but preserving time
series dependence. The time series dependence is
modeled by a Markov chain. In particular, we as-
sume that there is a labeling matrix L such that

P (yt = i|Ht = j) = Lij (1)

and a transition matrix T such that

P (Ht+1 = i|Ht = j) = Tij (2)

These two equations establish the relation be-
tween the hidden state and the labels. On the
other hand, we use a neural network model M to
model the relation between the hidden states and
the observations. The neural network model takes
(Ht−1, st, ut) as input, and predict Ht as its out-
put. In particular, we use a logistic model to define
the probability:
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P (Ht = i|Ht−1, st, ut) ∝ (3)

exp((wi
h, φ(Ht−1)) + (wi

u, ϕ(ut)) + (wi
sN(st) + b))

The vectors wh, wu, ws are linear combination
coefficients to be estimated. The functions φ, ϕ
and function N turn Ht−1, ut and st into fea-
turized vectors. Among these functions, we rec-
ommend choosing φ(Ht−1) to be a binary vector
whose Ht−1-th coordinate is one and all other co-
ordinates are zeros. Both function ϕ and function
N are modeled by deep neural networks.

Since the sentence st has varied lengths and
distinct structures, choosing an appropriate neural
network to extract the sentence-level feature is a
challenge task. In this paper, we choose N to be
the recursive autoencoder (Socher et al., 2011a),
which explicitly takes structure of the sentence
into account. The network for defining ϕ can be
a standard fully connect neural network.

3.2 Estimating Model Parameters
There are two sets of parameters to be estimated:
the parameters L, T for the Markov chain model,
and the parameters wh, wu, ws, ϕ,N for the deep
neural networks. The training is performed in two
phases. In the first phase, the hidden states {Ht}
are estimated based on the labels {yt}. The emis-
sion matrix L and the transition matrix T are es-
timated at the same time. This step can be done
by using the Baum-Welch algorithm (Baum et al.,
1970; Baum, 1972) for learning hidden Markov
models.

When the hidden states {Ht} are obtained, the
second phase estimates the remaining parameters
for the neural network model in a supervised pre-
diction problem. First, we use available sentences
to train the structure of the recursive neural net-
workN . This step can be done without using other
information besides {st}. After the structure of N
is given, the remaining task is to train a supervised
prediction model to predict the hidden stateHt for
each time slice. In this final step, the parameters to
be estimated are wh, wu, wsand the weight coeffi-
cients in neural networks N and ϕ. By maximiz-
ing the log-likelihood of the prediction, all model
parameters can be estimated by stochastic gradient
descent.

3.3 Prediction
The prediction procedure is a reverse of the train-
ing procedure. For prediction, we only have the

sentence st and the additional feature ut. By equa-
tion (3), we use (s1, u1) to predict H1, then use
(H1, s2, u2) to predict H2. This procedure contin-
ues until we have reached Hn. Note that each Ht

is a random variable. Equation (3) yields

P (Ht = i|s, u) =
∑

j

P (Ht = i|st, ut, Ht−1 = j)

· P (Ht−1 = j|s, u) (4)

This recursive formula suggests inferring the
probability distribution P (Ht|s, u) one by one,
starting from t = 1 and terminate at t = n. After
P (Ht|s, u) is available, we can infer the probabil-
ity distribution of yt as

P (yt = i|s, u) =
∑

j

P (yt = i|Ht = j)P (Ht = j|s, u)

=
∑

j

Li,jP (Ht = j|s, u) (5)

which gives the prediction for the label of interest.

3.4 Application: Sentiment analysis in
conversation

Sentiment analysis for dialogues is a typical se-
quential data modeling problem.The sentiments
and topics expressed in a conversation affect
the interaction between dialogue participants
(Suin Kim, 2012). For example, given a user say
that “I have had a high fever for 3 days”, the user
may write back positive-sentiment response like “I
hope you feel better soon”, or it could be negative-
sentiment content when the response is “Sorry, but
you cannot join us today” (Hasegawa et al., 2013).
Incorporating the session’s sequential information
into sentiment analysis may improve the predic-
tion accuracy. Meanwhile, each participate in the
dialogue usually has specific sentiment polarities
towards different topics.

In this paper, the sequential labels available to
the framework include topics and sentiments. In
the training dataset, topics are obtained by run-
ning an LDA model, while the sentiment labels are
manually labeled. The feature includes the iden-
tity of the author. In the training phase, the hid-
den Markov model is trained on the sequential la-
bels, resulting in transition probabilities and hid-
den states at each time step. Then, the recursive
autoencoders (Socher et al., 2011a) is trained, tak-
ing words, the identity of the author and hidden
state at the previous time step as input, to predict
the hidden states at the present time step. The pro-
cedure is reversed in the testing phase: the neu-
ral network predicts the hidden states using words
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and the identity of the author, then the hidden
Markov model predicts the observation using hid-
den states.

4 Experiments

To evaluate our model, we conduct experiments
for sentiment analysis in conversations.

4.1 Datasets

We conduct experiments on both English and Chi-
nese datasets. The detailed properties of the
datasets are described as follow.
Twitter conversation (Twitter): The original
dataset is a collection of about 1.3 million conver-
sations drawn from Twitter by Ritter et al. (2010).
Each conversation contains between 2 and 243
posts. In our experiments, we filter the data by
keeping only the conversations of five or more
tweets. This results in 64,068 conversations con-
taining 542,866 tweets.
Sina Weibo conversation (Sina): since there is
no authoritative publicly available Chinese short-
text conversation corpus, we write a web crawler
to grab tweets from Sina Weibo, which is the
most popular Twitter-like microblogging website
in China1. Following the strategy used in (Rit-
ter et al., 2010), we crawled Sina Weibo for a 3
months period from September 2013 to Novem-
ber 2013. Filtering the conversations that contain
less than five posts, we get a Chinese conversa-
tion corpus with 5,921 conversations containing
37,282 tweets.

For both datasets, we set the ground truth of sen-
timent classification of tweets by using human an-
notation. Specifically, we randomly select 1000
conversations from each datasets, and then invite
three researchers who work on natural language
processing to label sentiment tag of each tweet
(i.e., positive, negative or neutral) manually. From
3 responses for each tweet, we measure the agree-
ment as the number of people who submitted the
same response. We measure the performance of
our framework using the tweets that satisfy at least
2 out of 3 agreement.

For both datasets, data preprocessing is per-
formed. The words about time, numeral words,
pronoun and punctuation are removed as they are
unrelated to the sentiment analysis task.

1http://weibo.com

Dataset SVM NBSVM RAE Mesnil’s DMNN
Twitter 0.572 0.624 0.639 0.650 0.682

Sina 0.548 0.612 0.598 0.626 0.652

Table 1: Three-way classification accuracy

4.2 Baseline methods

To evaluate the effectiveness of our framework
on the application of sentiment analysis, we com-
pare our approach with several baseline methods,
which we describe below:
SVM: Support Vector Machine is widely-used
baseline method to build sentiment classifiers
(Pang et al., 2002). In our experiment, 5000 words
with greatest information gain are chosen as fea-
tures, and we use the LibLinear2 to implement
SVM.
NBSVM: This is a state-of-the-art performer on
many sentiment classification datasets (Wang and
Manning, 2012). The model is run using the pub-
licly available code3.
RAE: Recursive Autoencoder (Socher et al.,
2011b) has been proven effective in many senti-
ment analysis tasks by learning compositionality
automatically. The RAE model is run using the
publicly available code4 and we follow the same
setting as in (Socher et al., 2011b).
Mesnil’s method: This method is proposed in
(Mesnil et al., 2014), which achieves the strongest
results on movie reviews recently. It is a ensem-
ble of the generative technique and the discrimi-
native technique. We run this algorithm with pub-
licly available code 5.

4.3 Experiment results

In our HMMs component, the number of hidden
states is 80. We randomly initialize the matrix
of state transition probabilities and the initial state
distribution between 0 and 1. The emission prob-
abilities are determined by Gaussian distributions.
In our recursive autoencoders component, we rep-
resent each words using 100-dimensional vectors.
The hyperparameter used for weighing reconstruc-
tion and cross-entropy error is 0.1.

For each dataset, we use 800 conversations as
the training data and the remaining are used for
testing. We summarize the experiment results in

2http://www.csie.ntu.edu.tw/~cjlin/liblinear/
3http://nlp.stanford.edu/~sidaw
4https://github.com/sancha/jrae/zipball/stable
5https://github.com/mesnilgr/iclr15.
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Table 1. According to Table 1, the proposed ap-
proach significantly and consistently outperforms
other methods on both datasets. This verifies the
effectiveness of the proposed approach. For exam-
ple, the overall accuracy of our algorithm is 3.2%
higher than Mesnil’s method and 11.0% higher
than SVM on Twitter conversations dataset. For
the Sina Weibo dataset, we observe similar results.
The advantage of our model comes from its capa-
bility of exploring sequential information and in-
corporating an arbitrary number of factors of the
corpus.

5 Conclusion and Future Work

In this paper, we present a general framework
for incorporating sequential data into language
modeling. We demonstrate the effectiveness of
our method by applying it to a specific appli-
cation: predicting topics and sentiments in dia-
logues. Experiments on real data demonstrate that
our method is substantially more accurate than
previous methods.
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Abstract

Predicting the helpfulness of product re-
views is a key component of many e-
commerce tasks such as review ranking
and recommendation. However, previous
work mixed review helpfulness prediction
with those outer layer tasks. Using non-
text features, it leads to less transferable
models. This paper solves the problem
from a new angle by hypothesizing that
helpfulness is an internal property of text.
Purely using review text, we isolate re-
view helpfulness prediction from its outer
layer tasks, employ two interpretable se-
mantic features, and use human scoring
of helpfulness as ground truth. Experi-
mental results show that the two seman-
tic features can accurately predict helpful-
ness scores and greatly improve the per-
formance compared with using features
previously used. Cross-category test fur-
ther shows the models trained with seman-
tic features are easier to be generalized
to reviews of different product categories.
The models we built are also highly inter-
pretable and align well with human anno-
tations.

1 Introduction

Product reviews have influential impact to online
shopping as consumers tend to read product re-
views when finalizing purchase decisions (Duan et
al., 2008). However, a popular product usually has
too many reviews for a consumer to read. There-
fore, reviews need to be ranked and recommended
to consumers. In particular, review helpfulness
plays a critical role in review ranking and recom-
mendation (Ghose and Ipeirotis, 2011; Mudambi
and Schuff, 2010; Danescu-Niculescu-Mizil et al.,

2009). The simple question “Was this review help-
ful to you?” increases an estimated $2.7B revenue
to Amazon.com annually1.

However, existing literature solves helpfulness
prediction together with its outer layer task, the
review ranking (Kim et al., 2006; O’Mahony and
Smyth, 2010; Liu et al., 2008; Martin and Pu,
2014). Those studies use features not contribut-
ing to helpfulness, such as date (Liu et al., 2008),
or features making the model less transferable,
such as product type (Mudambi and Schuff, 2010).
Models built in these ways are also difficult to in-
terpret from linguistic perspective.

Therefore, it is necessary to isolate review help-
fulness prediction from its outer layer tasks and
formulate it as a new problem. In this way, mod-
els can be more robust and generalizable. Beyond
predicting whether a review is helpful, we can also
understand why it is helpful. In our approach, the
results can also facilitate many other tasks, such as
review summarization (Xiong and Litman, 2014)
and sentiment extraction (Hu and Liu, 2004).

Recent NLP studies reveal the connection be-
tween text style and its properties, include read-
ability (Agichtein et al., 2008), informative-
ness (Yang and Nenkova, 2014) and trustworthi-
ness (Pasternack and Roth, 2011) of text. Hence,
we hypothesize that helpfulness is also an under-
lying property of text.

To understand the essence of review text, we
leverage existing linguistic and psychological dic-
tionaries and represent reviews in semantic dimen-
sions. Two semantic features that are new to solv-
ing this problem, LIWC (Pennebaker et al., 2007)
and INQUIRER (Stone et al., 1962), are employed
in this work. The intuition behind is that people
usually embed semantic meanings, such as emo-
tion and reasoning, into text. For example, the re-

1http://www.uie.com/articles/
magicbehindamazon/
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view “With the incredible brightness of the main LED, this
light is visible from a distance on a sunny day at noon. is
more helpful than the review “I ordered an iPad, I
received an iPad. I got exactly what I ordered which makes
me satisfied. Thanks!” because the former mentions
user experience and functionality of the product
while the latter has emotional statements only.

Previous work approximates the ground truth of
helpfulness from users’ votes using “X of Y ap-
proach”: if X of Y users think a review is help-
ful, then the helpfulness score of the review is
the ratio X/Y . However, not many reviews have
statistically abundant votes, i.e., a very small Y .
Fewer than 20% of the reviews in Amazon Review
Dataset (McAuley and Leskovec, 2013) have at
least 5 votes (Table 1) while only 0.44% have 100+
votes. In addition, the review voting itself may be
biased (Danescu-Niculescu-Mizil et al., 2009; Cao
et al., 2011). Therefore, we proactively recruited
human annotators and let them score the helpful-
ness of reviews in our dataset.

We model the problem of predicting review
helpfulness score as a regression problem. Ex-
perimental results show that it is feasible to use
text-only features to accurately predict helpful-
ness scores. The two semantic features signifi-
cantly outperform baseline features used in previ-
ous work. In cross-category test, the two semantic
features show good transferability. To interpret the
models, we analyze the semantic features and find
that Psychological Process plays an important role
in review text helpfulness. Words reflecting think-
ing and understanding are more related to helpful
reviews while emotional words are not. Lastly, we
validate the models trained on “X of Y approach”
data on human annotated data and achieve highly
correlated prediction.

2 Dataset

Two subsets of reviews are constructed from Ama-
zon Review Dataset (McAuley and Leskovec,
2013), which includes nearly 35 million reviews
from Amazon.com between 1995 and 2013. A
subset of 696,696 reviews from 4 categories:
Books, Home (home and kitchen), Outdoors and
Electronics, are chosen in this research. For each
category, we select the top 100 products with the
most reviews and then include all reviews related
to the selected products for analysis. Each review
comes with users’ helpfulness votes and hence
helpfulness score can be approximated using “X
of Y approach.” Finally, 115,880 reviews, each of
which has at least 5 votes, form the automatic la-
beled dataset (Table 1).

Table 1: Number of Reviews for Each Category

Category Total number
of reviews

Number of reviews
with at least 5 votes, se-
lected for experiments

Books 391,666 81,014 (20.7%)
Home 116,194 13,331 (11.5%)

Outdoors 52,838 6,158 (11.7%)
Electronics 135,998 15,377 (11.3%)

Overall 696,696 115,880 (16.6%)

In addition, we also create the human labeled
dataset. As mentioned earlier, the X of Y ap-
proach may not be a good approximation to help-
fulness. A better option is human scoring. We
randomly select 400 reviews outside of the au-
tomatic labeled dataset, 100 from each category.
Eight students annotated these reviews in a fash-
ion similar to that in (Bard et al., 1996) by as-
signing real-value scores (∈ [0, 100]) to each re-
view. Review text was the only information given
to them. The average helpfulness score of all
valid annotations is used as the ground truth for
each review. We have released the human annota-
tion data at https://sites.google.com/
site/forrestbao/acl_data.tar.bz2 .

3 Features

Driven by the hypothesis that helpfulness is an un-
derlying feature of text itself, we consider text-
based features only. Features used in previous re-
lated work, namely Structure (STR) (Kim et al.,
2006; Xiong and Litman, 2011), Unigram (Kim et
al., 2006; Xiong and Litman, 2011; Agarwal et al.,
2011) and GALC emotion (Martin and Pu, 2014),
are considered as baselines.

We then introduce two semantic features LIWC
and General Inquirer (INQUIRER) for easy map-
ping from text to human sense, including emo-
tions, writing styles, etc. Our rationale for the
two semantic features is that a helpful review in-
cludes opinions, analyses, emotions and personal
experiences, etc. These two features have been
proven effective in other semantic analysis tasks
and hence we are here giving them a try for study-
ing review helpfulness. We leave the study of us-
ing more sophisticated features like syntactic and
discourse representations to future work. All fea-
tures except UGR are independent of training data.

STR Following the (Xiong and Litman, 2011),
we use the following structural features: total
number of tokens, total number of sentences, av-
erage length of sentences, number of exclamation
marks, and the percentage of question sentences.
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UGR Unigram feature has been demonstrated
as a very reliable feature for review helpfulness
prediction in previous work. We build a vocab-
ulary with all stopwords and non-frequent words
(df < 3) removed. Each review is represented by
the vocabulary with tf − idf weighting for each
appeared term.

GALC (Geneva Affect Label Coder) (Scherer,
2005) proposes to recognize 36 effective states
commonly distinguished by words. Similar to
(Martin and Pu, 2014), we construct a feature
vector with the number of occurrences of each
emotion plus one additional dimension for non-
emotional words.

LIWC (Linguistic Inquiry and Word Count)
(Pennebaker et al., 2007) is a dictionary which
helps users to determine the degree that any text
uses positive or negative emotions, self-references
and other language dimensions. Each word in
LIWC is assigned 1 or 0 for each language dimen-
sion. For each review, we sum up the values of all
words for each dimension. Eventually each review
is represented by a histogram of language dimen-
sions. We employ the LIWC2007 English dictio-
nary which contains 4,553 words with 64 dimen-
sions in our experiments.

INQUIRER General Inquirer (Stone et al.,
1962) is a dictionary in which words are grouped
in categories. It is basically a mapping tool which
maps each word to some semantic tags, e.g., ab-
surd is mapped to tags NEG and VICE. The dic-
tionary contains 182 categories and a total of 7,444
words. Like for LIWC representation, we compute
the histogram of categories for each review.

4 Experiments

Up to this point, we are very interested in first
whether a prediction model learned for one cat-
egory can be generalized to a new category, and
second what elements make a review helpful. In
other words, we want to know the robustness of
our approach and the underlying reasons.

In this section we will evaluate the effectiveness
of each of the features as well as the combination
of them. For convenience, we use FusionSemantic

to denote the combination of GALC, LIWC and
INQUIRER, and FusionAll to denote the combi-
nation of all features. Because STR and UGR are
widely used in previous work, we use them as two
baselines. GALC has been introduced for this task
as an emotion feature before, so we use it as the
third baseline. STR, URG and GALC are used as
3 baselines. For predicting helpfulness scores, we

use SVM regressor with RBF kernel provided by
LibSVM (Chang and Lin, 2011).

Two kinds of labels are used: automatic labels
obtained in “X of Y approach” from votes, and
human labels made by human annotators. Per-
formance is evaluated by Root Mean Square Er-
ror (RMSE) and Pearson’s correlation coefficients.
Ten-fold cross-validation is performed for all ex-
periments.

4.1 Results using Automatic Labels
Before studying the transferability of models, we
first need to make sure that models work well on
reviews of products of the same category.

4.1.1 RMSE
RMSE and correlation coefficient using automatic
labels are given in Table 2 and Table 3 respec-
tively. Each row corresponds to the model trained
by a feature or a combination of features, while
each column corresponds to one product category.
The lowest RMSE achieved using every single fea-
ture in each category is marked in bold.

The two newly employed semantic features,
LIWC and INQUIRER, have 8% lower RMSE
on average than UGR, the best baseline feature.
FusionAll has the best overall RMSE, ranging
from 0.200 to 0.265. FusionSemantic has the sec-
ond best performance on average. It achieves the
lowest RMSE in Books category.

Table 2: RMSE (the lower the better) using auto-
matic labels

Books Home Outdoors Electro. Average
STR 0.239 0.289 0.314 0.307 0.287
UGR 0.242 0.260 0.284 0.286 0.268

GALC 0.266 0.290 0.310 0.308 0.365
LIWC 0.188 0.256 0.279 0.278 0.250

INQUIRER 0.193 0.248 0.274 0.273 0.247
FusionSemantic 0.187 0.248 0.272 0.268 0.244

FusionAll 0.200 0.247 0.261 0.265 0.243

Table 3: Correlation coefficients (the higher the
better) using automatic labels. All correlations are
highly significant, with p < 0.001.

Books Home Outdoors Electronics
STR 0.500 0.280 0.333 0.351
UGR 0.507 0.467 0.458 0.471

GALC 0.239 0.216 0.255 0.274
LIWC 0.742 0.439 0.424 0.475

INQUIRER 0.720 0.487 0.455 0.498
FusionSemantic 0.744 0.490 0.467 0.527

FusionAll 0.682 0.525 0.535 0.539

4.1.2 Correlation Coefficient
In line with RMSE measurements, the seman-
tic feature based models outperform the baseline
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features in terms of correlation coefficient (Ta-
ble 3). In each category, the highest correla-
tion coefficient is achieved by using LIWC or
INQUIRER, with only one exception (Outdoors).
The two fusion models further improve the re-
sults. FusionSemantic has the highest coefficients
in Books category while FusionAll has the highest
coefficients in other 3 categories.

4.2 Cross Category Test

One motivation of introducing semantic features
is that, unlike UGR which is category-dependent,
they can be more transferable. To validate the
transferability of semantic features, we perform
cross category test by using the model trained from
one category to predict the helpfulness scores of
reviews in other categories. GALC is excluded in
this analysis due to its poor performance earlier.
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Figure 1: Normalized cross-category correlation
coefficients

Model transferability from Category A to Cate-
gory B cannot be measured simply by the perfor-
mance when using A as the training set and B as
the test set. Instead, it should be compared rela-
tively with the performance when using A as both
the training and test sets. There are 4 categories
in our dataset, and the performances on the 4 cate-
gories vary (Tables 2 and 3). In order to provide a
fair comparison, we normalize cross-category cor-
relation coefficients by the corresponding same-
category ones, i.e., cross-category correlation co-
efficient / correlation coefficient on training cate-
gory. For example, the 3 cross-category correla-
tion coefficients of using Books category as train-
ing set are all normalized by the correlation coef-
ficient when using Books as both training and test
sets earlier. A normalized correlation coefficient
of 0 means the prediction on the test category is
random, and thus the model has no transferabil-
ity, while 1 means as accurate as predicting on the

training category, and thus the model is fully trans-
ferable.

Results on transferrability are visualized in Fig-
ure 1 with same-category correlation coefficients
ignored as they are always 1. Correlation coef-
ficients of 4 features are clustered for each pair
of training and testing categories and are color-
coded.

It is shown that INQUIRER and STR are two
best features in cross category test, leading in most
of the category pairs. LIWC follows, achieving at
least 70% of the same-category correlation coeffi-
cients in most cases. The UGR feature, however,
performs poorly in this test. In most cases, the cor-
relation coefficients have been halved, compared
with same-category results.

According to the results, we can conclude that
semantic features are accurate and transferable,
UGR is accurate but is not transferable, and STR
is transferable but not accurate enough (Figure 2).

Accurate Transferable

UGR STR
LIWC
and

INQUIRER

Figure 2: Classification of features based on ex-
perimental results

4.3 What Makes a Review Helpful: A
Semantic Interpretation

LIWC and INQUIRER not only have better per-
formances than previously used features but also
provide us a good semantic interpretation to what
makes a review helpful. We analyze the correla-
tion coefficients between helpfulness and each lan-
guage dimension in the two dictionaries. The top 5
language dimensions that are mostly correlated to
helpfulness from LIWC and INQUIRER are given
in Figure 3.

The top 5 dimensions from LIWC are: Rel-
ativ (Relativity), Time, Incl (Inclusive), Posemo
(Positive Emotion), and Cogmech (Cognitive Pro-
cesses). All of them belong to Psychological Pro-
cesses categories in LIWC, indicating that people
are more thoughtful when writing a helpful review.

The top 5 dimensions from INQUIRER are:
Vary, Begin, Exert, Vice and Undrst. Words with
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Vary, Begin or Exert tags belong to process or
change words, such as start, happen and break.
Vice tag contains words indicating an assess-
ment of moral disapproval or misfortune.Undrst
(Understated) tag contains words indicating de-
emphasis and caution in these realms, which often
reflects the lack of emotional expressiveness. Ac-
cordingly, we can infer that consumers perfer crit-
ical reviews with personal experience and a lack
of emotion.

Figure 3: Language dimensions with highest cor-
relation coefficients. Top: LIWC’s; Bottom: IN-
QUIRER’s.

The discovery that helpful reviews are less emo-
tional is consistent with the weak performance of
GALC (Tables 2, 3 and 4), which is emotion fo-
cused. However, we notice that one of the top
5 dimensions in LIWC, PosEmo, is an emotional
feature. This is partially because some words ap-
pear in both emotional and rational expressions,
such as LIWC PosEmo words: love, nice, sweet.
For example, the sentence “I used to love linksys, but
my experience with several of their products makes me se-
riously think that their quality is suspect” is a rational
statement. But the word “love” appears in it.

4.4 Prediction Results on Human Labels

A better ground truth for helpfulness is human rat-
ing. We further evaluate the prediction models on
human annotated data to evaluate whether the pre-
dictions indeed align with human perceptions of
review helpfulness by reading text only.

The model we built indeed aligns with human
perceptions of review helpfulness when text is the
only data. Table 4 shows the correlation coef-
ficients between the predicted scores and human
annotated scores. INQUIRER is the best feature,
leading in 3 of 4 categories. It is followed by UGR
and LIWC, which show comparable results.

Table 4: Correlation coefficients between pre-
dicted scores and human annotation, *: p < 0.001.

Books Home Outdoors Electronics
STR 0.539* 0.522* 0.471* 0.635*
UGR 0.607* 0.560* 0.579* 0.626*

GALC 0.214 0.405* 0.156 0.418*
LIWC 0.524* 0.553* 0.517* 0.702*

INQUIRER 0.620* 0.662* 0.620* 0.676*
FusionSemantic 0.556* 0.680* 0.569* 0.603*

FusionAll 0.610* 0.801* 0.698* 0.768*

For FusionAll models, correlation coefficients
are about or over 0.7 in 3 of 4 categories, indi-
cating the successful prediction. The only excep-
tion is on Books category. We notice that reviews
in Books are more subjective. Therefore, in Books
reviews, consumers are more influenced by factors
outside of the text, e.g., personal preference on the
book. In this case, the approximate scores used in
training may not reflect the real text helpfulness.
This observation echoes with our speculation that
the “X of Y approach” may not always be a good
approximation for helpfulness due to the subjec-
tivity. We will leave the analysis to this as a future
work.

5 Conclusion

In this paper, we formulate a new problem which
is an important component of many tasks about
online product reviews: predicting the helpfulness
of review text. We hypothesize that helpfulness
is an underlying property of text and isolate help-
fulness prediction from its outer layer problems,
such as review ranking. Introducing two seman-
tic features, which have been shown effective in
other NLP tasks, we achieve more accurate and
transferable prediction than using features used in
existing related work. The ground truth is pro-
vided by votes on massive Amazon product re-
views. We further explore a semantic interpreta-
tion to reviews’ helpfulness that helpful reviews
exhibit more reasoning and experience and less
emotion. The results are further validated on hu-
man scoring to helpfulness.
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Abstract

There have been many recent advances
in the structure and measurement of dis-
tributed language models: those that map
from words to a vector-space that is rich in
information about word choice and com-
position. This vector-space is the dis-
tributed language representation.

The goal of this note is to point out
that any distributed representation can be
turned into a classifier through inversion
via Bayes rule. The approach is simple
and modular, in that it will work with
any language representation whose train-
ing can be formulated as optimizing a
probability model. In our application to 2
million sentences from Yelp reviews, we
also find that it performs as well as or bet-
ter than complex purpose-built algorithms.

1 Introduction

Distributed, or vector-space, language representa-
tions V consist of a location, or embedding, for
every vocabulary word in RK , where K is the di-
mension of the latent representation space. These
locations are learned to optimize, perhaps approx-
imately, an objective function defined on the origi-
nal text such as a likelihood for word occurrences.

A popular example is the Word2Vec machinery
of Mikolov et al. (2013). This trains the distributed
representation to be useful as an input layer for
prediction of words from their neighbors in a Skip-
gram likelihood. That is, to maximize

t+b∑
j 6=t, j=t−b

log pV(wsj | wst) (1)

summed across all words wst in all sentences ws,
where b is the skip-gram window (truncated by the
ends of the sentence) and pV(wsj |wst) is a neural

network classifier that takes vector representations
for wst and wsj as input (see Section 2).

Distributed language representations have been
studied since the early work on neural networks
(Rumelhart et al., 1986) and have long been ap-
plied in natural language processing (Morin and
Bengio, 2005). The models are generating much
recent interest due to the large performance gains
from the newer systems, including Word2Vec and
the Glove model of Pennington et al. (2014), ob-
served in, e.g., word prediction, word analogy
identification, and named entity recognition.

Given the success of these new models, re-
searchers have begun searching for ways to adapt
the representations for use in document classifica-
tion tasks such as sentiment prediction or author
identification. One naive approach is to use ag-
gregated word vectors across a document (e.g., a
document’s average word-vector location) as input
to a standard classifier (e.g., logistic regression).
However, a document is actually an ordered path
of locations throughRK , and simple averaging de-
stroys much of the available information.

More sophisticated aggregation is proposed in
Socher et al. (2011; 2013), where recursive neu-
ral networks are used to combine the word vectors
through the estimated parse tree for each sentence.
Alternatively, Le and Mikolov’s Doc2Vec (2014)
adds document labels to the conditioning set in (1)
and has them influence the skip-gram likelihood
through a latent input vector location in V . In each
case, the end product is a distributed representa-
tion for every sentence (or document for Doc2Vec)
that can be used as input to a generic classifier.

1.1 Bayesian Inversion

These approaches all add considerable model and
estimation complexity to the original underlying
distributed representation. We are proposing a
simple alternative that turns fitted distributed lan-
guage representations into document classifiers
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without any additional modeling or estimation.
Write the probability model that the represen-

tation V has been trained to optimize (likeli-
hood maximize) as pV(d), where document d =
{w1, ...wS} is a set of sentences – ordered vectors
of word identities. For example, in Word2Vec the
skip-gram likelihood in (1) yields

log pV(d) =
∑
s

∑
t

t+b∑
j 6=t, j=t−b

log pVy(wsj | wst).
(2)

Even when such a likelihood is not explicit it will
be implied by the objective function that is opti-
mized during training.

Now suppose that your training documents are
grouped by class label, y ∈ {1 . . . C}. We can
train separate distributed language representations
for each set of documents as partitioned by y;
for example, fit Word2Vec independently on each
sub-corpus Dc = {di : yi = c} and obtain the
labeled distributed representation map Vc. A new
document d has probability pVc(d) if we treat it as
a member of class c, and Bayes rule implies

p(y|d) =
pVy(d)πy∑
c pVc(d)πc

(3)

where πc is our prior probability on class label c.
Thus distributed language representations

trained separately for each class label yield
directly a document classification rule via (3).
This approach has a number of attractive qualities.
Simplicity: The inversion strategy works for any
model of language that can (or its training can) be
interpreted as a probabilistic model. This makes
for easy implementation in systems that are al-
ready engineered to fit such language represen-
tations, leading to faster deployment and lower
development costs. The strategy is also inter-
pretable: whatever intuition one has about the dis-
tributed language model can be applied directly to
the inversion-based classification rule. Inversion
adds a plausible model for reader understanding
on top of any given language representation.
Scalability: when working with massive corpora
it is often useful to split the data into blocks as part
of distributed computing strategies. Our model of
classification via inversion provides a convenient
top-level partitioning of the data. An efficient sys-
tem could fit separate by-class language represen-
tations, which will provide for document classi-
fication as in this article as well as class-specific

answers for NLP tasks such as word prediction or
analogy. When one wishes to treat a document as
unlabeled, NLP tasks can be answered through en-
semble aggregation of the class-specific answers.
Performance: We find that, in our examples, in-
version of Word2Vec yields lower misclassifica-
tion rates than both Doc2Vec-based classification
and the multinomial inverse regression (MNIR) of
Taddy (2013b). We did not anticipate such out-
right performance gain. Moreover, we expect that
with calibration (i.e., through cross-validation)
of the many various tuning parameters available
when fitting both Word and Doc 2Vec the perfor-
mance results will change. Indeed, we find that all
methods are often outperformed by phrase-count
logistic regression with rare-feature up-weighting
and carefully chosen regularization. However, the
out-of-the-box performance of Word2Vec inver-
sion argues for its consideration as a simple default
in document classification.

In the remainder, we outline classification
through inversion of a specific Word2Vec model
and illustrate the ideas in classification of Yelp
reviews. The implementation requires only a
small extension of the popular gensim python
library (Rehurek and Sojka, 2010); the ex-
tended library as well as code to reproduce
all of the results in this paper are available
on github. In addition, the yelp data is
publicly available as part of the correspond-
ing data mining contest at kaggle.com. See
github.com/taddylab/deepir for detail.

2 Implementation

Word2Vec trains V to maximize the skip-gram
likelihood based on (1). We work with the Huff-
man softmax specification (Mikolov et al., 2013),
which includes a pre-processing step to encode
each vocabulary word in its representation via a
binary Huffman tree (see Figure 1).

Each individual probability is then

pV(w|wt) =
L(w)−1∏
j=1

σ
(
ch [η(w, j + 1)]u>η(w,j)vwt

)
(4)

where η(w, i) is the ith node in the Huffman tree
path, of length L(w), for word w; σ(x) = 1/(1 +
exp[−x]); and ch(η) ∈ {−1,+1} translates from
whether η is a left or right child to +/- 1. Every
word thus has both input and output vector coor-
dinates, vw and [uη(w,1) · · ·uη(w,L(w))]. Typically,
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Figure 1: Binary Huffman encoding of a 4 word
vocabulary, based upon 18 total utterances. At
each step proceeding from left to right the two
nodes with lowest count are combined into a par-
ent node. Binary encodings are read back off of
the splits moving from right to left.

only the input space V = [vw1 · · ·vwp ], for a p-
word vocabulary, is reported as the language rep-
resentation – these vectors are used as input for
NLP tasks. However, the full representation V in-
cludes mapping from each word to both V and U.

We apply the gensim python implementation
of Word2Vec, which fits the model via stochastic
gradient descent (SGD), under default specifica-
tion. This includes a vector space of dimension
K = 100 and a skip-gram window of size b = 5.

2.1 Word2Vec Inversion
Given Word2Vec trained on each of C class-
specific corpora D1 . . . DC , leading to C distinct
language representations V1 . . .VC , classification
for new documents is straightforward. Consider
the S-sentence document d: each sentence ws is
given a probability under each representation Vc
by applying the calculations in (1) and (4). This
leads to the S×C matrix of sentence probabilities,
pVc(ws), and document probabilities are obtained

pVc(d) =
1
S

∑
s

pVc(ws). (5)

Finally, class probabilities are calculated via
Bayes rule as in (3). We use priors πc = 1/C, so
that classification proceeds by assigning the class

ŷ = argmaxc pVc(d). (6)

3 Illustration

We consider a corpus of reviews provided by Yelp
for a contest on kaggle.com. The text is tok-
enized simply by converting to lowercase before
splitting on punctuation and white-space. The

training data are 230,000 reviews containing more
than 2 million sentences. Each review is marked
by a number of stars, from 1 to 5, and we fit
separate Word2Vec representations V1 . . .V5 for
the documents at each star rating. The valida-
tion data consist of 23,000 reviews, and we ap-
ply the inversion technique of Section 2 to score
each validation document d with class probabili-
ties q = [q1 · · · q5], where qc = p(c|d).

The probabilities will be used in three different
classification tasks; for reviews as

a. negative at 1-2 stars, or positive at 3-5 stars;

b. negative 1-2, neutral 3, or positive 4-5 stars;

c. corresponding to each of 1 to 5 stars.

In each case, classification proceeds by sum-
ming across the relevant sub-class probabilities.
For example, in task a, p(positive) = q3 +
q4 + q5. Note that the same five fitted Word2Vec
representations are used for each task.

We consider a set of related comparator tech-
niques. In each case, some document repre-
sentation (e.g., phrase counts or Doc2Vec vec-
tors) is used as input to logistic regression pre-
diction of the associated review rating. The lo-
gistic regressions are fit under L1 regularization
with the penalties weighted by feature standard
deviation (which, e.g., up-weights rare phrases)
and selected according to the corrected AICc cri-
teria (Flynn et al., 2013) via the gamlr R pack-
age of Taddy (2014). For multi-class tasks b-c,
we use distributed Multinomial regression (DMR;
Taddy 2015) via the distrom R package. DMR
fits multinomial logistic regression in a factorized
representation wherein one estimates independent
Poisson linear models for each response category.
Document representations and logistic regressions
are always trained using only the training corpus.

Doc2Vec is also fit via gensim, using the same
latent space specification as for Word2Vec: K =
100 and b = 5. As recommended in the doc-
umentation, we apply repeated SGD over 20 re-
orderings of each corpus (for comparability, this
was also done when fitting Word2Vec). Le and
Mikolov provide two alternative Doc2Vec specifi-
cations: distributed memory (DM) and distributed
bag-of-words (DBOW). We fit both. Vector rep-
resentations for validation documents are trained
without updating the word-vector elements, lead-
ing to 100 dimensional vectors for each docu-
ment for each of DM and DCBOW. We input
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Figure 2: Out-of-Sample fitted probabilities of a review being positive (having greater than 2 stars) as a
function of the true number of review stars. Box widths are proportional to number of observations in
each class; roughly 10% of reviews have each of 1-3 stars, while 30% have 4 stars and 40% have 5 stars.

each, as well as the combined 200 dimensional
DM+DBOW representation, to logistic regression.

Phrase regression applies logistic regression of re-
sponse classes directly onto counts for short 1-2
word ‘phrases’. The phrases are obtained using
gensim’s phrase builder, which simply combines
highly probable pairings; e.g., first date and
chicken wing are two pairings in this corpus.

MNIR, the multinomial inverse regression of
Taddy (2013a; 2013b; 2015) is applied as im-
plemented in the textir package for R. MNIR
maps from text to the class-space of inter-
est through a multinomial logistic regression of
phrase counts onto variables relevant to the class-
space. We apply MNIR to the same set of 1-2
word phrases used in phrase regression. Here, we
regress phrase counts onto stars expressed numeri-
cally and as a 5-dimensional indicator vector, lead-
ing to a 6-feature multinomial logistic regression.
The MNIR procedure then uses the 6×pmatrix of
feature-phrase regression coefficients to map from
phrase-count to feature space, resulting in 6 di-
mensional ‘sufficient reduction’ statistics for each
document. These are input to logistic regression.

Word2Vec aggregation averages fitted word rep-
resentations for a single Word2Vec trained on all
sentences to obtain a fixed-length feature vector
for each review (K = 100, as for inversion). This
vector is then input to logistic regression.

3.1 Results

Misclassification rates for each task on the valida-
tion set are reported in Table 1. Simple phrase-
count regression is consistently the strongest per-
former, bested only by Word2Vec inversion on
task b. This is partially due to the relative strengths
of discriminative (e.g., logistic regression) vs gen-

a (NP) b (NNP) c (1-5)

W2V inversion .099 .189 .435
Phrase regression .084 .200 .410

D2V DBOW .144 .282 .496
D2V DM .179 .306 .549

D2V combined .148 . 284 .500
MNIR .095 .254 .480

W2V aggregation .118 .248 .461

Table 1: Out-of-sample misclassification rates.

erative (e.g., all others here) classifiers: given
a large amount of training text, asymptotic effi-
ciency of logistic regression will start to work in
its favor over the finite sample advantages of a
generative classifier (Ng and Jordan, 2002; Taddy,
2013c). However, the comparison is also unfair
to Word2Vec and Doc2Vec: both phrase regres-
sion and MNIR are optimized exactly under AICc
selected penalty, while Word and Doc 2Vec have
only been approximately optimized under a sin-
gle specification. The distributed representations
should improve with some careful engineering.

Word2Vec inversion outperforms the other doc-
ument representation-based alternatives (except,
by a narrow margin, MNIR in task a). Doc2Vec
under DBOW specification and MNIR both do
worse, but not by a large margin. In contrast to
Le and Mikolov, we find here that the Doc2Vec
DM model does much worse than DBOW. Re-
gression onto simple within- document aggrega-
tions of Word2Vec perform slightly better than any
Doc2Vec option (but not as well as the Word2Vec
inversion). This again contrasts the results of Le
and Mikolov and we suspect that the more com-
plex Doc2Vec model would benefit from a careful
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tuning of the SGD optimization routine.1

Looking at the fitted probabilities in detail we
see that Word2Vec inversion provides a more use-
ful document ranking than any comparator (in-
cluding phrase regression). For example, Figure
2 shows the probabilities of a review being ‘pos-
itive’ in task a as a function of the true star rat-
ing for each validation review. Although phrase
regression does slightly better in terms of misclas-
sification rate, it does so at the cost of classifying
many terrible (1 star) reviews as positive. This oc-
curs because 1-2 star reviews are more rare than 3-
5 star reviews and because words of emphasis (e.g.
very, completely, and !!!) are used both
in very bad and in very good reviews. Word2Vec
inversion is the only method that yields positive-
document probabilities that are clearly increasing
in distribution with the true star rating. It is not dif-
ficult to envision a misclassification cost structure
that favors such nicely ordered probabilities.

4 Discussion

The goal of this note is to point out inversion as an
option for turning distributed language representa-
tions into classification rules. We are not arguing
for the supremacy of Word2Vec inversion in par-
ticular, and the approach should work well with al-
ternative representations (e.g., Glove). Moreover,
we are not even arguing that it will always outper-
form purpose-built classification tools. However,
it is a simple, scalable, interpretable, and effective
option for classification whenever you are working
with such distributed representations.
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Abstract

We explore using relevant tweets of a
given news article to help sentence com-
pression for generating compressive news
highlights. We extend an unsupervised
dependency-tree based sentence compres-
sion approach by incorporating tweet in-
formation to weight the tree edge in terms
of informativeness and syntactic impor-
tance. The experimental results on a pub-
lic corpus that contains both news arti-
cles and relevant tweets show that our pro-
posed tweets guided sentence compres-
sion method can improve the summariza-
tion performance significantly compared
to the baseline generic sentence compres-
sion method.

1 Introduction

“Story highlights” of news articles are provided
by only a few news websites such as CNN.com.
The highlights typically consist of three or four
succinct itemized sentences for readers to quickly
capture the gist of the document, and can dramat-
ically reduce reader’s information load. A high-
light sentence is usually much shorter than its orig-
inal corresponding news sentence; therefore ap-
plying extractive summarization methods directly
to sentences in a news article is not enough to gen-
erate high quality highlights.

Sentence compression aims to retain the most
important information of an original sentence in a
shorter form while being grammatical at the same
time. Previous research has shown the effective-
ness of sentence compression for automatic doc-
ument summarization (Knight and Marcu, 2000;
Lin, 2003; Galanis and Androutsopoulos, 2010;
Chali and Hasan, 2012; Wang et al., 2013; Li et
al., 2013; Qian and Liu, 2013; Li et al., 2014). The
compressed summaries can be generated through

a pipeline approach that combines a generic sen-
tence compression model with a summary sen-
tence pre-selection or post-selection step. Prior
studies have mostly used the generic sentence
compression approaches, however, a generic com-
pression system may not be the best fit for the
summarization purpose because it does not take
into account the summarization task in the com-
pression module. Li et al. (2013) thus proposed a
summary guided compression method to address
this problem and showed the effectiveness of their
method. But this approach relied heavily on the
training data, thus has the limitation of domain
generalization.

Instead of using a manually generated corpus,
we investigate using existing external sources to
guide sentence compression for the purpose of
compressive news highlights generation. Nowa-
days it becomes more and more common that
users share interesting news content via Twitter to-
gether with their comments. The availability of
cross-media information provides new opportuni-
ties for traditional tasks of Natural Language Pro-
cessing (Zhao et al., 2011; Subašić and Berendt,
2011; Gao et al., 2012; Kothari et al., 2013;
Štajner et al., 2013). In this paper, we propose to
use relevant tweets of a news article to guide the
sentence compression process in a pipeline frame-
work for generating compressive news highlights.
This is a pioneer study for using such parallel data
to guide sentence compression for document sum-
marization.

Our work shares some similar ideas with (Wei
and Gao, 2014; Wei and Gao, 2015). They also
attempted to use tweets to help news highlights
generation. Wei and Gao (2014) derived external
features based on the relevant tweet collection to
assist the ranking of the original sentences for ex-
tractive summarization in a fashion of supervised
machine learning. Wei and Gao (2015) proposed a
graph-based approach to simultaneously rank the
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original news sentences and relevant tweets in an
unsupervised way. Both of them focused on using
tweets to help sentence extraction while we lever-
age tweet information to guide sentence compres-
sion for compressive summary generation.

We extend an unsupervised dependency-tree
based sentence compression approach to incorpo-
rate tweet information from the aspects of both in-
formativeness and syntactic importance to weight
the tree edge. We evaluate our method on a public
corpus that contains both news articles and rele-
vant tweets. The result shows that generic com-
pression hurts the performance of highlights gen-
eration, while sentence compression guided by
relevant tweets of the news article can improve the
performance.

2 Framework

We adopt a pipeline approach for compressive
news highlights generation. The framework in-
tegrates a sentence extraction component and a
post-sentence compression component. Each is
described below.

2.1 Tweets Involved Sentence Extraction
We use LexRank (Erkan and Radev, 2004) as the
baseline to select the salient sentences in a news
article. This baseline is an unsupervised extractive
summarization approach and has been proved to
be effective for the summarization task.

Besides LexRank, we also use Heterogeneous
Graph Random Walk (HGRW) (Wei and Gao,
2015) to incorporate relevant tweet information
to extract news sentences. In this model, an
undirected similarity graph is created, similar to
LexRank. However, the graph is heterogeneous,
with two types of nodes for the news sentences and
tweets respectively.

Suppose we have a sentence set S and a tweet
set T . By considering the similarity between the
same type of nodes and cross types, the score of a
news sentence s is computed as follows:

p(s) =
d

N +M
+ (1− d)

ε ∑
m∈T

sim(s,m)∑
v∈T sim(s, v)

p(m)


+(1− d)

(1− ε)
∑

n∈S\{s}

sim(s, n)∑
v∈S\{s} sim(s, v)

p(n)


(1)

where N and M are the size of S and T , respec-
tively, d is a damping factor, sim(x, y) is the simi-
larity function, and the parameter ε is used to con-
trol the contribution of relevant tweets. For a tweet

node t, its score can be computed similarly. Both
d and sim(x, y) are computed following the setup
of LexRank, where sim(x, y) is computed as co-
sine similarity:

sim(x, y) =

∑
w∈x,y tfw,xtfw,y(idfw)2√∑

wi∈x (tfwi,xidfwi
)2 ×

√∑
wi∈y (tfwi,yidfwi

)2

(2)

where tfw,x is the number of occurrences of word
w in instance x, idfw is the inverse document fre-
quency of word w in the dataset. In our task, each
sentence or tweet is treated as a document to com-
pute the IDF value.

Although both types of nodes can be ranked in
this framework, we only output the top news sen-
tences as the highlights, and the input to the sub-
sequent compression component.

2.2 Dependency Tree Based Sentence
Compression

We use an unsupervised dependency tree based
compression framework (Filippova and Strube,
2008) as our baseline. This method achieved a
higher F-score (Riezler et al., 2003) than other sys-
tems on the Edinburgh corpus (Clarke and Lap-
ata, 2006). We will introduce the baseline in this
part and describe our extended model that lever-
ages tweet information in the next subsection.

The sentence compression task can be defined
as follows: given a sentence s, consisting of words
w1, w2, ..., wm, identify a subset of the words of
s, such that it is grammatical and preserves es-
sential information of s. In the baseline frame-
work, a dependency graph for an original sentence
is first generated and then the compression is done
by deleting edges of the dependency graph. The
goal is to find a subtree with the highest score:

f(X) =
∑
e∈E

xe × winfo(e)× wsyn(e) (3)

where xe is a binary variable, indicating whether
a directed dependency edge e is kept (xe is 1) or
removed (xe is 0), and E is the set of edges in the
dependency graph. The weighting of edge e con-
siders both its syntactic importance (wsyn(e)) as
well as the informativeness (winfo(e)). Suppose
edge e is pointed from head h to node n with de-
pendency label l, both weights can be computed
from a background news corpus as:

winfo(e) =
Psummary(n)
Particle(n)

(4)
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wsyn(e) = P (l|h) (5)

where Psummary(n) and Particle(n) are the uni-
gram probabilities of word n in the two language
models trained on human generated summaries
and the original articles respectively. P (l|h) is
the conditional probability of label l given head
h. Note that here we use the formula in (Filip-
pova and Altun, 2013) for winfo(e), which was
shown to be more effective for sentence compres-
sion than the original formula in (Filippova and
Strube, 2008).

The optimization problem can be solved under
the tree structure and length constraints by integer
linear programming1. Given that L is the maxi-
mum number of words permitted for the compres-
sion, the length constraint is simply represented
as: ∑

e∈E

xe ≤ L (6)

The surface realizatdion is standard: the words
in the compression subtree are put in the same or-
der they are found in the source sentence. Due
to space limit, we refer readers to (Filippova and
Strube, 2008) for a detailed description of the
baseline method.

2.3 Leverage Tweets for Edge Weighting
We then extend the dependency-tree based com-
pression framework by incorporating tweet infor-
mation for dependency edge weighting. We in-
troduce two new factors, wT

info(e) and wT
syn(e),

for informativeness and syntactic importance re-
spectively, computed from relevant tweets of the
news. These are combined with the weights ob-
tained from the background news corpus defined
in Section 2.2, as shown below:

winfo(e) = (1−α) ·wN
info(e)+α ·wT

info(e) (7)

wsyn(e) = (1− β) · wN
syn(e) + β · wT

syn(e) (8)

where α and β are used to balance the contribution
of the two sources, and wN

info(e) and wN
syn(e) are

based on Equation 4 and 5.
The new informative weight wT

info(e) is calcu-
lated as:

wT
info(e) =

PrelevantT (n)
PbackgroundT (n)

(9)

1In our implementation we use GNU Linear Pro-
gramming Kit (GULP) (https://www.gnu.org/
software/glpk/)

PrelevantT (n) and PbackgroundT (n) are the uni-
gram probabilities of word n in two language mod-
els trained on the relevant tweet dataset and a
background tweet dataset respectively.

The new syntactic importance score is:

wT
syn(e) =

NT (h, n)
NT

(10)

NT (h, n) is the number of tweets where n and
head h appear together within a window frame of
K, and NT is the total number of tweets in the
relevant tweet collection. Since tweets are always
noisy and informal, traditional parsers are not reli-
able to extract dependency trees. Therefore, we
use co-occurrence as pseudo syntactic informa-
tion here. Note wN

info(e), w
T
info(e), w

N
syn(e) and

wT
syn(e) are normalized before combination.

3 Experiment

3.1 Setup
We evaluate our pipeline news highlights gen-
eration framework on a public corpus based on
CNN/USAToday news (Wei and Gao, 2014). This
corpus was constructed via an event-oriented strat-
egy following four steps: 1) 17 salient news events
taking place in 2013 and 2014 were manually
identified. 2) For each event, relevant tweets were
retrieved via Topsy2 search API using a set of
manually generated core queries. 3) News arti-
cles explicitly linked by URLs embedded in the
tweets were collected. 4) News articles from
CNN/USAToday that have more than 100 explic-
itly linked tweets were kept. The resulting cor-
pus contains 121 documents, 455 highlights and
78,419 linking tweets.

We used tweets explicitly linked to a news ar-
ticle to help extract salience sentences in HGRW
and to generate the language model for computing
wT

info(e). The co-occurrence information com-
puted from the set of explicitly linked tweets is
very sparse because the size of the tweet set is
small. Therefore, we used all the tweets re-
trieved for the event related to the target news arti-
cle to compute the co-occurrence information for
wT

syn(e). Tweets retrieved for events were not pub-
lished in (Wei and Gao, 2014). We make it avail-
able here3. The statistics of the dataset can be
found in Table. 1.

2http://topsy.com
3http://www.hlt.utdallas.edu/˜zywei/

data/CNNUSATodayEvent.zip
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Event Doc # HLight # Linked Retrieved Event Doc # HLight # Linked Retrieved
Tweet # Tweet # Tweet # Tweet #

Aurora shooting 14 54 12,463 588,140 African runner murder 8 29 9,461 303,535
Boston bombing 38 147 21,683 1,650,650 Syria chemical weapons use 1 4 331 11,850

Connecticut shooting 13 47 3,021 213,864 US military in Syria 2 7 719 619,22
Edward Snowden 5 17 1,955 379,349 DPRK Nuclear Test 2 8 3,329 103,964

Egypt balloon crash 3 12 836 36,261 Asiana Airlines Flight 214 11 42 8,353 351,412
Hurricane Sandy 4 15 607 189,082 Moore Tornado 5 19 1,259 1,154,656
Russian meteor 3 11 6,841 239,281 Chinese Computer Attacks 2 8 507 28,988
US Flu Season 7 23 6,304 1,042,169 Williams Olefins Explosion 1 4 268 14,196

Super Bowl blackout 2 8 482 214,775 Total 121 455 78,419 6,890,987

Table 1: Distribution of documents, highlights and tweets with respect to different events

Method ROUGE-1 Compr.
F(%) P(%) R(%) Rate(%)

LexRank 26.1 19.9 39.1 100
LexRank + SC 25.2 22.4 29.6 63.0
LexRank + SC+wT

info 25.7 22.8 30.1 62.0
LexRank + SC+wT

syn 26.2 23.5 30.4 63.7
LexRank + SC+both 27.5 25.0 31.4 61.5
HGRW 28.1 22.6 39.5 100
HGRW + SC 26.4 24.9 29.5 66.1
HGRW + SC+wT

info 27.5 25.7 30.8 65.4
HGRW + SC+wT

syn 27.0 25.3 30.2 66.7
HGRW + SC+both 28.4 26.9 31.2 64.8

Table 2: Overall Performance. Bold: the best
value in each group in terms of different metrics.

Following (Wei and Gao, 2014), we output 4
sentences for each news article as the highlights
and report the ROUGE-1 scores (Lin, 2004) using
human-generated highlights as the reference.

The sentence compression rates are set to 0.8 for
short sentences containing fewer than 9 words, and
0.5 for long sentences with more than 9 words, fol-
lowing (Filippova and Strube, 2008). We empiri-
cally use 0.8 for α, β and ε such that tweets have
more impact for both sentence selection and com-
pression. We leveraged The New York Times An-
notated Corpus (LDC Catalog No: LDC2008T19)
as the background news corpus. It has both the
original news articles and human generated sum-
maries. The Stanford Parser4 is used to obtain de-
pendency trees. The background tweet corpus is
collected from Twitter public timeline via Twitter
API, and contains more than 50 million tweets.

3.2 Results

Table 2 shows the overall performance5. For sum-
maries generated by both LexRank and HGRW,
“+SC” means generic sentence compression base-

4http://nlp.stanford.edu/software/
lex-parser.shtml

5The performance of HGRW reported here is different
from (Wei and Gao, 2015) because the setup is different. We
use all the explicitly linked tweets in the ranking process here
without considering redundancy while a redundancy filtering
process was applied in (Wei and Gao, 2015) .

line (Section. 2.2) is used, “+wT
info” and “+wT

syn”
indicate tweets are used to help edge weighting
for sentence compression in terms of informative-
ness and syntactic importance respectively, and
“+both” means both factors are used. We have
several findings.

• The tweets involved sentence extraction model
HGRW can improve LexRank by 8.8% rela-
tively in terms of ROUGE-1 F score, showing
the effectiveness of relevant tweets for sentence
selection.
• With generic sentence compression, the

ROUGE-1 F scores for both LexRank and
HGRW drop, mainly because of a much lower
recall score. This indicates that generic sen-
tence compression without certain guidance
removes salient content of the original sentence
that may be important for summarization and
thus hurts the performance. This is consistent
with the finding of (Chali and Hasan, 2012).
• By adding either wT

info or wT
syn, the perfor-

mance of summarization increases, showing
that relevant tweets can be used to help the
scores of both informativeness and syntactic im-
portance.
• +SC+both improves the summarization perfor-

mance significantly6 compared to the corre-
sponding compressive summarization baseline
+SC, and outperforms the corresponding origi-
nal baseline, LexRank and HGRW.
• The improvement obtained by

LexRank+SC+both compared to LexRank
is more promising than that obtained by
HGRW+SC+both compared to HGRW. This
may be because HGRW has used tweet in-
formation already, and leaves limited room
for improvement for the sentence compres-
sion model when using the same source of
information.
6Significance throughout the paper is computed by two

tailed t-test and reported when p < 0.05.
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Figure 1: The influence of α and β. Solid lines are used for approaches based on LexRank; Dotted lines
are used for HGRW based approaches.

Method Example 1 Example 2

LexRank
Boston bombing suspect Tamerlan Tsarnaev, Three people were hospitalized in critical condition,
killed in a shootout with police days after the according to information provided by hospitals
blast, has been buried at an undisclosed who reported receiving patients from the blast.
location, police in Worcester, Mass., said.

LexRank+SC suspect Tamerlan Tsarnaev, killed in a Three people were hospitalized,
shootout after the blast, has been buried at an according to information provided by hospitals
location, police in Worcester Mass. said. who reported receiving from the blast.

LexRank+SC+both Boston bombing suspect Tamerlan Tsarnaev, Three people were hospitalized in critical condition,
killed in a shootout after the blast, has been according to information provided by hospitals.
buried at an location police said.

Ground Truth Boston bombing suspect Tamerlan Tsarnaev Hospitals report three people in critical condition
has been buried at an undisclosed location

Table 3: Example highlight sentences from different systems

• By incorporating tweet information for both
sentence selection and compression, the per-
formance of HGRW+SC+both outperforms
LexRank significantly.

Table 3 shows some examples. As we can see
in Example 1, with the help of tweet informa-
tion, our compression model keeps the valuable
part “Boston bombing” for summarization while
the generic one abandons it.

We also investigate the influence of α and β. To
study the impact of α, we fix β to 0.8, and vice
versa. As shown in Figure 1, it is clear that larger
α or β, i.e., giving higher weights to tweets related
information, is generally helpful.

4 Conclusion and Future Work

In this paper, we showed that the relevant tweet
collection of a news article can guide the process
of sentence compression to generate better story
highlights. We extended a dependency-tree based
sentence compression model to incorporate tweet
information. The experiment results on a public
corpus that contains both news articles and rele-

vant tweets showed the effectiveness of our ap-
proach. With the popularity of Twitter and increas-
ing interaction between social media and news
media, such parallel data containing news and re-
lated tweets is easily available, making our ap-
proach feasible to be used in a real system.

There are some interesting future directions.
For example, we can explore more effective ways
to incorporate tweets for sentence compression;
we can study joint models to combine both sen-
tence extraction and compression with the help of
relevant tweets; it will also be interesting to use the
parallel dataset of the news articles and the tweets
for timeline generation for a specific event.
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Abstract

The validity of applying paraphrase rules
depends on the domain of the text that
they are being applied to. We develop
a novel method for extracting domain-
specific paraphrases. We adapt the bilin-
gual pivoting paraphrase method to bias
the training data to be more like our tar-
get domain of biology. Our best model
results in higher precision while retaining
complete recall, giving a 10% relative im-
provement in AUC.

1 Introduction

Many data-driven paraphrase extraction algo-
rithms have been developed in recent years
(Madnani and Dorr, 2010; Androutsopoulos and
Malakasiotis, 2010). These algorithms attempt
to learn paraphrase rules, where one phrase can
be replaced with another phrase which has equiv-
alent meaning in at least some context. Deter-
mining whether a paraphrase is appropriate for
a specific context is a difficult problem (Bhagat
and Hovy, 2013), encompassing issues of syntax
(Callison-Burch, 2008), word sense (Apidianaki et
al., 2014), and style (Xu et al., 2012; Pavlick and
Nenkova, 2015). To date, the question of how do-
main effects paraphrase has been left unexplored.

Although most paraphrase extraction algo-
rithms attempt to estimate a confidence with which
a paraphrase rule might apply, these scores are
not differentiated by domain, and instead corre-
spond to the general domain represented by the
model’s training data. As illustrated by Table 1,
paraphrases that are highly probable in the gen-
eral domain (e.g. hot = sexy) can be extremely
improbable in more specialized domains like biol-
ogy. Dominant word senses change depending on

∗Incubated by the Allen Institute for Artificial Intelli-
gence.

General Biology
hot warm, sexy, exciting heated, warm, thermal
treat address, handle, buy cure, fight, kill
head leader, boss, mind skull, brain, cranium

Table 1: Examples of domain-sensitive paraphrases. Most
paraphrase extraction techniques learn paraphrases for a mix
of senses that work well in general. But in specific domains,
paraphrasing should be sensitive to specialized language use.

domain: the verb treat is used in expressions like
treat you to dinner in conversational domains ver-
sus treat an infection in biology. This domain shift
changes the acceptability of its paraphrases.

We address the problem of customizing para-
phrase models to specific target domains. We ex-
plore the following ideas:

1. We sort sentences in the training corpus
based on how well they represent the target
domain, and then extract paraphrases from a
subsample of the most domain-like data.

2. We improve our domain-specific paraphrases
by weighting each training example based on
its domain score, instead of treating each ex-
ample equally.

3. We dramatically improve recall while main-
taining precision by combining the subsam-
pled in-domain paraphrase scores with the
general-domain paraphrase scores.

2 Background

The paraphrase extraction algorithm that we cus-
tomize is the bilingual pivoting method (Bannard
and Callison-Burch, 2005) that was used to create
PPDB, the paraphrase database (Ganitkevitch et
al., 2013). To perform the subsampling, we adapt
and improve the method that Moore and Lewis
(2010) originally developed for domain-specific
language models in machine translation.
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2.1 Paraphrase extraction
Paraphrases can be extracted via bilingual pivot-
ing. Intuitively, if two English phrases e1 and e2
translate to the same foreign phrase f , we can as-
sume that e1 and e2 have similar meaning, and
thus we can “pivot” over f and extract 〈e1, e2〉 as a
paraphrase pair. Since many possible paraphrases
are extracted in this way, and since they vary in
quality (in PPDB, the verb treat has 1,160 poten-
tial paraphrases, including address, handle, deal
with, care for, cure him, ’m paying, and ’s on the
house), it is necessary to assign some measure of
confidence to each paraphrase rule. Bannard and
Callison-Burch (2005) defined a conditional para-
phrase probability p(e2|e1) by marginalizing over
all shared foreign-language translations f :

p(e2|e1) ≈
∑

f

p(e2|f)p(f |e1) (1)

where p(e2|f) and p(f |e1) are translation model
probabilities estimated from the bilingual data.

Equation 1 approximates the probability with
which e1 can paraphrase as e2, but its estimate in-
evitably reflects the domain and style of the bilin-
gual training text. If e1 is a polysemous word,
the highest probabilities will be assigned to para-
phrases of the most frequently occurring sense of
e1, and lower probabilities to less frequent senses.
This results in inaccurate probability estimates
when moving to a domain with different sense dis-
tributions compared to the training corpus.

2.2 Sorting by domain specificity
The crux of our method is to train a paraphrase
model on data from the same domain as the one in
which the paraphrases will be used. In practice, it
is unrealistic that we will be able to find bilingual
parallel corpora precompiled for each domain of
interest. We instead subsample from a large bitext,
biasing the sample towards the target domain.

We adapt and extend a method developed by
Moore and Lewis (2010) (henceforth M-L), which
builds a domain-specific sub-corpus from a large,
general-domain corpus. The M-L method assigns
a score to each sentence in the large corpus based
on two language models, one trained on a sam-
ple of target domain text and one trained on the
general domain. We want to identify sentences
which are similar to our target domain and dissim-
ilar from the general domain. M-L captures this
notion using the difference in the cross-entropies

according to each language model (LM). That is,
for a sentence si, we compute

σi = Htgt(si)−Hgen(si) (2)

where Htgt is the cross-entropy under the in-
domain language model and Hgen is the cross-
entropy under the general domain LM. Cross-
entropy is monotonically equivalent to LM per-
plexity, in which lower scores imply a better fit.
Lower σi signifies greater domain-specificity.

3 Domain-Specific Paraphrases

To apply the M-L method to paraphrasing, we
need a sample of in-domain monolingual text.
This data is not directly used to extract para-
phrases, but instead to train an n-gram LM for the
target domain. We compute σi for the English side
of every sentence pair in our bilingual data, using
the target domain LM and the general domain LM.
We sort the entire bilingual training corpus so that
the closer a sentence pair is to the top of the list,
the more specific it is to our target domain.

We can apply Bannard and Callison-Burch
(2005)’s bilingual pivoting paraphrase extraction
algorithm to this sorted bitext in several ways:

1. By choosing a threshold value for σi and dis-
carding all sentence pairs that fall outside
of that threshold, we can extract paraphrases
from a subsampled bitext that approximates
the target domain.

2. Instead of simply extracting from a subsam-
pled corpus (where each training example is
equally weighted), we can weight each train-
ing example proportional to σi when comput-
ing the paraphrase scores.

3. We can combine multiple paraphrase scores:
one derived from the original corpus and one
from the subsample. This has the advantage
of producing the full set of paraphrases that
can be extracted from the entire bitext.

4 Experimental Conditions

Domain data We evaluate our domain-specific
paraphrasing model in the target domain of biol-
ogy. Our monolingual in-domain data is a com-
bination of text from the GENIA database (Kim
et al., 2003) and text from an introductory biology
textbook. Our bilingual general-domain data is the
109 word parallel corpus (Callison-Burch et al.,
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2009), a collection of French-English parallel data
covering a mix of genres from legal text (Stein-
berger et al., 2006) to movie subtitles (Tiedemann,
2012). We use 5-gram language models with
Kneser-Ney discounting (Heafield et al., 2013).

Evaluation We measure the precision and recall
of paraphrase pairs produced by each of our mod-
els by collecting human judgments of what para-
phrases are acceptable in sentences drawn from
the target domain and in sentences drawn from the
general domain. We sample 15K sentences from
our biology data, and 10K general-domain sen-
tences from Wikipedia. We select a phrase from
each sentence, and show the list of candidate para-
phrases1 to 5 human judges. Judges make a binary
decision about whether each paraphrase is appro-
priate given the domain-specific context. We con-
sider a paraphrase rule to be good in the domain if
it is judged to be good in least one context by the
majority of judges. See Supplementary Materials
for a detailed description of our methodology.

Baseline We run normal paraphrase extraction
over the entire 109 word parallel corpus (which
has 828M words on the English side) without any
attempt to bias it toward the target domain. We
refer this system as General.

Subsampling After sorting the 109 word paral-
lel corpus by Equation 2, we chose several thresh-
old values for subsampling, keeping only top-
ranked τ words of the bitext. We train models on
for several values of τ (1.5M, 7M, 35M, and 166M
words). We refer to these model as M-L,T=τ .

M-L Change Point We test a model where τ is
set at the point where σi switches from negative
to positive. This includes all sentences which look
more like the target domain than the general. This
threshold is equivalent to sampling 20M words.

Weighted Counts Instead of weighting each
subsampled sentence equally, we test a novel ex-
tension of M-L in which we weight each sentence
proportional to σi when computing p(e2|e1).

Combined Models We combine the subsam-
pled models with the general model, using binary
logistic regression to combine the p(e2|e1) esti-
mate of the general model and that of the domain-
specific model. We use 1,000 labeled pairs from

1The candidates paraphrases constitute the full set of para-
phrases that can be extracted from our training corpus.

Figure 1: Precision-recall curves for paraphrase pairs ex-
tracted by models trained on data from each of the described
subsampling methods. These curves are generated using the
15k manually annotated sentences in the biology domain.

the target domain to set the regression weights.
This tuning set is disjoint from the test set.

5 Experimental Results

What is the effect of subsampling? Figure 1
compares the precision and recall of the differ-
ent subsampling methods against the baseline of
training on everything, when they are evaluated
on manually labeled test paraphrases from the bi-
ology domain. All of subsampled models have a
higher precision than the baseline General model,
except for the largest of the subsampled models
(which was trained on sentence pairs with 166M
words - many of which are more like the general
domain than the biology domain).

The subsampled models have reduced recall
since many of the paraphrases that occur in the full
109 word bilingual training corpus do not occur in
the subsamples. As we increase τ we improve re-
call at the expense of precision, since we are in-
cluding training data that is less and less like our
target domain. The highest precision model based
on the vanilla M-L method is M-L Change Point,
which sets the subsample size to include exactly
those sentence pairs that look more like the target
domain than the general domain.

Our novel extension of the M-L model (M-L
Weighted) provides further improvements. Here,
we weight each sentence pair in the bilingual train-
ing corpus proportional to σi when computing
the paraphrase scores. Specifically, we weight
the counting during the bilingual pivoting so that
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(a) Biology domain (b) General domain

Figure 2: Performance of models build by combining small domain-specific models trained on subsampled data with general
domain models trained on all the data. Performance in the general domain are shown as a control.

rather than each occurrence counting as 1, each
occurrence counts as the ratio of the sentence’s
cross-entropies: Hgen

Htgt
. The top-ranked sentence

pairs receive an exaggerated count of 52, while
the bottom ones receive a tiny factional count of
0.0068. Thus, paraphrases extracted from sen-
tence pairs that are unlike the biology domain re-
ceive very low scores. This allows us to achieve
higher recall by incorporating more training data,
while also improving the precision.

What is the benefit of combining models? We
have demonstrated that extracting paraphrases
from subsampled data results in higher precision
domain-specific paraphrases. But these models
extract only a fraction of the paraphrases that are
extracted by a general model trained on the full
bitext, resulting in a lower recall.

We dramatically improve the recall of our
domain-specific models by combining the small
subsampled models with the large general-domain
model. We use binary logistic regression to com-
bine the p(e2|e1) estimate of the general model
with that of each domain-specific model. Figure
2(a) shows that we are able to extend the recall
of our domain-specific models to match the recall
of the full general-domain model. The precision
scores remain higher for the domain-specific mod-
els. Our novel M-L Weighted model performs the
best. Table 3 gives the area under the curve (AUC).
The best combination improves AUC by more
than 4 points absolute (>10 points relative) in the
biology domain. Table 2 provides examples of
paraphrases extracted using our domain-specific

general / bio-spec. general / bio-spec.
air aerial / atmosphere fruit result / fruiting
balance pay / equilibrate heated lively / hot
breaks pauses / ruptures motion proposal / movement

Table 2: Top paraphrase under the general and the best
domain-specific model, General+M-L Weighted.

AUC ∆absolute ∆relative

General 39.5 – –
Gen.+M-L,T=1 40.8 +1.3 +3.3
Gen.+M-L,T=145 40.8 +1.3 +3.3
Gen.+M-L,T=29 41.2 +1.7 +4.3
Gen.+M-L CP 41.9 +2.4 +6.1
Gen.+M-L,T=6 42.3 +2.8 +7.1
Gen.+M-L Weighted 43.7 +4.2 +10.6

Table 3: AUC (× 100) for each model in the biology domain
from Figure 2(a).

model for biology versus the baseline model.

6 Related Work

Domain-specific paraphrasing has not received
previous attention, but there is relevant prior work
on domain-specific machine translation (MT). We
build on the Moore-Lewis method, which has
been used for language models (Moore and Lewis,
2010) and translation models (Axelrod et al.,
2011). Similar methods use LM perplexity to
rank sentences (Gao et al., 2002; Yasuda et al.,
2008), rather than the difference in cross-entropy.
Within MT, Foster and Kuhn (2007) used log-
linear weightings of translation probabilities to
combine models trained in different domains, as
we do here. Relevant to our proposed method of
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fractional counting, (Madnani et al., 2007) used
introduced a count-centric approach to paraphrase
probability estimation. Matsoukas et al. (2009)
and Foster et al. (2010) explored weighted training
sentences for MT, but set weights discriminatively
based on sentence-level features.

7 Conclusion

We have discussed the new problem of extracting
domain-specific paraphrases. We adapt a method
from machine translation to the task of learn-
ing domain-biased paraphrases from bilingual cor-
pora. We introduce two novel extensions to this
method. Our best domain-specific model dramat-
ically improves paraphrase quality for the target
domain.
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Abstract

Simplification of lexically complex texts,
by replacing complex words with their
simpler synonyms, helps non-native
speakers, children, and language-impaired
people understand text better. Recent
lexical simplification methods rely on
manually simplified corpora, which are
expensive and time-consuming to build.
We present an unsupervised approach to
lexical simplification that makes use of the
most recent word vector representations
and requires only regular corpora. Results
of both automated and human evaluation
show that our simple method is as ef-
fective as systems that rely on simplified
corpora.

1 Introduction

Lexical complexity makes text difficult to under-
stand for various groups of people: non-native
speakers (Petersen and Ostendorf, 2007), chil-
dren (De Belder and Moens, 2010), people with
intellectual disabilities (Feng, 2009; Saggion et
al., 2015), and language-impaired people such
as autistic (Martos et al., 2012), aphasic (Car-
roll et al., 1998), and dyslexic (Rello, 2012) peo-
ple. Automatic simplification that replaces com-
plex words with their simpler synonyms is thus
needed to make texts more understandable for ev-
eryone.

Lexical simplification systems still predomi-
nantly use a set of rules for substituting long and
infrequent words with their shorter and more fre-
quent synonyms (Devlin and Tait, 1998; De Belder
and Moens, 2010). In generating the substitution
rules (i.e., finding simple synonyms of a complex
word), most systems refer to lexico-semantic re-
sources like WordNet (Fellbaum, 1998). The non-
existence of lexicons like WordNet for a vast num-

ber of languages diminishes the impact of these
simplification methods.

The emergence of the Simple Wikipedia1

shifted the focus towards the data-driven ap-
proaches to lexical simplification, ranging from
unsupervised methods leveraging either the meta-
data (Yatskar et al., 2010) or co-occurrence statis-
tics of the simplified corpora (Biran et al., 2011)
to supervised methods learning substitutions from
the sentence-aligned corpora (Horn et al., 2014).
Using simplified corpora improves the simplifica-
tion performance, but reduces method applicabil-
ity to the few languages for which such corpora
exist.

The research question motivating this work re-
lates to achieving comparable simplification per-
formance without resorting to simplified corpora
or lexicons like WordNet. Observing that “sim-
ple” words appear in regular (i.e., “complex”, not
simplified) text as well, we exploit recent ad-
vances in word vector representations (Penning-
ton et al., 2014) to find suitable simplifications for
complex words. We evaluate the performance of
our resource-light approach (1) automatically, on
two existing lexical simplification datasets and (2)
manually, via human judgements of grammatical-
ity, simplicity, and meaning preservation. The ob-
tained results support the claim that effective lex-
ical simplification can be achieved without using
simplified corpora.

2 Related Work

Systems for lexical simplification are still domi-
nantly rule-based, i.e., they rely on a set of sub-
stitutions, each consisting of a complex word and
its simpler synonym, which are in most cases ap-
plied regardless of the context in which the com-
plex word appears. Constructing substitution rules
involves identifying synonyms, usually in Word-

1https://simple.wikipedia.org
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Net, for a predefined set of complex words (Car-
roll et al., 1998; Bautista et al., 2009), and then
choosing the “simplest” of these synonyms, typ-
ically using some frequency-based (Devlin and
Tait, 1998; De Belder and Moens, 2010) or length-
based heuristics (Bautista et al., 2009). The main
shortcomings of the rule-based systems include
low recall (De Belder and Moens, 2010) and mis-
classification of simple words as complex (and
vice versa) (Shardlow, 2014).

The paradigm shift from knowledge-based to
data-driven simplification came with the creation
of Simple Wikipedia, which, aligned with the
“original” Wikipedia, constitutes a large compara-
ble corpus to learn from. Yatskar et al. (2010) used
the edit history of Simple Wikipedia to recognize
lexical simplifications. They employed a proba-
bilistic model to discern simplification edits from
other types of content changes. Biran et al. (2011)
presented an unsupervised method for learning
substitution pairs from a corpus of comparable
texts from Wikipedia and Simple Wikipedia, al-
though they exploited the (co-)occurrence statis-
tics of the simplified corpora rather than its meta-
data. Horn et al. (2014) proposed a supervised
framework for learning simplification rules. Using
a sentence-aligned simplified corpus, they gener-
ated the candidate rules for lexical simplification.
A context-aware binary classifier, trained and eval-
uated on 500 Wikipedia sentences (annotated via
crowdsourcing), then decides whether a candidate
rule should be applied or not in a certain context.

The main limitation of the aforementioned
methods is the dependence on simplified corpora
and WordNet. In contrast, we propose a resource-
light approach to lexical simplification that re-
quires only a sufficiently large corpus of regular
text, making it applicable to the many languages
lacking these resources.

3 Resource-Light Lexical Simplification

At the core of our lexical simplification method,
which we name LIGHT-LS, is the observation that
“simple” words, besides being frequent in simpli-
fied text, are also present in abundance in regu-
lar text. This would mean that we can find sim-
pler synonyms of complex words in regular cor-
pora, provided that reliable methods for measuring
(1) the “complexity” of the word and (2) semantic
similarity of words are available. LIGHT-LS sim-
plifies only single words, but we fully account for

this in the evaluation, i.e., LIGHT-LS is penalised
for not simplifying multi-word expressions. In this
work, we associate word complexity with the com-
monness of the word in the corpus, and not with
the length of the word.

3.1 Simplification Candidate Selection

We employ GloVe (Pennington et al., 2014), a
state-of-the-art model of distributional lexical se-
mantics to obtain vector representations for all
corpus words. The semantic similarity of two
words is computed as the cosine of the angle be-
tween their corresponding GloVe vectors. For
each content word (noun, verb, adjective, or ad-
verb) w, we select as simplification candidates the
top n words whose GloVe vectors are most sim-
ilar to that of word w. In all experiments, we
used 200-dimensional GloVe vectors pretrained on
the merge of the English Wikipedia and Gigaword
5 corpus.2 For each content word w, we select
n = 10 most similar candidate words, excluding
the morphological derivations of w.

3.2 Goodness-of-Simplification Features

We rank the simplification candidates according to
several features. Each of the features captures one
aspect of the suitability of the candidate word to
replace the original word. The following are the
descriptions for each of the features.
Semantic similarity. This feature is computed as
the cosine of the angle between the GloVe vector
of the original word and the GloVe vector of the
simplification candidate.
Context similarity. Since type-based distri-
butional lexico-semantic models do not discern
senses of polysemous words, considering only se-
mantic similarity between the original and can-
didate word may lead to choosing a synonym of
the wrong sense as simplification of the complex
word. The simplification candidates that are syn-
onyms of the correct sense of the original word
should be more semantically similar to the context
of the original word. Therefore, we compute this
feature by averaging the semantic similarities of
the simplification candidate and each content word
from the context of the original word:

csim(w, c) =
1

|C(w)|
∑

w′∈C(w)

cos(vw,vw′)

2http://www-nlp.stanford.edu/data/
glove.6B.200d.txt.gz
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whereC(w) is the set of context words of the orig-
inal word w and vw is the GloVe vector of the
word w. We use as context a symmetric window
of size three around the content word.
Difference of information contents. The primary
purpose of this feature is to determine whether the
simplification candidate is more informative than
the original word. Under the hypothesis that the
word’s informativeness correlates with its com-
plexity (Devlin and Unthank, 2006), we choose
the candidate which is less informative than the
original word. The complexity of the word is es-
timated by its information content (ic), computed
as follows:

ic(w) = − log
freq(w) + 1∑

w′∈C freq(w′) + 1

where freq(w) is the frequency of the word w in a
large corpusC, which, in our case, was the Google
Book Ngrams corpus (Michel et al., 2011). The
final feature value is the difference between the
information contents of the original word and the
simplification candidate, approximating the com-
plexity reduction (or gain) that would be intro-
duced should the simplification candidate replace
the original word.
Language model features. The rationale for hav-
ing language model features is obvious – a sim-
plification candidate is more likely to be a com-
patible substitute if it fits into the sequence of
words preceding and following the original word.
Let w−2w−1ww1w2 be the context of the original
word w. We consider a simplification candidate
c to be a good substitute for w if w−2w−1cw1w2

is a likely sequence according to the language
model. We employed the Berkeley language
model (Pauls and Klein, 2011) to compute the
likelihoods. Since Berkeley LM contains only bi-
grams and trigrams, we retrieve the likelihoods
for ngrams w−1c, cw1, w−2w−1c, cw1w2, and
w−1cw1, for each simplification candidate c.

3.3 Simplification Algorithm
The overall simplification algorithm is given in Al-
gorithm 1. Upon retrieving the simplification can-
didates for each content word (line 4), we compute
each of the features for each of the simplification
candidates (lines 5–8) and rank the candidates ac-
cording to feature scores (line 9). We choose as
the best candidate the one with the highest aver-
age rank over all features (line 12). One impor-
tant thing to notice is, that even though LIGHT-LS

Algorithm 1: Simplify(tt)
1: subst ← ∅
2: for each content token t ∈ tt do
3: all ranks ← ∅
4: scs ← most similar(t)
5: for each feature f do
6: scores ← ∅
7: for each sc ∈ scs do
8: scores ← scores ∪ f(sc)
9: rank ← rank numbers(scores)

10: all ranks ← all ranks ∪ rank
11: avg rank ← average(all ranks)
12: best ← argmaxsc(avg rank)
13: if ic(best) < ic(tt) do
14: bpos ← in pos(best , pos(tt))
15: subst ← subst ∪ (tt , bpos)
16: return subst

has no dedicated component for deciding whether
simplifying a word is necessary, it accounts for
this implicitly by performing the simplification
only if the best candidate has lower information
content than the original word (lines 13–15). Since
simplification candidates need not have the same
POS tag as the original word, to preserve gram-
maticality, we transform the chosen candidate into
the morphological form that matches the POS-tag
of the original word (line 14) using the NodeBox
Linguistics tool.3

4 Evaluation

We evaluate the effectiveness of LIGHT-LS auto-
matically on two different datasets but we also let
humans judge the quality of LIGHT-LS’s simplifi-
cations.

4.1 Replacement Task
We first evaluated LIGHT-LS on the dataset
crowdsourced by Horn et al. (2014) where manual
simplifications for each target word were collected
from 50 people. We used the same three evalua-
tion metrics as Horn et al. (2014): (1) precision is
the percentage of correct simplifications (i.e., the
system simplification was found in the list of man-
ual simplifications) out of all the simplifications
made by the system; (2) changed is the percentage
of target words changed by the system; and (3) ac-
curacy is the percentage of correct simplifications
out of all words that should have been simplified.

3https://www.nodebox.net
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Table 1: Performance on the replacement task

Model Precision Accuracy Changed

Biran et al. (2011) 71.4 3.4 5.2
Horn et al. (2014) 76.1 66.3 86.3

LIGHT-LS 71.0 68.2 96.0

LIGHT-LS’s performance on this dataset is
shown in Table 1 along with the performance of
the supervised system by Horn et al. (2014) and
the unsupervised system by Biran et al. (2011),
which both used simplified corpora. The results
show that LIGHT-LS significantly outperforms the
unsupervised system of Biran et al. (2011) and
performs comparably to the supervised system
of Horn et al. (2014), which requires sentence-
aligned simplified corpora. The unsupervised sys-
tem of Biran et al. (2011) achieves precision sim-
ilar to that of LIGHT-LS but at the cost of chang-
ing only about 5% of complex words, which re-
sults in very low accuracy. Our method numeri-
cally outperforms the supervised method of Horn
et al. (2014), but the difference is not statistically
significant.

4.2 Ranking Task

We next evaluated LIGHT-LS on the SemEval-
2012 lexical simplification task for English (Spe-
cia et al., 2012), which focused on ranking a target
word (in a context) and three candidate replace-
ments, from the simplest to the most complex. To
account for the peculiarity of the task where the
target word is also one of the simplification can-
didates, we modified the features as follows (oth-
erwise, an unfair advantage would be given to the
target word): (1) we excluded the semantic sim-
ilarity feature, and (2) we used the information
content of the candidate instead of the difference
of information contents.

We used the official SemEval task evaluation
script to compute the Cohen’s kappa index for the
agreement on the ordering for each pair of can-
didates. The performance of LIGHT-LS together
with results of the best-performing system (Jauhar
and Specia, 2012) from the SemEval-2012 task
and two baselines (random and frequency-based)
is given in Table 2. LIGHT-LS significantly out-
performs the supervised model by Jauhar and Spe-
cia (2012) with p < 0.05, according to the non-
parametric stratified shuffling test (Yeh, 2000).
An interesting observation is that the competitive
frequency-based baseline highly correlates with

Table 2: SemEval-2012 Task 1 performance

Model κ

baseline-random 0.013
baseline-frequency 0.471

Jauhar and Specia (2012) 0.496
LIGHT-LS 0.540

our information content-based feature (the higher
the frequency, the lower the information content).

4.3 Human Evaluation
Although automated task-specific evaluations pro-
vide useful indications of a method’s performance,
they are not as reliable as human assessment of
simplification quality. In line with previous work
(Woodsend and Lapata, 2011; Wubben et al.,
2012), we let human evaluators judge the gram-
maticality, simplicity, and meaning preservation of
the simplified text. We compiled a dataset of 80
sentence-aligned pairs from Wikipedia and Simple
Wikipedia and simplified the original sentences
with LIGHT-LS and the publicly available system
of Biran et al. (2011). We then let two annota-
tors (with prior experience in simplification an-
notations) grade grammaticality and simplicity for
the manual simplification from Simple Wikipedia
and simplifications produced by each of the two
systems (total of 320 annotations per annotator).
We also paired the original sentence with each
of the three simplifications (manual and two sys-
tems’) and let annotators grade how well the sim-
plification preserves the meaning of the original
sentence (total of 240 annotations per annotator).
We averaged the grades of the two annotators for
the final evaluation. All grades were assigned on a
Likert (1–5) scale, with 5 being the highest grade,
i.e., all fives indicate a very simple and completely
grammatical sentence which fully preserves the
meaning of the original text. The inter-annotator
agreement, measured by Pearson correlation coef-
ficient, was the highest for grammaticality (0.71),
followed by meaning preservation (0.62) and sim-
plicity (0.57), which we consider to be a fair agree-
ment, especially for inherently subjective notions
of simplicity and meaning preservation.

The results of human evaluation are shown in
Table 3. In addition to grammaticality (Gr), sim-
plicity (Smp), and meaning preservation (MP), we
measured the percentage of sentences with at least
one change made by the system (Ch). The re-
sults imply that the sentences produced by LIGHT-
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Table 4: Example simplifications

Source Sentence

Original sentence The contrast between a high level of education and a low level of political rights was
particularly great in Aarau, and the city refused to send troops to defend the Bernese
border.

Biran et al. (2011) simpl. The separate between a high level of education and a low level of political rights was
particularly great in Aarau , and the city refused to send troops to defend the Bernese
border.

LIGHT-LS simpl. The contrast between a high level of education and a low level of political rights was
especially great in Aarau, and the city asked to send troops to protect the Bernese
border.

Table 3: Human evaluation results

Source Gr Smp MP Ch

Original sentence 4.90 3.36 – –
Manual simplification 4.83 3.95 4.71 76.3%

Biran et al. (2011) 4.63 3.24 4.65 17.5%
LIGHT-LS 4.60 3.76 4.13 68.6%

Biran et al. (2011) Ch. 3.97 2.86 3.57 –
LIGHT-LS Ch. 4.57 3.55 3.75 –

LS are significantly simpler (p < 0.01; paired
Student’s t-test) than both the original sentences
and sentences produced by the system of Biran
et al. (2011). The system of Biran et al. (2011)
produces sentences which preserve meaning bet-
ter than the sentences produced by LIGHT-LS, but
this is merely because their system performs no
simplifications in over 80% of sentences, which
is something that we have already observed on the
replacement task evaluation. Furthermore, annota-
tors found the sentences produced by this system
to be more complex than the original sentences.
On the contrary, LIGHT-LS simplifies almost 70%
of sentences, producing significantly simpler text
while preserving grammaticality and, to a large ex-
tent, the original meaning.

In order to allow for a more revealing com-
parison of the two systems, we additionally eval-
uated each of the systems only on sentences on
which they proposed at least one simplification
(in 70% of sentences for LIGHT-LS and in only
17.5% of sentences for the system of Biran et al.
(2011)). These results, shown in the last two rows
of Table 3, demonstrate that, besides simplicity
and grammaticality, LIGHT-LS also performs bet-
ter in terms of meaning preservation. In Table 4 we
show the output of both systems for one of the few
example sentences in which both systems made at
least one change.

Since LIGHT-LS obtained the lowest average
grade for meaning preservation, we looked deeper

into the causes of changes in meaning introduced
by LIGHT-LS. Most changes in meaning stem
from the inability to discern synonymy from relat-
edness (or even antonymy) using GloVe vectors.
For example, the word “cool” was the best simpli-
fication candidate found by LIGHT-LS for the tar-
get word “warm” in the sentence “Water temper-
atures remained warm enough for development”.

5 Conclusion

We presented LIGHT-LS, a novel unsupervised
approach to lexical simplification that, unlike ex-
isting methods, does not rely on Simple Wikipedia
and lexicons like WordNet, which makes it ap-
plicable in settings where such resources are not
available. With the state-of-the-art word vec-
tor representations at its core, LIGHT-LS requires
nothing but a large regular corpus to perform lexi-
cal simplifications.

Three different evaluation settings have shown
that LIGHT-LS’s simplifications based on multiple
features (e.g., information content reduction, con-
textual similarity) computed on regular corpora
lead to performance comparable to that of systems
using lexicons and simplified corpora.

At the moment, LIGHT-LS supports only
single-word simplifications but we plan to extend
it to support multi-word expressions. Other lines
of future research will focus on binding LIGHT-LS
with methods for syntax-based (Zhu et al., 2010)
and content-based (Glavaš and Štajner, 2013) text
simplification.
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Abstract

This paper describes an experiment to
elicit referring expressions from human
subjects for research in natural language
generation and related fields, and prelim-
inary results of a computational model for
the generation of these expressions. Un-
like existing resources of this kind, the re-
sulting data set - the Zoom corpus of natu-
ral language descriptions of map locations
- takes into account a domain that is sig-
nificantly closer to real-world applications
than what has been considered in previous
work, and addresses more complex situa-
tions of reference, including contexts with
different levels of detail, and instances of
singular and plural reference produced by
speakers of Spanish and Portuguese.

1 Introduction

Referring Expression Generation (REG) is the
computational task of producing adequate natural
language descriptions (e.g., pronouns, definite de-
scriptions, proper names, etc.) of domain entities.
In particular, the issue of how to determine the se-
mantic contents of definite descriptions (e.g., ‘the
Indian restaurant on 5th street’, ‘the restaurant we
went to last night’, etc.) has received significant
attention in the field, and it is also the focus of the
present work.

The input to a REG algorithm is a context set
C containing an intended referent r and a number
of distractor objects. All objects are represented
as attribute-value pairs representing either atomic
(type-restaurant) or relational (on-5thstreet) prop-
erties (Krahmer and Theune, 2002; Krahmer et al.,
2003; Kelleher and Kruijff, 2006; Viethen et al.,
2013). The expected output is a uniquely identi-
fying list L of properties known to be true of r
so that L distinguishes r from all distractors in C
(Dale and Reiter, 1995).

Properties are selected for inclusion in L ac-
cording to multiple - and often conflicting - cri-
teria, including discriminatory power (i.e., the
ability to rule out distractors) as in (Dale, 2002;
Gardent, 2002), domain preferences (Pechmann,
1989; Gatt et al., 2013) and many others. A de-
scription that conveys more information than what
is strictly required for disambiguation is said to
be overspecified (Arts et al., 2011; Koolen et al.,
2011; van Gompel et al., 2012; Engelhardt and
Ferreira, 2006; Engelhardt et al., 2011). For a
review of the research challenges in REG, see
(Krahmer and van Deemter, 2012).

Existing approaches to REG largely consist of
algorithmic solutions, many of which have been
influenced by, or adapted from, the Dale & Reiter
Incremental algorithm in (Dale and Reiter, 1995).
The use of machine learning (ML) techniques, by
contrast, seems to be less frequent than in other
NLG tasks, although a number of exceptions do
exist (e.g., (Jordan and Walker, 2005; Viethen and
Dale, 2010; Viethen, 2011; Garoufi and Koller,
2013; Ferreira and Paraboni, 2014)).

A possible explanation for the small interest in
ML for REG may be the relatively low availabil-
ity of data. While research in many fields may
benefit from the wide availability of text corpora
(e.g., obtainable from the web), research in REG
usually requires highly specialised data - hereby
called REG corpora - conveying not only refer-
ring expressions produced by human speakers, but
also a fully-annotated representation of the con-
text (i.e., all objects and their semantic properties)
within which the expressions have been produced.

REG corpora such as TUNA (Gatt et al., 2007)
and GRE3D3 (Dale and Viethen, 2009) are useful
both to gain general insights on human language
production, and to benefit from data-intensive
computational techniques such as ML. However,
being usually the final product of controlled ex-
periments involving human subjects, REG cor-
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pora tend to address highly specific research ques-
tions. For instance, GRE3D3 is largely devoted
to the investigation of relational referring expres-
sions (Kelleher and Kruijff, 2006) in simple visual
scenes involving geometric shapes, as in ‘the large
ball next to the red cube’. As a result, and despite
the usefulness of these resources to a large body of
work in REG, further research questions will usu-
ally require the collection of new data.

In this paper we introduce the Zoom corpus of
referring expressions. Zoom addresses a domain
that is considerably closer to real-world applica-
tions (namely, city maps in different degrees of
detail represented by zoom levels) than what has
been considered in previous work, involving both
singular and plural reference, and making exten-
sive use of relational properties. Moreover, Zoom
descriptions were produced by both Spanish and
Portuguese speakers, which will allow (to the best
of our knowledge, for the first time) a comprehen-
sive study of the REG surface realisation subtask
in these languages, and enable research on the is-
sues of human variation in REG (Fabbrizio et al.,
2008; Altamirano et al., 2012; Gatt et al., 2011).

2 Related work

TUNA (Gatt et al., 2007) was the first promi-
nent REG corpus to be made publicly available
for research purposes. The corpus was developed
in a series of controlled experiments, containing
2280 atomic descriptions produced by 60 speakers
of English in two domains (1200 descriptions of
furniture items and 1080 descriptions of people’s
photographs). TUNA has been used in a series of
REG shared tasks (Gatt et al., 2009).

GRE3D3 and its extension GRE3D7 (Dale and
Viethen, 2009; Viethen and Dale, 2011) were de-
veloped in a series of web-based experiments pri-
marily focussed on the study of relational descrip-
tions. GRE3D3 contains 630 descriptions pro-
duced by 63 speakers, and GRE3D7 contains 4480
descriptions produced by 287 speakers. In both
cases, the language of the experiment was English.
The domain consists of simple visual scenes con-
veying boxes and spheres.

Stars (Teixeira et al., 2014) and its extension
Stars2 were collected for the study of referential
overspecification. Stars contains 704 descriptions
produced by 64 speakers in a web-based exper-
iment. Stars2 was produced in dialogue situa-
tions involving subject pairs, and it contains 884

descriptions produced by 56 speakers. Both do-
mains make use of simple visual scenes containing
up to four object types (e.g., stars, boxes, cones
and spheres) and include atomic and relational de-
scriptions alike. The language of both experiments
was Brazilian Portuguese.

3 Experiment

We designed a web-based experiment to collect
natural language descriptions of map locations in
both Spanish and Portuguese. The collected data
set comprises a corpus of referring expressions for
research in REG and related fields. The situations
of reference under consideration make use of map
scenes in two degrees of detail (represented by low
and high zoom levels), and address instances of
singular and plural reference. A fragment of the
experiment interface is shown in Fig. 1.

Figure 1: Experiment interface

3.1 Subjects
Volunteers were recruited upon invitation sent by
email. The Portuguese data had 93 participants,
being 66 (71.0%) male and 27 (29.0%) female.
The Spanish data had 80 participants, being 59
male (69.4%) and 26 female (30.6%).

3.2 Procedure
Subjects received a web link to the on-line experi-
ment interface (cf. Fig. 1) with self-contained in-
structions. Age and gender details were collected
for statistical purposes. The experiment consisted
of a series of map images presented in random or-
der, one by one. Each map scene showed a partic-
ular location (e.g., a restaurant, pub, theatre etc.)
pointed by an arrow. For each scene, subjects were
required to imagine that they were giving travel
advice to a friend, and to complete the sentence ‘It
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would be interesting to visit...’ with a description
of the location pointed by the arrow. After press-
ing a ‘Next’ button, another stimulus was selected,
until the end of the experiment. The first two im-
ages were fillers solely intended to make subjects
familiar with the experiment setting, and the cor-
responding responses were not recorded. Incom-
plete trials, and ill-formed descriptions, were also
discarded.

3.3 Materials
The experiment made use of the purpose-built in-
terface illustrated in Fig. 1, and a set of map im-
ages obtained from OpenStreetMap1, which con-
sisted of selected portions of maps of Madrid and
Lisbon to be presented to Spanish and Portuguese
speakers, respectively. For each city, 10 map lo-
cations were used. Each location was shown in
low and high zoom levels, making 20 images in
total. In both cases, the intended target was kept
the same, but the more detailed version would dis-
play a larger number of distractors and additional
details in general. In addition to that, certain street
and landmark names might not be depicted at dif-
ferent zoom levels. Half images showed a single
arrow pointing to one map location (i.e., requir-
ing a single description as ‘the restaurant on Baker
street’), whereas the other half showed two arrows
pointed to two different locations (and hence re-
quiring a reference to a set, as in ‘the two restau-
rants near the museum’).

3.4 Data collection
Upon manual verification, 602 ill-formed Por-
tuguese descriptions and 366 Spanish descriptions
were discarded. Thus, the Portuguese subcor-
pus consists of 1358 descriptions, and the Span-
ish subcorpus consists of 1234 descriptions. In
the Portuguese subcorpus, 78.6% of the descrip-
tions include relational properties. In addition to
that, 36.4% were minimally distinguishing, 44.3%
were overspecified, and 19.3% were underspeci-
fied. In the Spanish subcorpus, 70% of the de-
scriptions include relational properties, 35% were
minimally distinguishing, 40% were overspeci-
fied, and 25% were underspecified. Underspeci-
fied descriptions are not common in existing REG
corpora (i.e., certainly not in this proportion),
which may reflect the complexity of the domain
and/or limitations of the web-based setting.

1openstreetmap.org

3.5 Annotation
Each referring expression was modelled as con-
veying a description of the main target object and,
optionally, up to four descriptions of related land-
marks. The annotation scheme consisted of three
target attributes, four landmark attributes for each
of the four possible landmark objects, and seven
relational properties. This makes 26 possible at-
tributes for each referring expression. In the case
of plural descriptions (i.e., those involving two tar-
get objects), this attribute set is doubled.

Every object was annotated with the atomic at-
tributes type, name and others and, in the case of
landmark objects, also with their id. In addition
to that, seven relational properties were consid-
ered: in/on/at2, next-to, right-of, left-of, in-front-
of, behind-of, and the multivalue relation between
intended to represent ‘corner’ relations.

Possible values for the type and name attributes
are predefined by each referential context. The
others attribute may be assigned any string value,
and it is intended to represent any non-standard
piece of information conveyed by the expression.
For the spatial relations, possible values are the
object identifiers available from each scene.

The collected descriptions were fully annotated
by two independent annotators. After completion,
a third annotator assumed the role of judge and
provided the final annotation. Since the annotation
scheme was fairly straightforward (i.e., largely be-
cause all non-standard responses were simply as-
signed to the others attribute), agreement between
judges as measured by Kappa (Cohen, 1960) was
84% at the attribute level. Both referential con-
texts and referring expressions were represented
in XML format using a relational version of the
format adopted in TUNA (Gatt et al., 2007).

3.6 Comparison with previous work
Table 1 presents a comparison between the col-
lected data and existing REG corpora3: the num-
ber of referring expressions (REs), the number of
subjects in each experiment, the number of possi-
ble atomic attributes (Attrib.) and possible land-
marks (LMs) in a description, the average descrip-
tion size (in number of annotated properties), and
the proportion of property usage, which is taken to

2The three prepositions were aggregated as a single at-
tribute because they have approximately the same meaning
in the languages under consideration

3The information on TUNA and Zoom descriptions is
based on the singular portion of each corpus only
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be the proportion of properties that appear in the
description over the total number of possible at-
tributes and landmarks. From a REG perspective,
larger description sizes and lower usage rates may
suggest more complex situations of reference.

Table 1: Comparison with existing REG corpora
Corpus REs Subj. Attrib. LMs Avg.size Usage
TUNA-F 1200 60 4 0 3.1 0.8
TUNA-P 1080 60 10 0 3.1 0.3
GRE3D3 630 63 9 1 3.4 0.3
GRE3D7 4480 287 6 1 3.0 0.4
Stars 704 64 8 2 4.4 0.4
Stars2 884 56 9 2 3.3 0.3
Zoom-Pt 1358 93 19 4 6.7 0.3
Zoom-Sp 1234 80 19 4 7.2 0.3

4 REG evaluation

In what follows we illustrate the use of the Zoom
corpus as training and test data for a simple ma-
chine learning approach to REG adapted from
(Ferreira and Paraboni, 2014). The goal of this
evaluation is to provide reference results for future
comparison with purpose-built REG algorithms,
and not to present a complete REG solution for
the Zoom domain or others.

The present model consists of 12 binary clas-
sifiers representing whether individual referential
attributes should be selected for inclusion in an
output description. The classifiers correspond to
atomic attributes of the target and first landmark
object (type, name and others), and relations. Ref-
erential attributes of other landmark objects were
not modelled due to data sparsity and also to re-
duce computational costs. For similar reasons, the
multivalue between relation is also presently disre-
garded, and ‘corner’ relations involving two land-
marks (e.g., two streets) will be modelled as two
independent classification tasks.

Only two learning features are considered by
each classifier: landmarkCount, which represents
the number of landmark objects near the main
target, and distractorCount, which represents the
number of objects of the same type as the target
within the relevant context in the map. For other
possible features applicable to this task, see, for
instance, (dos Santos Silva and Paraboni, 2015).

From the outcome of the 12 binary classifiers,
a description is built by considering atomic target
attributes in the first place. All attributes that cor-
respond to a positive prediction are selected for in-
clusion in the output description. Next, relations

are considered. If no relation is predicted, the
algorithm terminates by returning an atomic de-
scription of the main target object. If the descrip-
tion includes a relation, the corresponding land-
mark object is selected, and the algorithm is called
recursively to describe it as well. Since every at-
tribute that corresponds to a positive prediction
is always selected, the algorithm does not regard
uniqueness as a stop condition. As a result, the
output description may convey a certain amount
of overspecification.

For evaluation purposes, we used the subset of
singular descriptions from the Portuguese portion
of the corpus, comprising 821 descriptions. Evalu-
ation was carried out by comparing the corpus de-
scription with the system output to measure over-
all accuracy (i.e., the number of exact matches be-
tween the two descriptions), Dice (Dice, 1945) and
MASI (Passonneau, 2006) coefficients.

Following (Ferreira and Paraboni, 2014), we
built a REG model using support vector machines
with radial basis function kernel. The classifiers
were trained and tested using 6-fold cross valida-
tion. Optimal parameters were selected using grid
search as follows: for each step in the main k-fold
validation, one fold was reserved for testing, and
the remaining k − 1 folds were subject to a sec-
ondary cross-validation procedure in which differ-
ent parameter combinations were attempted. The
C parameter was assigned the values 1, 10, 100
and 1000, and γ was assigned 1, 0.1, 0.001 and
0.0001. The best-performing parameter set was
selected to build a classifier trained from the k− 1
fold, and tested on the test data. This was repeated
for every iteration of the main cross-validation
procedure.

Table 2 summarises the results obtained by the
REG algorithm built from SVM classifiers, those
obtained by a baseline system representing a rela-
tional extension of the Dale & Reiter Incremental
Algorithm, and by a Random selection strategy.

Table 2: REG results
Algorithm Acc. Dice MASI
SVM 0.15 0.51 0.28
Incremental 0.04 0.53 0.21
Random selection 0.03 0.45 0.15

We compare accuracy scores obtained by ev-
ery algorithm pair using the chi-square test, and
we compare Dice scores using Wilcoxon’s signed-
rank test. In terms of overall accuracy, the SVM
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approach outperforms both alternatives. The dif-
ference from the second best-performing algo-
rithm (i.e., the Incremental approach) is significant
(χ2 = 79.87, df=1, p<0.0001). Only in terms of
Dice scores a small effect in the opposite direction
is observed (T=137570.5, p= 0.01413).

We also assessed the performance of the indi-
vidual classifiers. Table 3 shows these results as
measured by precision (P), recall (R), F1-measure
(F1) and area under the ROC curve (AUC).

Table 3: Classifier results
Classifier P R F1 AUC
tg type 0.95 1.00 0.98 0.25
tg name 0.09 0.05 0.07 0.41
tg other 0.00 0.00 0.00 0.05
lm type 0.93 1.00 0.96 0.44
lm name 0.97 1.00 0.98 0.35
lm other 0.00 0.00 0.00 0.43
next-to 0.50 0.24 0.32 0.63
right-of 0.00 0.00 0.00 0.28
left-of 0.00 0.00 0.00 0.27
in-front-of 0.00 0.00 0.00 0.42
behind-of 0.00 0.00 0.00 0.17
in/on/at 0.60 0.60 0.60 0.61

From these results we notice that highly fre-
quent attributes (e.g., target type and landmark
name) were classified with high accuracy, whereas
others (e.g., multivalue attributes and relations)
were not.

5 Discussion

This paper has introduced the Zoom corpus of nat-
ural language descriptions of map locations, a re-
source intended to support future research in REG
and related fields. Preliminary results of a SVM-
based approach to REG - which were solely pre-
sented for the future assessment of REG algo-
rithms based on Zoom data - hint at the actual
complexity of the REG task in this domain in a
number of ways. First, we notice that a simi-
lar approach in (Ferreira and Paraboni, 2014) on
GRE3D3 and GRE3D7 data has obtained consid-
erably higher mean accuracy. This is partially ex-
plained by the increased complexity of the Zoom
domain, but also by the currently simple annota-
tion scheme.

Second, we notice that Zoom descriptions are
prone to convey relations between a single target
and multiple landmark objects, as in ‘the restau-
rant between the 5th and 6th streets’. Although
common in language use, the use of multiple rela-
tional properties in this way has been little investi-

gated in the REG field.
Finally, we notice that the Zoom domain con-

tains two descriptions for every target object,
which are based on different - but related - mod-
els corresponding to the same map location seen
at different zoom levels. Interestingly, the refer-
ring expression in a 1X situation may or may not
be the same as in a 2X situation. Consider a map
with higher zoom level (2X) as illustrated in the
previous Fig. 2, and the same map location as seen
with lower zoom level in the previous Fig. 1.

Figure 2: Map with a more detailed zoom level

The underlying models for these two maps are
certainly different, but not unrelated. The map
with 2X zoom contains fewer objects but may in-
clude more properties due to the added level of de-
tail. The referring expression for the target in the
1X map may or may not be the same as in the 2X
map. For instance, the referring expression “the
pub at Cowgate” is underspecified on the 1X map,
but it is minimally distinguishing on the 2X map.

Differences of this kind are common in inter-
active applications (e.g., in which the context of
reference may change in structure or in the num-
ber of objects and referable properties), and the
challenge for REG algorithms would be to pro-
duced an appropriate description for the modified
context without starting from scratch. REG algo-
rithms based on local context partitioning (Areces
et al., 2008) may have an advantage in this respect,
but further investigation is still required.
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Abstract

We present an experiment to compare a
standard, minimally distinguishing algo-
rithm for the generation of relational refer-
ring expressions with two alternatives that
produce overspecified descriptions. The
experiment shows that discrimination -
which normally plays a major role in the
disambiguation task - is also a major influ-
ence in referential overspecification, even
though disambiguation is in principle not
relevant.

1 Introduction

In Natural Language Generation (NLG) systems,
Referring Expression Generation (REG) is the
computational task of providing natural language
descriptions of domain entities (Levelt, 1989; Dale
and Reiter, 1995), as in ‘the second street on the
left’, ‘the money that I found in the kitchen’ etc.
In this paper we will focus on the issue of content
selection of relational descriptions, that is, those
in which the intended target is described via an-
other object, hereby called a landmark. Consider
the example of context in Fig. 1.

Figure 1: A simple visual context. All objects are
grey except for obj5, which is red.

Let us consider the goal of uniquely identify-
ing the target obj1 in the context in Fig.1. Since
the target shares most atomic properties (e.g., type,
colour and size) with other distractor objects in the
context (and particularly so with respect to obj4),
using a relational property (near-obj2) may help
prevent ambiguity. The following (a)-(c) are ex-

amples of descriptions of this kind produced from
the above context.

(a)The cone near the box
(b)The cone near the grey box
(c)The cone near the small box

As in example (a), existing REG algorithms will
usually pay regard to the Gricean maxim of quan-
tity (Grice, 1975), and avoid the inclusion of prop-
erties that are not strictly required for disambigua-
tion. In the case of relational reference, this means
that both target and landmark portions of the de-
scription may be left underspecified, and unique-
ness will follow from the fact that they mutually
disambiguate each other (Teixeira et al., 2014). In
other words, example (a) may be considered felic-
itous even though both ‘cone’ and ‘box’ are am-
biguous if interpreted independently.

Minimally distinguishing descriptions as in (a)
are the standard output of many REG algorithms
that handle relational descriptions as in (Dale
and Haddock, 1991; Krahmer and Theune, 2002;
Krahmer et al., 2003). Human speakers, on the
other hand, are largely redundant (Engelhardt et
al., 2006; Arts et al., 2011; Koolen et al., 2011;
Engelhardt et al., 2011), and will often produce so-
called overspecified descriptions as in (b-c) above.

In this paper we will focus on the issue of gener-
ating overspecified relational descriptions as in ex-
amples (b-c), discussing which properties should
be selected by a REG algorithm assuming that the
decision to overspecify has already been made.
More specifically, we will discuss whether the al-
gorithm should include colour as in (b), size as in
(c), or other alternatives, and we will assess the
impact of a referential overspecification strategy
that favours highly discriminatory properties over
preferences that are well-established in the liter-
ature. Although this may in principle seem as a
narrow research topic, the generation of relational
descriptions is still subject of considerable debate
in the field (e.g., (Viethen and Dale, 2011) and
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the issue of landmark under/full-specification has
a number of known consequences for referential
identification (e.g., (Paraboni and van Deemter,
2014)).

2 Related work

2.1 Relational REG

One of the first REG algorithms to take relations
into account is the work in (Dale and Haddock,
1991), which generates descriptions that may in-
clude relational properties only as a last resort, that
is, only when it is not possible to obtain a uniquely
identifying descriptions by making use of a set of
atomic properties. The algorithm prevents circu-
larity (e.g., ‘the cup on the table that supports a
cup that...’) and avoids the inclusion of redundant
properties with the aid of consistency networks.
As a result, the algorithm favours the generation
of minimally distinguishing relational descriptions
as example (a) in the previous section.

In the Graph algorithm described in (Krahmer et
al., 2003), the referential context is modelled as a
labelled directed graph with vertices representing
domain entities and edges representing properties
that can be either relational (when connecting two
entities) or atomic (when forming self-loops). The
task of obtaining a uniquely identifying descrip-
tion is implemented as a subgraph construction
problem driven by domain-dependent cost func-
tions associated with the decisions made by the al-
gorithm. The work in (Krahmer et al., 2003) does
not make specific assumptions about the actual at-
tribute selection policy, and by varying the cost
functions it is possible to implement a wide range
of referential strategies. The use of the algorithm
for the generation of relational descriptions is dis-
cussed in (Viethen et al., 2013).

The work in (Paraboni et al., 2006) discusses the
issue of ease of search by focussing on the particu-
lar case of relational description in hierarchically-
ordered domains (e.g., books divided into sections
and subsections etc.) Descriptions that may ar-
guably make search difficult, as in ‘the section
that contains a picture’ are prevented by produc-
ing fully-specified descriptions of each individual
object (i.e., picture, section etc.). As in (Dale and
Haddock, 1991), atomic properties are always at-
tempted first, and each target (e.g., a subsection)
holds only one relation (e.g., to its parent section).
Descriptions of this kind are similar to the exam-
ples (b-c) in the previous section. However, hier-

archical structures are highly specialised domains,
and it is less clear to which extent these findings
are applicable to more general situations of ref-
erence as in, e.g., spatial domains (Byron et al.,
2007; dos Santos Silva and Paraboni, 2015).

2.2 Referential overspecification

Assuming that we would like to add a redun-
dant property to overspecify a certain description,
which property should be selected? Research on
REG, cognitive sciences and related fields has in-
vestigated a number of factors that may play a
role in referential overspecification. First of all,
it has been widely observed that some properties
are simply preferred to others. This seems to
be the case, for instance, of the colour attribute.
Colour is ubiquitously found in both redundant
and non-redundant use (Pechmann, 1989), and
empirical evidence suggests that colour is over-
specified more frequently than size (Belke and
Meyer, 2002).

The inherent preference for colour has how-
ever been recently challenged. The work in (van
Gompel et al., 2014), for instance, points out that
when perceptual salience is manipulated so that
a high contrast between target and distractors is
observed, the size attribute may be preferred to
colour. In other words, a highly preferred prop-
erty may not necessarily match the choices made
by human speakers when producing overspecified
descriptions. Results along these lines are also re-
ported in (Tarenskeen et al., 2014).

Redundant and non-redundant uses of colour
(and possibly other preferred properties) may also
be influenced by the difficulty in encoding visual
properties. In (Viethen et al., 2012), for instance,
it is argued that the colour property is more likely
to be selected when it is maximally different from
the other colours in the context. For instance, a red
object is more likely to be described as ‘red’ when
none of the distractors is red, and less so when a
modifier (e.g., ‘light red’) would be required for
disambiguation.

Closer to our present discussion, we notice that
the issue of discrimination as proposed in (Olson,
1970) has been considered by most REG algo-
rithms to date (e.g., (Dale and Reiter, 1995; Krah-
mer and van Deemter, 2012)), and it has even
motivated a number of greedy or minimally dis-
tinguishing REG strategies (Gardent, 2002; Dale,
2002; Areces et al., 2011). Interestingly, the work
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in (Gatt et al., 2013) has suggested that small dif-
ferences in discriminatory power do not seem to
influence content selection, but large differences
do, a notion that has been applied to the design
of REG algorithms on at least two occasions: in
(de Lucena et al., 2010) properties are selected in
order of preference regardless of their discrimina-
tory power and, if necessary, an additional, highly
discriminatory property is included; in (van Gom-
pel et al., 2012), a fully distinguishing property is
attempted first and, if necessary for disambigua-
tion, further properties are considered based on
both preference and discrimination.

Discrimination clearly plays a major role in the
disambiguation task, but it less clear whether it is
still relevant when disambiguation is not an issue,
that is, in the case of referential overspecification.
The present work is an attempt to shed light on this
particular issue.

3 Current work

Following (Pechmann, 1989) and others, we may
assume that colour should be generally (or perhaps
always) preferred to size. Moreover, as in (Kelle-
her and Kruijff, 2006), we may follow the prin-
ciple of minimal effort (Clark and Wilkes-Gibbs,
1986) and assume that atomic properties such as
colour or size should be preferred to relations that
lead to more complex descriptions. In our current
work, however, we will argue that neither needs
to be the case: under the right circumstances, a
wide range of properties - colour, size and even
spatial relations - may be overspecified depend-
ing on their discriminatory power alone. Thus, it
may be the case that size is preferred to colour (un-
like, e.g., (Pechmann, 1989)), and that longer, re-
lational descriptions are preferred to shorter ones
(unlike, e.g., (Kelleher and Kruijff, 2006)).

The possible preference for highly discrimina-
tory properties in referential overspecification is
easily illustrated by the examples in the introduc-
tion section. Following (Pechmann, 1989), one
might assume that, if a speaker decides to over-
specify the landmark portion of description (a),
she may add the colour attribute, as in (b). This
strategy, however, turns out to be far less common
in language use if a more discriminatory property
is available, as in the example. More specifically,
the availability of a highly discriminatory land-
mark property (size-small) makes (c) much more
likely than (b). This observation gives rise to the

following research hypothesis:

h1: Given the goal of overspecifying a
relational description by using an ad-
ditional landmark property p, p should
correspond to the most discriminatory
property available in the context.

The idea that speakers may take discriminatory
power into account when referring is of course not
novel. What is less obvious, however, is that dis-
crimination may also play a significant role in sit-
uations that do not involve ambiguity, as in the
above examples. To illustrate this, let us consider
a basic REG algorithm - hereby called Baseline
- consisting of a relational implementation of an
Incremental-like algorithm as proposed in (Dale
and Reiter, 1995).

Given the goal of producing a uniquely identify-
ing description L of a target object r, the Baseline
algorithm works as follows: first, an atomic de-
scription is attempted by examining a list of pre-
ferred attributes P and by selecting those that help
disambiguate the reference, as in the standard In-
cremental approach (Dale and Reiter, 1995). If the
description is uniquely identifying, the algorithm
terminates. If not, a relational property relating r
to a landmark object o is included in L, and the
algorithm is called recursively to describe o using
an atomic description if possible.

Since Baseline terminates as soon as a uniquely
identifying description is obtained, the landmark
description will be usually left underspecified as in
example (a) in Section 1. This behaviour is consis-
tent with existing relational REG algorithms (e.g.,
(Dale and Haddock, 1991; Krahmer et al., 2003)).

Using the Baseline descriptions as a starting
point, however, we may decide to fully-specify the
landmark description (e.g., in order to facilitate
search, as in (Paraboni and van Deemter, 2014))
by selecting an additional property p from the re-
mainder P list, hereby called P0.

There are of course many ways of defining p. In
corpus-based REG, for instance, a plausible strat-
egy would be to assume that the definition of p
is domain-dependent, and simply select the most
frequent (but still discriminatory) property in P0

as seen in training data. We will call this variation
the Most Frequent overspecification strategy.

Choosing the most frequent property p may
lead to descriptions that closely resemble those
observed in the data. However, we predict that
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the availability of a highly discriminatory prop-
erty may change this preference. To illustrate this,
we will also consider a Proposal strategy in which
p is taken to be the most discriminatory property
available in P0. In case of a tie, the most fre-
quent property that appears in P0 is selected. If
P0 does not contain any discriminatory properties,
none will be selected and the landmark descrip-
tion will remain underspecified as in the standard
Baseline approach.

The context in the previous Fig.1 and the ac-
companying examples (a-c) in Section 1 illustrate
the expected output of each of the three algorithms
under consideration. As in previous work on re-
lational REG, the Baseline approach would pro-
duce the minimally distinguishing description (a);
the Most Frequent strategy would overspecify the
landmark portion of the description by adding the
preferred property in the relevant domain (e.g.,
colour) as in (b); and the Proposal strategy would
overspecify by adding the highly discriminatory
property (in this particular example, size) as in (c).

The relation between the three algorithms and
our research hypothesis h1 is straightforward. We
would like to show that the predictions made by
Proposal are more accurate than those made by
Baseline and Most Frequent. An experiment to
verify this claim is described in the next section.

4 Experiment

For evaluation purposes we will make use the
Stars2 corpus of referring expressions1. Stars2 is
an obvious choice for our experiment since these
data convey visual scenes in which objects will
usually have one highly discriminatory property
available for reference. Moreover, descriptions in
this domain may convey up to two relations (e.g.,
‘the cone next to the ball, near the cone’), which
gives rise to multiple opportunities for referential
overspecification.

In addition to this, we will also make use of the
subset of relational descriptions available from the
GRE3D3 (Dale and Viethen, 2009) and GRE3D7
(Viethen and Dale, 2011) corpora. Situations of
reference in the GRE3D3/7 domain are in many
ways simpler than those in Stars2 (i.e., by con-
taining at most one possible relation in each scene,
by not presenting any property whose discrimina-
tory power is substantially higher than others etc.),

1Some of the corpus features are described in (Ferreira
and Paraboni, 2014)

but the comparison is still useful since GRE3D3/7
are among the very few annotated relational REG
corpora made publicly available for research pur-
poses, and which have been extensively used in
previous work.

From the three domains - Stars2, GRE3D3 and
GRE3D7 - we selected all instances of relational
descriptions in which the landmark object was de-
scribed by making use of the type attribute and ex-
actly one additional property p. This amounts to
three Reference sets containing 725 descriptions
in total: 367 descriptions from Stars2, 114 from
GRE3D3 and 244 from GRE3D7.

In the situations of reference available from
these domains, the use of p is never necessary for
disambiguation, and p will never be selected by a
standard REG algorithm as the Baseline strategy
described in the previous section. Thus, our goal
is to investigate which overspecification strategy -
Proposal or Most Frequent, cf. previous section -
will select the correct p, and the corresponding im-
pact of this decision on the overall results of each
algorithm.

From the unused portion of each corpus, we es-
timate attribute frequencies to create the prefer-
ence list P required by the algorithms. The fol-
lowing preference orders were obtained:

P (Stars2) ={type, colour, size, near, in-front-of,
right, left, below, above, behind}

P (GRE3D) ={type, colour, size, above, in-front-of,
hpos, vpos, near, right, left}

In the case of the GRE3D3/7 corpora, we no-
tice that not all attributes appear in both data sets.
Moreover, the attributes hpos and vpos were com-
puted from the existing pos attribute, which was
originally intended to model both horizontal and
vertical screen coordinates as a single property in
(Dale and Viethen, 2009).

Each of the three REG strategies - Baseline,
Proposal and Most Frequent - received as an in-
put the 725 situations of reference represented in
the Reference data and the corresponding P list
for each domain. As a result, three sets of output
descriptions were obtained, hereby called System
sets.

Evaluation was carried out by comparing each
System set to the corresponding Reference cor-
pus descriptions and measuring Dice scores (Dice,
1945) and overall accuracy (that is, the number of
exact matches between each System-Reference de-
scription pair).
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Table 1: Results
Algorithm Baseline Most frequent Proposal

Dice Accuracy Dice Accuracy Dice Accuracy
Dataset mean sdv mean sdv mean sdv mean sdv mean sdv mean sdv
Stars2 0.63 0.14 0.00 0.00 0.62 0.18 0.11 0.31 0.76 0.18 0.27 0.45
GRE3D3 0.81 0.06 0.00 0.00 0.87 0.10 0.25 0.43 0.90 0.09 0.36 0.48
GRE3D7 0.84 0.07 0.00 0.00 0.92 0.10 0.47 0.50 0.89 0.10 0.34 0.48
Overall 0.73 0.15 0.00 0.00 0.76 0.21 0.25 0.43 0.82 0.16 0.31 0.46

5 Results

Table 1 shows descriptive statistics for the eval-
uation of our three algorithms - Baseline, Pro-
posal and Most Frequent - applied to each corpus
- Stars2, GRE3D3 and GRE3D7. Best results are
highlighted in boldface.

Following (Gatt and Belz, 2007) and many
others, we compare Dice scores obtained by the
three algorithms applied to the generation of
the selected descriptions of each domain using
Wilcoxon’s signed-rank test. In the Overall evalua-
tion, Proposal outperforms both alternatives. The
difference is significant (W (338)=-34327, Z=-
9.55, p < 0.0001). Highly discriminatory proper-
ties are indeed those that are normally selected by
human speakers when they decide to overspecify a
landmark description. This supports our research
hypothesis h1.

Individual results are as follows. In the
case of the Stars2 domain, Proposal outperforms
both alternatives. The difference is significant
(W (241)=-26639, Z=-12.29, p < 0.0001). In
the case of GRE3D3, once again Proposal out-
performs the alternatives. The difference is also
significant (W (27)=-248, Z=-2.97, p < 0.03). Fi-
nally, in the case of GRE3D7, an effect in the op-
position direction was observed, i.e., the Most Fre-
quent algorithm outperforms the alternatives. The
difference is significant (W (70)=1477, Z=4.32,
p < 0.0001).

The differences across domains are explained
by the proportion of highly discriminatory land-
mark properties in each corpus. In Stars2, the
nearest landmark has at least one highly discrim-
inatory property in all scenes involving relational
reference. In GRE3D3, the nearest landmark has
a highly discriminatory property in 80% of the
scenes, and in GRE3D7 this is the case in only
50% of the scenes. Thus, given the opportu-
nity, the use of a highly discriminatory property
seems to be preferred. The absence of a prop-
erty that ‘stands out’, by contrast, appears to make

the choice among them a matter of preference, an
observation that is consistent with the findings in
(Gatt et al., 2013).

6 Final remarks

This paper has presented a practical REG experi-
ment to illustrate the impact of discrimination on
the generation of overspecified relational descrip-
tions. The experiment shows that discrimination -
which normally plays a major role in the disam-
biguation task - is also a considerable influence
in referential overspecification, that is, even when
discrimination is in principle not an issue. Our
findings correlate with previous empirical work in
the field, and show that discrimination may effec-
tively trump the inherent preference for absolute
properties and for those that are easier to realise
in surface form. For instance, contrary to (Pech-
mann, 1989) and many others, speakers would
generally prefer referring to size as in (b), despite
evidence suggesting that colour is overspecified
more frequently than size. Moreover, contrary to
(Kelleher and Kruijff, 2006), speakers would also
prefer referring to a spatial relation as in (c) even
though the resulting descriptions turns out to be
more complex.

We are aware that the present work has focussed
on extreme situations in which a highly discrimi-
natory property is available for overspecification.
As future work, it is necessary to further this inves-
tigation by taking into account various degrees of
discrimination. As suggested in (Gatt et al., 2013),
the effect of discrimination may be perceived as a
continuum, and in that case a practical REG algo-
rithm should be able to make more complex deci-
sions that those presently implemented.
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Abstract

This paper is the first to examine the effect
of prosodic features on coreference resolu-
tion in spoken discourse. We test features
from different prosodic levels and investi-
gate which strategies can be applied. Our
results on the basis of manual prosodic la-
belling show that the presence of an accent
is a helpful feature in a machine-learning
setting. Including prosodic boundaries and
determining whether the accent is the nu-
clear accent further increases results.

1 Introduction

Noun phrase coreference resolution is the task of
determining which noun phrases (NPs) in a text
or dialogue refer to the same discourse entities
(Ng, 2010). Coreference resolution has been ex-
tensively addressed in NLP research, e.g. in the
CoNLL shared task 2012 (Pradhan et al., 2012)
or in the SemEval shared task 2010 (Recasens et
al., 2010). Amoia et al. (2012) have shown that
there are differences between written and spoken
text wrt coreference resolution and that the per-
formance typically drops when systems that have
been developed for written text are applied on spo-
ken text. There has been considerable work on
coreference resolution in written text, but com-
paratively little work on spoken text, with a few
exceptions of systems for pronoun resolution in
transcripts of spoken text e.g. Strube and Müller
(2003), Tetreault and Allen (2004). However,
so far, prosodic information has not been taken
into account. The interaction between prosodic
prominence and coreference has been investigated
in several experimental and theoretical analyses
(Terken and Hirschberg, 1994; Schwarzschild,
1999; Cruttenden, 2006); for German (Baumann
and Riester, 2013; Baumann and Roth, 2014; Bau-
mann et al., 2015).

There is a tendency for coreferent items, i.e. en-
tities that have already been introduced into the
discourse, to be deaccented, as the speaker as-
sumes the entity to be salient in the listener’s dis-
course model. We can exploit this by including
prominence features in the coreference resolver.

Our prosodic features mainly aim at definite
descriptions, where it is difficult for the resolver
to decide whether the potential anaphor is actu-
ally anaphoric or not. In these cases, accentua-
tion is an important means to distinguish between
given entities (often deaccented) and other cate-
gories (i.e. bridging anaphors, see below) that are
typically accented, particularly for entities whose
heads have a different lexeme than their potential
antecedent. Pronouns are not the case of inter-
est here, as they are (almost) always anaphoric.
To make the intuitions clearer, Example (1), taken
from Umbach (2002), shows the difference promi-
nence can make:

(1) John has an old cottage.1

a. Last year he reconstructed the SHED.
b. Last year he reconSTRUCted the shed.

Due to the pitch accent on shed in (1a), it is quite
obvious that the shed and the cottage refer to dif-
ferent entities; they exemplify a bridging relation,
where the shed is a part of the cottage. In (1b),
however, the shed is deaccented, which has the ef-
fect that the shed and the cottage corefer.

We present a pilot study on German spoken
text that uses manual prominence marking to show
the principled usefulness of prosodic features for
coreference resolution. In the long run and for
application-based settings, of course, we do not
want to rely on manual annotations. This work is
investigating the potential of prominence informa-
tion and is meant to motivate the use of automatic

1Anaphors are typed in boldface, their antecedents are un-
derlined. Accented syllables are capitalised.
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prosodic features. Our study deals with German
data, but the prosodic properties are comparable
to other West Germanic languages, like English or
Dutch. To the best of our knowledge, this is the
first work on coreference resolution in spoken text
that tests the theoretical claims regarding the inter-
action between coreference and prominence in a
general, state-of-the-art coreference resolver, and
shows that prosodic features improve coreference
resolution.

2 Prosodic features for coreference
resolution

The prosodic information used for the purpose of
our research results from manual annotations that
follow the GToBI(S) guidelines by Mayer (1995),
which stand in the tradition of autosegmental-
metrical phonology, cf. Pierrehumbert (1980),
Gussenhoven (1984), Féry (1993), Ladd (2008),
Beckman et al. (2005). We mainly make use of
pitch accents and prosodic phrasing. The an-
notations distinguish intonation phrases, termi-
nated by a major boundary (%), and intermediate
phrases, closed by a minor boundary (-), as shown
in Examples (2) and (3).

The available pitch accent and boundary an-
notations allow us to automatically derive a sec-
ondary layer of prosodic information which rep-
resents a mapping of the pitch accents onto a
prominence scale in which the nuclear (i.e. final)
accents of an intonation phrase (n2) rank as the
most prominent, followed by the nuclear accents
of intermediate phrases (n1) and prenuclear (i.e.
non-final) accents which are perceptually the least
prominent. To put it simply, the nuclear accent
is the most prominent accent in a prosodic phrase
while prenuclear accents are less prominent.

While we expect the difference between the
presence or absence of pitch accents to influence
the classification of short NPs like in Example
(1), we do not expect complex NPs to be fully
deaccented. For complex NPs, we nevertheless
hope that the prosodic structure of coreferential
NPs will turn out to significantly differ from the
structure of discourse-new NPs such as to yield
a measurable effect. Examples (2) and (3) show
the prosodic realisation of two expressions with
different information status. In Example (2), the
complex NP the text about the aims and future
of the EU refers back to the Berlin Declaration,
whereas in Example (3), the complex NP assault

with lethal consequences and reckless homicide is
not anaphoric. The share of prenuclear accents
is higher in the anaphoric case, which indicates
lower overall prominence. The features described
in Section 2.1 only take into account the absence
or type of the pitch accent; those in Section 2.2
additionally employ prosodic phrasing. To get a
better picture of the effect of these features, we im-
plement, for each feature, one version for all noun
phrases and a second version only for short noun
phrases (<=4 words).

2.1 Prosodic features ignorant of phrase
boundaries

Pitch accent type corresponds to the following
pitch accent types that are present in the GToBI(S)
based annotations.

Fall H*L
Rise L*H
Downstep fall !H*L
High target H*
Low target L*
Early peak HH*L
Late peak L*HL

For complex NPs, the crucial label is the last la-
bel in the mention. For short NPs, this usually
matches the label on the syntactic head.

Pitch accent presence focuses on the presence
of a pitch accent, disregarding its type. If one ac-
cent is present in the markable, the boolean feature
gets assigned the value true, and false otherwise.

2.2 Prosodic features including phrase
boundary information

The following set of features takes into account the
degree of prominence of pitch accents as presented
at the beginning of Section 2, which at the same
time encodes information about prosodic phras-
ing.

Nuclear accent type looks at the different de-
grees of accent prominence. The markable gets
assigned the type n2, n1, pn if the last accent in
the phrase matches one of the types (and none if it
is deaccented).

Nuclear accent presence is a Boolean feature
comparable to pitch accent presence. It gets as-
signed the value true if there is some kind of ac-
cent present in the markable. To be able to judge
the helpfulness of the distinction between the cat-
egories that are introduced above, we experiment
with two different versions:
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(2) Anaphoric complex NP (DIRNDL sentences 9/10):

9: Im Mittelpunkt steht eine von der Ratspräsidentin, Bundeskanzlerin Merkel, vorbereitete “Berliner Erklärung”.
10: Die Präsidenten [. . . ] wollen [den TEXT über die ZIEle und ZUkunft der EU] unterzeichnen.

the presidents [. . . ] want [the text about the aims and future the EU] sign
(( L*H L*H-) ( H*L H*L H*L -)%)

pn n1 pn pn

Central is the ’Berlin Declaration’ that was prepared by the president of the Council of the EU, Chancellor Merkel.
The presidents want to sign [the text about the aims and future of the EU.]

(3) Non-anaphoric complex NP (DIRNDL sentences 2527/2528):

2527: Der Prozess um den Tod eines Asylbewerbers aus Sierra Leone in Polizeigewahrsam ist [. . . ] eröffnet worden.
2528: [Wegen KÖRperverletzung mit TOdesfolge und fahrlässiger TÖtung] MÜSsen . . .

[Due assault with lethal consequence, and reckless homicide] must
(( H*L L*H -) ( H*L -)%)

pn n1 n2

The trial about the death of an asylum seeker from Sierra Leone during police custody has started.
Charges include [assault with lethal consequence, and reckless homicide], . . .

1. Only n2 accents get assigned true
2. n2 and n1 accents get assigned true

Note that a version where all accents get assigned
true, i.e. pn and n1 and n2, is not included as this
equals the feature Pitch accent presence.

Nuclear bag of accents treats accents like a
bag-of-words approach treats words: if one accent
type is present once (or multiple times), the accent
type is considered present. This means we get a
number of different combinations (23 = 8 in total)
of accent types that are present in the markable,
e.g. pn and n1 but no n2 for Example (2), and pn,
n1 and n2 for Example (3).

Nuclear: first and last includes linear informa-
tion while avoiding an explosion of combinations.
It only looks at the (degree of the) first pitch ac-
cent present in the markable and combines it with
the last accent.

3 Experimental setup

We perform our experiments using the IMS Hot-
Coref system (Björkelund and Kuhn, 2014), a
state-of-the-art coreference resolution system for
English. As German is not a language that is fea-
tured in the standard resolver, we first had to adapt
it. These adaptations include gender and number
agreement, lemma-based (sub)string match and
a feature that addresses German compounds, to
name only a few.2

2To download the German coreference system, visit:
www.ims.uni-stuttgart.de/forschung/
ressourcen/werkzeuge/HOTCorefDe.html

For our experiments on prosodic features, we
use the DIRNDL corpus3 (ca. 50.000 tokens, 3221
sentences), a radio news corpus annotated with
both manual coreference and manual prosody la-
bels (Eckart et al., 2012; Björkelund et al., 2014)4.
We adopt the official train, test and development
split. We decided to remove abstract anaphors
(e.g. anaphors that refer to events or facts), which
are not resolved by the system. In all experi-
ments, we only use predicted annotations and no
gold mention boundary (GB) information as we
aim at real end-to-end coreference resolution. On
DIRNDL, our system achieves a CoNLL score of
47.93, which will serve as a baseline in our ex-
periments. To put the baseline in context, we also
report performance on the German reference cor-
pus TüBa-D/Z5 (Naumann, 2006), which consists

3http://www.ims.uni-stuttgart.de/
forschung/ressourcen/korpora/dirndl.html

4In this work, we have focused on improvements within
the clearly defined field of coreference resolution, using
prosodic features. As one of the reviewers pointed out, the
DIRNDL corpus additionally features manual two-level in-
formation status annotations according to the RefLex scheme
(Baumann and Riester, 2012), which additionally distin-
guishes bridging anaphors, deictic expressions, and more.
Recent work on smaller datasets of read text has shown that
there is a meaningful correspondence between information
status classes and degrees of prosodic prominence, with re-
gard to both pitch accent type and position (Baumann and
Riester, 2013; Baumann et al., 2015). Moreover, informa-
tion status classification has been identified as a task closely
related to coreference resolution (Cahill and Riester, 2012;
Rahman and Ng, 2012). Integrating these approaches is a
promising, though rather complex task, which we reserve for
future work. It might, furthermore, require more detailed
prosodic analyses than are currently available in DIRNDL.

5http://www.sfs.uni-tuebingen.de/de/
ascl/ressourcen/corpora/tueba-dz.html
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System CoNLL CoNLL
(+singl.) (-singl.)

IMS HotCoref DE (open) 60.35 48.61
CorZu (open) 60.27 45.82
BART (open) 57.72 39.07
SUCRE (closed) 51.23 36,32
TANL-1 (closed) 38.48 14.17

Table 1: SemEval Shared Task 2010 post-task
evaluation for track regular (on TüBa 8), includ-
ing and excluding singletons

System CoNLL
IMS HOTCoref DE (no GB matching) 51.61
CorZu (no GB matching) 53.07

Table 2: IMS HotCoref performance on TüBa 9
(no singletons), using regular preprocessing

of newspaper text. In a post-task SemEval 2010
evaluation6 our system achieves a CoNLL score
of 60.35 in the open, regular track7 (cf. Table 1).
On the newest dataset available (TüBa-D/Z v9),
our resolver currently achieves a CoNLL score
of 51.61.8 Table 2 compares the performance of
our system against CorZu (Klenner and Tuggener,
2011; Tuggener and Klenner, 2014), a rule-based
state-of-the-art system for German9(on the newest
TüBa dataset).

4 Experiments using prosodic features

Table 3 shows the effect of the respective features
which are not informed about intonation bound-
aries (Table 3a) and those that are (Table 3b). Fea-
tures that achieved a significant improvement over
the baseline are marked in boldface.10

The best-performing feature in Table 3a is the
presence of a pitch accent in short NPs. It can be
seen that this feature has a negative effect when be-
ing applied on all NPs. Presumably, this is because
the system is misled to classify a higher number of
complex anaphoric expressions as non-anaphoric,
due to the presence of pitch accents. This confirms
our conjecture that long NPs will always contain
some kind of accent and we cannot distinguish nu-

6http://stel.ub.edu/semeval2010-coref/
7Using the official CoNLL scorer v8.01, including single-

tons as they are part of TüBa 8
8Using the official CoNLL scorer v8.01, not including

singletons as TüBa 9 does not contain them.
9CorZu performance: Don Tuggener,

personal communication. We did not use CorZu for our ex-
periments as the integration of prosodic information in a rule-
based system is non-trivial.

10We compute significance using the Wilcoxon signed rank
test (Siegel and Castellan, 1988) at the 0.01 level.

(a) No boundary information
Baseline 47.93
+ Feature applied to . . . . . . short . . . all

NPs only NPs
PitchAccentType 45.31 46.23
PitchAccentPresence 48.30 46.57

(b) Including boundary information
Baseline 47.93
+ Feature applied to . . . . . . short . . . all

NPs only NPs
NuclearType 47.17 46.79
(n1 vs. n2 vs. pn vs. none)
NuclearType 48.55 45.24
(n1/n2 vs. pn vs. none)
NuclearPresence (n2) 46.69 48.88
NuclearPresence (n1/n2) 48.76 47.47
NuclearBagOfAccents 46.09 48.45
NuclearFirst+Last 46.41 46.74

Table 3: CoNLL metric scores on DIRNDL for
different prosodic features (no singletons, signifi-
cant results in boldface)

clear from prenuclear accents. Features based on
GToBI(S) accent type did not result in any im-
provements.

Table 3b presents the performance of the fea-
tures that are phonologically more informed. Dis-
tinguishing between prenuclear and nuclear ac-
cents (NuclearType) is a feature that works best
for short NPs where there is only one accent, while
having a negative effect on all NPs. Nuclear pres-
ence, however, works well for both versions (not
distinguishing between n1 or n2 works for short
NPs while n2 accents only works best for all NPs).
This feature achieves the overall best performance
for both short NPs (48.76) and all NPs (48.88).

The NuclearBagOfAccents feature works quite
well, too: this is a feature designed for NPs that
have more than one accent and so it works best for
complex NPs. Combining the features did not lead
to any improvements.

Overall, it becomes clear that one has to be very
careful in terms of how the prosodic information is
used. In general, the presence of an accent works
better than the distinction between certain accent
types, and including intonation boundary informa-
tion also contributes to the system’s performance.
When including this information, we can observe
that when we look at the presence of a pitch accent
(the best-performing feature), the distinction be-
tween prenuclear and nuclear is an important one:
not distinguishing between prenuclear and nuclear
deteriorates results. The results also seem to sug-
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gest that simpler features (like the presence or ab-
sence of a certain type of pitch accent) work best
for simple (i.e. short) phrases. For longer mark-
ables this effect turns into the negative. This prob-
ably means that simple features cannot do justice
to the complex prosody of longer NPs, which gets
blurred. The obvious solution is to define more
complex features that approximate the rhythmic
pattern (or even the prosodic contour) found on
longer phrases, which however will require more
data and, ideally, automatic prosodic annotation.

5 Conclusion

We have tested a set of features that include dif-
ferent levels of prosodic information and investi-
gated which strategies can be successfully applied
for coreference resolution. Our results on the basis
of manual prosodic labelling show that including
prosody improves performance. While informa-
tion on pitch accent types does not seem benefi-
cial, the presence of an accent is a helpful feature
in a machine-learning setting. Including prosodic
boundaries and determining whether the accent is
the nuclear accent further increases results. We in-
terpret this as a promising result, which motivates
further research on the integration of coreference
resolution and spoken language.
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2015. Prosodische (De-)Kodierung des Informa-
tionsstatus im Deutschen. Zeitschrift für Sprachwis-
senschaft, 34(1):1–42.

Mary Beckman, Julia Hirschberg, and Stefanie
Shattuck-Hufnagel. 2005. The original ToBI
system and the evolution of the ToBI framework.
In Sun-Ah Jun, editor, Prosodic Typology – The
Phonology of Intonation and Phrasing, pages 9–54.
Oxford University Press.

Anders Björkelund and Jonas Kuhn. 2014. Learn-
ing structured perceptrons for coreference resolution
with latent antecedents and non-local features. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 47–57, Baltimore.

Anders Björkelund, Kerstin Eckart, Arndt Riester,
Nadja Schauffler, and Katrin Schweitzer. 2014. The
extended DIRNDL corpus as a resource for auto-
matic coreference and bridging resolution. In Pro-
ceedings of LREC, pages 3222–3228, Reykjavı́k.

Aoife Cahill and Arndt Riester. 2012. Automatically
Acquiring Fine-Grained Information Status Distinc-
tions. In Proceedings of the 13th Annual SIGdial
Meeting on Discourse and Dialog, pages 232–236,
Seoul.

Alan Cruttenden. 2006. The de-accenting of given
information: a cognitive universal? In Giuliano
Bernini and Marcia Schwartz, editors, Pragmatic
Organization of Discourse in the Languages of Eu-
rope, pages 311–355. De Gruyter, Berlin.

Kerstin Eckart, Arndt Riester, and Katrin Schweitzer.
2012. A Discourse Information Radio News
Database for Linguistic Analysis. In Sebas-
tian Nordhoff Christian Chiarcos and Sebastian
Hellmann, editors, Linked Data in Linguistics: Rep-
resenting and Connecting Language Data and Lan-
guage Metadata, pages 65–76. Springer.
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Abstract

Discourse parsing is the process of dis-
covering the latent relational structure of
a long form piece of text and remains a
significant open challenge. One of the
most difficult tasks in discourse parsing is
the classification of implicit discourse re-
lations. Most state-of-the-art systems do
not leverage the great volume of unlabeled
text available on the web–they rely instead
on human annotated training data. By in-
corporating a mixture of labeled and unla-
beled data, we are able to improve relation
classification accuracy, reduce the need for
annotated data, while still retaining the ca-
pacity to use labeled data to ensure that
specific desired relations are learned. We
achieve this using a latent variable model
that is trained in a reduced dimensionality
subspace using spectral methods. Our ap-
proach achieves an F1 score of 0.485 on
the implicit relation labeling task for the
Penn Discourse Treebank.

1 Introduction

Discourse parsing is a fundamental task in natural
language processing that entails the discovery of
the latent relational structure in a multi-sentence
piece of text. Unlike semantic and syntactic pars-
ing, which are used for single sentence pars-
ing, discourse parsing is used to discover inter-
sentential relations in longer pieces of text. With-
out discourse, parsing methods can only be used to
understand documents as sequences of unrelated
sentences.

Unfortunately, manual annotation of discourse
structure in text is costly and time consuming.
Multiple annotators are required for each relation
to estimate inter-annotator agreement. The Penn
Discourse Treebank (PDTB) (Prasad et al., 2008).

is one of the largest annotated discourse parsing
datasets, with 16,224 implicit relations. However,
this pales in comparison to unlabeled datasets that
can include millions of sentences of text. By aug-
menting a labeled dataset with unlabeled data, we
can use a bootstrapping framework to improve
predictive accuracy, and reduce the need for la-
beled data–which could make it much easier to
port discourse parsing algorithms to new domains.
On the other hand, a fully unsupervised parser may
not be desirable because in many applications spe-
cific discourse relations must be identified, which
would be difficult to achieve without the use of la-
beled examples.

There has recently been growing interest in a
breed of algorithms based on spectral decomposi-
tion, which are well suited to training with unla-
beled data. Spectral algorithms utilize matrix fac-
torization algorithms such as Singular Value De-
composition (SVD) and rank factorization to dis-
cover low-rank decompositions of matrices or ten-
sors of empirical moments. In many models, these
decompositions allow us to identify the subspace
spanned by a group of parameter vectors or the
actual parameter vectors themselves. For tasks
where they can be applied, spectral methods pro-
vide statistically consistent results that avoid lo-
cal maxima. Also, spectral algorithms tend to
be much faster—sometimes orders of magnitude
faster—than competing approaches, which makes
them ideal for tackling large datasets. These meth-
ods can be viewed as inferring something about
the latent structure of a domain—for example, in a
hidden Markov model, the number of latent states
and the sparsity pattern of the transition matrix are
forms of latent structure, and spectral methods can
recover both in the limit.

This paper presents a semi-supervised spectral
model for a sequential relation labeling task for
discourse parsing. Besides the theoretically desir-
able properties mentioned above, we also demon-
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strate the practical advantages of the model with
an empirical evaluation on the Penn Discourse
Treebank (PDTB) (Prasad et al., 2008) dataset,
which yields an F1 score of 0.485. This accuracy
shows a 7-9 percentage point improvement over
approaches that do not utilize unlabeled training
data.

2 Related Work

There has been quite a bit of work concerning
fully supervised relation classification with the
PDTB (Lin et al., 2014; Feng and Hirst, 2012;
Webber et al., 2012). Semi-supervised relation
classification is much less common however. One
recent example of an attempt to leverage unla-
beled data appears in (Hernault et al., 2011),
which showed that moderate classification accu-
racy can be achieved with very small labeled
datasets. However, this approach is not compet-
itive with fully supervised classifiers when more
training data is available. Recently there has
also been some work to use Conditional Random
Fields (CRFs) to represent the global properties of
a parse sequence (Joty et al., 2013; Feng and Hirst,
2014), though this work has focused on the RST-
DT corpus, rather than the PDTB.

In addition to requiring a fully supervised train-
ing set, most existing discourse parsers use non-
spectral optimization that is often slow and inex-
act. However, there has been some work in other
parsing tasks to employ spectral methods in both
supervised and semi-supervised settings (Parikh et
al., 2014; Cohen et al., 2014). Spectral methods
have also been applied very successfully in many
non-linguistic domains (Hsu et al., 2012; Boots
and Gordon, 2010; Fisher et al., 2014).

3 Problem Definition and Dataset

This section defines the discourse parsing prob-
lem and discusses the characteristics of the PDTB.
The PDTB consists of annotated articles from the
Wall Street Journal and is used in our empiri-
cal evaluations. This is combined with the New
York Times Annotated Corpus (Sandhaus, 2008),
which includes 1.8 million New York Times arti-
cles printed between 1987 and 2007.

Discourse parsing can be reduced to three sepa-
rate tasks. First, the text must be decomposed into
elementary discourse units (EDUs), which may or
may not coincide with sentence boundaries. The
EDUs are often independent clauses that may be

connected with conjunctions. After the text has
been partitioned into EDUs, the discourse struc-
ture must be identified. This requires us to iden-
tify all pairs of EDUs that will be connected with
some discourse relation. These relational links in-
duce the skeletal structure of the discourse parse
tree. Finally, each connection identified in the pre-
vious step must be labeled using a known set of
relations. Examples of these discourse relations
include concession, causal, and instantiation rela-
tions. In the PDTB, only adjacent discourse units
are connected with a discourse relation, so with
this dataset we are considering parse sequences
rather than parse trees.

In this work, we focus on the relation labeling
task, as fairly simple methods perform quite well
at the other two tasks (Webber et al., 2012). We
use the ground truth parse structures provided by
the PDTB dataset, so as to isolate the error intro-
duced by relation labeling in our results, but in
practice a greedy structure learning algorithm can
be used if the parse structures are not known a pri-
ori.

Some of the relations in the dataset are induced
by specific connective words in the text. For exam-
ple, a contrast relation may be explicitly revealed
by the conjunction but. Simple classifiers using
only the text of the discourse connective with POS
tags can find explicit relations with high accu-
racy (Lin et al., 2014). The following sentence
shows an example of a more difficult implicit re-
lation. In this sentence, two EDUs are connected
with an explanatory relation, shown in bold, al-
though the connective word does not occur in the
text.

“But a few funds have taken other defen-
sive steps. Some have raised their cash
positions to record levels. [BECAUSE]
High cash positions help buffer a fund
when the market falls.”

We focus on the more difficult implicit relations
that are not induced by coordinating connectives
in the text. The implicit relations have been shown
to require more sophisticated feature sets includ-
ing syntactic and linguistic information (Lin et al.,
2009). The PDTB dataset includes 16,053 exam-
ples of implicit relations.

A full list of the PDTB relations is available
in (Prasad et al., 2008). The relations are orga-
nized hierarchically into top level, types, and sub-
types. Our experiments focus on learning only up
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This hasn't been Kellogg Co.'s year

The oat-bran craze has cost the world's largest 
cereal maker market share, and!

the company's president quit suddenly.

edu2

r12!

(Contingency.Cause.Reason)
h12

edu1

Figure 1: An example of the latent variable dis-
course parsing model taken from the Penn Dis-
course Treebank Dataset. The relation here is an
example of a cause attribution relation.

to level 2, as the level 3 (sub-type) relations are
too specific and show only 80% inter-annotator
agreement. There are 16 level 2 relations in the
PDTB, but the 5 least common relations only ap-
pear a handful of times in the dataset and are omit-
ted from our tests, yielding 11 possible classes.

4 Approach

We incorporate unlabeled data into our spectral
discourse parsing model using a bootstrapping
framework. The model is trained over several iter-
ations, and the most useful unlabeled sequences
are added as labeled training data after each it-
eration. Our method also utilizes Markovian la-
tent states to compactly capture global informa-
tion about a parse sequence, with one latent vari-
able for each relation in the discourse parsing se-
quence. Most discourse parsing frameworks will
label relations independently of the rest of the ac-
companying parse sequence, but this model allows
for information about the global structure of the
discourse parse to be used when labeling a rela-
tion. A graphical representation of one link in the
parsing model is shown in Figure 1.

Specifically, each potential relation rij between
elementary discourse units ei and ej is accompa-
nied by a corresponding latent variable as hij . Ac-
cording to the model assumptions, the following
equality holds:

P (rij = r|r1,2, r2,3...rn+1,n) = P (rij = r|hij)

To maintain notational consistency with other
latent variable models, we will denote these re-
lation variables as x1...xn, keeping in mind that

there is one possible relation for each adjacent pair
of elementary discourse units.

For the Penn Discourse Treebank Dataset, the
discourse parses behave like sequence of random
variables representing the relations, which allows
us to use an HMM-like latent variable model based
on the framework presented in (Hsu et al., 2012).
If the discourse parses were instead trees, such as
those seen in Rhetorical Structure Theory (RST)
datasets, we can modify the standard model to in-
clude separate parameters for left and right chil-
dren, as demonstrated in (Dhillon et al., 2012).

4.1 Spectral Learning
This section briefly describes the process of learn-
ing a spectral HMM. Much more detail about the
process is available in (Hsu et al., 2012). Learn-
ing in this model will occur in a subspace of di-
mensionality m, but system dynamics will be the
same if m is not less than the rank of the obser-
vation matrix. If our original feature space has
dimensionality n, we define a transformation ma-
trix U ∈ Rn×m, which can be computed using
Singular Value Decomposition. Given the matrix
U , coupled with the empirical unigram (P1), bi-
gram (P2,1), and trigram matrices (P3,x,1), we are
able to estimate the subspace initial state distribu-
tion (π̂U ) and observable operator (ÂU ) using the
following equalities (wherein the Moore-Penrose
pseudo-inverse of matrix X is denoted by X+):

π̂U = UTP1

ÂU = UTP3,x,1(UTP2,1)+ ∀x
For our original feature space, we use the

rich linguistic discourse parsing features defined
in (Feng and Hirst, 2014), which includes syn-
tactic and linguistic features taken from depen-
dency parsing, POS tagging, and semantic simi-
larity measures. We augment this feature space
with a vector space representation of semantics. A
term-document co-occurrence matrix is computed
using all of Wikipedia and Latent Dirichlet Anal-
ysis was performed using this matrix. The top 200
concepts from the vector space representation for
each pair of EDUs in the dataset are included in
the feature space, with a concept regularization pa-
rameter of 0.01.

4.2 Semi-Supervised Training
To begin semi-supervised training, we perform
a syntactic parse of the unlabeled data and ex-
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tract EDU segments using the method described in
(Feng and Hirst, 2014). The model is then trained
using the labeled dataset, and the unlabeled re-
lations are predicted using the Viterbi algorithm.
The most informative sequences in the unlabeled
training set are added to the labeled training set as
labeled examples. To measure how informative a
sequence of relations is, we use density-weighted
certainty sampling (DCS). Specifically for a se-
quence of relations r1...rn taken from a document,
d, we use the following formula:

DCS(d) =
1
n

n∑
i=1

p̂(ri)
H(ri)

In this equation, H(ri) represented the entropy of
the distribution of label predictions for the rela-
tion ri generated by the current spectral model,
which is a measure of the model’s uncertainty for
the label of the given relation. Density is de-
noted p̂(ri), and this quantity measures the extent
to which the text corresponding to this relation
is representative of the labeled corpus. To com-
pute this measure, we create a Kernel Density Es-
timate (KDE) over a 100 dimensional LDA vector
space representation of all EDU’s in the labeled
corpus. We then compute the density of the KDE
for the text associated with relation ri, which gives
us p̂(ri). All sequences of relations in the unla-
beled dataset are ranked according to their aver-
age density-weighted certainty score, and all se-
quences scoring above a parameter ψ are added
to the training set. The model is then retrained,
the unlabeled data re-scored, and the process is
repeated for several iterations. In iteration i, the
labeled data in the training set is weighted wl

i,
and the unlabeled data is weighted wu

i , with the
unlabeled data receiving higher weight in subse-
quent iterations. The KDE kernel bandwidth and
the parameters ψ, wl

i, w
u
i , and the number of hid-

den states are chosen in experiments using 10-fold
cross validation on the labeled training set, cou-
pled with a subset of the unlabeled data.

5 Results

Figure 2 shows the F1 scores of the model using
various sizes of labeled training sets. In all cases,
the entirety of the unlabeled data is made avail-
able, and 7 rounds of bootstrapping is conducted.
Sections 2-22 of the PDTB are used for training,
with section 23 being withheld for testing, as rec-
ommended by the dataset guidelines (Prasad et al.,
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Figure 2: Empirical results for labeling of implicit
relations.

2008). The results are compared against those re-
ported in (Lin et al., 2014), as well as a simple
baseline classifier that labels all relations with the
most common class, EntRel. Compared to the
semi-supervised method described in (Hernault et
al., 2011), we show significant gains in accuracy
at various sizes of dataset, although the unlabeled
dataset used in our experiments is much larger.

When the spectral HMM is trained using only
the labeled dataset, with no unlabeled data, it pro-
duces an F1 score of 41.1%, which is comparable
to the results reported in (Lin et al., 2014). By
comparison, the semi-supervised classifier is able
to obtain similar accuracy when using approxi-
mately 50% of the labeled training data. When
given access to the full labeled dataset, we see
an improvement in the F1 score of 7-9 percent-
age points. Recent work has shown promising re-
sults using CRFs for discourse parsing (Joty et al.,
2013; Feng and Hirst, 2014), but the results re-
ported in this work were taken from the RST-DT
corpus and are not directly comparable. However,
supervised CRFs and HMMs show similar accu-
racy in other language tasks (Ponomareva et al.,
2007; Awasthi et al., 2006).

6 Conclusions

In this work, we have shown that we are able
to outperform fully-supervised relation classifiers
by augmenting the training data with unlabeled
text. The spectral optimization used in this ap-
proach makes computation tractable even when
using over one million documents. In future work,
we would like to further improve the performance
of this method when very small labeled training
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sets are available, which would allow discourse
analysis to be applied in many new and interest-
ing domains.
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Abstract

A wide array of natural dialogue dis-
course can be found on the internet.
Previous attempts to automatically de-
termine disagreement between interlocu-
tors in such dialogue have mostly re-
lied on n-gram and grammatical depen-
dency features taken from respondent text.
Agreement-disagreement classifiers built
upon these baseline features tend to do
poorly, yet have proven difficult to im-
prove upon. Using the Internet Argument
Corpus, which comprises quote and re-
sponse post pairs taken from an online de-
bate forum with human-annotated agree-
ment scoring, we introduce semantic en-
vironment features derived by comparing
quote and response sentences which align
well. We show that this method improves
classifier accuracy relative to the baseline
method namely in the retrieval of disagree-
ing pairs, which improves from 69% to
77%.

1 Introduction

To achieve robust text understanding, natural lan-
guage processing systems need to automatically
extract information that is expressed indirectly.
Here we focus on identifying agreement and dis-
agreement in online debate posts. Previous work
on this task has used very shallow linguistic anal-
ysis: features are surface-level ones, such as n-
grams, post initial unigrams, bigrams and tri-
grams (which aim at learning the discourse func-
tions of discourse markers, e.g., well, really, you
know), repeated sequential use of punctuation
signs (e.g., !!, ?!). When automatically detecting
(dis)agreement, these features fall short, reaching
around 65% accuracy on a balanced dataset (Ab-
bott et al., 2011; Misra and Walker, 2013). Adding

extra-linguistic features, such as the structure of
the post threads and stance of the post’s author on
other subjects, boosts performance to 75% (Hasan
and Ng, 2013). In this work, we leverage richer
linguistic models to increase performance.

Agreement may be explicitly marked. In ex-
ample (1) in Table 2, the response-initial bigram
I agree is a strong cue of agreement that surface
features can learn, but there are more complex ex-
amples that surface features cannot capture. In ex-
ample (2), the response-initial word Yes is not indi-
cating agreement, despite being in general a good
cue for it. Instead it is necessary to capture the po-
larity mismatch between the first sentence in the
quote and the first sentence in the response (God
doesn’t take away sinful desires vs. Yes, God does
take away sinful desires) to infer that the response
disagrees with the quote. There may also be mis-
matches of modality, as demonstrated in the third
example (saw vs. may have believed). Here we
also see an example of an explicit agreement word
which is negated (that does not make it true) in a
way that most surface features fail to capture.

Some discourse-level parsing (Joty et al., 2013)
has been utilized in agreement detection, but most
previous work does not take discourse structure
into account: the response post is simply taken as
a whole as the reply to the quote. To overcome
this issue, we take advantage of the considerable
progress in monolingual alignment (e.g., Thadani
et al. 2012, Yao et al. 2013, Sultan et al. 2014)
which allows us to align sentences of the quote to
sentences in the response. This approach is rem-
iniscent of the one used for Recognizing Textual
Entailment (RTE, Dagan et al. 2006, Giampiccolo
et al. 2007) where, given two short passages, sys-
tems identify whether the second passage follows
from the first one according to the intuitions of an
intelligent human reader. One common approach
used in RTE was to align the two passages, and
reason based on the alignment obtained.
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Quote Response Score

1 CCW LAWS ARE FOR TRACKING GUN OWN-
ERS WHO EXERCISE THIER RIGHTS!!!

I agree. What is the point? Felons with firearms do
not bother with CCW licenses.

2.5

2 God doesn’t take away sinful desires. You’ve never
had sinful desires? I know I have. People assume
that when you become a Christian some manner of
shield gets put up around you and shields you from
“worldly” things. I believe that’s wrong, I actually
believe that life as a Christian is very hard. We often
pawn it off as the end of our troubles to “convert”
people. I don’t believe it.

Yes, God does take away sinful desires. (If you ask
Him.) I’m not saying that it doesn’t take any work
on your part, though. When you have a sinful de-
sire, you allow a thought to become more than just
a stray idea. You foster and encourage the thought
and it becomes a desire. God takes away the de-
sires, helps you deal with your “stray thoughts”,
and shows you how to keep them from becoming
desires.

-1.7

3 Your idea about science is a philosophy of science.
[...] The Apostles saw Jesus walk on water. There
was no ‘measure’ by your version of science, but
what they saw remains true.

Many people once believed that the earth is flat:
perhaps some still do. [...] The apostles may have
believed that Jesus walked on water: that does NOT
make it true.

-2

4 does life end here? end where? ambiguously phrased. if “here” =
“death”, then yes! by definition, yes!

-1.4

5 Is even ‘channel’ sufficiently ateleological a verb? Yes. It describes an action without ascribing its
form to its end result, outcome, whatever but strictly
to a cause’s force’s in action. [...] But since it is un-
derstood that mechanical forces can also ‘channel’,
unintentional, out of simple mechanics, the word
channel cannot be called teleological. In the same
way, ‘sorting’ can be considered non-teleological,
hence mechanical, and thus suited to your glossary,
because things can be sorted by mechanical forces
alone.

2.8

Table 1: QR pairs from the Internet Argument Corpus.

Here, similarly, once we have identified sen-
tences in the response which align well with sen-
tences in the quote, it becomes easier to extract
deep semantic features such as polarity and modal-
ity mismatch between sentences as well as em-
beddings under modality, negation, or attitude
verbs. For instance, in example (2) in Table 1, the
first sentence in the quote gets aligned with high
probability to the first sentence in the response,
which enables us to identify the polarity mismatch
(doesn’t vs. does). In example (3), the italicized
sentences are the most well-aligned, enabling us to
identify that the response’s author embeds under
modality the event of Jesus walking on water and
thus does not take it as a fact, whereas the quote’s
author does take it as a fact.

Our experiments demonstrate that our linguis-
tic model based on alignment significantly out-
performs a baseline bag-of-words model in the
recall of disagreeing quote-response (QR) pairs.
Such linguistic models will transfer more easily to
any debate dialogue, independent of the structural
information of post threads and author’s stance
which might not always be recoverable.

Full Data Set Balanced Training Set

Disagree 5741 779
Neutral 3125 0
Agree 1113 779

Total 9980 1158

Table 2: Category counts in the training set.

2 Data

We used the Internet Argument Corpus (IAC),
a corpus of quote-response pairs annotated for
agreement via Mechanical Turk (Walker et al.,
2012). Agreement scores span from -5 (strong dis-
agreement) and +5 (strong agreement). The distri-
bution is shown in Figure 2. Because the original
data skews toward disagreement, following Abbott
et al. (2011), we created a balanced set, discarding
“neutral” pairs between -1 and +1. We split the
data into training, development and test sets. 1 Ta-
ble 2 shows the category counts in the training set.

1We could not obtain the training-development-test
split from Abbott et al. (2011). Our split is avail-
able at www.ling.ohio-state.edu/˜mcdm/data/
2015/Balanced_IAC.zip.
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(b) Balanced training set.

Figure 1: Agreement score distribution of the
dataset, before and after balancing. -5 is high dis-
agreement, +5 is high agreement.

3 Features

In this section, we detail the features of our model.
We use the maximum entropy model as imple-
mented in the Stanford CoreNLP toolset (Man-
ning and Klein, 2003). Many of the features make
use of the typed dependencies from the CoreNLP
toolset (de Marneffe et al., 2006). For comparison,
the baseline features attempt to replicate Abbott et
al. (2011).

3.1 Baseline Features from Abbott et al. 2011
N-Grams. All unigrams, bigrams, and trigrams
were taken from each response.

Discourse Markers. In lieu of tracking dis-
course markers such as oh and so really, Abbott
et al. (2011) tracked response-initial unigrams, bi-
grams, and trigrams.

Typed Dependencies and MPQA. In addi-
tion to all dependencies from the response be-
ing used as features, dependencies were supple-
mented with MPQA sentiment values (Wilson et
al., 2005). A dependency like (agree,I) would
also yield the sentiment-dependency feature (pos-
itive,I), whereas (wrong, you) would also yield
(negative,you).

Punctuation. The presence of special punctu-
ation such as repeated exclamation points (!!),
question marks (??), and interrobang strings (?!)
were tracked as binary features.

3.2 Alignment+ Features

Our features utilize focal sentences: not only well-
aligned sentences from the quote and response, but
also the first sentence of the response in general.
Tracking certain features in initial and aligned sen-
tences proved more informative than doing the
same without discerning location.

Alignment scoring comes from running the Ja-
cana aligner (Yao et al., 2013) pairwise on every
sentence from each QR pair. Pairs of quote and
response sentences with alignment scores above a
threshold tuned on the development set are then
analyzed for feature extraction. The sentence pair
with the maximum alignment score for each post
pair is also analyzed regardless of its meeting the
threshold.

Post Length. Following Misra and Walker
(2013), we track various length features such as
word count, sentence count, and average sentence
length, including differentials of these measures
between quote and response. Short responses (rel-
ative to both word-wise and sentence-wise counts)
tend to correlate with agreement, while longer re-
sponses tend to correlate with disagreement.

Emoticons. Emoticons are a popular way of
communicating sentiment in internet text. Many
emoticons in the corpus are in forum-specific
code, such as emoticon rolleyes. We also detect a
wider array of common emoticons as regular ex-
pressions beginning with colons, semicolons, or
equals signs, such as :-D, ;), and =).

Speech Acts. To account for phenomena such as
commands (e.g., please read carefully, try again,
and define evil) and the rhetorical use of multi-
ple questions in a row, we use punctuation, depen-
dencies, and phrase-level analysis to automatically
detect and count interrogative and imperative sen-
tences. A phrase-structure tree headed by SQ or a
sentence-final question mark means a sentence is
considered interrogative; if a sentence’s root is la-
beled VB and has no subject relation, it is deemed
an imperative. The features in the classifier are
counts of the instances of interrogatives and im-
peratives in the response.
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Accuracy Agreement Disagreement
P R F1 P R F1

Baseline 71.85 70.64 74.77 72.65 73.21 68.92 71.00
Alignment+ 75.45 76.04 74.32 75.17 74.89 76.58 75.73

Table 3: Accuracy, precision (P), recall (R) and F1 scores for both categories (agreement and disagree-
ment) on the test set.

Personal Pronouns. The presence of first, sec-
ond, and third person pronouns in the response
are each tracked as binary features. The inclusion
of personal pronouns in a post tends to indicate a
more emotional or personal argument, especially
second person pronouns.

Explicit Truth Values. Rather than simply re-
lying on n-gram-based tracking of explicit state-
ments of agreement, we include as features polar
(positive or negative) and modal (modal or non-
modal) context of instances of the words agree,
disagree, true, false, right, and wrong found in
the response, parallel to the agreement and denial
tracking in Misra and Walker (2013). Polar con-
text is determined by the presence or absence of
negation modifiers (e.g., not, never) in the depen-
dencies; modal context is determined by the pres-
ence of modal auxiliaries (e.g., might, could) and
adverbs (e.g., possibly).

Sentiment Scoring. Expanding on the use of
MPQA sentiment values, we use the posi-
tive/negative/neutral and strong/weak classifica-
tions of the words in the MPQA lexicon to cal-
culate sentiment scores of the posts and focal sen-
tences (well-aligned sentences from the quote and
response as well as the first sentence of the re-
sponse). The scoring assigns a value to each
MPQA word in the quote or response: the posi-
tive/negative label of a word means a positive or
negative score and the strong/weak label deter-
mines the weight: whether the word is worth +/-2
or +/-1. The sum of these values is computed as
the sentiment score. A score is generated for both
the response and quote in their entireties as well as
for focal sentences.

Discourse Markers. Initial 1, 2 and 3-grams are
tracked relative to focal sentences. This picks up
on discourse markers (such as well and but) with-
out having to explicitly code for each marker we
want to track.
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Figure 2: ROC curves. The gray dotted line repre-
sents the baseline feature set, while the solid black
line represents the alignment+ feature set.

Punctuation. As in the baseline, the presence of
special punctuation like !! and ?! are used as bi-
nary features.

Factuality Comparison. Given aligned words
from well-aligned sentences in the quote and re-
sponse (e.g., God doesn’t take away sinful de-
sires and Yes, God does take away sinful desires),
we analyze the polarity, modality, and any sub-
sequent contradiction of both the quote and re-
sponse instances. As with the analysis of explicit
truth value words, polarity and modality are de-
termined according to the presence or absence of
negation and modal modifiers (auxiliaries and ad-
verbs) in the dependencies. Contradictions are
tracked as phrases marked with known contradic-
tory adverbs and conjunctions (e.g., however...,
but...). An aligned word pair is analyzed if it in-
volves content words, or if the words serve as the
root of their sentence’s dependency structure re-
gardless of part of speech. The features generated
indicate the part of speech of the word in the quote
and whether there is (1) a polarity match/clash, (2)
a modality match/clash, or (3) any contradiction
phrases immediately following the word or sen-
tence in the quote or response.
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4 Results and Discussion

Table 3 compares the results obtained with the
baseline features and the alignment+ features. The
alignment+ features lead to an overall improve-
ment, but a statistically significant improvement
(p < 0.05, McNemar’s test) is only achieved for
classifying disagreeing pairs. The baseline model
underclassifies for disagreement and overclassi-
fies for agreement, but the alignment+ model does
well on both. As most cases of high alignment do,
indeed, correspond with disagreement, these fea-
tures are better in picking up on disagreement in
general. The ROC curve in Figure 3 shows that
the alignment+ classifier consistently has a higher
sensitivity (true-positive) rate than the baseline.

Figure 4 shows for both feature sets (baseline
and alignment+) the correct (gray bar) and incor-
rect (black bar) classifications on the test set, by
agreement score. The agreement score is predic-
tive of the correctness of the system (confirmed
by a logistic regression predicting system accuracy
given strength of agreement score, p < 0.001): the
stronger the (dis)agreement score, the more accu-
rate the system is. The alignment+ features help
classify accurately the less strong (dis)agreements.

Examples (4) and (5) in Table 1 are incorrectly
classified by the baseline but correctly by the
alignment+ classifier. In (4), the strongest feature
in the baseline is the unigram yes, but the align-
ment+ features compare does life end here? to end
where?, and the fact that the aligned sentence in
the response is a question suggests disagreement.
Example (5) shows that superficial features like a
response-initial yes are not always enough, even
when the pair is indeed in agreement. Here the
alignment+ model aligns the italic sentences (Is
even ‘channel’ sufficiently ateleological a verb?
and [...]the word channel cannot be called teleo-
logical), finding them to be in agreement and thus
getting the correct classification.

5 Conclusion

The incorporation of alignment-based features
shows promise in improving agreement classifica-
tion. Further ablation testing is needed to deter-
mine the full extent to which alignment features
contribute, and not only better whole-post features
on their own. However, given that many pairs do
not have sentences which align at all, alignment
features cannot classify on their own without some
more basic features to fill in the gaps.
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(a) Baseline feature set classifications.
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(b) Alignment+ feature set classifications.

Figure 3: Correct and incorrect classifications on
the test set given the corpus agreement scores, for
both feature sets. The gray area represents correct
classifications, while the black area represents in-
correct classifications.

Following previous work, we focused on pairs
judged as being in strong (dis)agreement. How
do systems fare when uncertain cases are present
in the training data? This has not been investi-
gated. One aspect of language interpretation, how-
ever, is its inherent uncertainty. In future work,
we will use the full IAC corpus, and instead of
drawing a binary distinction between strong agree-
ments and disagreements, have a three-way classi-
fication where unclear instances are also catego-
rized.
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Abstract

Two recent approaches have achieved
state-of-the-art results in image caption-
ing. The first uses a pipelined process
where a set of candidate words is gen-
erated by a convolutional neural network
(CNN) trained on images, and then a max-
imum entropy (ME) language model is
used to arrange these words into a coherent
sentence. The second uses the penultimate
activation layer of the CNN as input to a
recurrent neural network (RNN) that then
generates the caption sequence. In this pa-
per, we compare the merits of these dif-
ferent language modeling approaches for
the first time by using the same state-of-
the-art CNN as input. We examine is-
sues in the different approaches, includ-
ing linguistic irregularities, caption repe-
tition, and data set overlap. By combining
key aspects of the ME and RNN methods,
we achieve a new record performance over
previously published results on the bench-
mark COCO dataset. However, the gains
we see in BLEU do not translate to human
judgments.

1 Introduction

Recent progress in automatic image captioning
has shown that an image-conditioned language
model can be very effective at generating captions.
Two leading approaches have been explored for
this task. The first decomposes the problem into
an initial step that uses a convolutional neural net-
work to predict a bag of words that are likely to
be present in a caption; then in a second step, a
maximum entropy language model (ME LM) is
used to generate a sentence that covers a mini-
mum number of the detected words (Fang et al.,
2015). The second approach uses the activations

from final hidden layer of an object detection CNN
as the input to a recurrent neural network lan-
guage model (RNN LM). This is referred to as a
Multimodal Recurrent Neural Network (MRNN)
(Karpathy and Fei-Fei, 2015; Mao et al., 2015;
Chen and Zitnick, 2015). Similar in spirit is the
the log-bilinear (LBL) LM of Kiros et al. (2014).

In this paper, we study the relative merits of
these approaches. By using an identical state-of-
the-art CNN as the input to RNN-based and ME-
based models, we are able to empirically com-
pare the strengths and weaknesses of the lan-
guage modeling components. We find that the
approach of directly generating the text with an
MRNN1 outperforms the ME LM when measured
by BLEU on the COCO dataset (Lin et al., 2014),2

but this recurrent model tends to reproduce cap-
tions in the training set. In fact, a simple k-nearest
neighbor approach, which is common in earlier re-
lated work (Farhadi et al., 2010; Mason and Char-
niak, 2014), performs similarly to the MRNN. In
contrast, the ME LM generates the most novel
captions, and does the best at captioning images
for which there is no close match in the training
data. With a Deep Multimodal Similarity Model
(DMSM) incorporated,3 the ME LM significantly
outperforms other methods according to human
judgments. In sum, the contributions of this pa-
per are as follows:

1. We compare the use of discrete detections
and continuous valued CNN activations as
the conditioning information for language
models trained to generate image captions.

2. We show that a simple k-nearest neighbor re-
trieval method performs at near state-of-the-
art for this task and dataset.

3. We demonstrate that a state-of-the-art
1In our case, a gated recurrent neural network (GRNN) is

used (Cho et al., 2014), similar to an LSTM.
2This is the largest image captioning dataset to date.
3As described by Fang et al. (2015).
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MRNN-based approach tends to reconstruct
previously seen captions; in contrast, the
two stage ME LM approach achieves similar
or better performance while generating
relatively novel captions.

4. We advance the state-of-the-art BLEU scores
on the COCO dataset.

5. We present human evaluation results on the
systems with the best performance as mea-
sured by automatic metrics.

6. We explore several issues with the statistical
models and the underlying COCO dataset, in-
cluding linguistic irregularities, caption repe-
tition, and data set overlap.

2 Models

All language models compared here are trained
using output from the same state-of-the-art CNN.
The CNN used is the 16-layer variant of VGGNet
(Simonyan and Zisserman, 2014) which was ini-
tially trained for the ILSVRC2014 classification
task (Russakovsky et al., 2015), and then fine-
tuned on the Microsoft COCO data set (Fang et
al., 2015; Lin et al., 2014).

2.1 Detector Conditioned Models

We study the effect of leveraging an explicit de-
tection step to find key objects/attributes in images
before generation, examining both an ME LM ap-
proach as reported in previous work (Fang et al.,
2015), and a novel LSTM approach introduced
here. Both use a CNN trained to output a bag of
words indicating the words that are likely to ap-
pear in a caption, and both use a beam search to
find a top-scoring sentence that contains a subset
of the words. This set of words is dynamically ad-
justed to remove words as they are mentioned.

We refer the reader to Fang et al. (2015) for a
full description of their ME LM approach, whose
500-best outputs we analyze here.4 We also in-
clude the output from their ME LM that leverages
scores from a Deep Multimodal Similarity Model
(DMSM) during n-best re-ranking. Briefly, the
DMSM is a non-generative neural network model
which projects both the image pixels and caption
text into a comparable vector space, and scores
their similarity.

In the LSTM approach, similar to the ME LM
approach, we maintain a set of likely wordsD that

4We will refer to this system as D-ME.

have not yet been mentioned in the caption un-
der construction. This set is initialized to all the
words predicted by the CNN above some thresh-
old α.5 The words already mentioned in the
sentence history h are then removed to produce
a set of conditioning words D \ {h}. We in-
corporate this information within the LSTM by
adding an additional input encoded to represent
the remaining visual attributes D \ {h} as a con-
tinuous valued auxiliary feature vector (Mikolov
and Zweig, 2012). This is encoded as f(sh−1 +∑

v∈D\{h} gv + Uqh,D), where sh−1 and gv are
respectively the continuous-space representations
for last word h−1 and detector v ∈ D \ {h}, U is
learned matrix for recurrent histories, and f(·) is
the sigmoid transformation.

2.2 Multimodal Recurrent Neural Network

In this section, we explore a model directly con-
ditioned on the CNN activations rather than a set
of word detections. Our implementation is very
similar to captioning models described in Karpa-
thy and Fei-Fei (2015), Vinyals et al. (2014), Mao
et al. (2015), and Donahue et al. (2014). This
joint vision-language RNN is referred to as a Mul-
timodal Recurrent Neural Network (MRNN).

In this model, we feed each image into our
CNN and retrieve the 4096-dimensional final hid-
den layer, denoted as fc7. The fc7 vector is
then fed into a hidden layer H to obtain a 500-
dimensional representation that serves as the ini-
tial hidden state to a gated recurrent neural net-
work (GRNN) (Cho et al., 2014). The GRNN
is trained jointly with H to produce the caption
one word at a time, conditioned on the previous
word and the previous recurrent state. For decod-
ing, we perform a beam search of size 10 to emit
tokens until an END token is produced. We use
a 500-dimensional GRNN hidden layer and 200-
dimensional word embeddings.

2.3 k-Nearest Neighbor Model

Both Donahue et al. (2015) and Karpathy and Fei-
Fei (2015) present a 1-nearest neighbor baseline.
As a first step, we replicated these results using the
cosine similarity of the fc7 layer between each
test set image t and training image r. We randomly
emit one caption from t’s most similar training im-
age as the caption of t. As reported in previous
results, performance is quite poor, with a BLEU

5In all experiments in this paper, α=0.5.
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Figure 1: Example of the set of candidate captions for an
image, the highest scoring m captions (green) and the con-
sensus caption (orange). This is a real example visualized in
two dimensions.

score of 11.2%.
However, we explore the idea that we may be

able to find an optimal k-nearest neighbor consen-
sus caption. We first select the k = 90 nearest
training images of a test image t as above. We de-
note the union of training captions in this set as
C = c1, ..., c5k.6 For each caption ci, we com-
pute the n-gram overlap F-score between ci and
each other caption in C. We define the consen-
sus caption c∗ to be caption with the highest mean
n-gram overlap with the other captions in C. We
have found it is better to only compute this average
among ci’s m = 125 most similar captions, rather
than all of C. The hyperparameters k and m were
obtained by a grid search on the validation set.

A visual example of the consensus caption is
given in Figure 1. Intuitively, we are choosing
a single caption that may describe many different
images that are similar to t, rather than a caption
that describes the single image that is most similar
to t. We believe that this is a reasonable approach
to take for a retrieval-based method for captioning,
as it helps ensure incorrect information is not men-
tioned. Further details on retrieval-based methods
are available in, e.g., (Ordonez et al., 2011; Ho-
dosh et al., 2013).

3 Experimental Results

3.1 The Microsoft COCO Dataset
We work with the Microsoft COCO dataset (Lin
et al., 2014), with 82,783 training images, and
the validation set split into 20,243 validation im-
ages and 20,244 testval images. Most images con-
tain multiple objects and significant contextual in-
formation, and each image comes with 5 human-

6Each training image has 5 captions.

LM PPLX BLEU METEOR
D-ME† 18.1 23.6 22.8

D-LSTM 14.3 22.4 22.6

MRNN 13.2 25.7 22.6

k-Nearest Neighbor - 26.0 22.5
1-Nearest Neighbor - 11.2 17.3

Table 1: Model performance on testval. †: From (Fang et al.,
2015).

D-ME+DMSM a plate with a sandwich and a cup of coffee
MRNN a close up of a plate of food
D-ME+DMSM+MRNN a plate of food and a cup of coffee
k-NN a cup of coffee on a plate with a spoon

D-ME+DMSM a black bear walking across a lush green forest
MRNN a couple of bears walking across a dirt road
D-ME+DMSM+MRNN a black bear walking through a wooded area
k-NN a black bear that is walking in the woods

D-ME+DMSM a gray and white cat sitting on top of it
MRNN a cat sitting in front of a mirror
D-ME+DMSM+MRNN a close up of a cat looking at the camera
k-NN a cat sitting on top of a wooden table

Table 2: Example generated captions.

annotated captions. The images create a challeng-
ing testbed for image captioning and are widely
used in recent automatic image captioning work.

3.2 Metrics

The quality of generated captions is measured au-
tomatically using BLEU (Papineni et al., 2002)
and METEOR (Denkowski and Lavie, 2014).
BLEU roughly measures the fraction of N -grams
(up to 4 grams) that are in common between a hy-
pothesis and one or more references, and penalizes
short hypotheses by a brevity penalty term.7 ME-
TEOR (Denkowski and Lavie, 2014) measures un-
igram precision and recall, extending exact word
matches to include similar words based on Word-
Net synonyms and stemmed tokens. We also re-
port the perplexity (PPLX) of studied detection-
conditioned LMs. The PPLX is in many ways
the natural measure of a statistical LM, but can be
loosely correlated with BLEU (Auli et al., 2013).

3.3 Model Comparison

In Table 1, we summarize the generation perfor-
mance of our different models. The discrete de-
tection based models are prefixed with “D”. Some
example generated results are show in Table 2.

We see that the detection-conditioned LSTM
LM produces much lower PPLX than the
detection-conditioned ME LM, but its BLEU
score is no better. The MRNN has the lowest
PPLX, and highest BLEU among all LMs stud-

7We use the length of the reference that is closest to the
length of the hypothesis to compute the brevity penalty.
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Re-Ranking Features BLEU METEOR
D-ME † 23.6 22.8
+ DMSM † 25.7 23.6
+ MRNN 26.8 23.3
+ DMSM + MRNN 27.3 23.6

Table 3: Model performance on testval after re-ranking.
†: previously reported and reconfirmed BLEU scores from
(Fang et al., 2015). +DMSM had resulted in the highest score
yet reported.

ied in our experiments. It significantly improves
BLEU by 2.1 absolutely over the D-ME LM base-
line. METEOR is similar across all three LM-
based methods.

Perhaps most surprisingly, the k-nearest neigh-
bor algorithm achieves a higher BLEU score than
all other models. However, as we will demonstrate
in Section 3.5, the generated captions perform sig-
nificantly better than the nearest neighbor captions
in terms of human quality judgements.

3.4 n-best Re-Ranking

In addition to comparing the ME-based and RNN-
based LMs independently, we explore whether
combining these models results in an additive im-
provement. To this end, we use the 500-best list
from the D-ME and add a score for each hypoth-
esis from the MRNN.8 We then re-rank the hy-
potheses using MERT (Och, 2003). As in previous
work (Fang et al., 2015), model weights were opti-
mized to maximize BLEU score on the validation
set. We further extend this combination approach
to the D-ME model with DMSM scores included
during re-ranking (Fang et al., 2015).

Results are show in Table 3. We find that com-
bining the D-ME, DMSM, and MRNN achieves a
1.6 BLEU improvement over the D-ME+DMSM.

3.5 Human Evaluation

Because automatic metrics do not always corre-
late with human judgments (Callison-Burch et al.,
2006; Hodosh et al., 2013), we also performed hu-
man evaluations using the same procedure as in
Fang et al. (2015). Here, human judges were pre-
sented with an image, a system generated caption,
and a human generated caption, and were asked
which caption was “better”.9 For each condition,
5 judgments were obtained for 1000 images from
the testval set.

8The MRNN does not produce a diverse n-best list.
9The captions were randomized and the users were not

informed which was which.

Results are shown in Table 4. The D-
ME+DMSM outperforms the MRNN by 5 per-
centage points for the “Better Or Equal to Hu-
man” judgment, despite both systems achieving
the same BLEU score. The k-Nearest Neighbor
system performs 1.4 percentage points worse than
the MRNN, despite achieving a slightly higher
BLEU score. Finally, the combined model does
not outperform the D-ME+DMSM in terms of hu-
man judgments despite a 1.6 BLEU improvement.

Although we cannot pinpoint the exact reason
for this mismatch between automated scores and
human evaluation, a more detailed analysis of the
difference between systems is performed in Sec-
tions 4 and 5.

Human Judgements
Better Better

Approach or Equal BLEU
D-ME+DMSM 7.8% 34.0% 25.7
MRNN 8.8% 29.0% 25.7
D-ME+DMSM+MRNN 5.7% 34.2% 27.3
k-Nearest Neighbor 5.5% 27.6% 26.0

Table 4: Results when comparing produced captions to those
written by humans, as judged by humans. These are the per-
cent of captions judged to be “better than” or “better than or
equal to” a caption written by a human.

4 Language Analysis

Examples of common mistakes we observe on the
testval set are shown in Table 5. The D-ME system
has difficulty with anaphora, particularly within
the phrase “on top of it”, as shown in examples
(1), (2), and (3). This is likely due to the fact that is
maintains a local context window. In contrast, the
MRNN approach tends to generate such anaphoric
relationships correctly.

However, the D-ME LM maintains an explicit
coverage state vector tracking which attributes
have already been emitted. The MRNN implicitly
maintains the full state using its recurrent layer,
which sometimes results in multiple emission mis-
takes, where the same attribute is emitted more
than once. This is particularly evident when coor-
dination (“and”) is present (examples (4) and (5)).

4.1 Repeated Captions

All of our models produce a large number of cap-
tions seen in the training and repeated for differ-
ent images in the test set, as shown in Table 6
(also observed by Vinyals et al. (2014) for their
LSTM-based model). There are at least two po-
tential causes for this repetition.
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D-ME+DMSM MRNN
1 a slice of pizza sitting on top of it a bed with a red blanket on top of it

2 a black and white bird perched on
top of it

a birthday cake with candles on top
of it

3 a little boy that is brushing his
teeth with a toothbrush in her
mouth

a little girl brushing her teeth with a
toothbrush

4 a large bed sitting in a bedroom a bedroom with a bed and a bed

5 a man wearing a bow tie a man wearing a tie and a tie

Table 5: Example errors in the two basic approaches.

System Unique Seen In
Captions Training

Human 99.4% 4.8%
D-ME+DMSM 47.0% 30.0%
MRNN 33.1% 60.3%
D-ME+DMSM+MRNN 28.5% 61.3%
k-Nearest Neighbor 36.6% 100%

Table 6: Percentage unique (Unique Captions) and novel
(Seen In Training) captions for testval images. For example,
28.5% unique means 5,776 unique strings were generated for
all 20,244 images.

First, the systems often produce generic cap-
tions such as “a close up of a plate of food”, which
may be applied to many publicly available im-
ages. This may suggest a deeper issue in the train-
ing and evaluation of our models, which warrants
more discussion in future work. Second, although
the COCO dataset and evaluation server10 has en-
couraged rapid progress in image captioning, there
may be a lack of diversity in the data. We also note
that although caption duplication is an issue in all
systems, it is a greater issue in the MRNN than the
D-ME+DMSM.

5 Image Diversity

The strong performance of the k-nearest neighbor
algorithm and the large number of repeated cap-
tions produced by the systems here suggest a lack
of diversity in the training and test data.11

We believe that one reason to work on image
captioning is to be able to caption compositionally
novel images, where the individual components of
the image may be seen in the training, but the en-
tire composition is often not.

In order to evaluate results for only compo-
sitionally novel images, we bin the test images
based on visual overlap with the training data.
For each test image, we compute the fc7 cosine
similarity with each training image, and the mean
value of the 50 closest images. We then compute
BLEU on the 20% least overlapping and 20% most

10http://mscoco.org/dataset/
11This is partially an artifact of the manner in which the

Microsoft COCO data set was constructed, since each image
was chosen to be in one of 80 pre-defined object categories.

Condition Train/Test Visual Overlap
BLEU

Whole 20% 20%
Set Least Most

D-ME+DMSM 25.7 20.9 29.9
MRNN 25.7 18.8 32.0
D-ME+DMSM+MRNN 27.3 21.7 32.0
k-Nearest Neighbor 26.0 18.4 33.2

Table 7: Performance for different portions of testval, based
on visual overlap with the training.

overlapping subsets.
Results are shown in Table 7. The D-

ME+DMSM outperforms the k-nearest neighbor
approach by 2.5 BLEU on the “20% Least” set,
even though performance on the whole set is com-
parable. Additionally, the D-ME+DMSM out-
performs the MRNN by 2.1 BLEU on the “20%
Least” set, but performs 2.1 BLEU worse on
the “20% Most” set. This is evidence that D-
ME+DMSM generalizes better on novel images
than the MRNN; this is further supported by the
relatively low percentage of captions it gener-
ates seen in the training data (Table 6) while still
achieving reasonable captioning performance. We
hypothesize that these are the main reasons for
the strong human evaluation results of the D-
ME+DMSM shown in Section 3.5.

6 Conclusion

We have shown that a gated RNN conditioned di-
rectly on CNN activations (an MRNN) achieves
better BLEU performance than an ME LM or
LSTM conditioned on a set of discrete activations;
and a similar BLEU performance to an ME LM
combined with a DMSM. However, the ME LM
+ DMSM method significantly outperforms the
MRNN in terms of human quality judgments. We
hypothesize that this is partially due to the lack of
novelty in the captions produced by the MRNN.
In fact, a k-nearest neighbor retrieval algorithm
introduced in this paper performs similarly to the
MRNN in terms of both automatic metrics and hu-
man judgements.

When we use the MRNN system alongside the
DMSM to provide additional scores in MERT re-
ranking of the n-best produced by the image-
conditioned ME LM, we advance by 1.6 BLEU
points on the best previously published results on
the COCO dataset. Unfortunately, this improve-
ment in BLEU does not translate to improved hu-
man quality judgments.
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Abstract

In this paper, we propose a novel query ex-
pansion approach for improving transfer-
based automatic image captioning. The
core idea of our method is to translate the
given visual query into a distributional se-
mantics based form, which is generated
by the average of the sentence vectors ex-
tracted from the captions of images visu-
ally similar to the input image. Using three
image captioning benchmark datasets, we
show that our approach provides more ac-
curate results compared to the state-of-the-
art data-driven methods in terms of both
automatic metrics and subjective evalua-
tion.

1 Introduction

Automatic image captioning is a fast growing area
of research which lies at the intersection of com-
puter vision and natural language processing and
refers to the problem of generating natural lan-
guage descriptions from images. In the literature,
there are a variety of image captioning models that
can be categorized into three main groups as sum-
marized below.

The first line of approaches attempts to gener-
ate novel captions directly from images (Farhadi
et al., 2010; Kulkarni et al., 2011; Mitchell et
al., 2012). Specifically, they borrow techniques
from computer vision such as object detectors and
scene/attribute classifiers, exploit their outputs to
extract the visual content of the input image and
then generate the caption through surface realiza-
tion. More recently, a particular set of generative
approaches have emerged over the last few years,
which depends on deep neural networks (Chen
and Zitnick., 2015; Karpathy and Fei-Fei, 2015;
Xu et al., 2015; Vinyals et al., 2015). In gen-
eral, these studies combine convolutional neural

networks (CNNs) with recurrent neural networks
(RNNs) to generate a description for a given im-
age.

The studies in the second group aim at learning
joint representations of images and captions (Ho-
dosh et al., 2013; Socher et al., 2014; Karpathy et
al., 2014). They employ certain machine learning
techniques to form a common embedding space
for the visual and textual data, and perform cross-
modal (image-sentence) retrieval in that interme-
diate space to accordingly score and rank the pool
of captions to find the most proper caption for a
given image.

The last group of works, on the other hand,
follows a data-driven approach and treats image
captioning as a caption transfer problem (Ordonez
et al., 2011; Kuznetsova et al., 2012; Patterson
et al., 2014; Mason and Charniak, 2014). For a
given image, these methods first search for visu-
ally similar images and then use the captions of the
retrieved images to provide a description, which
makes them much easier to implement compared
to the other two classes of approaches.

The success of these data-driven approaches de-
pends directly on the amount of data available and
the quality of the retrieval set. Clearly, the im-
age features and the corresponding similarity mea-
sures used in retrieval play a significant role here
but, as investigated in (Berg et al., 2012), what
makes this particularly difficult is that while de-
scribing an image humans do not explicitly men-
tion every detail. That is, some parts of an image
are more salient than the others. Hence, one also
needs to bridge the semantic gap between what is
there in the image and what people say when de-
scribing it.

As a step towards achieving this goal, in this pa-
per, we introduce a novel automatic query expan-
sion approach for image captioning to retrieve se-
mantically more relevant captions. As illustrated
in Fig. 1, we swap modalities at our query expan-
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Figure 1: A system overview of the proposed query expansion approach for image captioning.

sion step and synthesize a new query, based on
distributional representations (Baroni and Lenci,
2010; Turney and Pantel, 2010; Mikolov et al.,
2013; Pennington et al., 2014) of the captions of
the images visually similar to the input image.
Through comprehensive experiments over three
benchmark datasets, we show that our model im-
proves upon existing methods and produces cap-
tions more appropriate to the query image.

2 Related Work

As mentioned earlier, a number of studies pose im-
age captioning as a caption transfer problem by
relying on the assumption that visually similar im-
ages generally contain very similar captions. The
pioneering work in this category is the im2text
model by Ordonez et al. (2011), which suggests
a two-step retrieval process to transfer a caption to
a given query image. The first step, which pro-
vides a baseline for the follow-up caption transfer
approaches, is to find visually similar images in
terms of some global image features. In the second
step, according to the retrieved captions, specific
detectors and classifiers are applied to images to
construct a semantic representation, which is then
used to re-rank the associated captions.

Kuznetsova et al. (2012) proposed performing
multiple retrievals for each detected visual ele-
ment in the query image and then combining the
relevant parts of the retrieved captions to gener-
ate the output caption. Patterson et al. (2014) ex-
tended the baseline model by replacing global fea-
tures with automatically extracted scene attributes,
and showed the importance of scene information
in caption transfer. Mason and Charniak (2014)
formulated caption transfer as an extractive sum-
marization problem and proposed to perform the
re-ranking step by means of a word frequency-
based representations of captions. More recently,
Mitchell et al. (2015) proposed to select the cap-

tion that best describes the remaining descrip-
tions of the retrieved similar images wrt an n-gram
overlap-based sentence similarity measure.

In this paper, we take a new perspective to
data-driven image captioning by proposing a novel
query expansion step based on compositional dis-
tributed semantics to improve the results. Our
approach uses the weighted average of the dis-
tributed representations of retrieved captions to ex-
pand the original query in order to obtain captions
that are semantically more related to the visual
content of the input image.

3 Our Approach

In this section, we describe the steps of the pro-
posed method in more detail.

3.1 Retrieving Visually Similar Images

Representing Images. Data-driven approaches
such as ours rely heavily on the quality of the ini-
tial retrieval, which makes having a good visual
feature of utmost importance. In our study, we
use the recently proposed Caffe deep learning fea-
tures (Jia et al., 2014), trained on ImageNet, which
have been proven to be effective in many computer
vision problems. Specifically, we use the activa-
tions from the seventh hidden layer (fc7), resulting
in a 4096-dimensional feature vector.
Adaptive Neighborhood Selection. We create
our expanded query by using the distributed rep-
resentations of the captions associated with the
retrieved images, and thus, having no outliers is
also an important factor for the effectiveness of
the approach. For this, instead of using a fixed
neighborhood, we adopt an adaptive strategy to se-
lect the initial candidate set of image-caption pairs
{(Ii, ci)}.

For a query image Iq, we utilize a ratio test and
only consider the candidates that fall within a ra-
dius defined by the distance score of the query im-
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age to the nearest training image Iclosest, as

N (Iq) = {(Ii, ci) | dist(Iq, Ii) ≤ (1 + ε)dist(Iq, Iclosest),

Iclosest = arg min dist(Iq, Ii), Ii ∈ T } (1)

where dist denotes the Euclidean distance be-
tween two feature vectors,N represents the candi-
date set based on the adaptive neighborhood, T is
the training set, and ε is a positive scalar value1.

3.2 Query Expansion Based on Distributed
Representations

Representing Words and Captions. In this
study, we build our query expansion model on
the distributional models of semantics where the
meanings of words are represented with vectors
that characterize the set of contexts they occur in a
corpus. Existing approaches to distributional se-
mantics can be grouped into two, as count and
predict-based models (Baroni et al., 2014). In our
experiments, we tested our approach using two re-
cent models, namely word2vec (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014), and
found out that the predict-based model of Mikolov
et al. (2013) performs better in our case.

To move from word level to caption level,
we take the simple addition based compositional
model described in (Blacoe and Lapata, 2012) and
form the vector representation of a caption as the
sum of the vectors of its constituent words. Note
that here we only use the non-stop words in the
caption.
Query Expansion. For a query image Iq, we
first retrieve visually similar images from a large
dataset of captioned images. In our query expan-
sion step, we swap modalities and construct a new
query based on the distributed representations of
captions. In particular, we expand the original vi-
sual query with a new textual query based on the
weighted average of the vectors of the retrieved
captions as follows:

q =
1

NM

N∑
i=1

M∑
j=1

sim(Iq, Ii) · c j
i (2)

whereN andM respectively denote the total num-
ber of image-caption pairs in the candidate set N
and the number of reference captions associated
with each training image, and sim(Iq, Ii) refers to
the visual similarity score of the image Ii to the

1The adaptive neighborhood parameter ε was emprically
set to 0.15.

query image Iq2 which is used to give more im-
portance to the captions of images visually more
close to the query image.

Then, we re-rank the candidate captions by esti-
mating the cosine distance between the distributed
representation of the captions and the expanded
query vector q, and finally transfer the closest cap-
tion as the description of the input image.

4 Experimental Setup and Evaluation

In the following, we give the details about our ex-
perimental setup.
Corpus. We estimated the distributed represen-
tation of words based on the captions of the MS
COCO (Lin et al., 2014) dataset, containing 620K
captions. As a preprocessing step, all captions
in the corpus were lowercased, and stripped from
punctuation.

In the training of word vectors, we used 500 di-
mensional vectors obtained with both GloVe (Pen-
nington et al., 2014) and word2vec (Mikolov et al.,
2013) models. The minimum word count was set
to 5, and the window size was set to 10. Although
these two methods seem to produce comparable
results, we found out that word2vec gives better
results in our case, and thus we only report our re-
sults with word2vec model.
Datasets. In our experiments, we used the popular
Flickr8K (Hodosh et al., 2013), Flickr30K (Young
et al., 2014), MS COCO (Lin et al., 2014) datasets,
containing 8K, 30K and 123K images, respec-
tively. Each image in these datasets comes with
5 captions annotated by different people. For each
dataset, we utilized the corresponding validation
split to optimize the parameters of our method, and
used the test split for evaluation where we consid-
ered all the image-caption pairs in the training and
the validation splits as our knowledge base.

Although Flickr8K, and Flickr30K datasets
have been in use for a while, MS COCO dataset
is under active development and might be subject
to change. Here, we report our results with version
1.0 of MS COCO dataset where we used the train,
validation and test splits provided by (Karpathy et
al., 2014).

We compared our proposed approach against
the adapted baseline model (VC) of im2text (Or-
donez et al., 2011) which corresponds to using
the caption of the nearest visually similar im-

2We define sim(Iq, Ii) = 1− dist(Iq, Ii)/Z where Z is
a normalization constant.
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MC-KL a black and white dog is playing
or fighting with a brown dog in
grass

a man is sitting on a blue bench
with a blue blanket covering his
face

a man in a white shirt and sun-
glasses is holding hands with a
woman wearing a red shirt out-
side

one brown and black pigmented
bird sitting on a tree branch

MC-SB a dog looks behind itself a girl looks at a woman s face a woman and her two dogs are
walking down the street

a tree with many leaves around
it

VC a brown and white dog jump-
ing over a red yellow and white
pole

a father feeding his child on the
street

a girl is skipping across the road
in front of a white truck

a black bear climbing a tree in
forest area

OURS a brown and white dog jumps
over a dog hurdle

a man in a black shirt and his
little girl wearing orange are
sharing a treat

a girl jumps rope in a parking
lot

a bird standing on a tree branch
in a wooded area

HUMAN a brown and white sheltie leap-
ing over a rail

a man and a girl sit on the
ground and eat

a girl is in a parking lot jumping
rope

a painted sign of a blue bird in
a tree in the woods

Figure 2: Some example input images and the generated descriptions.

Flickr8K Flickr30K MS COCO

BLEU METEOR CIDEr BLEU METEOR CIDEr BLEU METEOR CIDEr
OURS 3.78 11.57 0.31 3.22 10.06 0.20 5.36 13.17 0.58
MC-KL 2.71 10.95 0.15 2.02 9.92 0.07 4.04 12.56 0.37
MC-SB 3.08 9.06 0.27 2.76 8.06 0.20 5.02 11.78 0.56
VC 2.79 8.91 0.19 2.33 7.53 0.14 3.71 10.07 0.35

HUMAN 7.59 17.72 2.67 6.52 15.70 2.53 7.42 16.73 2.70

Table 1: Comparison of the methods on the benchmark datasets based on automatic evaluation metrics.

age, and the word frequency-based approaches of
Mason and Charniak (2014) (MC-SB and MC-
KL). We also provide the human agreement results
(HUMAN) by comparing one groundtruth caption
against the rest.

For a fair comparison with the MC-SB and MC-
KL models (Mason and Charniak, 2014) and the
baseline approach VC, we used the same image
similarity metric and training splits in retrieving
visually similar images for all models. For hu-
man agreement, we had five groundtruth image
captions, thus we determine the human agreement
score by following a leave-one-out strategy. For
display purposes, we selected one description ran-
domly from the available five groundtruth captions
in the figures.
Automatic Evaluation. We evaluated our ap-
proach with a range of existing metrics, which
are thoroughly discussed in (Elliott and Keller,
2014; Vedantam et al., 2015). We used smoothed
BLEU (Papineni et al., 2002) for benchmarking
purposes. We also provided the scores of ME-
TEOR (Denkowski and Lavie, 2014) and the re-

cently proposed CIDEr metric (Vedantam et al.,
2015), which has been shown to correlate well
with the human judgments in (Elliott and Keller,
2014) and (Vedantam et al., 2015), respectively3.

Human Evaluation. We designed a subjective ex-
periment to measure how relevant the transferred
caption is to a given image using a setup similar
to those of (Kuznetsova et al., 2012; Mason and
Charniak, 2014)4. In this experiment, we provided
human annotators an image and a candidate de-
scription where it is rated according to a scale of
1 to 5 (5: perfect, 4: almost perfect, 3: 70-80%
good, 2: 50-70% good, 1: totally bad) for its rel-
evancy. We experimented on a randomly selected
set of 100 images from our test set and evaluated
our captions as well as those of the competing ap-
proaches.

3We collected METEOR and BLEU scores via MultE-
val (Clark et al., 2011) and for CIDEr scores we used the
authors’ publicly available code.

4We used CrowdFlower and at least 5 different human an-
notators for each question.
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Rate Variance
OURS 2.73 0.65
MC-SB 2.38 0.58
VC 2.27 0.66
MC-KL 2.03 0.62
HUMAN 4.84 0.26

Table 2: Human judgment scores on a scale of 1 to 5.

5 Results and Discussion

In Figure 2, we present sample results obtained
with our framework, MC-SB, MC-KL and VC
models along with the groundtruth caption. We
provide the quantitative results based on automatic
evaluation measures and human judgment scores
in Table 1 and Table 2, respectively.

Our findings indicate that our query expansion
approach which is based on distributed representa-
tions of captions gives results better than those of
VC, MC-SB and MC-KL models. Although our
method makes a modest improvement compared
to the human scores we believe that there is still a
big gap between the human baseline, which align
well with the recently held MS COCO 2015 Cap-
tioning Challenge results.

One limitation in this work is the Out-of-
Vocabulary (OOV) words, which is around 1% on
average for the benchmark datasets. We omit them
in our calculations, since there is no practical way
to map word vectors for the OOV words, as they
are not included in the training of the word em-
beddings. Another limitation is that this approach
currently does not incorporate the syntactic struc-
tures in captions, therefore the position of a word
in a caption does not make any difference in the
representation, i.e. “a man with a hat is holding a
dog” and “a man is holding a dog with a hat” are
represented with the same vector. This limitation
is illustrated in Fig. 3, where the closest caption
from retrieval set contains similar scene elements
but does not depict the scene well.

6 Conclusion

In this paper, we present a novel query expansion
approach for image captioning, in which we uti-
lize a distributional model of meaning for sen-
tences. Extensive experimental results on three
well-established benchmark datasets have demon-
strated that our approach outperforms the state-of-
the art data-driven approaches. Our future plans
focus on incorporating other cues in images, and

a man wearing a santa hat hold-
ing a dog posing for a picture

a boy is holding a dog that is
wearing a hat

Figure 3: Limitation. A query image on the left and its
actual caption, a proposed caption on the right along with its
actual image.

considering the syntactic structures in image de-
scriptions.
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Abstract

We propose IMAGINET, a model of learn-
ing visually grounded representations of
language from coupled textual and visual
input. The model consists of two Gated
Recurrent Unit networks with shared word
embeddings, and uses a multi-task objec-
tive by receiving a textual description of
a scene and trying to concurrently predict
its visual representation and the next word
in the sentence. Mimicking an important
aspect of human language learning, it ac-
quires meaning representations for indi-
vidual words from descriptions of visual
scenes. Moreover, it learns to effectively
use sequential structure in semantic inter-
pretation of multi-word phrases.

1 Introduction

Vision is the most important sense for humans
and visual sensory input plays an important role
in language acquisition by grounding meanings of
words and phrases in perception. Similarly, in
practical applications processing multimodal data
where text is accompanied by images or videos is
increasingly important. In this paper we propose
a novel model of learning visually-grounded rep-
resentations of language from paired textual and
visual input. The model learns language through
comprehension and production, by receiving a tex-
tual description of a scene and trying to “imagine”
a visual representation of it, while predicting the
next word at the same time.

The full model, which we dub IMAGINET, con-
sists of two Gated Recurrent Unit (GRU) networks
coupled via shared word embeddings. IMAGINET

uses a multi-task Caruana (1997) objective: both
networks read the sentence word-by-word in par-
allel; one of them predicts the feature represen-
tation of the image depicting the described scene

after reading the whole sentence, while the other
one predicts the next word at each position in the
word sequence. The importance of the visual and
textual objectives can be traded off, and either of
them can be switched off entirely, enabling us to
investigate the impact of visual vs textual infor-
mation on the learned language representations.

Our approach to modeling human language
learning has connections to recent models of im-
age captioning (see Section 2). Unlike in many of
these models, in IMAGINET the image is the target
to predict rather then the input, and the model can
build a visually-grounded representation of a sen-
tence independently of an image. We can directly
compare the performance of IMAGINET against a
simple multivariate linear regression model with
bag-of-words features and thus quantify the con-
tribution of the added expressive power of a recur-
rent neural network.

We evaluate our model’s knowledge of word
meaning and sentence structure through simulat-
ing human judgments of word similarity, retriev-
ing images corresponding to single words as well
as full sentences, and retrieving paraphrases of im-
age captions. In all these tasks the model outper-
forms the baseline; the model significantly corre-
lates with human ratings of word similarity, and
predicts appropriate visual interpretations of sin-
gle and multi-word phrases. The acquired knowl-
edge of sentence structure boosts the model’s per-
formance in both image and caption retrieval.

2 Related work

Several computational models have been proposed
to study early language acquisition. The acqui-
sition of word meaning has been mainly mod-
eled using connectionist networks that learn to
associate word forms with semantic or percep-
tual features (e.g., Li et al., 2004; Coventry et al.,
2005; Regier, 2005), and rule-based or proba-
bilistic implementations which use statistical reg-
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ularities observed in the input to detect associa-
tions between linguistic labels and visual features
or concepts (e.g., Siskind, 1996; Yu, 2008; Fazly
et al., 2010). These models either use toy lan-
guages as input (e.g., Siskind, 1996), or child-
directed utterances from the CHILDES database
(MacWhinney, 2014) paired with artificially gen-
erated semantic information. Some models have
investigated the acquisition of terminology for vi-
sual concepts from simple videos (Fleischman
and Roy, 2005; Skocaj et al., 2011). Lazaridou
et al. (2015) adapt the skip-gram word-embedding
model (Mikolov et al., 2013) for learning word
representations via a multi-task objective similar
to ours, learning from a dataset where some words
are individually aligned with corresponding im-
ages. All these models ignore sentence structure
and treat inputs as bags of words.

A few models have looked at the concurrent ac-
quisition of words and some aspect of sentence
structure, such as lexical categories (Alishahi and
Chrupała, 2012) or syntactic properties (Howell
et al., 2005; Kwiatkowski et al., 2012), from utter-
ances paired with an artificially generated repre-
sentation of their meaning. To our knowledge, no
existing model has been proposed for concurrent
learning of grounded word meanings and sentence
structure from large scale data and realistic visual
input.

Recently, the engineering task of generating
captions for images has received a lot of atten-
tion (Karpathy and Fei-Fei, 2014; Mao et al.,
2014; Kiros et al., 2014; Donahue et al., 2014;
Vinyals et al., 2014; Venugopalan et al., 2014;
Chen and Zitnick, 2014; Fang et al., 2014). From
the point of view of modeling, the research most
relevant to our interests is that of Chen and Zitnick
(2014). They develop a model based on a context-
dependent recurrent neural network (Mikolov and
Zweig, 2012) which simultaneously processes tex-
tual and visual input and updates two parallel hid-
den states. Unlike theirs, our model receives the
visual target only at the end of the sentence and is
thus encouraged to store in the final hidden state
of the visual pathway all aspects of the sentence
needed to predict the image features successfully.
Our setup is more suitable for the goal of learning
representations of complete sentences.

3 Models

IMAGINET consists of two parallel recurrent path-

Figure 1: Structure of IMAGINET

ways coupled via shared word embeddings. Both
pathways are composed of Gated Recurrent Units
(GRU) first introduced by Cho et al. (2014) and
Chung et al. (2014). GRUs are related to the
Long Short-Term Memory units (Hochreiter and
Schmidhuber, 1997), but do not employ a sepa-
rate memory cell. In a GRU, activation at time t is
the linear combination of previous activation, and
candidate activation:

ht = (1− zt)� ht−1 + zt � h̃t (1)

where � is elementwise multiplication. The up-
date gate determines how much the activation is
updated:

zt = σs(Wzxt + Uzht−1) (2)

The candidate activation is computed as:

h̃t = σ(Wxt + U(rt � ht−1)) (3)

The reset gate is defined as:

rt = σs(Wrxt + Urht−1) (4)

Our gated recurrent units use steep sigmoids for
gate activations:

σs(z) =
1

1 + exp(−3.75z)

and rectified linear units clipped between 0 and 5
for the unit activations:

σ(z) = clip(0.5(z + abs(z)), 0, 5)

Figure 1 illustrates the structure of the network.
The word embeddings is a matrix of learned pa-
rameters We with each column corresponding to a
vector for a particular word. The input word sym-
bol St of sentence S at each step t indexes into the
embeddings matrix and the vector xt forms input
to both GRU networks:

xt = We[:, St] (5)
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This input is mapped into two parallel hidden
states, hV

t along the visual pathway, and hT
t along

the textual pathway:

hV
t = GRUV (hV

t−1,xt) (6)

hT
t = GRUT (hT

t−1,xt) (7)

The final hidden state along the visual pathway hV
τ

is then mapped to the predicted target image rep-
resentation î by the fully connected layer with pa-
rameters V and the clipped rectifier activation:

î = σ(VhV
τ ) (8)

Each hidden state along the textual pathway hT
t is

used to predict the next symbol in the sentence S
via a softmax layer with parameters L:

p(St+1|S1:t) = softmax(LhT
t ) (9)

The loss function whose gradient is backpropa-
gated through time to the GRUs and the embed-
dings is a composite objective with terms penaliz-
ing error on the visual and the textual targets si-
multaneously:

L(θ) = αLT (θ) + (1− α)LV (θ) (10)

where θ is the set of all IMAGINET parameters. LT

is the cross entropy function:

LT (θ) = −1
τ

τ�
t=1

log p(St|S1:t) (11)

while LV is the mean squared error:

LV (θ) =
1
K

K�
k=1

(̂ik − ik)2 (12)

By setting α to 0 we can switch the whole textual
pathway off and obtain the VISUAL model vari-
ant. Analogously, setting α to 1 gives the TEX-
TUAL model. Intermediate values of α (in the ex-
periments below we use 0.1) give the full MUL-
TITASK version. Finally, as baseline for some of
the tasks we use a simple linear regression model
LINREG with a bag-of-words representation of the
sentence:

î = Ax + b (13)

where î is the vector of the predicted image fea-
tures, x is the vector of word counts for the in-
put sentence and (A, b) the parameters of the
linear model estimated via L2-penalized sum-of-
squared-errors loss.

SimLex MEN 3K
VISUAL 0.32 0.57
MULTITASK 0.39 0.63
TEXTUAL 0.31 0.53
LINREG 0.18 0.23

Table 1: Word similarity correlations with human
judgments measured by Spearman’s ρ (all correla-
tions are significant at level p < 0.01).

4 Experiments

Settings The model was implemented in Theano
(Bastien et al., 2012; Bergstra et al., 2010) and op-
timized by Adam (Kingma and Ba, 2014).1 The
fixed 4096-dimensional target image representa-
tion come from the pre-softmax layer of the 16-
layer CNN (Simonyan and Zisserman, 2014). We
used 1024 dimensions for the embeddings and for
the hidden states of each of the GRU networks. We
ran 8 iterations of training, and we report either
full learning curves, or the results for each model
after iteration 7 (where they performed best for the
image retrieval task). For training we use the stan-
dard MS-COCO training data. For validation and
test, we take a sample of 5000 images each from
the validation data.

4.1 Word representations
We assess the quality of the learned embeddings
for single words via two tasks: (i) we measure
similarity between embeddings of word pairs and
compare them to elicited human ratings; (ii) we
examine how well the model learns visual repre-
sentations of words by projecting word embed-
dings into the visual space, and retrieving images
of single concepts from ImageNet.

Word similarity judgment For similarity judg-
ment correlations, we selected two existing bench-
marks that have the largest vocabulary overlap
with our data: MEN 3K (Bruni et al., 2014) and
SimLex-999 (Hill et al., 2014). We measure the
similarity between word pairs by computing the
cosine similarity between their embeddings from
three versions of our model, VISUAL, MULTI-
TASK and TEXTUAL, and the baseline LINREG.

Table 1 summarizes the results. All IMAGINET

models significantly correlate with human simi-
larity judgments, and outperform LINREG. Ex-
amples of word pairs for which MULTITASK cap-

1Code available at github.com/gchrupala/imaginet.
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VISUAL MULTITASK LINREG

0.38 0.38 0.33

Table 2: Accuracy@5 of retrieving images with
compatible labels from ImageNet.

tures human similarity judgments better than VI-
SUAL include antonyms (dusk, dawn), colloca-
tions (sexy, smile), or related but not visually sim-
ilar words (college, exhibition).

Single-word image retrieval In order to visual-
ize the acquired meaning for individual words, we
use images from the ILSVRC2012 subset of Im-
ageNet (Russakovsky et al., 2014) as benchmark.
Labels of the images in ImageNet are synsets from
WordNet, which identify a single concept in the
image rather than providing descriptions of its
full content. Since the synset labels in ImageNet
are much more precise than the descriptions pro-
vided in the captions in our training data (e.g.,
elkhound), we use synset hypernyms from Word-
Net as substitute labels when the original labels
are not in our vocabulary.

We extracted the features from the 50,000 im-
ages of the ImageNet validation set. The labels
in this set result in 393 distinct (original or hyper-
nym) words from our vocabulary. Each word was
projected to the visual space by feeding it through
the model as a one-word sentence. We ranked
the vectors corresponding to all 50,000 images
based on their similarity to the predicted vector,
and measured the accuracy of retrieving an image
with the correct label among the top 5 ranked im-
ages (Accuracy@5). Table 2 summarizes the re-
sults: VISUAL and MULTITASK learn more accu-
rate word meaning representations than LINREG.

4.2 Sentence structure

In the following experiments, we examine the
knowledge of sentence structure learned by IMAG-
INET, and its impact on the model performance on
image and paraphrase retrieval.

Image retrieval We retrieve images based on
the similarity of their vectors with those predicted
by IMAGINET in two conditions: sentences are fed
to the model in their original order, or scrambled.
Figure 2 (left) shows the proportion of sentences
for which the correct image was in the top 5 high-
est ranked images for each model, as a function of
the number of training iterations: both models out-

Figure 2: Left: Accuracy@5 of image retrieval
with original versus scrambled captions. Right:
Recall@4 of paraphrase retrieval with original
vs scrambled captions.

perform the baseline. MULTITASK is initially bet-
ter in retrieving the correct image, but eventually
the gap disappears. Both models perform substan-
tially better when tested on the original captions
compared to the scrambled ones, indicating that
models learn to exploit aspects of sentence struc-
ture. This ability is to be expected for MULTI-
TASK, but the VISUAL model shows a similar ef-
fect to some extent. In the case of VISUAL, this
sensitivity to structural aspects of sentence mean-
ing is entirely driven by how they are reflected in
the image, as this models only receives the visual
supervision signal.

Qualitative analysis of the role of sequential
structure suggests that the models are sensitive
to the fact that periods terminate a sentence, that
sentences tend not to start with conjunctions, that
topics appear in sentence-initial position, and that
words have different importance as modifiers ver-
sus heads. Figure 3 shows an example; see supple-
mentary material for more.

IMAGINET vs captioning systems While it is
not our goal to engineer a state-of-the-art image
retrieval system, we want to situate IMAGINET’s
performance within the landscape of image re-
trieval results on captioned images. As most of
these are on Flickr30K (Young et al., 2014), we
ran MULTITASK on it and got an accuracy@5 of
32%, within the range of numbers reported in pre-
vious work: 29.8% (Socher et al., 2014), 31.2%
(Mao et al., 2014), 34% (Kiros et al., 2014) and
37.7% (Karpathy and Fei-Fei, 2014). Karpathy
and Fei-Fei (2014) report 29.6% on MS-COCO,
but with additional training data.
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Original a couple of horses UNK their head over a rock pile
rank 1 two brown horses hold their heads above a rocky wall .
rank 2 two horses looking over a short stone wall .

Scrambled rock couple their head pile a a UNK over of horses
rank 1 an image of a man on a couple of horses
rank 2 looking in to a straw lined pen of cows

Original a cute baby playing with a cell phone
rank 1 small baby smiling at camera and talking on phone .
rank 2 a smiling baby holding a cell phone up to ear .

Scrambled phone playing cute cell a with baby a
rank 1 someone is using their phone to send a text or play a game .
rank 2 a camera is placed next to a cellular phone .

Table 3: Examples of two nearest neighbors retrieved by MULTITASK for original and scrambled cap-
tions.

“ a variety of kitchen utensils hanging from a UNK board .”

“kitchen of from hanging UNK variety a board utensils a .”

Figure 3: For the original caption MULTITASK un-
derstands kitchen as a modifier of headword uten-
sils, which is the topic. For the scrambled sen-
tence, the model thinks kitchen is the topic.

Paraphrase retrieval In our dataset each image
is paired with five different captions, which can
be seen as paraphrases. This affords us the op-
portunity to test IMAGINET’s sentence represen-
tations on a non-visual task. Although all mod-
els receive one caption-image pair at a time, the
co-occurrence with the same image can lead the
model to learn structural similarities between cap-
tions that are different on the surface. We feed
the whole set of validation captions through the
trained model and record the final hidden visual
state hV

τ . For each caption we rank all others ac-
cording to cosine similarity and measure the pro-
portion of the ones associated with the same image
among the top four highest ranked. For the scram-
bled condition, we rank original captions against
a scrambled one. Figure 2 (right) summarizes the
results: both models outperform the baseline on
ordered captions, but not on scrambled ones. As
expected, MULTITASK is more affected by manip-
ulating word order, because it is more sensitive to

structure. Table 3 shows concrete examples of the
effect of scrambling words in what sentences are
retrieved.

5 Discussion

IMAGINET is a novel model of grounded lan-
guage acquisition which simultaneously learns
word meaning representations and knowledge of
sentence structure from captioned images. It
acquires meaning representations for individual
words from descriptions of visual scenes, mim-
icking an important aspect of human language
learning, and can effectively use sentence structure
in semantic interpretation of multi-word phrases.
In future we plan to upgrade the current word-
prediction pathway to a sentence reconstruction
and/or sentence paraphrasing task in order to en-
courage the formation of representations of full
sentences. We also want to explore the acquired
structure further, especially for generalizing the
grounded meanings to those words for which vi-
sual data is not available.

Acknowledgements

The authors would like to thank Angeliki Lazari-
dou and Marco Baroni for their many insightful
comments on the research presented in this pa-
per.

References
Afra Alishahi and Grzegorz Chrupała. 2012. Concur-

rent acquisition of word meaning and lexical cate-
gories. In Proceedings of the 2012 Joint Confer-
ence on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning, pages 643–654. Association for Compu-
tational Linguistics.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
James Bergstra, Ian J. Goodfellow, Arnaud Berg-

116



eron, Nicolas Bouchard, and Yoshua Bengio. 2012.
Theano: new features and speed improvements.
Deep Learning and Unsupervised Feature Learning
NIPS 2012 Workshop.

James Bergstra, Olivier Breuleux, Frédéric Bastien,
Pascal Lamblin, Razvan Pascanu, Guillaume Des-
jardins, Joseph Turian, David Warde-Farley, and
Yoshua Bengio. 2010. Theano: a CPU and
GPU math expression compiler. In Proceedings
of the Python for Scientific Computing Conference
(SciPy). Oral Presentation.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. Journal of Ar-
tificial Intelligence Research (JAIR), 49:1–47.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28(1):41–75.

Xinlei Chen and C Lawrence Zitnick. 2014. Learning
a recurrent visual representation for image caption
generation. arXiv preprint arXiv:1411.5654.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
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Abstract
We exploit the visual properties of con-
cepts for lexical entailment detection by
examining a concept’s generality. We in-
troduce three unsupervised methods for
determining a concept’s generality, based
on its related images, and obtain state-of-
the-art performance on two standard se-
mantic evaluation datasets. We also intro-
duce a novel task that combines hypernym
detection and directionality, significantly
outperforming a competitive frequency-
based baseline.

1 Introduction

Automatic detection of lexical entailment is useful
for a number of NLP tasks including search query
expansion (Shekarpour et al., 2013), recognising
textual entailment (Garrette et al., 2011), metaphor
detection (Mohler et al., 2013), and text genera-
tion (Biran and McKeown, 2013). Given two se-
mantically related words, a key aspect of detecting
lexical entailment, or the hyponym-hypernym re-
lation, is the generality of the hypernym compared
to the hyponym. For example, bird is more general
than eagle, having a broader intension and a larger
extension. This property has led to the introduc-
tion of lexical entailment measures that compare
the entropy of distributional word representations,
under the assumption that a more general term has
a higher-entropy distribution (Herbelot and Gane-
salingam, 2013; Santus et al., 2014).

A strand of distributional semantics has recently
emerged that exploits the fact that meaning is of-
ten grounded in the perceptual system, known as
multi-modal distributional semantics (Bruni et al.,
2014). Such models enhance purely linguistic
models with extra-linguistic perceptual informa-
tion, and outperform language-only models on a

range of tasks, including modelling semantic sim-
ilarity and conceptual relatedness (Silberer and
Lapata, 2014). In fact, under some conditions
uni-modal visual representations outperform tradi-
tional linguistic representations on semantic tasks
(Kiela and Bottou, 2014).

We hypothesize that visual representations can
be particularly useful for lexical entailment detec-
tion. Deselaers and Ferrari (2011) have shown that
sets of images corresponding to terms at higher
levels in the WordNet hierarchy have greater vi-
sual variability than those at lower levels. We ex-
ploit this tendency using sets of images returned
by Google’s image search. The intuition is that
the set of images returned for animal will consist
of pictures of different kinds of animals, the set of
images for bird will consist of pictures of differ-
ent birds, while the set for owl will mostly consist
only of images of owls, as can be seen in Figure 1.

Here we evaluate three different vision-based
methods for measuring term generality on the se-
mantic tasks of hypernym detection and hypernym
directionality. Using this simple yet effective un-
supervised approach, we obtain state-of-the-art re-
sults compared with supervised algorithms which
use linguistic data.

2 Related Work

In the linguistic modality, the most closely related
work is by Herbelot and Ganesalingam (2013) and
Santus et al. (2014), who use unsupervised distri-
butional generality measures to identify the hyper-
nym in a hyponym-hypernym pair. Herbelot and
Ganesalingam (2013) use KL divergence to com-
pare the probability distribution of context words,
given a term, to the background probability dis-
tribution of context words. Santus et al. (2014)
use the median entropy of the probability distribu-
tions associated with a term’s top-weighted con-
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Figure 1: Example of how vulture and owl are less dispersed concepts than bird and animal, according
to images returned by Google image search.

text words as a measure of information content.
In the visual modality, the intuition that visual

representations may be useful for detecting lexi-
cal entailment is inspired by Deselaers and Ferrari
(2011). Using manually annotated images from
ImageNet (Deng et al., 2009), they find that con-
cepts and categories with narrower intensions and
smaller extensions tend to have less visual vari-
ability. We extend this intuition to the unsuper-
vised setting of Google image search results and
apply it to the lexical entailment task.

3 Approach

We use two standard evaluations for lexical entail-
ment: hypernym directionality, where the task is to
predict which of two words is the hypernym; and
hypernym detection, where the task is to predict
whether two words are in a hypernym-hyponym
relation (Weeds et al., 2014; Santus et al., 2014).
We also introduce a third, more challenging, eval-
uation that combines detection and directionality.

For the directionality experiment, we evaluate
on the hypernym subset of the well-known BLESS

dataset (Baroni and Lenci, 2011), which consists
of 1337 hyponym-hypernym pairs. In this case, it
is known that the words are in an entailment re-
lation and the task is to predict the directionality
of the relation. BLESS data is always presented
with the hyponym first, so we report how often our
measures predict that the second term in the pair is
more general than the first.

For the detection experiment, we evaluate on the
BLESS-based dataset of Weeds et al. (2014), which
consists of 1168 word pairs and which we call
WBLESS. In this dataset, the positive examples are
hyponym-hypernym pairs. The negative examples

BLESS turtle—animal 1

WBLESS

owl—creature 1
owl—vulture 0
animal—owl 0

BIBLESS

owl—creature 1
owl—vulture 0
animal—owl -1

Table 1: Examples for evaluation datasets.

include pairs in the reversed hypernym-hyponym
order, as well as holonym-meronym pairs, co-
hyponyms, and randomly matched nouns. Ac-
curacy on WBLESS reflects the ability to distin-
guish hypernymy from other relations, but does
not require detection of directionality, since re-
versed pairs are grouped with the other negatives.

For the combined experiment, we assign re-
versed hyponym-hypernym pairs a value of -1 in-
stead of 0. We call this more challenging dataset
BIBLESS. Examples of pairs in the respective
datasets can be found in Table 1.

3.1 Image representations
Following previous work in multi-modal seman-
tics (Bergsma and Goebel, 2011; Kiela et al.,
2014), we obtain images from Google Images1

for the words in the evaluation datasets. It has
been shown that images from Google yield higher-
quality representations than comparable resources
such as Flickr and are competitive with “hand pre-
pared datasets” (Bergsma and Goebel, 2011; Fer-
gus et al., 2005).

1www.google.com/imghp. Images were retrieved on
10 April, 2015 from Cambridge in the United Kingdom.

120



For each image, we extract the pre-softmax
layer from a forward pass in a convolutional neural
network (CNN) that has been trained on the Im-
ageNet classification task using Caffe (Jia et al.,
2014). As such, this work is an instance of deep
transfer learning; that is, a deep learning represen-
tation trained on one task (image classification) is
used to make predictions on a different task (im-
age generality). We chose to use CNN-derived im-
age representations because they have been found
to be of higher quality than the traditional bag of
visual words models (Sivic and Zisserman, 2003)
that have previously been used in multi-modal dis-
tributional semantics (Bruni et al., 2014; Kiela and
Bottou, 2014).

3.2 Generality measures

We propose three measures that can be used to cal-
culate the generality of a set of images. The image
dispersion d of a concept word w is defined as the
average pairwise cosine distance between all im-
age representations { ~w1 ... ~wn} of the set of im-
ages returned for w:

d(w) =
2

n(n− 1)

∑
i<j≤n

1− cos( ~wi, ~wj) (1)

This measure was originally introduced to account
for the fact that perceptual information is more rel-
evant for e.g. elephant than it is for happiness. It
acts as a substitute for the concreteness of a word
and can be used to regulate how much perceptual
information should be included in a multi-modal
model (Kiela et al., 2014).

Our second measure follows Deselaers and Fer-
rari (2011), who take a similar approach but in-
stead of calculating the pairwise distance calculate
the distance to the centroid ~µ of { ~w1 ... ~wn}:

c(w) =
1
n

∑
1≤i≤n

1− cos( ~wi, ~µ) (2)

For our third measure we follow Lazaridou et al.
(2015), who try different ways of modulating the
inclusion of perceptual input in their multi-modal
skip-gram model, and find that the entropy of the
centroid vector ~µ works well (where p(µj) = µj

||~µ||
and m is the vector length):

H(w) = −
m∑
j=1

p(µj) log2(p(µj)) (3)

3.3 Hypernym Detection and Directionality
We calculate the directionality of a hyponym-
hypernym pair with a measure f using the follow-
ing formula for a word pair (p, q). Since even co-
hyponyms will not have identical values for f , we
introduce a threshold αwhich sets a minimum dif-
ference in generality for hypernym identification:

s(p, q) = 1− f(p) + α

f(q)
(4)

In other words, s(p, q) > 0 iff f(q) > f(p) + α,
i.e. if the second word (q) is (sufficiently) more
general. To avoid false positives where one word
is more general but the pair is not semantically
related, we introduce a second threshold θ which
sets f to zero if the two concepts have low cosine
similarity. This leads to the following formula:

sθ(p, q) =

{
1− f(p)+α

f(q) if cos( ~µp, ~µq) ≥ θ
0 otherwise

(5)

We experimented with different methods for ob-
taining the mean vector representations for co-
sine (hereafter µc) in Equation (5), and found
that multi-modal representations worked best. We
concatenate an L2-normalized linguistic vector
with the L2-normalized centroid of image vectors
to obtain a multi-modal representation, following
Kiela and Bottou (2014). For a word p with im-
age representations {pimg1 ... pimgn }, we thus set
µc = pling || 1

n

∑n
i p

img
i , after normalizing both

representations. For comparison, we also report
results for a visual-only µc.

For BLESS, we know the words in a pair stand
in an entailment relation, so we set α = θ =
0 and evaluate whether s(p, q) > 0, indicating
that q is a hypernym of p. For WBLESS, we set
α = 0.02 and θ = 0.2 without tuning, and eval-
uate whether sθ(p, q) > 0 (hypernym relation) or
sθ(p, q) ≤ 0 (no hypernym relation). For BIB-
LESS, we set α = 0.02 and θ = 0.25 with-
out tuning, and evaluate whether sθ(p, q) > 0
(hyponym-hypernym), s(p, q) = 0 (no relation),
or s(p, q) ≤ 0 (hypernym-hyponym).

4 Results

The results can be found in Table 2. We com-
pare our methods with a frequency baseline, set-
ting f(p) = freq(p) in Equation 4 and using
the frequency scores from Turney et al. (2011).
Frequency has been proven to be a surprisingly
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BLESS WBLESS BIBLESS

Frequency 0.58 0.57 0.39
WeedsPrec 0.63 — —
WeedsSVM — 0.75 —
WeedsUnSup — 0.58 —
SLQS 0.87 — —
Dispersion 0.88 0.75 (0.74) 0.57 (0.55)
Centroid 0.87 0.74 (0.74) 0.57 (0.54)
Entropy 0.83 0.71 (0.71) 0.56 (0.53)

Table 2: Accuracy. For WBLESS and BIBLESS we
report results for multi-modal µc, with visual-only
µc in brackets.

challenging baseline for hypernym directionality
(Herbelot and Ganesalingam, 2013; Weeds et al.,
2014). In addition, we compare to the reported re-
sults of Santus et al. (2014) for WeedsPrec (Weeds
et al., 2004), an early lexical entailment mea-
sure, and SLQS, the entropy-based method of
Santus et al. (2014). Note, however, that these
are on a subsampled corpus of 1277 word pairs
from BLESS, so the results are indicative but not
directly comparable. On WBLESS we compare
to the reported results of Weeds et al. (2014):
we include results for the highest-performing su-
pervised method (WeedsSVM) and the highest-
performing unsupervised method (WeedsUnSup).

For BLESS, both dispersion and centroid dis-
tance reach or outperform the best other measure
(SLQS). They beat the frequency baseline by a
large margin (+30% and +29%). Taking the en-
tropy of the mean image representations does not
appear to do as well as the other two methods
but still outperforms the baseline and WeedsPrec
(+25% and +20% respectively).

In the case of WBLESS and BIBLESS, we
see a similar pattern in that dispersion and cen-
troid distance perform best. For WBLESS, these
methods outperform the other unsupervised ap-
proach, WeedsUnsup, by +17% and match the
best-performing support vector machine (SVM)
approach in Weeds et al. (2014). In fact, Weeds et
al. (2014) report results for a total of 6 supervised
methods (based on SVM and k-nearest neighbor
(k-NN) classifiers): our unsupervised image dis-
persion method outperforms all of these except for
the highest-performing one, reported here.

We can see that the task becomes increasingly
difficult as we go from directionality to detection
to the combination: the dispersion-based method
goes from 0.88 to 0.75 to 0.57, for example. BIB-
LESS is the most difficult, as shown by the fre-

Figure 2: Accuracy by WordNet shortest path
bucket (1 is shortest, 5 is longest).

quency baseline obtaining only 0.39. Our methods
do much better than this baseline (+18%). Image
dispersion appears to be the most robust measure.

To examine our results further, we divided the
test data into buckets by the shortest WordNet path
connecting word pairs (Miller, 1995). We expect
our method to be less accurate on word pairs with
short paths, since the difference in generality may
be difficult to discern. It has also been suggested
that very abstract hypernyms such as object and
entity are difficult to detect because their linguistic
distributions are not supersets of their hyponyms’
distributions (Rimell, 2014), a factor that should
not affect the visual modality. We find that con-
cept comparisons with a very short path (bucket 1)
are indeed the least accurate. We also find some
drop in accuracy on the longest paths (bucket 5),
especially for WBLESS and BIBLESS, perhaps be-
cause semantic similarity is difficult to detect in
these cases. For a histogram of the accuracy scores
according to WordNet similarity, see Figure 2.

5 Conclusions

We have evaluated three unsupervised methods for
determining the generality of a concept based on
its visual properties. Our best-performing method,
image dispersion, reaches the state-of-the-art on
two standard semantic evaluation datasets. We
introduced a novel, more difficult task combin-
ing hypernym detection and directionality, and
showed that our methods outperform a frequency
baseline by a large margin.

We believe that image generality may be par-
ticularly suited to entailment detection because it
does not suffer from the same issues as linguis-
tic distributional generality. Herbelot and Gane-
salingam (2013) found that general terms like liq-
uid do not always have higher entropy distribu-
tions than their hyponyms, since speakers use
them in very specific contexts, e.g. liquid is often
coordinated with gas.

We also acknowledge that our method depends
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to some degree on Google’s search result diversifi-
cation, but do not feel this detracts from the utility
of the method, since the fact that general concepts
achieve greater maximum image dispersion than
specific concepts is not dependent on any partic-
ular diversification algorithm. In future work, we
plan to explore more sophisticated visual gener-
ality measures, other semantic relations and dif-
ferent ways of fusing visual representations with
linguistic knowledge.
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Abstract

A language lexicon can be divided into four
main strata, depending on origin of words:
core vocabulary words, fully- and partially-
assimilated foreign words, and unassim-
ilated foreign words (or transliterations).
This paper focuses on translation of fully-
and partially-assimilated foreign words,
called “borrowed words”. Borrowed words
(or loanwords) are content words found in
nearly all languages, occupying up to 70%
of the vocabulary. We use models of lexi-
cal borrowing in machine translation as a
pivoting mechanism to obtain translations
of out-of-vocabulary loanwords in a low-
resource language. Our framework obtains
substantial improvements (up to 1.6 BLEU)
over standard baselines.

1 Introduction

Out-of-vocabulary (OOV) words are a ubiquitous
and difficult problem in statistical machine transla-
tion (SMT). When a translation system encounters
an OOV—a word that was not observed in the train-
ing data, and the trained system thus lacks its trans-
lation variants—it usually outputs the word just as
it is in the source language, producing erroneous
and disfluent translations.

All SMT systems, even when trained on billion-
sentence-size parallel corpora, are prone to OOVs.
These are often named entities and neologisms.
However, OOV problem is much more serious in
low-resource scenarios: there, OOVs are primarily
not lexicon-peripheral items such as names and spe-
cialized/technical terms, but regular content words.

Procuring translations for OOVs has been a sub-
ject of active research for decades. Translation of
named entities is usually generated using translit-
eration techniques (Al-Onaizan and Knight, 2002;
Hermjakob et al., 2008; Habash, 2008). Extracting

a translation lexicon for recovering OOV content
words and phrases is done by mining bi-lingual
and monolingual resources (Rapp, 1995; Callison-
Burch et al., 2006; Haghighi et al., 2008; Mar-
ton et al., 2009; Razmara et al., 2013; Saluja
et al., 2014; Zhao et al., 2015). In addition,
OOV content words can be recovered by exploiting
cognates, by transliterating and then pivoting via
a closely-related resource-richer language, when
such a language exists (Hajič et al., 2000; Mann
and Yarowsky, 2001; Kondrak et al., 2003; De Gis-
pert and Marino, 2006; Durrani et al., 2010; Wang
et al., 2012; Nakov and Ng, 2012; Dholakia and
Sarkar, 2014). Our work is similar in spirit to the
latter line of research, but we show how to curate
translations for OOV content words by pivoting via
an unrelated, often typologically distant resource-
rich languages. To achieve this goal, we replace
transliteration by a new technique that captures
more complex morpho-phonological transforma-
tions of historically-related words.

Core

Peripheral
Partially assimilated

Fully assimilated

L
E

X
IC

O
N

Figure 1: A language lexicon can be divided into four main
strata, depending on origin of words. This work focuses on
fully- and partially-assimilated foreign words, called borrowed
words. Borrowed words (or loanwords) are content words
found in all languages, occupying up to 70% of the vocabulary.

Our method is inspired by prior research in
constraint-based phonology, advocating “lexicon
stratification,” i.e., splitting the language lexicon
into separate strata, depending on origin of words
and degree of their assimilation in the language (Itô
and Mester, 1995). As shown in figure 1, there are
four main strata: core vocabulary, foreign words
that are fully assimilated, partially-assimilated for-
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eign words, and named entities which belong to
the peripheral stratum. Our work focuses on the
fully- and partially-assimilated foreign words, i.e.,
words that historically were borrowed from another
language. Borrowing is the pervasive linguistic
phenomenon of transferring and adapting linguistic
constructions (lexical, phonological, morphologi-
cal, and syntactic) from a “donor” language into
a “recipient” language (Thomason and Kaufman,
2001). In this work, we advocate a pivoting mech-
anism exploiting lexical borrowing to bridge be-
tween resource-rich and resource-poor languages.

Our method (§2) employs a model of lexical
borrowing to obtain cross-lingual links from loan-
words in a low-resource language to their donors
in a resource-rich language (§2.1). The donor
language is used as pivot to obtain translations
via triangulation of OOV loanwords (§2.2). We
conduct experiments with two resource-poor se-
tups: Swahili–English, pivoting via Arabic, and
Romanian–English,pivoting via French (§3). We
provide a systematic quantitative analysis of con-
tribution of integrated OOV translations, relative
to baselines and upper bounds, and on corpora of
varying sizes (§4). The proposed approach yields
substantial improvement (up to +1.6 BLEU) in
Swahili–Arabic–English translation, and a small
but statistically significant improvement (+0.2
BLEU) in Romanian–French–English.

2 Methodology

Our high-level solution is depicted in figure 2.
Given an OOV word in resource-poor SMT, we
plug it into a borrowing system (§2.1) that identi-
fies the list of plausible donor words in the donor
language. Then, using the resource-rich SMT, we
translate the donor words to the same target lan-
guage as in the resource-poor SMT (here, English).
Finally, we integrate translation candidates in the
resource-poor system (§2.2).

2.1 Models of Lexical Borrowing

Borrowed words (also called loanwords) are found
in nearly all languages, and routinely account for
10–70% of the vocabulary (Haspelmath and Tad-
mor, 2009). Borrowing occurs across genetically
and typologically unrelated languages, for exam-
ple, about 40% of Swahili’s vocabulary is borrowed
from Arabic (Johnson, 1939). Importantly, since
resource-rich languages are (historically) geopoliti-
cally important languages, borrowed words often

SWAHILI‒ENGLISH

 safari     |||  *OOV*

 kituruki |||  *OOV*

TR
A

N
SL

A
TI

O
N
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A

N
D

ID
A

TE
S

ARABIC‒ENGLISH

travel ||| (ysAfr) یسافر
turkishA |||   (trky) تركي
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Figure 2: To improve a resource-poor Swahili–English SMT
system, we extract translation candidates for OOV Swahili
words borrowed from Arabic using the Swahili-to-Arabic bor-
rowing system and Arabic–English resource-rich SMT.

bridge between resource-rich and resource-limited
languages; we use this observation in our work.

Transliteration and cognate discovery models
perform poorly in the task of loanword genera-
tion/identification (Tsvetkov et al., 2015). The
main reason is that the recipient language, in which
borrowed words are fully or partially assimilated,
may have very different morpho-phonological prop-
erties from the donor language (e.g., ‘orange’ and
‘sugar’ are not perceived as foreign by native speak-
ers, but these are English words borrowed from
Arabic l .�

	'PA 	K (nArnj)1 and Qº�Ë@ (Alskr), respec-
tively). Therefore, morpho-phonological loanword
adaptation is more complex than is typically cap-
tured by transliteration or cognate models.

We employ a discriminative cross-lingual model
of lexical borrowing to identify plausible donors
given a loanword (Tsvetkov et al., 2015). The
model is implemented in a cascade of finite-state
transducers that first maps orthographic word forms
in two languages into a common space of their pho-
netic representation (using IPA—the International
Phonetic Alphabet), and then performs morpholog-
ical and phonological updates to the input word
in one language to identify its (donor/loan) coun-
terpart in another language. Transduction oper-
ations include stripping donor language prefixes
and suffixes, appending recipient affixes, insertion,
deletion, and substitution of consonants and vow-
els. The output of the model, given an input loan-
word, is a n-best list of donor candidates, ranked
by linguistic constraints of the donor and recipient
languages.2

1We use Buckwalter notation to write Arabic glosses.
2In this work, we give as input into the borrowing system

all OOV words, although, clearly, not all OOVs are loanwords,
and not all loanword OOVs are borrowed from the donor
language. However, an important property of the borrowing
model is that its operations are not general, but specific to
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2.2 Pivoting via Borrowing

We now discuss integrating translation candidates
acquired via borrowing plus resource-rich transla-
tion. For each OOV, the borrowing system pro-
duces the n-best list of plausible donors; for each
donor we then extract the k-best list of its transla-
tions.3 Then, we pair the OOV with the resulting
n× k translation candidates. The translation can-
didates are noisy: some of the generated donors
may be erroneous, the errors are then propagated
in translation. To allow the low-resource system
to leverage good translations that are missing in
the default phrase inventory, while being stable to
noisy translation hypotheses, we integrate the ac-
quired translation candidates as synthetic phrases
(Tsvetkov et al., 2013; Chahuneau et al., 2013).
Synthetic phrases is a strategy of integrating trans-
lated phrases directly in the MT translation model,
rather than via pre- or post-processing MT inputs
and outputs. Synthetic phrases are phrasal trans-
lations that are not directly extractable from the
training data, generated by auxiliary translation
and postediting processes (for example, extracted
from a borrowing model). An important advantage
of synthetic phrases is that they are recall-oriented,
allowing the system to leverage good translations
that are missing in the default phrase inventory,
while being stable to noisy translation hypotheses.

To let the translation model learn whether to trust
these phrases, the translation options obtained from
the borrowing model are augmented with a boolean
translation feature indicating that the phrase was
generated externally. Additional features annotat-
ing the integrated OOV translations correspond to
properties of the donor–loan words’ relation; their
goal is to provide an indication of plausibility of
the pair (to mark possible errors in the outputs of
the borrowing system).

We employ two types of features: phonetic and
semantic. Since borrowing is primarily a phonolog-
ical phenomenon, phonetic features will provide
an indication of how typical (or atypical) pronun-
ciation of the word in a language; loanwords are
expected to be less typical than core vocabulary

the language-pair and reduced only to a small set of plausible
changes that the donor word can undergo in the process of
assimilation in the recipient language. Thus, the borrowing
system only minimally overgenerates the set of output candi-
dates given an input. If the borrowing system encounters an
input word that was not borrowed from the target donor lan-
guage, it usually (but not always) produces an empty output.

3We set n and k to 5, we did not experiment with other
values.

words. The goal of semantic features is to mea-
sure semantic similarity between donor and loan
words: erroneous candidates and borrowed words
that changed meaning over time are expected to
have different meaning from the OOV.
Phonetic features. To compute phonetic fea-
tures we first train a (5-gram) language model (LM)
of IPA pronunciations of the donor/recipient lan-
guage vocabulary (phoneLM). Then, we re-score
pronunciations of the donor and loanword can-
didates using the LMs.4 We hypothesize that in
donor–loanword pairs the donor phoneLM score
is higher but the loanword score is lower (i.e., the
loanword phonology is atypical in the recipient lan-
guage). We capture this intuition in three features:
f1=PphoneLM (donor), f2=PphoneLM (loanword),
and the harmonic mean between the two scores
f3= 2f1f2

f1+f2
.

Semantic features. We compute a semantic sim-
ilarity feature between the candidate donor and
the OOV loanword as follows. We first train, us-
ing large monolingual corpora, 100-dimensional
word vector representations for donor and recip-
ient language vocabularies.5 Then, we employ
canonical correlation analysis (CCA) with small
donor–loanword dictionaries (training sets in the
borrowing models) to project the word embeddings
into 50-dimensional vectors with maximized cor-
relation between their dimensions. The semantic
feature annotating the synthetic translation candi-
dates is cosine distance between the resulting donor
and loanword vectors. We use the word2vec tool
(Mikolov et al., 2013) to train monolingual vec-
tors,6 and the CCA-based tool (Faruqui and Dyer,
2014) for projecting word vectors.7

3 Experimental Setup

Datasets and software. The Swahili–English
parallel corpus was crawled from the Global Voices
project website8. To simulate resource-poor sce-
nario for the Romanian–English language pair, we
sample a parallel corpus of same size from the tran-
scribed TED talks (Cettolo et al., 2012). To evalu-

4For Arabic and French we use the GlobalPhone pro-
nunciation dictionaries (Schultz et al., 2013) (we manually
convert them to IPA). For Swahili and Romanian we automati-
cally construct pronunciation dictionaries using the Omniglot
grapheme-to-IPA conversion rules at www.omniglot.com.

5We assume that while parallel data is limited in the recip-
ient language, monolingual data is available.

6code.google.com/p/word2vec
7github.com/mfaruqui/eacl14-cca
8sw.globalvoicesonline.org
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ate translation improvement on corpora of different
sizes we conduct experiments with sub-sampled
4K, 8K, and 14K parallel sentences from the train-
ing corpora (the smaller the training corpus, the
more OOVs it has). Corpora sizes along with statis-
tics of source-side OOV tokens and types are given
in tables 1 and 2. Statistics of the held-out dev
and test sets used in all translation experiments are
given in table 3.

SW–EN RO–EN

dev test dev test
Sentences 1,552 1,732 2,687 2,265
Tokens 33,446 35,057 24,754 19,659
Types 7,008 7,180 5,141 4,328

Table 3: Dev and test corpora sizes.

In all the MT experiments, we use the cdec9

toolkit (Dyer et al., 2010), and optimize parameters
with MERT (Och, 2003). English 4-gram language
models with Kneser-Ney smoothing (Kneser and
Ney, 1995) are trained using KenLM (Heafield,
2011) on the target side of the parallel training cor-
pora and on the Gigaword corpus (Parker et al.,
2009). Results are reported using case-insensitive
BLEU with a single reference (Papineni et al.,
2002). We train three systems for each MT setup;
reported BLEU scores are averaged over systems.
Upper bounds. The goal of our experiments is
not only to evaluate the contribution of the OOV
dictionaries that we extract when pivoting via bor-
rowing, but also to understand the potential con-
tribution of the lexicon stratification. What is the
overall improvement that can be achieved if we cor-
rectly translate all OOVs that were borrowed from
another language? What is the overall improve-
ment that can be achieved if we correctly translate
all OOVs? We answer this question by defining
“upper bound” experiments. In the upper bound
experiment we word-align all available parallel cor-
pora, including dev and test sets, and extract from
the alignments oracle translations of OOV words.
Then, we append the extracted OOV dictionaries
to the training corpora and re-train SMT setups
without OOVs. Translation scores of the resulting
system provide an upper bound of an improvement
from correctly translating all OOVs. When we
append oracle translations of the subset of OOV
dictionaries, in particular translations of all OOVs
for which the output of the borrowing system is

9www.cdec-decoder.org

not empty, we obtain an upper bound that can be
achieved using our method (if the borrowing sys-
tem provided perfect outputs). Understanding the
upper bounds is relevant not only for our experi-
ments, but for any experiments that involve aug-
menting translation dictionaries; however, we are
not aware of prior work providing similar analy-
sis of upper bounds, and we recommend this as
a calibrating procedure for future work on OOV
mitigation strategies.

Borrowing-augmented setups. As described in
§2.2, we integrate translations of OOV loanwords
in the translation model. Due to data sparsity,
we conjecture that non-OOVs that occur only few
times in the training corpus can also lack appro-
priate translation candidates, i.e., these are target-
language OOVs. We therefore run the borrowing
system on OOVs and non-OOV words that occur
less than 3 times in the training corpus. We list in
table 4 sizes of translated lexicons that we integrate
in translation tables.

4K 8K 14K
Loan OOVs in SW–EN 5,050 4,219 3,577
Loan OOVs in RO–EN 347 271 216

Table 4: Sizes of translated lexicons extracted using pivoting
via borrowing and integrated in translation models.

Transliteration-augmented setups. In ad-
dition to the standard baselines, we evaluate
transliteration-augmented setups, where we
replace the borrowing model by a transliteration
model (Ammar et al., 2012). The model is a
linear-chain CRF where we label each source
character with a sequence of target characters. The
features are label unigrams and bigrams, separately
or conjoined with a moving window of source
characters. We employ the Swahili–Arabic and
Romanian–French transliteration systems that
were used as baselines in (Tsvetkov et al., 2015).
As in the borrowing system, transliteration outputs
are filtered to contain only target language lexicons.
We list in table 5 sizes of obtained translated
lexicons.

4K 8K 14K
Translit. OOVs in SW–EN 49 32 22
Translit. OOVs in RO–EN 906 714 578

Table 5: Sizes of translated lexicons extracted using pivoting
via transliteration and integrated in translation models.
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4K 8K 14K
Tokens 84,764 170,493 300,648
Types 14,554 23,134 33,288
OOV tokens 4,465 (12.7%) 3,509 (10.0%) 2,965 (8.4%)
OOV types 3,610 (50.3%) 2,950 (41.1%) 2,523 (35.1%)

Table 1: Statistics of the Swahili–English corpora and source-side OOV for 4K, 8K, 14K parallel training sentences.

4K 8K 14K
Tokens 35,978 71,584 121,718
Types 7,210 11,144 15,112
OOV tokens 3,268 (16.6%) 2,585 (13.1%) 2,177 (11.1%)
OOV types 2,382 (55.0%) 1,922 (44.4%) 1,649 (38.1%)

Table 2: Statistics of the Romanian–English corpora and source-side OOV for 4K, 8K, 14K parallel training sentences.

4 Results

Translation results are shown in tables 6 and 7.
We evaluate separately the contribution of the in-
tegrated OOV translations, and the same transla-
tions annotated with phonetic and semantic fea-
tures. We also provide upper bound scores for
integrated loanword dictionaries as well as for re-
covering all OOVs.

4K 8K 14K
Baseline 13.2 15.1 17.1

+ Translit. OOVs 13.4 15.3 17.2
+ Loan OOVs 14.3 15.7 18.2

+ Features 14.8 16.4 18.4
Upper bound loan 18.9 19.1 20.7
Upper bound all OOVs 19.2 20.4 21.1

Table 6: Swahili–English MT experiments.

4K 8K 14K
Baseline 15.8 18.5 20.7

+ Translit. OOVs 15.8 18.7 20.8
+ Loan OOVs 16.0 18.7 20.7

+ Features 16.0 18.6 20.6
Upper bound loan 16.6 19.4 20.9
Upper bound all OOVs 28.0 28.8 30.4

Table 7: Romanian–English MT experiments.

Swahili–English MT performance is improved
by up to +1.6 BLEU when we augment it
with translated OOV loanwords leveraged from
the Arabic–Swahili borrowing and then Arabic–
English MT. The contribution of the borrowing
dictionaries is +0.6–1.1 BLEU, and phonetic and
semantic features contribute additional half BLEU.
More importantly, upper bound results show that
the system can be improved more substantially with

better dictionaries of OOV loanwords. This result
confirms that OOV borrowed words is an important
type of OOVs, and with proper modeling it has the
potential to improve translation by a large margin.
Romanian–English systems obtain only small (but
significant for 4K and 8K, p < .01) improvement.
However, this is expected as the rate of borrow-
ing from French into Romanian is smaller, and, as
the result, the integrated loanword dictionaries are
small. Transliteration baseline, conversely, is more
effective in Romanian–French language pair, as
two languages are related typologically, and have
common cognates in addition to loanwords. Still,
even with these dictionaries the translations with
pivoting via borrowing/transliteration improve, and
even almost approach the upper bounds results.

5 Conclusion

This paper focuses on fully- and partially-
assimilated foreign words in the source lexicon—
borrowed words—and a method for obtaining their
translations. Our results substantially improve
translation and confirm that OOV loanwords are
important and merit further investigation. In addi-
tion, we propose a simple technique to calculate an
upper bound of improvements that can be obtained
from integrating OOV translations in SMT.

Acknowledgments

This work was supported by the U.S. Army Re-
search Laboratory and the U.S. Army Research
Office under contract/grant number W911NF-10-1-
0533. Computational resources were provided by
Google Cloud Computing grant. We are grateful
to Waleed Ammar for his help with transliteration,
and to the anonymous reviewers.

129



References
Yaser Al-Onaizan and Kevin Knight. 2002. Machine

transliteration of names in Arabic text. In Proc.
the ACL workshop on Computational Approaches to
Semitic Languages, pages 1–13.

Waleed Ammar, Chris Dyer, and Noah A. Smith. 2012.
Transliteration by sequence labeling with lattice en-
codings and reranking. In Proc. NEWS workshop at
ACL.

Chris Callison-Burch, Philipp Koehn, and Miles Os-
borne. 2006. Improved statistical machine transla-
tion using paraphrases. In Proc. NAACL, pages 17–
24.

Mauro Cettolo, Christian Girardi, and Marcello Fed-
erico. 2012. WIT3: Web inventory of transcribed
and translated talks. In Proc. EAMT, pages 261–
268.

Victor Chahuneau, Eva Schlinger, Noah A Smith, and
Chris Dyer. 2013. Translating into morphologi-
cally rich languages with synthetic phrases. In Proc.
EMNLP, pages 1677–1687.

Adrià De Gispert and Jose B Marino. 2006. Catalan-
English statistical machine translation without par-
allel corpus: bridging through Spanish. In Proc.
LREC, pages 65–68.

Rohit Dholakia and Anoop Sarkar. 2014. Pivot-based
triangulation for low-resource languages. In Proc.
AMTA, pages 315–328.

Nadir Durrani, Hassan Sajjad, Alexander Fraser, and
Helmut Schmid. 2010. Hindi-to-Urdu machine
translation through transliteration. In Proc. ACL,
pages 465–474.

Chris Dyer, Adam Lopez, Juri Ganitkevitch, Johnathan
Weese, Ferhan Ture, Phil Blunsom, Hendra Seti-
awan, Vladimir Eidelman, and Philip Resnik. 2010.
cdec: A decoder, alignment, and learning framework
for finite-state and context-free translation models.
In Proc. ACL System Demonstrations, pages 7–12.

Manaal Faruqui and Chris Dyer. 2014. Improving
vector space word representations using multilingual
correlation. In Proc. EACL, pages 462–471.

Nizar Habash. 2008. Four techniques for online han-
dling of out-of-vocabulary words in Arabic-English
statistical machine translation. In Proc. ACL, pages
57–60.

Aria Haghighi, Percy Liang, Taylor Berg-Kirkpatrick,
and Dan Klein. 2008. Learning bilingual lexicons
from monolingual corpora. In Proc. ACL, pages
771–779.
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chine translation of very close languages. In Proc.
ANLP, pages 7–12.

Martin Haspelmath and Uri Tadmor, editors. 2009.
Loanwords in the World’s Languages: A Compara-
tive Handbook. Max Planck Institute for Evolution-
ary Anthropology, Leipzig.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proc. WMT, pages 187–
197.

Ulf Hermjakob, Kevin Knight, and Hal Daumé III.
2008. Name translation in statistical machine
translation-learning when to transliterate. In Proc.
ACL, pages 389–397.

Junko Itô and Armin Mester. 1995. The core-periphery
structure of the lexicon and constraints on reranking.
Papers in Optimality Theory, 18:181–209.

Frederick Johnson. 1939. Standard Swahili-English
dictionary. Oxford University Press.

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for m-gram language modeling. In Proc.
ICASSP, volume 1, pages 181–184.

Grzegorz Kondrak, Daniel Marcu, and Kevin Knight.
2003. Cognates can improve statistical translation
models. In Proc. HLT-NAACL, pages 46–48.

Gideon S Mann and David Yarowsky. 2001. Multipath
translation lexicon induction via bridge languages.
In Proc. HLT-NAACL, pages 1–8.

Yuval Marton, Chris Callison-Burch, and Philip Resnik.
2009. Improved statistical machine translation us-
ing monolingually-derived paraphrases. In Proc.
EMNLP, pages 381–390.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Proc. NIPS, pages 3111–3119.

Preslav Nakov and Hwee Tou Ng. 2012. Improv-
ing statistical machine translation for a resource-
poor language using related resource-rich languages.
Journal of Artificial Intelligence Research, pages
179–222.

Franz Josef Och. 2003. Minimum error rate training in
statistical machine translation. In Proc. ACL, pages
160–167.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proc. ACL, pages
311–318.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and
Kazuaki Maeda. 2009. English Gigaword fourth
edition.

Reinhard Rapp. 1995. Identifying word translations in
non-parallel texts. In Proc. ACL, pages 320–322.

Majid Razmara, Maryam Siahbani, Reza Haffari, and
Anoop Sarkar. 2013. Graph propagation for para-
phrasing out-of-vocabulary words in statistical ma-
chine translation. In Proc. ACL, pages 1105–1115.

Avneesh Saluja, Hany Hassan, Kristina Toutanova, and
Chris Quirk. 2014. Graph-based semi-supervised
learning of translation models from monolingual
data. In Proc. ACL, pages 676–686.

Tanja Schultz, Ngoc Thang Vu, and Tim Schlippe.
2013. GlobalPhone: A multilingual text & speech
database in 20 languages. In Proc. ICASSP, pages
8126–8130.

Sarah Grey Thomason and Terrence Kaufman. 2001.
Language contact. Edinburgh University Press Ed-
inburgh.

130



Yulia Tsvetkov, Chris Dyer, Lori Levin, and Archna
Bhatia. 2013. Generating English determiners in
phrase-based translation with synthetic translation
options. In Proc. WMT, pages 271–280.

Yulia Tsvetkov, Waleed Ammar, and Chris Dyer. 2015.
Constraint-based models of lexical borrowing. In
Proc. NAACL, pages 598–608.

Pidong Wang, Preslav Nakov, and Hwee Tou Ng. 2012.
Source language adaptation for resource-poor ma-
chine translation. In Proc. EMNLP, pages 286–296.

Kai Zhao, Hany Hassan, and Michael Auli. 2015.
Learning translation models from monolingual con-
tinuous representations. In Proc. NAACL.

131



Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Short Papers), pages 132–138,

Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Recurrent Neural Network based Rule Sequence Model
for Statistical Machine Translation

Heng Yu, Xuan Zhu

Samsung R&D Institute of China, Beijing, China
{h0517.yu, xuan.zhu}@samsung.com

Abstract

The inability to model long-distance depen-
dency has been handicapping SMT for years.
Specifically, the context independence as-
sumption makes it hard to capture the depen-
dency between translation rules. In this paper,
we introduce a novel recurrent neural network
based rule sequence model to incorporate arbi-
trary long contextual information during esti-
mating probabilities of rule sequences. More-
over, our model frees the translation model
from keeping huge and redundant grammars,
resulting in more efficient training and de-
coding. Experimental results show that our
method achieves a 0.9 point BLEU gain over
the baseline, and a significant reduction in rule
table size for both phrase-based and hierarchi-
cal phrase-based systems.

1 Introduction

Modeling long-distance dependency has always
been a bottleneck for statistical machine translation
(SMT). While lots of efforts have been made in solv-
ing long-distance reordering (Xiong et al., 2006;
Zens and Ney, 2006; Kumar and Byrne, 2005), long-
span n-gram matching (Charniak et al., 2003; Shen
et al., 2008; Yu et al., 2014), much less attention has
been concentrated on capturing translation rule de-
pendency, which is not explicitly modeled in most
translation systems (Wu et al., 2014).

SMT systems typically model the translation pro-
cess as a sequence of translation steps, each of which
uses a translation rule. These rules are usually ap-
plied independently of each other, which violates the
conventional wisdom that translation should be done
in context (Giménez and Màrquez, 2007). However,
it is not an easy task to capture the rule dependency,
which entails much longer context and more severe
data sparsity. There are two major solutions: the

first one is breaking the rules into bilingual word-
pairs and use a n-gram translation model to incorpo-
rate lexical dependencies that span rule boundaries
(Marino et al., 2006; Durrani et al., 2013). These n-
gram models (also known as tuple sequence model)
could help phrase-based translation models to over-
come the phrasal independence assumption, but they
rely on word alignment to extract bilingual tuples,
which brings in additional alignment error (Wu et
al., 2014). The other direction lies in utilizing the
rule Markov model (Vaswani et al., 2011; Quirk
and Menezes, 2006), which directly explores depen-
dencies in rule derivation history and achieves both
good performance and slimmer translation model in
syntax-based SMT systems. However, the sparsity
of translation rules entails aggressive pruning of the
training data and constrains the model from scaling
to high order grams, significantly limiting the ability
of the model.

In this paper we follow the second line and pro-
pose a novel recurrent neural network based rule
sequence model (RNN-RSM), which utilizes the
representational power of recurrent neural network
(RNN) to capture arbitrary distance of contextual in-
formation in estimating the probability of rule se-
quences, rather than constrained to n-gram local
context limited by Markov assumption. Compared
with previous studies, our contributions are as fol-
lows:

First, we lift the Markov assumption in rule se-
quence model and use RNN to capture arbitrary-
length of contextual information, which is proven to
be more accurate in estimating sequential probabili-
ties (Mikolov et al., 2010).

Second, to alleviate the sparsity of translation
rules, we extend our model to factorized RNN-RSM,
which incorporates both the source and target side
phrase embedding in addition to the translation rule
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history.
Lastly, we apply our model to both phrase-

based and hierarchical phrase-based (HPB) systems
and achieve an average improvement of 0.9 BLEU
points with much slimmer translation models in hy-
pergraph reranking task (Huang, 2008).

2 Rule Sequence Model

We will first brief our rule sequence model with an
example from phrase-based system (Koehn et al.,
2007). Consider the following translation from Chi-
nese to English:

Bùshı́
Bush

yǔ
with

Shālóng
Sharon

jǔxı́ng
hold

le
-ed

huı̀tán
meeting

‘Bush held a meeting with Sharon’

So one possible rule derivation of the above ex-
ample could be:

(0 ) : (s0, “”)
(•1 ) : (s1, “Bush”)

r1

(• •••6) : (s2, “Bush held talks”)
r2

(•••3•••) : (s3, “Bush held talks with Sharon”)
r3

r1: Bùshı́→ Bush
r2: jǔxı́ng le huı̀tán→ held talks
r3: yǔ Shālóng→ with Sharon

Each row is a derivation step, where sn denotes
a hypothesis with a coverage vector capturing the
source language words translated so far, and a • in
the coverage vector indicates the source word at this
position is “covered”. Each hypothesis sn−1 can
be extended into a longer hypothesis sn by a rule
rn translating an uncovered segment. Note that in
phrase-based translation we need to set a distortion
limit to prohibit long distance reordering, so the end-
ing position of last phrase is maintained (e.g., 1 and
6 in the coverage vector).

In our example, translation rules r1, r2, r3 form a
derivation T which leads to a complete translation.
So for rule sequence model, the probability of rn
depends on its derivation history H(rn):

P (rn) = P (rn|H(rn)) (1)

and the probability of a rule derivation T is

P (T ) =
∏
ri∈T

P (ri|H(ri)) (2)

Hidden layer, hn

U

W

delayed copy

hn-1 rn-1 Sn-1 tn-1

Output layer, yn

Input layer, xn

Distribution on 
source phrases

Distribution on 
classes of source phrases

Figure 1: Factorized recurrent neural network with
source and target side phrase embeddings.

So the rule sequence model does not make any con-
text independence assumption and generate a rule by
looking at a context of previous rules.

2.1 Training
The rule sequence model can then be trained on the
path set of rule derivations. To obtain golden deriva-
tions of translation rules for each sentence pair, We
follow Yu et al. (2013) to utilize force decoding to
get golden rule derivations. Specifically, we define
a new forced decoding LM which only accepts two
consecutive words (denote as p, q) in the reference
translation (yi):

Pforced (q | p) =

{
1 if ∃j, s.t. p = yj and q = yj+1

0 otherwise

For each hypothesis, we keep the bourndary words
as its signiture (only right side for phrase-based
model and both sides for HPB). If a boundary word
does not occur in the reference, its language model
score will be set to −∞; if a boundary word occurs
more than once in the reference, the hypothesis is
split into multiple hypotheses, one for each index of
occurance.

According to the definition, we can see that the
rule sequence [r1, r2, r3] in the example could pro-
duce the exact reference translation, which is ideal
for the training of rule sequence model.

3 Recurrent Neural Network based Rule
Sequence Model

In order to capture long-span context, we introduce
recurrent neural network based rule sequence model
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to estimate the probability P (rn|H(rn)). Our RNN-
RSM can potentially capture arbitrary long context
rather than n-1 previous rules limited by Markov
assumption. Following Mikolov et al. (2010), we
adopt the standard RNN architecture: the input layer
encodes previous translation rule using one-hot cod-
ing, the output layer produces a probability distribu-
tion over all translation rules, and the hidden layer
maintains a representation of rule derivation history.
However, the standard implementation has severe
data sparsity problem due to the large size of rule
table couple with the limited training data.

3.1 Factorized RNN-RSM
To solve the sparsity problem, we extend the
RNN-RSM model with factorizing rules in the
input layer, as shown in Figure 1. It con-
sists of an input layer x, a hidden layer h (state
layer), and an output layer y. The connection
weights among layers are denoted by matrixes
U and W respectively. Unlike the RNN-RSM,
which predicts probability P (rn|rn−1, H(rn−1)),
the factorized RNN-RSM predicts probability
P (rn|rn−1, H(rn−1), s̄n−1, t̄n−1) to generate fol-
lowing rule rn, where s̄n−1/t̄n−1 are the source/tar-
get side of rn−1, However, s̄n−1 and t̄n−1 are still
too sparse considering the huge vocabulary size and
the diversity in forming phrases, so here we use re-
cursive auto-encoder (Socher et al., 2011; Li et al.,
2013) to learn phrase embeddings on both source
and target side in an unsupervised mannner, mini-
mizing the reconstruction error.

For those rules that are not contained in the train-
ing data, the factorized RNN-RSM backs off to the
source/target side embedding Esi−1 /Eti−1 . In the
special case that Esi−1 and Eti−1 are dropped, the
factorized RNN-RSM goes back to RNN-RSM. Fi-
nally, the input layer xn is formed by concatenating
the input vectors and hidden layer hn−1 at the pre-
ceding time step, as shown in the following equa-
tion.

xn = [vu
n−1, v

s̄
n−1, v

t̄
n−1, hn−1] (3)

The neurons in the hidden and output layers are
computed as follows:

hn = f(U× xn), yn = g(w× hn) (4)

f(z) =
1

1 + e−z
, g(z) =

ezm∑
k e

zk
(5)

3.2 Factorized RNN-RSM on source and target
phrases

The above factorized RNN-RSM is conditioned on
the previous context during computing the probabil-
ity of rule rn. Since rn may still suffer from sparsity,
we further factorize rn into its source side phrase s̄n

and target side phrase t̄n. So the probability formula
could be rewrite as:

P (rn|H(rn)) = P (sn, tn|H(rn))
= P (sn|H(rn))× P (tn|sn, H(rn)) (6)

The first sub-model P (sn, |H(rn)) computes the
probability distribution over source phrases. Then
the second sub-model P (tn|sn, H(rn)) computes
the probability distribution over tn that are trans-
lated from sn. The two sub-models are computed
with the similar recurrent network shown in Figure
1 except adding the source side information sn of
the current rule rn into the input layer. This method
share the same spirit with the RNN-based translation
model (Sundermeyer et al., 2014; Cho et al., 2014),
except that we focus on capturing rule dependencies
which has a much small search space. Noted that
this new factorize model provides richer information
for prediction, and actually is faster to train since the
vocabulary of source/target phrases are much small
than that of the translation rules.

4 Experiments

4.1 Setup
The training corpus consists of 1M sentence pairs
with 25M/21M words of Chinese/English respec-
tively. Our development and test set are NIST 2006
and 2008 (newswire portion) respectively.

We obtained alignments by running GIZA++
(Och and Ney, 2004) and used the SRILM toolkit
(Stolcke, 2002) to train a 4-gram language model
with KN-smoothing on the English side of the train-
ing data. Case-insensitive BLEU (Papineni et al.,
2002) and MERT (Och, 2003) were used for evalua-
tion and tuning.

We test our method on both phrase-based and
hierarchical phrase-based translation models. For
phrase-based system, we use Moses with standard
features (Koehn et al., 2007). While for hierarchical
phrase-based model, we use a in-house implemen-
tation of Hiero (Chiang, 2005). We set phrase-limit
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System
Moses Hiero

dev-set test-set dev-set test-set
Baseline 28.4 27.7 30.4 30.0
+RMM 28.7 28.3 30.7 30.2
+fRNN-RSM (1) 28.9 28.6 30.9 30.6
+fRNN-RSMst (2) 29.3 28.5 31.2 30.7
+(1)+(2) 29.6 28.7 31.4 30.8

Table 1: Main results. RMM is the re-implementation of Vaswani et al. (2011), fRNN-RSM denotes for factorized
RNN-RSM describe in Section 3.1, fRNN-RSMst denotes for RNN-RSM factorized by source/target side in Section
3.2. Results in bold mean that the improvements over “Baseline” are statistically significant (p < 0.05) (Koehn, 2004).

to 5 for the extraction of both phrase-based rule and
SCFG rule, as well as beam size to 100 and distor-
tion limit to 7 in decoding.

Since the rule sequence model belongs to the fam-
ily of non-local feature (Huang, 2008), traditional
testing methods like nbest reranking are not suit-
able for our experiments. So we adopt hypergraph
reranking (Huang and Chiang, 2007; Huang, 2008),
which proves to be effective for integrating nonlo-
cal features into dynamic programming. The de-
coding process is divided into two passes. In the
first pass, only standard features (i.e., standard fea-
tures for phrase-based or HPB model) are used to
produce a hypergraph. In the second pass, we use
the hypergraph reranking algorithm (Huang, 2008)
to find promising translations using additional rule
sequence feature.

For RNN training, we set the hidden layer size
to 512 and classes in the output layer to 256. To
obtain phrase-embedding, we use open source tool
str2vec1 (Li et al., 2013) to train two autoencoders
on the source and target side of rule-table respec-
tively.

4.2 Results

Table 1 presents the main results of our paper. To
show the merits of our RNN-RSM, we also re-
implement Vaswani et al. (2011)’s work, denote as
rule Markov model (RMM). It utilize tri-gram rule
derivation history for prediction, whereas our RNN-
RSM could capture arbitrary length of contextual in-
formation. We can see that RMM provides a mod-
est improvement over the baseline, 0.6/0.2 points
over Moses/Hiero, thanks to the positive guidance

1https://github.com/pengli09/str2vec

System
w/o monotone Full
Moses Hiero Moses Hiero

Baseline 27.4 29.8 27.7 30.0
+RMM 27.6 29.9 28.3 30.2
+fRNN-RSM 28.0 30.4 28.6 30.6
+fRNN-RSMst 28.2 30.6 28.5 30.7

Table 2: BLEU score comparison on different rule-set,
“w/o monotone” denotes we filter out monotone com-
posed rules in both rule table and our RNN-RSM, full
denotes we use the total rule-set.

of short-span rule dependency. On the other hand,
our factorized RNN-RSM with phrase embeddings
(fRNN-RSM) provides a more significant BLEU
score improvement (0.9 for Moses, 0.6 for Hiero),
which exemplifies that the long-span rule depen-
dency captured by RNN could provides additional
boost in translation quality. At the same time, fac-
torized RNN-RSM on source and target phrases
(fRNN-RSMst) alleviate the data sparse problem
in RNN training, resulting in slightly better per-
formance. Finally, when we combine both factor-
ized model, we get the best performance at 28.7 for
Moses and 30.8 for Hiero, both significantly better
than baseline systems.

Also, we conduct an interesting experiment to see
if our fRNN-RSM could somehow replace the role
of composed rules (rules that can be formed out of
smaller rules in the grammar) and guides more fine-
grained rule-set to produce better translation results.
We re-implement He et al. (2009)’s work to filter
out monotone composed rules for both Hiero and
Moses. We are able to filter out a large number of
monotone composed rules, about 50% rules for Hi-
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ero and 31% for Moses. The results are shown in
Table 2. Interestingly the performance of slimmer
translation model with fRNN-RSM exceeds baseline
with full rule-table, and catches up with the orig-
inal fRNN-RSM. The reason is two-folded: first,
deleting monotone composed rules doesn’t effect
the overall coverage of the rule-set, making limited
harm to the system. Second, with less rules, the data
sparse problem of RNN training is further alleviated,
resulting in a better fRNN-RSM for probability pre-
diction.

5 Related Work

Besides the work of Vaswani et al. (2011) discussed
in Section 1, there are several other works using a
rule bigram or trigram model in machine translation,
Ding and Palmer (2005) use n-gram rule Markov
model in the dependency treelet model, Liu and
Gildea (2008) applies the same method in a tree-to-
string model. Our work is different from theirs in
that we lift the Markov assumption and use recur-
rent neural network to capture much longer contex-
tual information to help probability prediction.

Our work is also in the same spirit with tuple se-
quence models (Marino et al., 2006; Durrani et al.,
2013; Hui Zhang, 2013; Wu et al., 2014), which
break the translation sequence into bilingual tuples
and use a Markov model to capture the dependency
of tuples. Comparing to them, we take a more di-
rect approach to use translation rule dependency to
guide translation process, rather than rely on tuples
which will be significant affected by word alignment
errors.

Outside of machine translation, the idea of weak-
ening independence assumption by modeling the
derivation history is also found in parsing (Johnson,
1998), where rule probabilities are conditioned on
parent and grand-parent nonterminals. Inspired by
it, we successfully find a solution for the translation
field.

6 Conclusion

In this paper, we have presented a novel recurrent
neural network based rule sequence model to esti-
mate the probability of translation rule sequences.
One of the major advantages of our model is its po-
tential to capture long-span dependency compared

with n-gram Markov models. In addition, our factor-
ized model with phrase embedding could further al-
leviate the data sparse problem in RNN training. Fi-
nally we conduct experiments on both phrase-based
and hierarchical phrase-based models and get an av-
erage improvement of 0.9 BLEU points over the
baseline. In the future we will investigate stronger
network structure such as LSTM to further improve
the prediction power of our model.
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Abstract

This paper explores a simple discrimina-
tive preordering model for statistical ma-
chine translation. Our model traverses
binary constituent trees, and classifies
whether children of each node should be
reordered. The model itself is not ex-
tremely novel, but herein we introduce a
new procedure to determine oracle labels
so as to maximize Kendall’s τ . Exper-
iments in Japanese-to-English translation
revealed that our simple method is compa-
rable with, or superior to, state-of-the-art
methods in translation accuracy.

1 Introduction

Current statistical machine translation systems
suffer from major accuracy degradation in distant
languages, primarily because they utilize excep-
tionally dissimilar word orders. One promising
solution to this problem is preordering, in which
source sentences are reordered to resemble the
target language word orders, after which statis-
tical machine translation is applied to reordered
sentences (Xia and McCord, 2004; Collins et al.,
2005). This is particularly effective for distant lan-
guage pairs such as English and Japanese (Isozaki
et al., 2010b).

Among such preordering, one of the simplest
and straightforward model is a discriminative pre-
ordering model (Li et al., 2007), which classifies
whether children of each constituent node should
be reordered, given binary trees.1 This simple
model has, however, difficulty to find oracle la-
bels. Yang et al. (2012) proposed a method to ap-
proximate oracle labels along dependency trees.

The present paper proposes a new procedure to
find oracle labels. The main idea is simple: we

1It is also possible to use n-ary trees (Li et al., 2007; Yang
et al., 2012), but we keep this binary model for simplicity.
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Figure 1: Discriminative preordering model.

determine reordering decisions in a way that max-
imizes Kendall’s τ of word alignments. We prove
that our procedure guarantees the optimal solution
for word alignments given as an integer list; in a
way that local decisions on each node reach global
maximization of Kendall’s τ in total. Any reorder-
ing methods that utilize word alignments along
constituency benefit from this proof.

Empirical study in Japanese-to-English trans-
lation demonstrate that our simple method out-
performs a rule-based preordering method, and is
comparable with, or superior to, state-of-the-art
methods that rely on language-specific heuristics.

Our contributions are summarized as follows:

• We define a method for obtaining oracle la-
bels in discriminative preordering as the max-
imization of Kendall’s τ .

• We give a theoretical background to
Kendall’s τ based reordering for binary
constituent trees.

• We achieve state-of-the-art accuracy in
Japanese-to-English translation with a simple
method without language-specific heuristics.
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2 Preordering Method

2.1 Discriminative Preordering Model

The discriminative preordering model (Li et al.,
2007) is a reordering model that determines
whether children of each node should be re-
ordered, given a binary constituent tree. For a sen-
tence with n words, a node in a binary constituent
tree is expressed as v(i, p, j), where 1 ≤ i ≤ p <
p + 1 ≤ j ≤ n. This indicates that the node
takes the left span from i-th to p-th words and the
right span from (p + 1)-th to j-th words. Then
we define whether a node should be reordered as
P (x | θ(v(i, p, j))), where x ∈ {W,M}. W rep-
resents a reverse action (reorder the child nodes),
M represents a monotonic action (do not reorder
the child nodes), and θ is a feature function that is
described at Section 2.4.

For instance, Figure 1 shows a sentence (n = 4)
that has three binary nodes S, VP, and NP, which
are our reordering candidates. We examine the NP
node v(3, 3, 4) that has a left (binary3) and a right
(classification4) spans, of which reordering is
determined by P (x | θ(v(3, 3, 4))), and is clas-
sified x = M in this example. The actions for the
VP node v(2, 2, 4) and the S root node v(1, 1, 4)
are determined in a similar fashion.

Once all classifications are finished, the chil-
dren of the nodes with W are reversed. From the
constituent tree in Figure 1, this reordering pro-
duces a new tree in Figure 2 that represents a re-
ordered sentence Reordering binary classification
is, which is used in statistical machine translation.

2.2 Oracle Labels Maximizing Kendall’s τ

In order to train such a classifier, we need an ora-
cle label, W or M , for each node. Since we can-
not rely on manual label annotation, we define a
procedure to obtain oracle labels from word align-
ments. The principal idea is that we determine an
oracle label of each node v(i, p, j) so that it max-
imizes Kendall’s τ under v(i, p, j). This is intu-
itively a straightforward idea, because our objec-
tive is to find a monotonic order, which indicates
maximization of Kendall’s τ .

In the context of statistical machine translation,
Kendall’s τ is used as an evaluation metric for
monotonicity of word orderings (Birch and Os-
borne, 2010; Isozaki et al., 2010a; Talbot et al.,
2011). Given an integer list x = x1, . . . , xn, τ(x)
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NN
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Figure 2: Output of discriminative preordering.

measures a similarity between x and sorted x as:

τ(x) =
4c(x)

n(n − 1)
− 1,

where c(x) is the number of concordant pairs be-
tween x and sorted x, which is defined as:

c(x) =
∑

i,j∈[1,n],i<j

δ(xi < xj),

where δ(xi < xj) = 1 if xi < xj , and 0 oth-
erwise. The τ function expresses that x is com-
pletely monotonic when τ(x) = 1, and in contrast,
x is completely reversed when τ(x) = −1. Since
τ(x) is proportional to c(x), only c(x) is consid-
ered in the course of our maximization.

Suppose that word alignments are given in the
form a = a1, . . . , an, where ax = y indicates that
the x-th word in a source sentence corresponds to
the y-th word in a target sentence.2 We also as-
sume that a binary constituent tree is given, and
alignment for the span (i, j) is denoted as a(i, j).
For each node v(i, p, j), we define the score as:

s(v(i, p, j)) = c(a(i, p) · a(p + 1, j))
−c(a(p + 1, j) · a(i, p)),

where · indicates a concatenation of vectors. Then,
a node that has s(v(i, p, j)) < 0 is assigned W ,
and a node that has s(v(i, p, j)) > 0 is assigned
M . All the nodes scored as s = 0 are excluded
from the training data, because they are noisy and
ambiguous in terms of binary classification.

2.3 Proof of Independency over Constituency
The question then arises: Can oracle labels
achieve the best reordering in total? We see this

2We used median values to approximate this y-th word in
the target sentence for simplicity.
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ti:p, tp+1:j , wi:p, wp+1:j , σ(v(i, p, j)),
ti:p ◦ tp+1:j , wi:p ◦ wp+1:j , σr(v(i, p, j)),
ti:p ◦ tp+1:j ◦ wi:p ◦ wp+1:j , σt(v(i, p, j)),

tl:p, tp+1:r, wl:p, wp+1:r, σw(v(i, p, j))
tl:p ◦ tp+1:r, wl:p ◦ wp+1:r,
tl:p ◦ tp+1:r ◦ wl:p ◦ wp+1:r

Table 1: Templates for the node v(i, p, j): where
integers l and r satisfy i ≤ l ≤ p < p+1 ≤ r ≤ j.

Template Instance Template Instance
t2:2 VBZ w2:2 is
t3:4 JJ NN w3:4 binary classification
t3:3 JJ w3:3 binary

Template Instance
σ(v(2, 2, 4)) (VP(VBZis)(NP(JJbinary)(NNclassification)))
σr(v(2, 2, 4)) VP VBZ NP JJ NN VP VBZ VP NP NP JJ NP NN
σt(v(2, 2, 4)) (VP(VBZ)(NP(JJ)(NN)))
σw(v(2, 2, 4)) ((is)((binary)(classification)))

Table 2: Examples in v(2, 2, 4) from Figure 1.

Proposed Accuracy Previous Accuracy

Full 90.91 Li et al. (2007) 84.43
w/o the first set 87.50
w/o σ(v(i, p, j)) 90.76
w/o σr(v(i, p, j)) 90.85
w/o σt(v(i, p, j)) 90.90
w/o σw(v(i, p, j)) 90.88

Table 3: Ablation tests on binary classification ac-
curacy (%).

is true, because c(a(i, j)) can be computed in a re-
cursive manner. See c(a(i, j)) is decomposed as:

c(a(i, j)) = c(a(i, p)) + c(a(p + 1, j))
+

∑
k∈[i,p],l∈[p+1,j]

δ(ak < al).

The three terms in this formula are mutually inde-
pendent. That is, any reordering of a(i, p) changes
only the first term and the others are unchanged.
We maximize c(a(i, j)) by maximizing each term.
Since the first and the second terms are maxi-
mized recursively, our method directly maximizes
the third term, which corresponds to our oracle la-
bels, hence c(a) and τ(a) of entire sentence.3

Essentially, our decisions on each node are
equivalent to sorting a list consists of left and right
points, while the order of the points inside of left
and right lists are left untouched. We determine or-
acle labels for a given constituent tree by comput-
ing s(v(i, p, j)) for every v(i, p, j) independently.

3Oracle labels guarantee τ(a) ≥ 0, but not τ(a) = 1,
because parsed trees will not correspond to word alignments.

test9 test10
Settings DL RIBES BLEU RIBES BLEU

Baseline w/o preordering
Moses 0 66.95 26.36 67.50 27.17
Moses 10 68.95 29.41 69.64 30.20
Moses 20 69.88 30.12 70.22 30.51

Proposed preordering
Giza 0 77.49 33.08 77.49 33.65
Giza 10 77.44 33.28 77.42 33.77
Nile 0 77.74 32.97 77.89 33.91
Nile 10 77.97 33.55 78.07 34.13

Table 4: Results in Japanese-to-English transla-
tion. Boldfaces denote the highest scores and the
insignificant difference (p < 0.01) from the high-
est scores in bootstrap resampling (Koehn, 2004).

2.4 Features

Table 1 shows the templates for the node v(i, p, j)
of the feature function θ in Section 2.1. To tell the
differences between the left span a(i, p) and the
right span a(p + 1, j), such as whether the head
word of the node is in left or right, the first set
of templates considers individual indices x:y that
denote the span from x-th to y-th words: where
tx represents a part-of-speech feature; wx repre-
sents a lexical feature; and ◦ represents feature
combination. The second set of templates consid-
ers constituent structures of the node by supply-
ing three S-expressions and parent-child relations:
where σ(v(i, p, j)) represents a constituent struc-
ture under the node v(i, p, j); σr(v(i, p, j)) rep-
resents part-of-speech tags of the node and their
parent-child relations; σt(v(i, p, j)) represents the
constituent structure including only part-of-speech
tags; and σw(v(i, p, j)) represents the constituent
structure including only surface words.

Table 2 shows instances of features for the VP
node v(2, 2, 4) in Figure 1, which has the left (is2)
and the right (binary3 classification4) spans.

Table 3 shows ablation test results on binary
classification, which indicate that our templates
performed better than that of Li et al. (2007).

3 Experiment

3.1 Experimental Settings

We perform experiments over the NTCIR patent
corpus (Goto et al., 2011) that consists of more
than 3 million sentences in English and Japanese.
Following conventional literature settings (Goto et
al., 2012; Hayashi et al., 2013), we used all 3
million sentences from the NTCIR-7 and NTCIR-
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test9 test10
Reordering Methods DL RIBES ∆ BLEU ∆ RIBES ∆ BLEU ∆

Moses 20 69.88 30.12 70.22 30.51
Proposed preordering 10 77.97 +8.09 33.55 +3.43 78.07 +7.85 34.13 +3.62

Moses (Hoshino et al., 2013) 20 68.08 27.57
Preordering (Hoshino et al., 2013) 10 72.37 +4.29 30.56 +2.99
Moses (Goto et al., 2012) 20 68.28 30.20
Moses-chart (Goto et al., 2012) 70.64 +2.36 30.69 +0.49
Postordering (Goto et al., 2012) 75.48 +7.20 33.04 +2.84
Moses (Hayashi et al., 2013) 20 69.31 29.43 68.90 29.99
Postordering (Hayashi et al., 2013) 0 76.46 +7.15 32.59 +3.16 76.76 +7.86 33.14 +3.15

Table 5: Comparison with previous systems in Japanese-to-English translation, of which scores are
retrieved from their papers. Boldfaces indicate the highest scores and differences.

8 training sets, used the first 1000 sentences in
NTCIR-8 development set, and then fetched both
the NTCIR-9 and NTCIR-10 testing sets. The ma-
chine translation experiments pipelined Moses 3
(Koehn et al., 2007) with lexicalized reordering,
SRILM 1.7.0 (Stolcke et al., 2011) in 6-gram or-
der, MGIZA (Gao and Vogel, 2008), and RIBES
(Isozaki et al., 2010a) and BLEU (Papineni et al.,
2002) for evaluation. Binary constituent parsing
in Japanese used Haruniwa (Fang et al., 2014),
Berkeley parser 1.7 (Petrov and Klein, 2007), Co-
mainu 0.7.0 (Kozawa et al., 2014), MeCab 0.996
(Kudo et al., 2004), and Unidic 2.1.2.

We explore two types of word alignment data
for training our preordering model. The first
data (Giza) is created by running an unsuper-
vised aligner Giza (Och and Ney, 2003) on the
training data (3 million sentences). The second
data (Nile) is developed by training a supervised
aligner Nile (Riesa et al., 2011) with manually an-
notated 8,000 sentences, then applied the trained
alignment model to remaining training data. In
the evaluation on manually annotated 1,000 sen-
tences4, Giza achieved F1 50.1 score, while Nile
achieved F1 86.9 score, for word alignment task.

3.2 Result

Table 4 shows the performance of our method,
which indicates that our preordering significantly
improved translation accuracy in both RIBES and
BLEU scores, from the baseline result attained
by Moses without preordering. In particular, the
preordering model trained with the Giza data re-
vealed a substantial improvement, while the use
of the Nile data further improves accuracy. This
suggests that our method is particularly effective
when high-accuracy word alignments are given. In

4This testing data is excluded from latter experiments.

addition, we achieved modest improvements even
with DL=0 (no distortion allowed), which indi-
cates the monotonicity of our reordered sentences.

Table 5 shows a comparison of the proposed
method with a rule-based preordering method
(Hoshino et al., 2013) and two postordering meth-
ods (Goto et al., 2012; Hayashi et al., 2013).5 One
complication is that each work reports different
baseline accuracy, although Moses is shared as a
baseline, because these systems differ in various
settings in data preprocessing, tokenization crite-
ria, etc. Since this makes a fair comparison diffi-
cult, we additionally put a score difference (∆) of
each system from its own baseline.

Our proposed method showed translation ac-
curacy comparable with, or superior to, state-of-
the-art methods. This highlights the importance
of Kendall’s τ maximization in the simple dis-
criminative preordering model. In contrast to a
substantial gain in RIBES, we attained a rather
comparable gain in BLEU. The investigation of
our translation suggests that insufficient genera-
tion of English articles caused a significant degra-
dation in the BLEU score. Previous systems listed
in Table 5 incorporated article generation and
demonstrated its positive effect (Goto et al., 2012;
Hayashi et al., 2013). While we achieved state-of-
the-art accuracy without language-specific tech-
niques, it is also a promising direction to integrate
our preordering method with language-specific
techniques such as article generation and subject
generation (Kudo et al., 2014).

5We could not find a comparable report using tree-based
machine translation systems apart from Moses-chart; never-
theless, Neubig and Duh (2014) reported that their forest-
to-string system on the same corpus, which is unfortunately
evaluated on the different testing data (test7), showed RIBES
+6.19 (75.94) and BLEU +2.93 (33.70) improvements. Al-
though not directly comparable, our method achieves a com-
parable or superior improvement.
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4 Related Work

Li et al. (2007) proposed a simple discriminative
preordering model as described in Section 2.1.
They employed heuristics that utilize Giza to align
their training sentences, then sort source words to
resemble target word indices. After that, sorted
source sentences without overlaps are used to train
the model. They gained BLEU +1.54 improve-
ment in Chinese-to-English evaluation. Our pro-
posal follows their model, while we do not rely on
their heuristics for preparing training data.

Lerner and Petrov (2013) proposed another
discriminative preordering model along depen-
dency trees, which classifies whether the parent
of each node should be the head in target lan-
guage. They reported BLEU +3.7 improvement
in English-to-Japanese translation. Hoshino et al.
(2013) proposed a similar but rule-based method
for Japanese-to-English dependency preordering.

Yang et al. (2012) proposed a method to pro-
duce oracle reordering in the discriminative pre-
ordering model along dependency trees. Their
idea behind is to minimize word alignment cross-
ing recursively, which is essentially the same re-
ordering objective as our Kendall’s τ maximiza-
tion. Since they targeted complex n-ary depen-
dency instead of simple binary trees, their method
only calculates approximated oracle reordering in
practice by ranking principle. We did not take
n-ary trees into consideration to follow the sim-
ple discriminative preordering model along con-
stituency, while the use of binary trees enabled us
to produce strict oracle reordering as a side effect.

Another research direction called postordering
(Sudoh et al., 2011; Goto et al., 2012; Hayashi
et al., 2013) has been explored in Japanese-to-
English translation. They first translate Japanese
input into head final English texts obtained by the
method of Isozaki et al. (2010b), then reorder head
final English texts into English word orders.

5 Conclusion

We proposed a simple procedure to train a discrim-
inative preordering model. The main idea is to
obtain oracle labels for each node by maximizing
Kendall’s τ of word alignments. Experiments in
Japanese-to-English translation demonstrated that
our procedure, without language-specific heuris-
tics, achieved state-of-the-art translation accuracy.
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Abstract

A lightweight, human-in-the-loop evalua-
tion scheme for machine translation (MT)
systems is proposed. It extrinsically eval-
uates MT systems using human subjects’
scores on second language ability test
problems that are machine-translated to
the subjects’ native language. A large-
scale experiment involving 320 subjects
revealed that the context-unawareness of
the current MT systems severely damages
human performance when solving the test
problems, while one of the evaluated MT
systems performed as good as a human
translation produced in a context-unaware
condition. An analysis of the experimental
results showed that the extrinsic evaluation
captured a different dimension of transla-
tion quality than that captured by manual
and automatic intrinsic evaluation.

1 Introduction

Automatic evaluation metrics, such as the BLEU
score (Papineni et al., 2002), were crucial ingredi-
ents for the advances of machine translation tech-
nology in the last decade. Meanwhile, the short-
comings of BLEU and similar n-gram proximity-
based metrics have been pointed out by many au-
thors including Callison-Burch et al. (2006). The
main criticisms include: 1) unreliability in evalu-
ating short translations, 2) non-interpretability of
the scores beyond numerical comparison, and 3)
bias towards statistical MT systems.

Manual evaluation of translation quality is more
reliable in many regards, but it is costly. Further-
more, it is not necessarily easy toanalyzethe char-
acteristics of MT systems based solely on the eval-
uation results such as a 5-point scale evaluation of
adequacy/fluency and a ranking of the outputs of
different systems.

A remedy for some of the above-raised issues is
task-based evaluation of MT systems (Jones et al.,
2005; Voss and Tate, 2006; Laoudi et al., 2006;
Jones et al., 2007; Schneider et al., 2010; Berka
et al., 2011), which measures the human perfor-
mance in a task such as information extraction
from a machine-translated text. The main bur-
den of conducting task-based evaluation is also its
cost; the development of a sizable amount of test
materials and the gathering of appropriate human
subjects is time consuming and expensive.

This paper proposes to utilize second-language
proficiency tests (SLPTs), such as TOEIC, as the
source of the specimens for extrinsic evaluation
of MT systems. For evaluating, e.g., English-to-
Japanese MT systems, a set of English test prob-
lems is translated by the systems and the trans-
lation qualities are evaluated by the test scores
achieved by native Japanese speakers on the trans-
lated problems.

In many languages, a large collection of SLPT
problems is available. More than 130 standard-
ized tests for 32 languages are listed in the English
Wikipedia page for ‘List of language proficiency
tests’ as of April 30, 2015. They are carefully
designed to evaluate various aspects of language
ability with objective criteria. We can thus obtain
an easy-to-use test set that focuses on a certain as-
pect of MT system performance by appropriately
choosing the problem types and levels. Moreover,
SLPTs are primarily designed to assess the test-
takers’ language ability but not their general intel-
ligence. Hence, as evidenced later in the paper, the
proposed scheme is expected to be robust against
the heterogeneity of the subjects, as long as they
are native speakers of the target language. This is
a desirable property for conducting a large-scale
experiment, possibly with crowdsourcing.

In the current paper, we utilize a typical for-
mat of multiple-choice dialogue completion prob-
lems (Figure 1). The subjects are given a machine-
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INSTRUCTION
Choose the most suitable utterance for the blank in the
following dialogue from choices 1, 2, 3, and 4.

DIALOGUE
A: Hello. Can I help you?
B: Yes. [BLANK ]
A: I’m sorry, I can’t find that name on the reservation list.
B: Oh, really? Then give me a new reservation, please.

OPTIONS
1. I’d like to make a reservation for Flight 502.
2. I have a reservation under the name Hashimoto.
3. I’m sure you can find my name on the list.
4. I wonder if you could tell me how to make a reservation.

Figure 1: Example of multiple-choice dialogue
completion problem

translated conversation and asked to choose an ap-
propriate utterance from several options, which
are also machine-translated, to fill in a blank in
the conversation.

We evaluated four translation methods in the ex-
periment including both machine-translation and
manual-translation. The extrinsic evaluation re-
vealed that one of the MT systems is comparable
to the human translation produced by randomly
presenting the individual sentences to the trans-
lator without any context, but the translation pro-
duced by the best MT system is still far worse than
that produced by a human translator working on
the entire dialogue at once. Furthermore, we ex-
amined the relations between the extrinsic metric
based on the subjects’ scores and various intrin-
sic metrics including automatic scores such as the
BLEU score and manual evaluation. The test ma-
terial is available on request for research purposes.

2 Method

2.1 Overview of Experiment

We extrinsically evaluated four different transla-
tions of the same material, namely multiple-choice
dialogue completion problems taken from second
language ability tests. The original problems were
in English, and we translated them into Japanese.
Two of the translations were produced by MT sys-
tems, and the other two were produced by a hu-
man translator with and without considering the
contexts of the individual sentences in the dia-
logues. The human subjects solved the translated
problems without knowing whether a machine or
a human produced them. Finally, the translation
quality was evaluated based on the rate of correct
answers given by the human subjects.

2.2 Participants

The subjects of the experiment included 320
Japanese junior high school students (12-15 years
old) from two schools (schools A and B). The
participants from school A consisted of 80 first-
year students, 80 second-year students, and 78
third-year students. All the students from school
B (82 students) were first-year students. Thus,
the participants had varying levels of English and
scholastic abilities. We will examine the effect of
these factors on the experimental results later in
the paper.

2.3 Materials

All the problems used in the experiment consisted
of a short conversation between two people, where
part of an utterance is hidden. The subject was
presented with four options and asked to complete
the dialogue with the most appropriate one.

We randomly extracted 40 English dialogue
completion problems from mock National Center
Test for University Admissions conducted by one
of the largest preparatory schools in Japan. In the
extracted problems, the number of utterances in
one dialogue ranged from two to four, with each
utterance consisting of one to three sentences, and
an option including one or two sentences. All 40
problems contained 327 sentences.

2.4 Translation Systems

The English dialogue completion problems were
translated by four methods:1

G: Automatic translation by Google Translate2

Y : Automatic translation by Yahoo Translate3

HS : Human translation produced by providing in-
dividual sentences from the problems to a
translator in random order

HO: Human translation produced by a translator
working on the entire dialogue at once

The subscripts ofHS and HO stand for the
translations of the sentences in “shuffled order”
and “original order”, respectively. The translations
by HS were created by first preparing a file con-
taining all the sentences from the 40 problems in
a randomized order and then asking a translator
to translate the file sentence-by-sentence, without
assuming any specific context.HS thus provides

1The two MT results were produced on June 11th, 2014.
2https://translate.google.co.jp/?hl=ja
3http://honyaku.yahoo.co.jp/
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an estimate of the performance upper-bound of the
current MT systems since most current systems
translate each sentence individually.

We asked three native Japanese speakers who
are fluent in English to first produce the sentence-
by-sentence translations by methodHS and then
translate all the dialogue problems in the normal
way (i.e., byHO). We randomly chose one of the
translators and used his translations as the test ma-
terial that the subjects solved. The other human
translations were used as the reference translations
for the automatic evaluation.

2.5 Procedure

Each subject was given 12 different problems that
consisted of an equal number (3) of translated
problems produced by the four translation meth-
ods. Although the sets of problems were different
among the subjects, they were designed such that
the number of subjects who solve each translated
problem was roughly the same. Each subject was
given 12 sheets of paper, each of which showed
a problem and its answer choices, and was given
one minute to complete each problem.

2.6 Extrinsic Evaluation Metric

The translation systems were evaluated by the av-
erage of the rate of correct answers made on the
translated problems. LetP = {pi} be the set of
original problems andM(p) be the translation of
problemp produced by methodM . The correct
answer rate (CAR) onM(p) is defined as:

CARM (p) =
# of subjects that correctly answeredM(p)

# of subjects who solvedM(p)
.

The extrinsic evaluation score of translation
methodM is the average of CAR overP :

Avg-CARM =
1
|P |

∑
p∈P

CARM (p).

2.7 Intrinsic Evaluations

Automatic Evaluation Metrics We also evalu-
ated the translation quality using BLEU, BLEU+1
(Lin and Och, 2004), RIBES (Isozaki et al., 2010),
and TER (Snover et al., 2006). We prepared two
sorts of reference translations: RefS and RefO.
RefS consisted of two manual translations of the
40 problems produced by methodHS . RefO con-
sisted of three manual translations produced in the
normal way, i.e., byHO.

H
O
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Y

G

0.0 0.2 0.4 0.6 0.8 1.0
Correct Answer Rate

Sy
ste
m
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Figure 2: Boxplots of Correct Answer Rates for
40 Problems

Human Evaluation Five native Japanese speak-
ers ranked the translations by the four systems for
each of the 40 problems. They were shown the
translations of a problem by the four methods with
its source problem in English and asked to give a
relative ranking among them, such as “G < Y <
HS = HO.” This method was adapted from the
manual evaluation conducted in the recent WMT
workshops (Callison-Burch et al., 2010). The rel-
ative ranking was broken down into six (= 4C2)
binary relations. For each relation “A > B” found
in the broken-down relations, one point was added
to system A. The final ranking among the systems
for a problem was determined by the total points.

3 Results and Discussion

3.1 Preliminary Analysis: Robustness against
the Heterogeneity of the Human Subjects

We divided the participants from school A into
three groups according to grade level, and then ex-
amined the differences in the rate of correct an-
swers for each problem among each group. We
also compared the correct answer rates between
the participants in the 1st grade at schools A and
B. The two-way analysis of variance (ANOVA) re-
vealed that the grades and schools had no signifi-
cant effect on the correct answer rate for 38 out of
the 40 problems (p > 0.05). The results showed
that the participants’ grade levels and scholastic
abilities (including English ability) did not affect
the test results.

3.2 System-level Evaluation

We first present the system-level evaluation results
for the four translation methods. Figure 2 shows
the min/max and the quartiles of the correct an-
swer rates (CARs) for the 40 problems translated
by each system. The averages of the correct an-
swer rates are 0.524, 0.696, 0.693, and 0.875 for
each translation systemG, Y , HS , andHO, re-
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Reference Metrics G Y HS HO

RefO

BLEU 22.04 20.33 40.30 47.43
BLEU+1 22.08 20.37 40.33 47.46
RIBES 67.80 69.43 78.16 82.42
TER 41.72 43.66 27.47 24.14

RefS

BLEU 27.53 23.63 41.24 30.69
BLEU+1 27.56 23.67 41.27 30.73
RIBES 73.61 73.63 80.18 70.59
TER 36.51 39.52 27.60 31.51

Avg-CAR 0.524 0.696 0.693 0.875

Table 1: Automatic Evaluation Scores and Aver-
age Correct Answer Rate

spectively. We conducted a pairwise t-test on each
adjacent set (G-Y , Y -HS , andHS-HO) for the
CARs and found a statistically significant differ-
ence (p < 0.05) betweenG andY andHS and
HO but not betweenY andHS (p = 0.954).

Table 1 lists the five automatic evaluation scores
for each translation method measured against the
two reference translation sets. The averages of the
CARs over the 40 problems are also listed in the
bottom row of the table. There are several notice-
able facts. First, despite the significantly better av-
erage CAR forY over G, BLEU, BLEU+1, and
TER preferG to Y . Second, while the average
CARs for Y andHS are almost equal, there are
large differences between their automatic evalua-
tion scores across all metrics. Third, a comparison
of the corresponding automatic evaluation scores
using RefS and RefO reveals thatG, Y , andHS

are more similar to the manual translations that
were produced without referring to the contexts of
the individual sentences than those produced tak-
ing the contexts into consideration. This is not
surprising. However, the large difference in the
correct answer rates forHS andHO suggests that
ignorance of the context in the current MT sys-
tems severely degrades the comprehensibility of
the translations of texts like daily conversations.

3.3 Agreement between Intrinsic and
Extrinsic Evaluation Metrics

We examined how often an intrinsic metric cor-
rectly predicts the difference of the subjects’ test
performance on a problem. Specifically, for two
translation methodsA andB, we say an intrinsic
metricM agrees with the CAR by the subjects on
problempi iff metric M scores A’s translation of
pi (= A(pi)) better than B’s translation (=B(pi))
and the CAR is higher onA(pi) than onB(pi).
The rate of agreements is the fraction of the prob-
lems on whichM and CAR agree. The agreement

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

BLEU BLEU+1 RIBES TER Human 

G-Y Y-Hs Hs-Ho 

Figure 3: Agreement Rates between Intrinsic
Evaluation Metrics and Correct Answer Rate
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Figure 4: Agreement Rates between Automatic
Evaluation Metrics and Human Evaluation

between two intrinsic metrics is defined similarly.
Figure 3 shows the rates of agreements between

the automatic metrics and CARs and between the
human evaluation and CARs. As Figure 3 shows,
all the agreement rates between the automatic met-
rics and CARs were less than 0.65. When consid-
ering a random baseline of 0.5, we may conclude
that the automatic metrics are not very good pre-
dictors of the CARs. This is unfortunate since the
CARs directly indicate the comprehensibility of
the translated dialogues. The disagreements can-
not be attributed only to the unreliability of au-
tomatic metrics on short translations. Figure 4
shows the rate of agreements between the auto-
matic metrics and the human evaluation. As Fig-
ure 4 shows, BLEU, BLEU+1, and TER agree
with human evaluation on nearly 90% of the prob-
lems when comparingY andHS .

The human evaluation agrees with the CAR
slightly better than the automatic metrics. How-
ever, the agreement rates are still less than 0.7 for
all pairs of compared systems. These findings sug-
gest that there is an inherent discrepancy between
the assessment of the overall translation quality of
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a problem and the CAR. It is presumably because
the CAR can be critically damaged by a subtle
translation mistake that spoils a coherent under-
standing of a dialogue.

4 Conclusion and Future Work

We have presented the results of an experiment, in
which machine- and human-translated second lan-
guage proficiency test (SLPT) problems were used
for extrinsic evaluation of the translation quality.
Comparison of four translation methods revealed,
most notably, the crucial importance of consider-
ing contexts of individual sentences in translating
dialogues. The analysis on the experimental re-
sults suggests that the extrinsic evaluation based
on SLPT problems captures a different dimension
of translation quality than the manual/automatic
intrinsic metrics. The robustness against the het-
erogeneity of human subjects and the abundance
of existing SLPT problems enable easy adaption
of the proposed evaluation scheme in addition to
the traditional intrinsic evaluations. Our future
work includes experiments with other types of
SLPT problems that focus on different aspects of
translation quality and language understanding.
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Abstract

Precisely evaluating the quality of a trans-
lation against human references is a chal-
lenging task due to the flexible word or-
dering of a sentence and the existence of
a large number of synonyms for words.
This paper proposes to evaluate transla-
tions with distributed representations of
words and sentences. We study several
metrics based on word and sentence repre-
sentations and their combination. Experi-
ments on the WMT metric task shows that
the metric based on the combined repre-
sentations achieves the best performance,
outperforming the state-of-the-art transla-
tion metrics by a large margin. In particu-
lar, training the distributed representations
only needs a reasonable amount of mono-
lingual, unlabeled data that is not neces-
sary drawn from the test domain.

1 Introduction

Automatic machine translation (MT) evaluation
metrics measure the quality of the translations
against human references. They allow rapid com-
parisons between different systems and enable the
tuning of parameter values during system train-
ing. Many machine translation metrics have been
proposed in recent years, such as BLEU (Pap-
ineni et al., 2002), NIST (Doddington, 2002), TER
(Snover et al., 2006), Meteor (Banerjee and Lavie,
2005) and its extensions, and the MEANT family
(Lo and Wu, 2011), amongst others.

Precisely evaluating translation, however, is not
easy. This is mainly caused by the flexible word
ordering and the existence of the large number
of synonyms for words. One straightforward so-
lution to improve the evaluation quality is to in-
crease the number of various references. Never-
theless, it is expensive to create multiple refer-
ences. In order to catch synonym matches be-
tween the translations and references, synonym

dictionaries or paraphrasing tables have been used.
For example, Meteor (Banerjee and Lavie, 2005)
uses WordNet (Miller, 1995); TER-Plus (Snover et
al., 2009) and Meteor Universal (Denkowski and
Lavie, 2014) deploy paraphrasing tables. These
dictionaries have helped to improve the accuracy
of the evaluation; however, not all languages have
synonym dictionaries or paraphrasing tables, espe-
cially for those low resource languages.

This paper leverages recent developments on
distributed representations to address the above
mentioned two challenges. A distributed represen-
tation maps each word or sentence to a continu-
ous, low dimensional space, where words or sen-
tences having similar syntactic and semantic prop-
erties are close to one another (Bengio et al., 2003;
Socher et al., 2011; Socher et al., 2013; Mikolov
et al., 2013). For example, the wordsvacation
andholiday are close to each other in the vector
space, but both are far from the wordbusiness in
that space.

We propose to evaluate the translations with dif-
ferent word and sentence representations. Specif-
ically, we investigate the use of three widely de-
ployed representations: one-hot representations,
distributed word representations learned from a
neural network model, and distributed sentence
representations computed with recursive auto-
encoder. In particular, to leverage the different ad-
vantages and focuses, in terms of benefiting eval-
uation, of various representations, we concatenate
the three representations to form one vector rep-
resentation for each sentence. Our experiments
on the WMT metric task show that the metric
based on the concatenated representation outper-
forms several state-of-the-art machine translation
metrics, by a large margin on both segment and
system-level. Furthermore, our results also indi-
cate that the representation based metrics are ro-
bust to a variety of training conditions, such as the
data volume and domain.
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2 Representations

A representation, in the context of NLP, is a math-
ematical object associated with each word, sen-
tence, or document. This object is typically a vec-
tor where each element’s value describes, to some
degree, the semantic or syntactic properties of the
associated word, sentence, or document. Using
word or phrase representations as extra features
has been proven to be an effective and simple
way to improve the predictive performance of an
NLP system (Turian et al., 2010; Cherry and Guo,
2015). Our evaluation metrics are based on three
widely used representations, as discussed next.

2.1 One-hot Representations

Conventionally, a word is represented by a one-hot
vector. In a one-hot representation, a vocabulary
is first defined, and then each word in the vocabu-
lary is assigned a symbolic ID. In this scenario, for
each word, the feature vector has the same length
as the size of the vocabulary, and only one dimen-
sion that corresponds to the word is on, such as
a vector with one element set to 1 and all others
set to 0. This feature representation has been tra-
ditionally used for many NLP systems. On the
other hand, recent years have witnessed that sim-
ply plugging in distributed word vectors as real-
valued features is an effective way to improve a
NLP system (Turian et al., 2010).

2.2 Distributed Word Representations

Distributed word representations, also called word
embeddings, map each word deterministically to a
real-valued, dense vector (Bengio et al., 2003). A
widely used approach for generating useful word
vectors is developed by (Mikolov et al., 2013).
This method scales very well to very large training
corpora. Their skip-gram model, which we adopt
here, learns word vectors that are good at predict-
ing the words in a context window surrounding it.
A very promising perspective of such distributed
representation is that words that have similar con-
texts, and therefore similar syntactic and semantic
properties, will tend to be near one another in the
low-dimensional vector space.

2.3 Sentence Vector Representations

Word level representation often cannot properly
capture more complex linguistic phenomena in a
sentence or multi-word phrase. Therefore, we
adopt an effective and efficient method for multi-

word phrase distributed representation, namely the
greedy unsupervised recursive auto-encoder strat-
egy (RAE) (Socher et al., 2011). This method
works under an unsupervised setting. In particular,
it does not rely on a parsing tree structure in order
to generate sentence level vectors. This character-
istic makes it very desirable for applying it to the
outputs of machine translation systems. This is be-
cause the outputs of translation systems are often
not syntactically correct sentences; parsing them
is possible to introduce unexpected noise.

For a given sentence, the greedy unsupervised
RAE greedily searches a pair of words that re-
sults in minimal reconstruction error by an auto-
encoder. The corresponding hidden vector of the
auto-encoder (denoted as the two children’s par-
ent vector), which has the same size as that of the
two child vectors, is then used to replace the two
children vectors. This process repeats and treats
the new parent vector like any other word vectors.
In such a recursive manner, the parent vector gen-
erated from the word pool with only two vectors
left will be used as the vector representation for
the whole sentence. Interested readers are referred
to (Socher et al., 2011) for detailed discussions of
the strategy.

2.4 Combined Representations

Each of the above mentioned representations has
a different strength in terms of encoding syntactic
and semantic contextual information for a given
sentence. Specifically, the one-hot representation
is able to reflect the particular words that occur
in the sentence. The word embeddings can rec-
ognize synonyms of words appearing in the sen-
tence, through the co-occurrence information en-
coded in the vector’s representation. Finally, the
RAE vector can encode the composed semantic
information of the given sentence. These obser-
vations suggest that it is beneficial to take various
types of representations into account.

The most straightforward way to integrate mul-
tiple vectors is using concatenation. In our studies
here, we first compute the sentence-level one-hot,
word embedding, and RAE representations. Next,
we concatenate the three sentence-level represen-
tations to form one vector for each sentence.

3 Representations Based Metrics

Our translation evaluation metrics are built on the
four representations as discussed in Section 2.
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Consider we have the sentence representations
for the translations (t) and references (r), the
translation quality is measured with a similarity
score computed with Cosine function and a length
penalty. Suppose the size of the vector isN , we
calculate the quality as follows.

Score(t, r) = Cosα(t, r)× Plen (1)

Cos(t, r) =
∑i=N

i=1 vi(t) · vi (r)√∑i=N
i=1 v2

i (t)
√∑i=N

i=1 v2
i (r)

(2)

Plen =

{
exp(1− lr/lt) if (lt < lr)
exp(1− lt/lr) if (lt ≥ lr)

(3)

whereα is a free parameter,vi(.) is the value of
the vector element,Plen is the length penalty, and
lr, lt are length of the translation and reference,
respectively.

In the scenarios of there exist multiple refer-
ences, we compute the score with each reference,
then choose the highest one. Also, we treat the
document-level score as the weighted average of
sentence-level scores, with the weights being the
reference lengths, as follows.

Scored =
∑D

i=1 len(ri)Scorei∑D
i=1 len(ri)

(4)

where Scorei denotes the score of sentencei, and
D is the size of the document in sentences. With
these score equations, we then can formulate our
five presentations based metrics as follows.

For the one-hot representation metric, once we
have the representations of the words and n-grams,
we sum all the vectors to obtain the representation
of the sentence. For efficiency, we only keep the
entries which are not both zero in the reference
and translation vectors. After we generate the two
vectors for both translation and reference, we then
compute the score using Equation 1.

For the word embedding based metric, we first
learn the word vector representation using the
code provided by (Mikolov et al., 2013)1. Next,
following (Zou et al., 2013), we average the word
embeddings of all words in the sentence to obtain
the representation of the sentence.

As discussed in Section 2.4, the three sentence-
level one-hot, word embedding and RAE repre-
sentations have different strength when they are

1https://code.google.com/p/word2vec/

used to compare two sentences. In our metric here,
each of the three vectors is first scaled with a par-
ticular weight (learned on dev data) and then the
vectors are concatenated. With these concatena-
tion vectors, we then calculate the similarity score
using Equation 1.

For comparison, we also combine the strength
of the three representations using weighted aver-
age of the three metrics computed. Weights are
tuned using development data.

4 Experiments

We conducted experiments on the WMT met-
ric task data. Development sets include WMT
2011 all-to-English, and English-to-all submis-
sions. Test sets contain WMT 2012, and WMT
2013 all-to-English, plus 2012, 2013 English-
to-all submissions. The languages “all” include
French, Spanish, German and Czech. For training
the word embedding and recursive auto-encoder
model, we used WMT 2013 training data2.

We compared our metrics with smoothed BLEU
(mteval-v13a), TER3, Meteor v1.04, and Meteor
Universal (i.e. v1.5)5. We used the default set-
tings for all these four metrics.

When considering the representation based met-
rics, we tuned all the parameters to maximize the
system-levelγ score for all representation based
metrics on the dev sets. We tuned the weights
for combining the three vectors automatically, us-
ing the downhill simplex method as described in
(Press et al., 2002). The weights are 1 for the
RAE vector, about 0.1 for the word embedding
vector, and around 0.01 for the one-hot vector, re-
spectively. We tuned other parameters manually.
Specifically, we setn equal to 2 for the one-hot
n-gram representation, the vector size of the re-
cursive auto-encoder to 10, and the vector size of
word embeddings to 80.

Following WMT 2013’s metric task (Mach́aček
and Bojar, 2013), to measure the correlation with
human judgment, we use Kendall’s rank correla-
tion coefficientτ for the segment level, and Pear-
son’s correlation coefficient (γ in the below tables
and figures) for the system-level respectively.

2http://www.statmt.org/wmt13/translation-task.html
3http://www.cs.umd.edu/ snover/tercom/
4http://www.cs.cmu.edu/ alavie/METEOR/
5Meteor universal package does not include paraphrasing

table for other target language except English, so we did not
run Out-of-English experiments for this metric.
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Into-Eng Out-of-Eng
metric segτ sysγ segτ sysγ
BLEU 0.220 0.751 0.179 0.736
TER 0.211 0.742 0.175 0.745

Meteor 0.228 0.824 0.180 0.778
Met. Uni. 0.249 0.808 – –
One-hot 0.235 0.795 0.183 0.773

Word emb. 0.212 0.818 0.175 0.788
RAE vec. 0.203 0.856 0.171 0.780

Comb. rep. 0.259 0.874 0.191 0.832
Wghted avg. 0.247 0.863 0.185 0.798

Table 1: Correlations with human judgment on
WMT data for Into-English and Out-of-English
task. Results are averaged on all test sets.

4.1 General Performance

We first report the main experimental results con-
ducted on the Into-English and Out-of-English
tasks. Results in Tables 1 suggest that metrics
based on three single representations all obtained
comparable or better performance than BLEU,
TER and Meteor. In particular, the metric based
on recursive auto-encoder outperformed the other
testing metrics on system-level. When combin-
ing the strengths of the three representations, our
experimental results show that the metric based
on the combined representation outperformed all
state-of-the-art metrics by a large margin on both
segment- and system-level.

Regarding the evaluation speed of the represen-
tation metrics, it took around 1 minute to score
about 2000 sentences with the above settings on
a machine with a 2.33GHz Intel CPU. It is worth
noting that if we increase the vector size of the
RAE model and word embeddings, longer execu-
tion time is expected for the scoring processes.
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Figure 1: Correlations with human judgment on
WMT data for Into-English task for combined rep-
resentation based metric when increasing the size
of the training data.

4.2 Effect of the Training Data Size

In our second experiment, we measure the per-
formance on the Into-English task and increase
the training data from 20K sentences to 11 mil-
lion sentences. The sentences are randomly se-
lected from the whole training data, which in-
clude the English side of WMT 2013 French-to-
English parallel data (“Europarl v7”, “News Com-
mentary” and “UN Corpus”). The results are re-
ported in Figure 1. From this figure, one can con-
clude that the performance improves with the in-
creasing of the training data, however, when more
than 1.28M sentences are used, the performance
stabilizes. This result indicates that training a sta-
ble and good model for our metric does not need a
huge amount of training data.

4.3 Sensitivity to Data Across Domains

The last experiment aimed at the following ques-
tion: should the test domain be consistent with the
training domain? In this experiment, we sampled
three training sets from different domain data sets
in equal number (136K) of sentences: Europarl
(EP), News Commentary (NC), and United Na-
tion proceedings (UN), while the test domain re-
mains the same, i.e., the news domain. The met-
ric trained on NC domain data achieved slightly
higher segment-levelτ score (0.181 vs 0.178 for
EP, 0.176 for UN) and system-level Pearson’s cor-
relation scoreγ (0.821 vs 0.820 for EP, 0.817
for UN). Nevertheless, the results are consistent
across domains. This is explainable: although the
same test sentence may have different representa-
tions w.r.t. the training domain, the distance be-
tween the translation and its reference may stay
consistent. Practically, the training and test data
not necessary being in the same domain is a very
attractive characteristic for the translation metrics.
It means that we do not have to train the word em-
beddings and RAE model for each testing domain.

4.4 Cope with Word Ordering and Synonym

In order to better understand why metrics based on
combined representations can achieve better cor-
relation with human judgment than other metrics,
we select, in Table 2, some interesting examples
for further analysis.

Consider, for instance, the first reference (de-
noted as “1 R” in Table 2) and their translations. If
we replace the wordvacation in the reference with
wordsbusiness andholiday, respectively, then we
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id sentence BLEU rep.
1 R i had a wonderful vacation in italy – –
1 H1 i had a wonderful business in italy 0.489 0.555
1 H2 i had a wonderful holiday in italy 0.489 0.865
1 H3 in italy i had a wonderful vacation 0.707 0.804
1 H4 vacation in i had a wonderful italy 0.508 0.305

2 R but the decision was not his to make – –
2 H1 but it is not up to him to decide 0.063 0.652
2 H2 but the decision not him to take 0.241 0.620
2 H3 but the decision was not the to make0.595 0.612
3 R they were set to go on trial in jan – –
3 H1 they should appear in court in jan 0.109 0.498
3 H2 the trial was scheduled in jan 0.109 0.454
3 H3 the procedures were prepared in jan0.109 0.445

Table 2: Examples evaluated with smoothed BLEU and combined representationbased metric. Examples
2-3 are picked up from the real test sets; human judgment ranks H1 betterthan H2, and H2 better than H3
for each of these example sentences. The combined representation based metric better matches human
judgment than BLEU does.

have hypothesis 1 and hypothesis 2, denoted as “1
H1” and “1 H2”, respectively, in Table 2 . In this
scenario, the metric BLEU assigns the same score
of 0.489 for these two translations. In contrast, the
representation based metric associates hypothesis
2 with a much higher score than that of hypothesis
1, namely 0.865 and 0.555, respectively. In other
words, the score for hypothesis 2 is close to one,
suggesting that the RAE based metric considers
this translation is almost identical to the reference.
The reason here is that the vector representations
for the two words are very near to one another in
the vector space. Consequently, the representation
based metric treats theholiday as a synonym of
vacation, which matches human’s judgment per-
fectly.

Let us continue with this example. Suppose, in
hypothesis 3, we reorder the phrasein italy. The
representation based metric still considers this to
be a good translation with respect to the reference,
thus associating a very close score as that of the
reference, namely 0.804. The reason for represen-
tation metric’s correct judgment is that H3 and the
reference, in the vector space, embed very similar
semantic knowledge, although they have different
word orderings. Now let us take this example a
bit further. We randomly mess up the words in the
reference, resulting in hypothesis 4 (denoted as “1
H4” as shown in Table 2). In such scenario, the
representation metric score drops sharply because
the syntactic and semantic information embedded

in the vector space is very different from the refer-
ence. Interestingly, the BLEU metric still consider
this translation is not a very bad translation.

We made up the first example sentence for il-
lustrative purpose, however, the examples 2-3 are
picked up from the real test sets. According to
the human judgment, hypothesis 1 (H1) is better
than hypothesis 2 (H2); hypothesis 2 is better than
hypothesis 3 (H3) for each of these example sen-
tences. These results indicate that the combined
representation based metric better matches the hu-
man judgment than BLEU does.

5 Conclusion

We studied a series of translation evaluation
metrics based on three widely used representa-
tions. Experiments on the WMT metric task in-
dicate that the representation metrics obtain bet-
ter correlations with human judgment on both
system-level and segment-level, compared to pop-
ular translation evaluation metrics such as BLEU,
Meteor, Meteor Universal, and TER. Also, the
representation-based metrics use only monolin-
gual, unlabeled data for training; such data are
easy to obtain. Furthermore, the proposed metrics
are robust to various training conditions, such as
the data size and domain.
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Abstract

Downstream processing of machine trans-
lation (MT) output promises to be a so-
lution to improve translation quality, es-
pecially when the MT system’s internal
decoding process is not accessible. Both
rule-based and statistical automatic post-
editing (APE) methods have been pro-
posed over the years, but with contrast-
ing results. A missing aspect in previous
evaluations is the assessment of different
methods: i) under comparable conditions,
and ii) on different language pairs featur-
ing variable levels of MT quality. Fo-
cusing on statistical APE methods (more
portable across languages), we propose
the first systematic analysis of two ap-
proaches. To understand their potential,
we compare them in the same conditions
over six language pairs having English
as source. Our results evidence consis-
tent improvements on all language pairs,
a relation between the extent of the gain
and MT output quality, slight but statis-
tically significant performance differences
between the two methods, and their possi-
ble complementarity.

1 Introduction

Automatic post-editing (APE) aims to correct sys-
tematic machine translation (MT) errors. The
problem is appealing for several reasons. On one
side, as pointed out by Parton et al. (2012), APE
systems can improve MT output by exploiting in-
formation unavailable to the decoder, or by per-
forming deeper text analysis that is too expensive
at decoding stage. On the other side, and to our
view more importantly, APE represents the only
way to recover errors produced in “black-box”
conditions in which the MT system is unknown
or its internal decoding process is not accessible.

The task, firstly proposed by Knight and Chan-
der (1994) to cope with article selection in
Japanese to English translation, has been later ad-
dressed in various ways. On one side, rule-based
methods (Rosa et al., 2012) gained limited atten-
tion, probably due to the extensive manual work
they involve and their scarce portability across lan-
guages. On the other side, the statistical approach
proposed by Allen and Hogan (2000) reached ma-
turity in the work by Simard et al. (2007) and in-
spired a number of further investigations (Isabelle
et al., 2007; Dugast et al., 2007; Dugast et al.,
2009; Lagarda et al., 2009; Béchara et al., 2011;
Béchara et al., 2012; Rubino et al., 2012; Rosa et
al., 2013; Lagarda et al., 2014, inter alia).

Such prior works address orthogonal aspects
like: i) performance variations when APE is ap-
plied to correct the output of rule-based vs. statis-
tical MT, ii) the use of APE for error correction
vs. domain adaptation, iii) the difference between
training on general domain vs. domain-specific
data, iv) performance variations when learning
from reference translations vs. human post-edits.
Their common trait is that the reported results are
difficult to generalise. Indeed, most of the works
focus on evaluating a specific method,1 which is
typically applied to one single dataset for a given
language pair. As a result, the global landscape of
the “planet of the APEs” is still blurred and open
to more systematic explorations.

To shed light on the potential of statistical post-
editing, in this paper we examine two alterna-
tive approaches. One is the method proposed in
(Simard et al., 2007), which to date is the most
widely used. The other is the “context-aware” so-
lution proposed in (Béchara et al., 2011) which,
to the best of our knowledge, represents the most
significant variant of (Simard et al., 2007).

The major contribution of our work is the first
systematic analysis of different APE approaches,

1Typically the same of (Simard et al., 2007).
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which are tested in controlled conditions over sev-
eral language pairs. To ensure the soundness of
the analysis, our experimental setup consists of
a dataset composed of the same English source
sentences with automatic translations into six lan-
guages and respective manual post-edits by pro-
fessional translators. Overall, this represents the
ideal condition to complement prior research with
the missing answers to questions like:

Q1: Does APE yield consistent MT quality im-
provements across different language pairs?

Q2: What is the relation between the original
MT output quality and the APE results?

Q3: Which of the two analysed APE methods
has the highest potential?

2 Statistical APE methods

The two methods we analyse follow the same “sta-
tistical phrase-based post-editing” strategy out-
lined by Simard et al. (2007), but differ in the way
data is represented. Let’s give them a closer look.

2.1 Method 1 (Simard et al., 2007)

The underlying idea is that APE components can
be trained in the same way in which statistical MT
systems are developed – i.e. starting from “paral-
lel data”. Since the goal is to transform rough MT
output into its correct version, parallel data con-
sists of MT output as source texts and correct (hu-
man quality) sentences as target. In (Simard et al.,
2007) these are used to train a phrase-based MT
system, which is then applied to correct the output
of a commercial rule-based MT system.

Positive evaluation results are reported on
English-French, and even better ones on French-
English data. In both cases, statistical APE yields
significant BLEU and TER improvements over the
original MT output. However, since training and
test data for the two language directions are dif-
ferent (in content and size), the measured perfor-
mance variations cannot be directly ascribed to the
effectiveness of the method in the two settings.

2.2 Method 2 (Béchara et al., 2011)

One limitation of the “monolingual translation”
approach proposed in (Simard et al., 2007) is that
the basic statistical APE pipeline is only trained on
data in the target language (F), disregarding infor-
mation about the source language (E): Correction

rules learned from (f ′, f ) pairs2 lose the connec-
tion between the translated words (or phrases) and
the corresponding source terms (e). This implies
that information lost or distorted in the translation
process is out of the reach of the APE component,
and the resulting errors are impossible to recover.

To cope with this issue, Béchara et al. (2011)
propose a “context-aware” variant to represent
the data. For each word f ′, the corresponding
source word (or phrase) e is identified through
word alignment and used to obtain a joint rep-
resentation f ′#e. The result is an intermediate
language F ′#E that represents the new source
side of the parallel data used to train the statis-
tical APE component. Though in principle more
precise, this method can be affected by two prob-
lems. First, preserving the source context comes
at the cost of a larger vocabulary size and, con-
sequently, higher data sparseness. While the ba-
sic statistical APE pipeline combines and exploits
the counts of all the co-occurrences of f ′ and f
in the parallel data, its context-aware variant con-
siders each f ′#ei as a separate term, thus break-
ing down the co-occurrence counts of f ′ and f
into smaller numbers. Second, all these counts can
be influenced by word alignment errors. To cope
with data sparseness and unreliable word align-
ment, Béchara et al. (2011) experiment with differ-
ent thresholds set on word alignment strengths to
filter context information. In particular, they dis-
card the (f ′#e, f ) pairs in which the f ′#e align-
ment score is smaller than the threshold.

The approach, applied to correct the output of a
statistical phrase-based MT system, achieves am-
biguous evaluation results. On French-English,
significant improvements up to 2 BLEU points
are observed both over the baseline (the original
MT output) and the basic method of Simard et
al. (2007). On English-French, however, perfor-
mance slightly drops. Moreover, follow-up exper-
iments with the same method (Béchara, 2014) did
not confirm these results. In light of these ambigu-
ous results and the lack of a systematic compari-
son between the two APE methods, our objective is
to replicate them3 for a fair comparison in a con-
trolled evaluation setting involving different lan-

2Here, f ′ and f respectively stand for the rough MT out-
put and its correct version in the foreign language F.

3This is done based on the description provided by the
published works. Discrepancies with the actual methods are
possible, due to our misinterpretation or to wrong guesses
about details that are missing in the papers.

157



guage pairs.

2.3 Reimplementing the two methods

To obtain the statistical APE pipeline that repre-
sents the backbone of both methods we used a
phrase-based Moses system (Koehn et al., 2007).
Our training data (see Section 3) consists of
(source, MT output, post-edition) triplets for six
language pairs having English as source. While
Method 1 uses only the last two elements of the
triplet, all of them play a role in the context-aware
Method 2. Apart from the different data represen-
tation, the training process is identical.

Translation and reordering models were esti-
mated following the Moses protocol with default
setup using MGIZA++ (Gao and Vogel, 2008) for
word alignment.4 For language modeling we used
the KenLM toolkit (Heafield, 2011) for standard
n-gram modeling with an n-gram length of 5. The
APE system for each target language was tuned
on comparable development sets (see below), op-
timizing TER with Minimum Error Rate Training
(Och, 2003) using the post-edited sentences as ref-
erences.

3 Experiments

Some lessons learned from prior works on sta-
tistical APE methods (Béchara, 2014) include:
i) learning from human post-edits is more effec-
tive than learning from (independent) reference
translations, ii) learning from (and applying APE
to) domain-specific data is more promising than
working on general-domain data, iii) correcting
the output of rule-based MT systems is easier than
improving translations from statistical MT. Our
work capitalizes on these findings (we learn from
domain-specific post-edited data and apply APE to
statistical MT), but fills a gap of previous research:
a fair comparative study between different meth-
ods in controlled conditions. The key enabling
factor is the availability, for the first time, of data
consisting of the same source sentences, machine-
translated in several languages and post-edited by
professional translators.

Data. We experiment with the Autodesk Post-
Editing Data corpus,5 which predominantly cov-
ers the domain of software user manuals. English

4In Method 1, MGIZA++ is used to align f ′ and f . In
Method 2 it is used to align f ′ and e, and then f ′#e and f .

5https://autodesk.app.box.com/
Autodesk-PostEditing

Lang. No. Vocab. No.
tokens Size Lemmas

En 210,491 10,727 8,260
Cs 202,475 16,716 10,137
De 211,149 17,563 14,368
Es 252,020 11,075 6,683
Fr 263,690 10,928 7,213
It 239,912 10,703 6,549
Pl 206,016 17,027 10,430

Table 1: Data statistics for each language.

sentences are translated into several languages
(30K to 410K translations per language) with Au-
todesk’s in-house MT system (Zhechev, 2012) and
post-edited by professional translators.

Our experiments are run on six language pairs
having English as source and Czech, German,
Spanish, French, Italian and Polish as target. To
set up our controlled environment, we extract all
the (source, MT output, post-edition) triplets shar-
ing the same source (En) sentences across all lan-
guage pairs. Table 1 provides some statistics about
the resulting tri-parallel corpora. After random
shuffling the triplets, we create training (12.2K
triplets), development (2K) and test data (2K)
sharing exactly the same source sentences across
languages. Training and evaluation of our APE
systems are performed on true-case data.

To guarantee similar experimental conditions in
the six language settings, we also train compara-
ble target language models from external data (in-
deed, the 12.2K post-edits would not be enough
to train reliable LMs). We build our LMs from
approximately 2.5M translations of the same En-
glish sentences collected from Europarl (Koehn,
2005), DGT-Translation Memory (Steinberger et
al., 2012), JRC Acquis (Steinberger et al., 2006),
OPUS IT (Tiedemann, ) and other Autodesk data
common to all languages.

Evaluation metric. We evaluate the APE meth-
ods based on their capability to reduce the distance
between the MT output and a correct (fluent and
adequate) translation. As a measure of the amount
of the editing operations needed for the correction,
TER and HTER (Snover et al., 2006) fit for our
purpose. TER and HTER measure the minimum
edit distance between the MT output and its cor-
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MT Baseline Method 1 Method 2 Oracle
TER TER ∆ % Reduction TER ∆ % Reduction TER

En-De 46.46 43.07 -3.39 7.3 42.79∗ -3.67 7.9 40.17
En-Cs 44.06 39.38 -4.68 10.62 39.10∗ -4.96 11.25 36.32
En-Pl 43.02 38.24 -4.78 11.11 37.75∗ -5.27 12.25 35.05
En-It 34.44 30.43 -4.01 11.64 30.13∗ -4.31 12.55 28.33
En-Fr 32.76 29.70 -3.06 9.34 29.51 -3.25 9.92 27.12
En-Es 30.90 26.69 -4.21 13.62 26.35∗ -4.55 14.72 24.34

Table 2: Performance of the MT baseline and the APE methods for each language pair. Results for
Method 2 marked with the “∗” symbol are statistically significant compared to Method 1.

rect version.6 This can be either a reference trans-
lation created independently from the MT out-
put (TER) or a human post-edition obtained by
manually correcting the MT output (HTER). For
the sake of simplicity, henceforth we will use the
term TER to refer to both situations (though, when
measuring the distance between the MT output
and its human post-edition the actual metric is the
HTER).

Baseline. Similar to all previous works on APE,
our baseline is the MT output as is. Hence, base-
line scores for each language pair correspond to
the TER computed between the original MT out-
put (produced by the “black-box” Autodesk in-
house system) and the human post-edits.

4 Results

Table 2 lists our results, with language pairs or-
dered according to the respective baseline TER.
The positive answer to Q1 (“Does APE yield con-
sistent improvements to MT output?”) is evident:
both APE methods consistently improve MT qual-
ity on all language pairs. TER reductions range
from 3.06 to 5.27 points. Quality improvements
are statistically significant at p < 0.05, measured
by bootstrap test (Koehn, 2004).

In answer to Q2 (“What is the relation between
original MT quality and APE results?”), our con-
trolled experiments evidence for the first time in
APE research that the higher the MT quality, the
higher is the improvement, i.e. percentage of er-
ror reduction, yielded by the APE methods. On
one side, this interesting result may seem counter-
intuitive because a larger room for improvement

6Edit distance is calculated as the number of edits (word
insertions, deletions, substitutions, and shifts) divided by
the number of words in the correct translation. Lower
TER/HTER values indicate better MT quality.

is expected for sentences of poor quality. On the
other side, it reveals that learning from (and cor-
recting) noisy data affected by many errors is par-
ticularly difficult for statistical APE methods. This
finding is violated by En-Fr, for which a reason-
ably good MT quality does not induce a gain in
performance comparable to language pairs featur-
ing similar MT TER (En-It and En-Es). On fur-
ther analysis of the data, we notice that all the tar-
get languages except French keep a coherent be-
haviour with respect to the domain-specific En-
glish terms, which are always either preserved (It)
or translated (other languages). Instead, French
shows an alternation between the two conducts.
One example is the English word “workflow”,
which appears in the French post-editions both as
is (21 sentences) and translated into “flux de tra-
vail” (34 sentences). In contrast, in the other lan-
guage directions all the occurrences of ‘workflow”
are either translated or kept in English. These fre-
quent ambiguities are difficult to manage (espe-
cially if the two forms occur a similar number of
times in the training data), and might motivate the
smaller quality gains observed on En-Fr compared
to the other language pairs.

In answer to Q3 (“Which method has the high-
est potential?”), we observe slight TER reduc-
tions when moving from Method 1 to its “context-
aware” variant.7 Although small (from 0.19 to
0.49 TER points), such gains are statistically sig-
nificant (p < 0.05), except for En-Fr (p < 0.07).
This suggests that linking the MT words to the
source terms can help to recover adequacy errors
that are out of the reach of Method 1.

To better understand to what extent the two
methods behave differently, we calculated the re-
sults of an Oracle system, similar to the one pro-

7Filtering the context information with thresholds be-
tween 0.6 and 0.8 leads to the best results for all languages.
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posed by Rubino et al. (2012), defined by se-
lecting for each test sentence the best post-edit
(lower TER) produced by two approaches. As
shown in the last column of Table 2, such an ora-
cle achieves a significant TER reduction (from 1.8
to 2.78 points) for all the language pairs. We inter-
pret such gains as clues of a possible complemen-
tarity between the two methods, which is worth to
investigate.

As mentioned in Section 2.2, an advantage of
Method 1 is its robust estimation of translation pa-
rameters. In contrast, by exploiting contextual in-
formation from the source, Method 2 is more pre-
cise but potentially affected by data sparsity issues
due to its highly increased vocabulary. In an at-
tempt to use a less sparse model at the level of
word alignment, we trained a SMT system based
on the context-aware representation of Method 2
(f ′#e), but with word alignment computed on the
representation of Method 1 (f ′). Applying this
method to the three language pairs for which the
two original methods achieved the lowest TER re-
ductions (i.e. En-De, En-Fr and En-Cs) shows that
this simple way to combine Methods 1 and 2 is
able to produce a TER decrement of 0.75 (42.04)
for En-De, 0.60 (38.50) for En-Cs and 0.53 (28.98)
for En-Fr. This seems to validate our intuition
about the possible complementarity of Methods 1
and 2, suggesting a promising direction for future
work.

5 Conclusions

We explored the “planet of the APEs” in ideal
conditions (quantity and quality of data) and
with the right equipment (state-of-the-art meth-
ods). The data available (the same English sen-
tences, machine-translated in six languages and
post-edited by professional translators) allowed us
to compare for the first time different approaches
in a fair setting (our first contribution). The two
methods we analysed allowed us to measure con-
sistent improvements on all language pairs (TER
reductions from 7.3% to 14.7% – second contri-
bution), and to observe interesting relations be-
tween the extent of the gain and the original MT
output quality (the higher the quality, the higher
the gain yield by APE – third contribution). This
first study represents a good starting point for fu-
ture quests. A promising direction to explore is the
possible complementarity between the two meth-
ods and the room for mutual improvement. Now

we just have a glimpse of the path (higher ora-
cle results, slight gains with a first combination
method – fourth contribution), but positive prelim-
inary results confirm its existence.

To encourage the replication of our exper-
iments by other researchers and the reuse of
the selected Autodesk data for benchmark-
ing purposes in the same setting, the scripts
developed in this work have been publicly re-
leased. They can be downloaded from: https:
//bitbucket.org/turchmo/apeatfbk/
src/master/papers/ACL2015/.
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Hanna Béchara. 2014. Statistical Post-editing and
Quality Estimation for Machine Translation Sys-
tems. M.Sc. Thesis, Dublin City University, Dublin.

Loı̈c Dugast, Jean Senellart, and Philipp Koehn. 2007.
Statistical Post-editing on SYSTRAN’s Rule-based
Translation System. In Proceedings of the Sec-
ond Workshop on Statistical Machine Translation,
StatMT ’07, pages 220–223, Stroudsburg, PA, USA.

Loı̈c Dugast, Jean Senellart, and Philipp Koehn.
2009. Statistical Post Editing and Dictionary Ex-
traction: Systran/Edinburgh Submissions for ACL-
WMT2009. In Proceedings of the Fourth Workshop
on Statistical Machine Translation, pages 110–114,
Athens, Greece.

160



Qin Gao and Stephan Vogel. 2008. Parallel Implemen-
tations of Word Alignment Tool. In Proceedings of
the ACL 2008 Software Engineering, Testing, and
Quality Assurance Workshop, pages 49–57, Colum-
bus, Ohio.

Kenneth Heafield. 2011. KenLM: Faster and Smaller
Language Model Queries. In Proceedings of the
EMNLP 2011 Sixth Workshop on Statistical Ma-
chine Translation, pages 187–197, Edinburgh, Scot-
land, United Kingdom.

Pierre Isabelle, Cyril Goutte, and Michel Simard.
2007. Domain Adaptation of MT Systems through
Automatic Post-editing. In Proceedings of the
Eleventh Machine Translation Summit (MT Summit
XI), pages 255–261, Copenhagen, Denmark.

Kevin Knight and Ishwar Chander. 1994. Automated
Postediting of Documents. In Proceedings of the
12th National Conference on Artificial Intelligence,
pages 779–784, Seattle, WA, USA.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
Source Toolkit for Statistical Machine Translation.
In Proceedings of the 45th Annual Meeting of the
Association for Computational Linguistics Compan-
ion Volume Proceedings of the Demo and Poster Ses-
sions, pages 177–180, Prague, Czech Republic.

Philipp Koehn. 2004. Statistical Significance Tests for
Machine Translation Evaluation. In Proceedings of
EMNLP 2004, pages 388–395, Barcelona, Spain.

Philipp Koehn. 2005. Europarl: A Parallel Corpus for
Statistical Machine Translation. In Proceedings of
the Tenth Machine Translation Summit (MT Summit
X), pages 79–86, Phuket, Thailand, September.

Antonio L. Lagarda, Vicent Alabau, Francisco Casacu-
berta, Roberto Silva, and Enrique Dı́az-de Liaño.
2009. Statistical Post-editing of a Rule-based Ma-
chine Translation System. In Proceedings of Human
Language Technologies: The 2009 Annual Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics, pages 217–220.

Antonio L. Lagarda, Daniel Ortiz-Martı́nez, Vicent Al-
abau, and Francisco Casacuberta. 2014. Translat-
ing without in-domain Corpus: Machine Transla-
tion Post-editing with Online Learning Techniques.
Computer Speech & Language.

Franz Josef Och. 2003. Minimum Error Rate Training
in Statistical Machine Translation. In Proceedings
of the 41st Annual Meeting on Association for Com-
putational Linguistics - Volume 1, ACL ’03, pages
160–167, Sapporo, Japan.

Kristen Parton, Nizar Habash, Kathleen McKeown,
Gonzalo Iglesias, and Adrià de Gispert. 2012. Can
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Abstract

Replicated Softmax model, a well-known
undirected topic model, is powerful in ex-
tracting semantic representations of docu-
ments. Traditional learning strategies such
as Contrastive Divergence are very inef-
ficient. This paper provides a novel esti-
mator to speed up the learning based on
Noise Contrastive Estimate, extended for
documents of variant lengths and weighted
inputs. Experiments on two benchmarks
show that the new estimator achieves great
learning efficiency and high accuracy on
document retrieval and classification.

1 Introduction

Topic models are powerful probabilistic graphical
approaches to analyze document semantics in dif-
ferent applications such as document categoriza-
tion and information retrieval. They are mainly
constructed by directed structure like pLSA (Hof-
mann, 2000) and LDA (Blei et al., 2003). Accom-
panied by the vast developments in deep learn-
ing, several undirected topic models, such as
(Salakhutdinov and Hinton, 2009; Srivastava et
al., 2013), have recently been reported to achieve
great improvements in efficiency and accuracy.

Replicated Softmax model (RSM) (Hinton and
Salakhutdinov, 2009), a kind of typical undirected
topic model, is composed of a family of Restricted
Boltzmann Machines (RBMs). Commonly, RSM
is learned like standard RBMs using approximate
methods like Contrastive Divergence (CD). How-
ever, CD is not really designed for RSM. Different
from RBMs with binary input, RSM adopts soft-
max units to represent words, resulting in great in-
efficiency with sampling inside CD, especially for
a large vocabulary. Yet, NLP systems usually re-
quire vocabulary sizes of tens to hundreds of thou-
sands, thus seriously limiting its application.

Dealing with the large vocabulary size of the in-
puts is a serious problem in deep-learning-based
NLP systems. Bengio et al. (2003) pointed this
problem out when normalizing the softmax proba-
bility in the neural language model (NNLM), and
Morin and Bengio (2005) solved it based on a hi-
erarchical binary tree. A similar architecture was
used in word representations like (Mnih and Hin-
ton, 2009; Mikolov et al., 2013a). Directed tree
structures cannot be applied to undirected mod-
els like RSM, but stochastic approaches can work
well. For instance, Dahl et al. (2012) found that
several Metropolis Hastings sampling (MH) ap-
proaches approximate the softmax distribution in
CD well, although MH requires additional com-
plexity in computation. Hyvärinen (2007) pro-
posed Ratio Matching (RM) to train unnormal-
ized models, and Dauphin and Bengio (2013)
added stochastic approaches in RM to accommo-
date high-dimensional inputs. Recently, a new es-
timator Noise Contrastive Estimate (NCE) (Gut-
mann and Hyvärinen, 2010) is proposed for un-
normalized models, and shows great efficiency in
learning word representations such as in (Mnih
and Teh, 2012; Mikolov et al., 2013b).

In this paper, we propose an efficient learning
strategy for RSM named α-NCE, applying NCE as
the basic estimator. Different from most related ef-
forts that use NCE for predicting single word, our
method extends NCE to generate noise for doc-
uments in variant lengths. It also enables RSM to
use weighted inputs to improve the modelling abil-
ity. As RSM is usually used as the first layer in
many deeper undirected models like Deep Boltz-
mann Machines (Srivastava et al., 2013), α-NCE
can be readily extended to learn them efficiently.

2 Replicated Softmax Model

RSM is a typical undirected topic model, which is
based on bag-of-words (BoW) to represent docu-
ments. In general, it consists of a series of RBMs,
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each of which contains variant softmax visible
units but the same binary hidden units.

Suppose K is the vocabulary size. For a docu-
ment with D words, if the ith word in the docu-
ment equals the kth word of the dictionary, a vec-
tor vi ∈ {0, 1}K is assigned, only with the kth

element vik = 1. An RBM is formed by assign-
ing a hidden state h ∈ {0, 1}H to this document
V = {v1, ...,vD}, where the energy function is:

Eθ(V ,h) = −hTWv̂ − bT v̂ −D · aTh (1)

where θ = {W , b,a} are parameters shared by
all the RBMs, and v̂ =

∑D
i=1 vi is commonly re-

ferred to as the word count vector of a document.
The probability for the document V is given by:

Pθ(V ) =
1
ZD

e−Fθ(V ), ZD =
∑

V
e−Fθ(V )

Fθ(V ) = log
∑

h
e−Eθ(V ,h)

(2)

where Fθ(V ) is the “free energy”, which can be
analytically integrated easily, and ZD is the “par-
tition function” for normalization, only associated
with the document length D. As the hidden state
and document are conditionally independent, the
conditional distributions are derived:

Pθ (vik = 1|h) =
exp

(
W T

k h+ bk
)∑K

k=1 exp
(
W T

k h+ bk
) (3)

Pθ (hj = 1|V ) = σ (Wj v̂ +D · aj) (4)

where σ(x) = 1
1+e−x . Equation (3) is the soft-

max units describing the multinomial distribution
of the words, and Equation (4) serves as an effi-
cient inference from words to semantic meanings,
where we adopt the probabilities of each hidden
unit “activated” as the topic features.

2.1 Learning Strategies for RSM
RSM is naturally learned by minimizing the nega-
tive log-likelihood function (ML) as follows:

L(θ) = −EV ∼Pdata [logPθ(V )] (5)

However, the gradient is intractable for the combi-
natorial normalization term ZD. Common strate-
gies to overcome this intractability are MCMC-
based approaches such as Contrastive Divergence
(CD) (Hinton, 2002) and Persistent CD (PCD)
(Tieleman, 2008), both of which require repeating
Gibbs steps of h(i) ∼ Pθ(h|V (i)) and V (i+1) ∼
Pθ(V |h(i)) to generate model samples to approx-
imate the gradient. Typically, the performance and

consistency improve when more steps are adopted.
Notwithstanding, even one Gibbs step is time con-
suming for RSM, since the multinomial sampling
normally requires linear time computations. The
“alias method” (Kronmal and Peterson Jr, 1979)
speeds up multinomial sampling to constant time
while linear time is required for processing the dis-
tribution. Since Pθ(V |h) changes at every itera-
tion in CD, such methods cannot be used.

3 Efficient Learning for RSM

Unlike (Dahl et al., 2012) that retains CD, we
adopted NCE as the basic learning strategy. Con-
sidering RSM is designed for documents, we fur-
ther modified NCE with two novel heuristics,
developing the approach “Partial Noise Uniform
Contrastive Estimate” (or α-NCE for short).

3.1 Noise Contrastive Estimate
Noise Contrastive Estimate (NCE), similar to CD,
is another estimator for training models with in-
tractable partition functions. NCE solves the in-
tractability through treating the partition function
ZD as an additional parameter Zc

D added to θ,
which makes the likelihood computable. Yet, the
model cannot be trained through ML as the likeli-
hood tends to be arbitrarily large by setting Zc

D to
huge numbers. Instead, NCE learns the model in a
proxy classification problem with noise samples.

Given a document collection (data) {Vd}Td
, and

another collection (noise) {Vn}Tn with Tn = kTd,
NCE distinguishes these (1+k)Td documents sim-
ply based on Bayes’ Theorem, where we assumed
data samples matched by our model, indicating
Pθ ' Pdata, and noise samples generated from an
artificial distribution Pn. Parameters are learned
by minimizing the cross-entropy function:

J(θ) = −EVd∼Pθ [log σk(X(Vd))]
−kEVn∼Pn [log σk−1(−X(Vn))]

(6)

and the gradient is derived as follows,

−∇θJ(θ) =EVd∼Pθ [σk−1(−X)∇θX(Vd)]
−kEVn∼Pn [σk(X)∇θX(Vn)]

(7)

where σk(x) = 1
1+ke−x , and the “log-ratio” is:

X(V ) = log [Pθ(V )/Pn(V )] (8)

J(θ) can be optimized efficiently with stochastic
gradient descent (SGD). Gutmann and Hyvärinen
(2010) showed that the NCE gradient∇θJ(θ) will
reach the ML gradient when k → ∞. In practice,
a larger k tends to train the model better.
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3.2 Partial Noise Sampling
Different from (Mnih and Teh, 2012), which gen-
erates noise per word, RSM requires the estimator
to sample the noise at the document level. An in-
tuitive approach is to sample from the empirical
distribution p̃ forD times, where the log probabil-
ity is computed: logPn(V ) =

∑
v∈V

[
vT log p̃

]
.

For a fixed k, Gutmann and Hyvärinen (2010)
suggested choosing the noise close to the data for
a sufficient learning result, indicating full noise
might not be satisfactory. We proposed an alter-
native “Partial Noise Sampling (PNS)” to gener-
ate noise by replacing part of the data with sam-
pled words. See Algorithm 1, where we fixed the

Algorithm 1 Partial Noise Sampling
1: Initialize: k, α ∈ (0, 1)
2: for each Vd = {v}D ∈ {Vd}Td

do
3: Set: Dr = dα ·De
4: Draw: Vr = {vr}Dr ⊆ V uniformly
5: for j = 1, ..., k do
6: Draw: V (j)

n = {v(j)
n }D−Dr ∼ p̃

7: V
(j)

n = V
(j)

n ∪ Vr

8: end for
9: Bind: (Vd,Vr), (V (1)

n ,Vr), ..., (V (k)
n ,Vr)

10: end for

proportion of remaining words at α, named “noise
level” of PNS. However, traversing all the condi-
tions to guess the remaining words requiresO(D!)
computations. To avoid this, we simply bound the
remaining words with the data and noise in ad-
vance and the noise logPn(V ) is derived readily:

logPθ(Vr) +
∑

v∈V \Vr

[
vT log p̃

]
(9)

where the remaining words Vr are still assumed
to be described by RSM with a smaller document
length. In this way, it also strengthens the robust-
ness of RSM towards incomplete data.

Sampling the noise normally requires additional
computational load. Fortunately, since p̃ is fixed,
sampling is efficient using the “alias method”. It
also allows storing the noise for subsequent use,
yielding much faster computation than CD.

3.3 Uniform Contrastive Estimate
When we initially implemented NCE for RSM,
we found the document lengths terribly biased the
log-ratio, resulting in bad parameters. Therefore
“Uniform Contrastive Estimate (UCE)” was pro-
posed to accommodate variant document lengths

by adding the uniform assumption:

X̄(V ) = D−1 log [Pθ(V )/Pn(V )] (10)

where UCE adopts the uniform probabilities D
√
Pθ

and D
√
Pn for classification to average the mod-

elling ability at word-level. Note that D is not
necessarily an integer in UCE, and allows choos-
ing a real-valued weights on the document such as
idf -weighting (Salton and McGill, 1983). Typi-
cally, it is defined as a weighting vector w, where
wk = log Td

|V ∈{Vd}:vik=1,vi∈V | is multiplied to the
kth word in the dictionary. Thus for a weighted in-
put V w and corresponding length Dw, we derive:

X̃(V w) = Dw−1 log [Pθ(V w)/Pn(V w)] (11)

where logPn(V w) =
∑
vw∈V w

[
vwT log p̃

]
. A

specific Zc
Dw will be assigned to Pθ(V w).

Combining PNS and UCE yields a new estima-
tor for RSM, which we simply call α-NCE1.

4 Experiments

4.1 Datasets and Details of Learning
We evaluated the new estimator to train RSMs on
two text datasets: 20 Newsgroups and IMDB.

The 20 Newsgroups2 dataset is a collection of
the Usenet posts, which contains 11,345 training
and 7,531 testing instances. Both the training and
testing sets are labeled into 20 classes. Removing
stop words as well as stemming were performed.

The IMDB dataset3 is a benchmark for senti-
ment analysis, which consists of 100,000 movie
reviews taken from IMDB. The dataset is divided
into 75,000 training instances (1/3 labeled and
2/3 unlabeled) and 25,000 testing instances. Two
types of labels, positive and negative, are given to
show sentiment. Following (Maas et al., 2011), no
stop words are removed from this dataset.

For each dataset, we randomly selected 10% of
the training set for validation, and the idf -weight
vector is computed in advance. In addition, replac-
ing the word count v̂ by dlog (1 + v̂)e slightly im-
proved the modelling performance for all models.

We implemented α-NCE according to the pa-
rameter settings in (Hinton, 2010) using SGD in
minibatches of size 128 and an initialized learning
rate of 0.1. The number of hidden units was fixed

1α comes from the noise level in PNS, but UCE is also
the vital part of this estimator, which is absorbed in α-NCE.

2Available at http://qwone.com/˜jason/20Newsgroups
3Available at http://ai.stanford.edu/˜amaas/data/sentiment
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at 128 for all models. Although learning the parti-
tion function Zc

D separately for every length D is
nearly impossible, as in (Mnih and Teh, 2012) we
also surprisingly found freezing Zc

D as a constant
function of D without updating never harmed but
actually enhanced the performance. It is proba-
bly because the large number of free parameters
in RSM are forced to learn better when Zc

D is a
constant. In practise, we set this constant function
as Zc

D = 2H · (∑k e
bk
)D. It can readily extend to

learn RSM for real-valued weighted length Dw.
We also implemented CD with the same set-

tings. All the experiments were run on a single
GPU GTX970 using the library Theano (Bergstra
et al., 2010). To make the comparison fair, both
α-NCE and CD share the same implementation.

4.2 Evaluation of Efficiency
To evaluate the efficiency in learning, we used
the most frequent words as dictionaries with sizes
ranging from 100 to 20, 000 for both datasets, and
test the computation time both for CD of vari-
ant Gibbs steps and α-NCE of variant noise sam-
ple sizes. The comparison of the mean running

Figure 1: Comparison of running time

time per minibatch is clearly shown in Figure 1,
which is averaged on both datasets. Typically,
α-NCE achieves 10 to 500 times speed-up com-
pared to CD. Although both CD and α-NCE run
slower when the input dimension increases, CD
tends to take much more time due to the multino-
mial sampling at each iteration, especially when
more Gibbs steps are used. In contrast, running
time stays reasonable in α-NCE even if a larger
noise size or a larger dimension is applied.

4.3 Evaluation of Performance
One direct measure to evaluate the modelling per-
formance is to assess RSM as a generative model

to estimate the log-probability per word as per-
plexity. However, as α-NCE learns RSM by dis-
tinguishing the data and noise from their respec-
tive features, parameters are trained more like a
feature extractor than a generative model. It is not
fair to use perplexity to evaluate the performance.
For this reason, we evaluated the modelling per-
formance with some indirect measures.

Figure 2: Precision-Recall curves for the retrieval
task on the 20 Newsgroups dataset using RSMs.

For 20 Newsgroups, we trained RSMs on the
training set, and reported the results on docu-
ment retrieval and document classification. For
retrieval, we treated the testing set as queries, and
retrieved documents with the same labels in the
training set by cosine-similarity. Precision-recall
(P-R) curves and mean average precision (MAP)
are two metrics we used for evaluation. For clas-
sification, we trained a softmax regression on the
training set, and checked the accuracy on the test-
ing set. We use this dataset to show the modelling
ability of RSM with different estimators.

For IMDB, the whole training set is used for
learning RSMs, and an L2-regularized logistic re-
gression is trained on the labeled training set. The
error rate of sentiment classification on the testing
set is reported, compared with several BoW-based
baselines. We use this dataset to show the general
modelling ability of RSM compared with others.

We trained both α-NCE and CD, and naturally
NCE (without UCE) at a fixed vocabulary size
(2000 for 20 Newsgroups, and 5000 for IMDB).
Posteriors of the hidden units were used as topic
features. For α-NCE , we fixed noise level at 0.5
for 20 Newsgroups and 0.3 for IMDB. In compar-
ison, we trained CD from 1 up to 5 Gibbs steps.

Figure 2 and Table 1 show that a larger noise
size in α-NCE achieves better modelling perfor-
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(a) MAP for document retrieval (b) Document classification accuracy (c) Sentiment classification accuracy

Figure 3: Tracking the modelling performance with variant α using α-NCE to learn RSMs. CD is also
reported as the baseline. (a) (b) are performed on 20 Newsgroups, and (c) is performed on IMDB.

mance, and α-NCE greatly outperforms CD on re-
trieval tasks especially around large recall values.
The classification results of α-NCE is also compa-
rable or slightly better than CD. Simultaneously,
it is gratifying to find that the idf -weighting in-
puts achieve the best results both in retrieval and
classification tasks, as idf -weighting is known to
extract information better than word count. In ad-
dition, naturally NCE performs poorly compared
to others in Figure 2, indicating variant document
lengths actually bias the learning greatly.

CD α-NCE
k=1 k=5 k=25 k=25 (idf)

64.1% 61.8% 63.6% 64.8% 65.6%

Table 1: Comparison of classification accuracy on
the 20 Newsgroups dataset using RSMs.

Models Accuracy
Bag of Words (BoW) (Maas and Ng, 2010) 86.75%
LDA (Maas et al., 2011) 67.42%
LSA (Maas et al., 2011) 83.96%
Maas et al. (2011)’s “full” model 87.44%
WRRBM (Dahl et al., 2012) 87.42%
RSM:CD 86.22%
RSM:α-NCE-5 87.09%
RSM:α-NCE-5 (idf) 87.81%

Table 2: The performance of sentiment classifica-
tion accuracy on the IMDB dataset using RSMs
compared to other BoW-based approaches.

On the other hand, Table 2 shows the perfor-
mance of RSM in sentiment classification, where
model combinations reported in previous efforts
are not considered. It is clear that α-NCE learns
RSM better than CD, and outperforms BoW and
other BoW-based models4 such as LDA. The idf -

4Accurately, WRRBM uses “bag of n-grams” assumption.

weighting inputs also achieve the best perfor-
mance. Note that RSM is also based on BoW, in-
dicating α-NCE has arguably reached the limits of
learning BoW-based models. In future work, RSM
can be extended to more powerful undirected topic
models, by considering more syntactic informa-
tion such as word-order or dependency relation-
ship in representation. α-NCE can be used to learn
them efficiently and achieve better performance.

4.4 Choice of Noise Level-α
In order to decide the best noise level (α) for PNS,
we learned RSMs using α-NCE with different
noise levels for both word count and idf -weighting
inputs on the two datasets. Figure 3 shows that
α-NCE learning with partial noise (α > 0) out-
performs full noise (α = 0) in most situations,
and achieves better results than CD in retrieval and
classification on both datasets. However, learning
tends to become extremely difficult if the noise
becomes too close to the data, and this explains
why the performance drops rapidly when α → 1.
Furthermore, curves in Figure 3 also imply the
choice of α might be problem-dependent, with
larger sets like IMDB requiring relatively smaller
α. Nonetheless, a systematic strategy for choos-
ing optimal α will be explored in future work. In
practise, a range from 0.3 ∼ 0.5 is recommended.

5 Conclusions

We propose a novel approach α-NCE for learning
undirected topic models such as RSM efficiently,
allowing large vocabulary sizes. It is new a es-
timator based on NCE, and adapted to documents
with variant lengths and weighted inputs. We learn
RSMs with α-NCE on two classic benchmarks,
where it achieves both efficiency in learning and
accuracy in retrieval and classification tasks.

166



References
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Abstract

We present a simple yet effective unsu-
pervised domain adaptation method that
can be generally applied for different NLP
tasks. Our method uses unlabeled tar-
get domain instances to induce a set of
instance similarity features. These fea-
tures are then combined with the origi-
nal features to represent labeled source do-
main instances. Using three NLP tasks,
we show that our method consistently out-
performs a few baselines, including SCL,
an existing general unsupervised domain
adaptation method widely used in NLP.
More importantly, our method is very easy
to implement and incurs much less com-
putational cost than SCL.

1 Introduction

Domain adaptation aims to use labeled data from
a source domain to help build a system for a target
domain, possibly with a small amount of labeled
data from the target domain. The problem arises
when the target domain has a different data distri-
bution from the source domain, which is often the
case. In NLP, domain adaptation has been well
studied in recent years. Existing work has pro-
posed both techniques designed for specific NLP
tasks (Chan and Ng, 2007; Daume III and Ja-
garlamudi, 2011; Yang et al., 2012; Plank and
Moschitti, 2013; Hu et al., 2014; Nguyen et al.,
2014; Nguyen and Grishman, 2014) and general
approaches applicable to different tasks (Blitzer
et al., 2006; Daumé III, 2007; Jiang and Zhai,
2007; Dredze and Crammer, 2008; Titov, 2011).
With the recent trend of applying deep learn-
ing in NLP, deep learning-based domain adap-
tation methods (Glorot et al., 2011; Chen et
al., 2012; Yang and Eisenstein, 2014) have also
been adopted for NLP tasks (Yang and Eisenstein,
2015).

There are generally two settings of domain
adaptation. We use supervised domain adaptation
to refer to the setting when a small amount of la-
beled target data is available, and when no such
data is available during training we call it unsu-
pervised domain adaptation.

Although many domain adaptation methods
have been proposed, for practitioners who wish
to avoid implementing or tuning sophisticated or
computationally expensive methods due to either
lack of enough machine learning background or
limited resources, simple approaches are often
more attractive. A notable example is the frus-
tratingly easy domain adaptation method proposed
by Daumé III (2007), which simply augments
the feature space by duplicating features in a
clever way. However, this method is only suit-
able for supervised domain adaptation. A later
semi-supervised version of this easy adaptation
method uses unlabeled data from the target do-
main (Daumé III et al., 2010), but it still requires
some labeled data from the target domain. In this
paper, we propose a general unsupervised domain
adaptation method that is almost equally hassle-
free but does not use any labeled target data.

Our method uses a set of unlabeled target in-
stances to induce a new feature space, which is
then combined with the original feature space. We
explain analytically why the new feature space
may help domain adaptation. Using a few dif-
ferent NLP tasks, we then empirically show that
our method can indeed learn a better classifier for
the target domain than a few baselines. In partic-
ular, our method performs consistently better than
or competitively with Structural Correspondence
Learning (SCL) (Blitzer et al., 2006), a well-
known unsupervised domain adaptation method in
NLP. Furthermore, compared with SCL and other
advanced methods such as the marginalized struc-
tured dropout method (Yang and Eisenstein, 2014)
and a recent feature embedding method (Yang and
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Eisenstein, 2015), our method is much easier to
implement.

In summary, our main contribution is a simple,
effective and theoretically justifiable unsupervised
domain adaptation method for NLP problems.

2 Adaptation with Similarity Features

We first introduce the necessary notation needed
for presenting our method. Without loss of gen-
erality, we assume a binary classification problem
where each input is represented as a feature vec-
tor x from an input vector space X and the out-
put is a label y ∈ {0, 1}. This assumption is
general because many NLP tasks such as text cat-
egorization, NER and relation extraction can be
cast into classification problems and our discus-
sion below can be easily extended to multi-class
settings. We further assume that we have a set of
labeled instances from a source domain, denoted
by Ds = {(xs

i, y
s
i)}Ni=1. We also have a set of un-

labeled instances from a target domain, denoted
by Dt = {xt

j}Mj=1. We assume a general setting
of learning a linear classifier, which is essentially
a weight vector w such that x is labeled as 1 if
w>x ≥ 0.1

A naive method is to simply learn a classifier
from Ds. The goal of unsupervised domain adap-
tation is to make use of both Ds and Dt to learn a
good w for the target domain. It has to be assumed
that the source and the target domains are similar
enough such that adaptation is possible.

2.1 The Method
Our method works as follows. We first randomly
select a subset of target instances from Dt and
normalize them. We refer to the resulting vectors
as exemplar vectors, denoted by E = {e(k)}Kk=1.
Next, we transform each source instance x into
a new feature vector by computing its similarity
with each e(k), as defined below:

g(x) = [s(x, e(1)), . . . , s(x, e(K))]>, (1)

where> indicates transpose and s(x,x′) is a sim-
ilarity function between x and x′. In our work
we use dot product as s.2 Once each labeled

1A bias feature that is always set to be 1 can be added to
allow a non-zero threshold.

2We find that normalizing the exemplar vectors results in
better performance empirically. On the other hand, if we nor-
malize both the exemplar vectors and each instance x, i.e. if
we use cosine similarity as s, the performance is similar to
not normalizing x.

source domain instance is transformed into a K-
dimensional vector by Equation 1, we can ap-
pend this vector to the original feature vector of
the source instance and use the combined feature
vectors of all labeled source instances to train a
classifier. To apply this classifier to the target do-
main, each target instance also needs to add this
K-dimensional induced feature vector.

It is worth noting that the exemplar vectors
are randomly chosen from the available target in-
stances and no special trick is needed. Overall,
the method is fairly easy to implement, and yet
as we will see in Section 3, it performs surpris-
ingly well. We also want to point out that our in-
stance similarity features bear strong similarity to
what was proposed by Sun and Lam (2013), but
their work addresses a completely different prob-
lem and we developed our method independently
of their work.

2.2 Justification

In this section, we provide some intuitive justifica-
tion for our method without any theoretical proof.

Learning in the Target Subspace
Blitzer et al. (2011) pointed out that the hope
of unsupervised domain adaptation is to “couple”
the learning of weights for target-specific features
with that of common features. We show our in-
duced feature representation is exactly doing this.

First, we review the claim by Blitzer et al.
(2011). We note that although the input vector
space X is typically high-dimensional for NLP
tasks, the actual space where input vectors lie can
have a lower dimension because of the strong fea-
ture dependence we observe with NLP tasks. For
example, binary features defined from the same
feature template such as the previous word are
mutually exclusive. Furthermore, the actual low-
dimensional spaces for the source and the target
domains are usually different because of domain-
specific features and distributional difference be-
tween the domains. Borrowing the notation used
by Blitzer et al. (2011), define subspace Xs to be
the (lowest dimensional) subspace of X spanned
by all source domain input vectors. Similarly,
a subspace Xt can be defined. Define Xs,t =
Xs

⋂Xt, the shared subspace between the two do-
mains. Define Xs,⊥ to be the subspace that is or-
thogonal to Xs,t but together with Xs,t spans Xs,
that is, Xs,⊥ + Xs,t = Xs. Similarly we can define
X⊥,t. EssentiallyXs,t,Xs,⊥ andX⊥,t are the shared
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subspace and the domain-specific subspaces, and
they are mutually orthogonal.

We can project any input vector x into the three
subspaces defined above as follows:

x = xs,t + xs,⊥ + x⊥,t.

Similarly, any linear classifier w can be decom-
posed into ws,t, ws,⊥ and w⊥,t, and

w>x = w>s,txs,t + w>s,⊥xs,⊥ + w>⊥,tx⊥,t.

For a naive method that simply learns w from Ds,
the learned component w⊥,t will be 0, because the
component x⊥,t of any source instance is 0, and
therefore the training error would not be reduced
by any non-zero w⊥,t. Moreover, any non-zero
ws,⊥ learned from Ds would not be useful for the
target domain because for all target instances we
have xs,⊥ = 0. So for a w learned from Ds, only
its component ws,t is useful for domain transfer.

Blitzer et al. (2011) argues that with unlabeled
target instances, we can hope to “couple” the
learning of w⊥,t with that of ws,t. We show that
if we use only our induced feature representation
without appending it to the original feature vec-
tor, we can achieve this. We first define a ma-
trix ME whose column vectors are the exemplar
vectors from E . Then g(x) can be rewritten as
M>E x. Let w′ denote a linear classifier learned
from the transformed labeled data. w′ makes pre-
diction based on w′>M>E x, which is the same as
(MEw′)>x. This shows that the learned classifier
w′ for the induced features is equivalent to a linear
classifier w = MEw′ for the original features.

It is not hard to see that MEw′ is essentially∑
k w
′
ke

(k), i.e. a linear combination of vectors
in E . Because e(k) comes from Xt, we can write
e(k) = e

(k)
s,t + e

(k)
⊥,t. Therefore we have

w =
∑

k

w′ke
(k)
s,t︸ ︷︷ ︸

ws,t

+
∑

k

w′ke
(k)
⊥,t︸ ︷︷ ︸

w⊥,t

.

There are two things to note from the formula
above. (1) The learned classifier w does not have
any component in the subspace Xs,⊥, which is
good because such a component would not be use-
ful for the target domain. (2) The learned w⊥,t will
unlikely be zero because its learning is “coupled”
with the learning of ws,t through w′. In effect, we
pick up target specific features that correlate with
useful common features.

In practice, however, we need to append the in-
duced features to the original features to achieve
good adaptation results. One may find this
counter-intuitive because this results in an ex-
panded instead of restricted hypothesis space. Our
explanation is that because of the typical L2 regu-
larizer used during training, there is an incentive to
shift the weight mass to the additional induced fea-
tures. The need to combine the induced features
with original features was also reported in previ-
ous domain adaptation work such as SCL (Blitzer
et al., 2006) and marginalized denoising autoen-
coders (Chen et al., 2012).

Reduction of Domain Divergence
Another theory on domain adaptation developed
by Ben-David et al. (2010) essentially states that
we should use a hypothesis space that can achieve
low error on the source domain while at the same
time making it hard to separate source and tar-
get instances. If we use only our induced fea-
tures, then Xs,⊥ is excluded from the hypothesis
space. This is likely to make it harder to distin-
guish source and target instances. To verify this,
in Table 1 we show the following errors based
on three feature representations: (1) The training
error on the source domain (ε̂s). (2) The classi-
fication error when we train a classifier to sepa-
rate source and target instances. (3) The error on
the target domain using the classifier trained from
the source domain (ε̂t). ISF- means only our in-
duced instance similarity features are used while
ISF uses combined feature vectors. The results
show that ISF achieves relatively low ε̂s and in-
creases the domain separation error. These two
factors lead to a reduction in ε̂t.

features ε̂s domain separation error ε̂t

Original 0.000 0.011 0.283
ISF- 0.120 0.129 0.315
ISF 0.006 0.062 0.254

Table 1: Three errors of different feature representations on
a spam filtering task. K is 200 for ISF- and ISF. We expect a
low ε̂t when ε̂s is low and domain separation error is high.

Difference from EA++
The easy domain adaptation method EA proposed
by Daumé III (2007) has later been extended to a
semi-supervised version EA++ (Daumé III et al.,
2010), where unlabeled data from the target do-
main is also used. Theoretical justifications for
both EA and EA++ are given by Kumar et al.
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(2010). Here we briefly discuss how our method
is different from EA++ in terms of using unla-
beled data. In both EA and EA++, since labeled
target data is available, the algorithms still learn
two classifiers, one for each domain. In our al-
gorithm, we only learn a single classifier using
labeled data from the source domain. In EA++,
unlabeled target data is used to construct a reg-
ularizer that brings the two classifiers of the two
domains closer. Specifically, the regularizer de-
fines a penalty if the source classifier and the tar-
get classifier make different predictions on an un-
labeled target instance. However, with this regu-
larizer, EA++ does not strictly restrict either the
source classifier or the target classifier to lie in
the target subspace Xt. In contrast, as we have
pointed out above, when only the induced features
are used, our method leverages the unlabeled tar-
get instances to force the learned classifier to lie in
Xt.

3 Experiments

3.1 Tasks and Data Sets

We consider the following NLP tasks.
Personalized Spam Filtering (Spam): The data
set comes from ECML/PKDD 2006 discovery
challenge. The goal is to adapt a spam filter trained
on a common pool of 4000 labeled emails to three
individual users’ personal inboxes, each contain-
ing 2500 emails. We use bag-of-word features for
this task, and we report classification accuracy.
Gene Name Recognition (NER): The data set
comes from BioCreAtIvE Task 1B (Hirschman et
al., 2005). It contains three sets of Medline ab-
stracts with labeled gene names. Each set corre-
sponds to a single species (fly, mouse or yeast).
We consider domain adaptation from one species
to another. We use standard NER features includ-
ing words, POS tags, prefixes/suffixes and contex-
tual features. We report F1 scores for this task.
Relation Extraction (Relation): We use the
ACE2005 data where the annotated documents are
from several different sources such as broadcast
news and conversational telephone speech. We re-
port the F1 scores of identifying the 7 major rela-
tion types. We use standard features including en-
tity types, entity head words, contextual words and
other syntactic features derived from parse trees.

3.2 Methods for Comparison

Naive uses the original features.

Common uses only features commonly seen in
both domains.

SCL is our implementation of Structural Corre-
spondence Learning (Blitzer et al., 2006). We set
the number of induced features to 50 based on pre-
liminary experiments. For pivot features, we fol-
low the setting used by Blitzer et al. (2006) and se-
lect the features with a term frequency more than
50 in both domains.

PCA uses principal component analysis on Dt to
obtainK-dimensional induced feature vectors and
then appends them to the original feature vectors.

ISF is our method using instance similarity fea-
tures. We first transform each training instance to
a K-dimensional vector according to Equation 1
and then append the vector to the original vector.

For all the three NLP tasks and the methods
above that we compare, we employ the logistic re-
gression (a.k.a. maximum entropy) classification
algorithm with L2 regularization to train a clas-
sifier, which means the loss function is the cross
entropy error. We use the L-BFGS optimization
algorithm to optimize our objective function.

3.3 Results

In Table 2, we show the comparison between our
method and Naive, Common and SCL. For ISF,
the parameter K is set to 100 for Spam, 50 for
NER and 500 for Relation after tuning. As we
can see from the table, Common, which removes
source domain specific features during training,
can sometimes improve the classification perfor-
mance, but this is not consistent and the improve-
ment is small. SCL can improve the performance
in most settings for all three tasks, which confirms
the general effectiveness of this method. For our
method ISF, we can see that on average it outper-
forms both Naive and SCL significantly. When
we zoom into the different source-target domain
pairs of the three tasks, we can see that ISF out-
performs SCL in most of the cases. This shows
that our method is competitive despite its simplic-
ity. It is also worth pointing out that SCL incurs
much more computational cost than ISF.

We next compare ISF with PCA. Because PCA
is also expensive, we only managed to run it on
the Spam task. Table 3 shows that ISF also out-
performs PCA significantly.
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Method Spam NER Relation
u00 u01 u02 average f→y f→m m→y m→f y→f y→m average average

Naive 0.678 0.710 0.816 0.735 0.396 0.379 0.526 0.222 0.050 0.339 0.319 0.398
Common 0.697 0.732 0.781 0.737 0.409 0.388 0.559 0.208 0.059 0.344 0.328 0.401

SCL 0.699 0.717 0.824 0.747 0.405 0.380 0.525 0.239 0.063 0.35 0.327 0.403
ISF 0.720 0.769 0.884 0.791∗∗ 0.415 0.395 0.566 0.212 0.079 0.360 0.338∗∗ 0.416∗∗

Method Relation
bc→bn bc→cts bc→nw bc→un bc→wl bn→bc bn→cts bn→nw bn→un bn→wl

Naive 0.455 0.400 0.445 0.376 0.397 0.528 0.430 0.482 0.469 0.454
Common 0.484 0.408 0.446 0.373 0.400 0.536 0.452 0.478 0.465 0.444

SCL 0.467 0.395 0.453 0.391 0.415 0.531 0.434 0.484 0.461 0.461
ISF 0.474 0.434 0.455 0.446 0.405 0.537 0.454 0.484 0.504 0.460

cts→bc cts→bn cts→nw cts→un cts→wl nw2bc nw→bn nw→cts nw→un nw→wl
Naive 0.358 0.355 0.307 0.446 0.358 0.476 0.433 0.360 0.394 0.420

Common 0.345 0.336 0.292 0.432 0.339 0.475 0.441 0.363 0.399 0.429
SCL 0.361 0.359 0.314 0.448 0.357 0.480 0.439 0.354 0.405 0.426
ISF 0.387 0.377 0.333 0.449 0.361 0.488 0.439 0.342 0.401 0.431

un→bc un→bn un→cts un→nw un→wl wl→bc wl→bn wl→cts wl→nw wl→un
Naive 0.373 0.394 0.423 0.357 0.375 0.355 0.338 0.282 0.373 0.316

Common 0.399 0.409 0.416 0.370 0.370 0.351 0.364 0.298 0.379 0.335
SCL 0.379 0.399 0.423 0.356 0.377 0.361 0.355 0.288 0.381 0.330
ISF 0.442 0.404 0.436 0.381 0.380 0.389 0.368 0.298 0.395 0.329

Table 2: Comparison of performance on three NLP tasks. For each source-target pair of each task, the performance shown
is the average of 5-fold cross validation. We also report the overall average performance for each task. We tested statistical
significance only for the overall average performance and found that ISF was significantly better than both Naive and SCL with
p < 0.05 (indicated by ∗∗) based on the Wilcoxon signed-rank test.

Method Spam
u00 u01 u02 average

Naive 0.678 0.710 0.816 0.735
PCA 0.700 0.718 0.818 0.745
ISF 0.720 0.769 0.884 0.791∗∗

Table 3: Comparison between ISF and PCA.

4 Conclusions

We presented a hassle-free unsupervised domain
adaptation method. The method is simple to im-
plement, fast to run and yet effective for a few
NLP tasks, outperforming SCL, a widely-used un-
supervised domain adaptation method. We believe
the proposed method can benefit a large number of
practitioners who prefer simple methods than so-
phisticated domain adaptation methods.
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Abstract

In sentence modeling and classification,
convolutional neural network approaches
have recently achieved state-of-the-art re-
sults, but all such efforts process word vec-
tors sequentially and neglect long-distance
dependencies. To combine deep learn-
ing with linguistic structures, we pro-
pose a dependency-based convolution ap-
proach, making use of tree-based n-grams
rather than surface ones, thus utlizing non-
local interactions between words. Our
model improves sequential baselines on all
four sentiment and question classification
tasks, and achieves the highest published
accuracy on TREC.

1 Introduction
Convolutional neural networks (CNNs), originally
invented in computer vision (LeCun et al., 1995),
has recently attracted much attention in natural
language processing (NLP) on problems such as
sequence labeling (Collobert et al., 2011), seman-
tic parsing (Yih et al., 2014), and search query
retrieval (Shen et al., 2014). In particular, recent
work on CNN-based sentence modeling (Kalch-
brenner et al., 2014; Kim, 2014) has achieved ex-
cellent, often state-of-the-art, results on various
classification tasks such as sentiment, subjectivity,
and question-type classification. However, despite
their celebrated success, there remains a major
limitation from the linguistics perspective: CNNs,
being invented on pixel matrices in image process-
ing, only consider sequential n-grams that are con-
secutive on the surface string and neglect long-
distance dependencies, while the latter play an im-
portant role in many linguistic phenomena such as
negation, subordination, and wh-extraction, all of
which might dully affect the sentiment, subjectiv-
ity, or other categorization of the sentence.

∗ This work was done at both IBM and CUNY, and was supported in
part by DARPA FA8750-13-2-0041 (DEFT), and NSF IIS-1449278. We thank
Yoon Kim for sharing his code, and James Cross and Kai Zhao for discussions.

Indeed, in the sentiment analysis literature, re-
searchers have incorporated long-distance infor-
mation from syntactic parse trees, but the results
are somewhat inconsistent: some reported small
improvements (Gamon, 2004; Matsumoto et al.,
2005), while some otherwise (Dave et al., 2003;
Kudo and Matsumoto, 2004). As a result, syn-
tactic features have yet to become popular in the
sentiment analysis community. We suspect one
of the reasons for this is data sparsity (according
to our experiments, tree n-grams are significantly
sparser than surface n-grams), but this problem
has largely been alleviated by the recent advances
in word embedding. Can we combine the advan-
tages of both worlds?

So we propose a very simple dependency-based
convolutional neural networks (DCNNs). Our
model is similar to Kim (2014), but while his se-
quential CNNs put a word in its sequential con-
text, ours considers a word and its parent, grand-
parent, great-grand-parent, and siblings on the de-
pendency tree. This way we incorporate long-
distance information that are otherwise unavail-
able on the surface string.

Experiments on three classification tasks
demonstrate the superior performance of our
DCNNs over the baseline sequential CNNs. In
particular, our accuracy on the TREC dataset
outperforms all previously published results
in the literature, including those with heavy
hand-engineered features.

Independently of this work, Mou et al. (2015,
unpublished) reported related efforts; see Sec. 3.3.

2 Dependency-based Convolution

The original CNN, first proposed by LeCun et
al. (1995), applies convolution kernels on a se-
ries of continuous areas of given images, and was
adapted to NLP by Collobert et al. (2011). Fol-
lowing Kim (2014), one dimensional convolution
operates the convolution kernel in sequential order
in Equation 1, where xi ∈ Rd represents the d di-
mensional word representation for the i-th word in
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Despite the film ’s shortcomings the stories are quietly moving .

ROOT

Figure 1: Running example from Movie Reviews dataset.

mensional word representation for the i-th word in
the sentence, and ⊕ is the concatenation operator.
Therefore x̃i,j refers to concatenated word vector
from the i-th word to the (i+ j)-th word:

x̃i,j = xi ⊕ xi+1 ⊕ · · · ⊕ xi+j (1)

Sequential word concatenation x̃i,j works as
n-gram models which feeds local information into
convolution operations. However, this setting can
not capture long-distance relationships unless we
enlarge the window indefinitely which would in-
evitably cause the data sparsity problem.

In order to capture the long-distance dependen-
cies we propose the dependency tree-based con-
volution model (DTCNN). Figure 1 illustrates an
example from the Movie Reviews (MR) dataset
(Pang and Lee, 2005). The sentiment of this sen-
tence is obviously positive, but this is quite dif-
ficult for sequential CNNs because many n-gram
windows would include the highly negative word
“shortcomings”, and the distance between “De-
spite” and “shortcomings” is quite long. DTCNN,
however, could capture the tree-based bigram
“Despite – shortcomings”, thus flipping the senti-
ment, and the tree-based trigram “ROOT – moving
– stories”, which is highly positive.

2.1 Convolution on Ancestor Paths
We define our concatenation based on the depen-
dency tree for a given modifier xi:

xi,k = xi ⊕ xp(i) ⊕ · · · ⊕ xpk−1(i) (2)

where function pk(i) returns the i-th word’s k-th
ancestor index, which is recursively defined as:

pk(i) =

{
p(pk−1(i)) if k > 0
i if k = 0

(3)

Figure 2 (left) illustrates ancestor paths patterns
with various orders. We always start the convo-
lution with xi and concatenate with its ancestors.
If the root node is reached, we add “ROOT” as
dummy ancestors (vertical padding).

For a given tree-based concatenated word se-
quence xi,k, the convolution operation applies a
filter w ∈ Rk×d to xi,k with a bias term b de-
scribed in equation 4:

ci = f(w · xi,k + b) (4)

where f is a non-linear activation function such as
rectified linear unit (ReLu) or sigmoid function.
The filter w is applied to each word in the sen-
tence, generating the feature map c ∈ Rl:

c = [c1, c2, · · · , cl] (5)
where l is the length of the sentence.

2.2 Max-Over-Tree Pooling and Dropout
The filters convolve with different word concate-
nation in Eq. 4 can be regarded as pattern detec-
tion: only the most similar pattern between the
words and the filter could return the maximum ac-
tivation. In sequential CNNs, max-over-time pool-
ing (Collobert et al., 2011; Kim, 2014) operates
over the feature map to get the maximum acti-
vation ĉ = max c representing the entire feature
map. Our DTCNNs also pool the maximum ac-
tivation from feature map to detect the strongest
activation over the whole tree (i.e., over the whole
sentence). Since the tree no longer defines a se-
quential “time” direction, we refer to our pooling
as “max-over-tree” pooling.

In order to capture enough variations, we ran-
domly initialize the set of filters to detect different
structure patterns. Each filter’s height is the num-
ber of words considered and the width is always
equal to the dimensionality d of word representa-
tion. Each filter will be represented by only one
feature after max-over-tree pooling. After a series
of convolution with different filter with different
heights, multiple features carry different structural
information become the final representation of the
input sentence. Then, this sentence representation
is passed to a fully connected soft-max layer and
outputs a distribution over different labels.

Neural networks often suffer from overtrain-
ing. Following Kim (2014), we employ random
dropout on penultimate layer (Hinton et al., 2012).
in order to prevent co-adaptation of hidden units.
In our experiments, we set our drop out rate as 0.5
and learning rate as 0.95 by default. Following
Kim (2014), training is done through stochastic
gradient descent over shuffled mini-batches with
the Adadelta update rule (Zeiler, 2012).

2.3 Convolution on Siblings
Ancestor paths alone is not enough to capture
many linguistic phenomena such as conjunction.

Figure 1: Dependency tree of an example sentence from the Movie Reviews dataset.

the sentence, and ⊕ is the concatenation operator.
Therefore x̃i,j refers to concatenated word vector
from the i-th word to the (i+ j)-th word:

x̃i,j = xi ⊕ xi+1 ⊕ · · · ⊕ xi+j (1)

Sequential word concatenation x̃i,j works as
n-gram models which feeds local information into
convolution operations. However, this setting can
not capture long-distance relationships unless we
enlarge the window indefinitely which would in-
evitably cause the data sparsity problem.

In order to capture the long-distance dependen-
cies we propose the dependency-based convolu-
tion model (DCNN). Figure 1 illustrates an exam-
ple from the Movie Reviews (MR) dataset (Pang
and Lee, 2005). The sentiment of this sentence
is obviously positive, but this is quite difficult for
sequential CNNs because many n-gram windows
would include the highly negative word “short-
comings”, and the distance between “Despite” and
“shortcomings” is quite long. DCNN, however,
could capture the tree-based bigram “Despite –
shortcomings”, thus flipping the sentiment, and
the tree-based trigram “ROOT – moving – sto-
ries”, which is highly positive.

2.1 Convolution on Ancestor Paths
We define our concatenation based on the depen-
dency tree for a given modifier xi:

xi,k = xi ⊕ xp(i) ⊕ · · · ⊕ xpk−1(i) (2)

where function pk(i) returns the i-th word’s k-th
ancestor index, which is recursively defined as:

pk(i) =

{
p(pk−1(i)) if k > 0
i if k = 0

(3)

Figure 2 (left) illustrates ancestor paths patterns
with various orders. We always start the convo-
lution with xi and concatenate with its ancestors.
If the root node is reached, we add “ROOT” as
dummy ancestors (vertical padding).

For a given tree-based concatenated word se-
quence xi,k, the convolution operation applies a
filter w ∈ Rk×d to xi,k with a bias term b de-
scribed in equation 4:

ci = f(w · xi,k + b) (4)

where f is a non-linear activation function such as
rectified linear unit (ReLu) or sigmoid function.
The filter w is applied to each word in the sen-
tence, generating the feature map c ∈ Rl:

c = [c1, c2, · · · , cl] (5)

where l is the length of the sentence.

2.2 Max-Over-Tree Pooling and Dropout

The filters convolve with different word concate-
nation in Eq. 4 can be regarded as pattern detec-
tion: only the most similar pattern between the
words and the filter could return the maximum ac-
tivation. In sequential CNNs, max-over-time pool-
ing (Collobert et al., 2011; Kim, 2014) operates
over the feature map to get the maximum acti-
vation ĉ = max c representing the entire feature
map. Our DCNNs also pool the maximum activa-
tion from feature map to detect the strongest ac-
tivation over the whole tree (i.e., over the whole
sentence). Since the tree no longer defines a se-
quential “time” direction, we refer to our pooling
as “max-over-tree” pooling.

In order to capture enough variations, we ran-
domly initialize the set of filters to detect different
structure patterns. Each filter’s height is the num-
ber of words considered and the width is always
equal to the dimensionality d of word representa-
tion. Each filter will be represented by only one
feature after max-over-tree pooling. After a series
of convolution with different filter with different
heights, multiple features carry different structural
information become the final representation of the
input sentence. Then, this sentence representation
is passed to a fully connected soft-max layer and
outputs a distribution over different labels.

Neural networks often suffer from overtrain-
ing. Following Kim (2014), we employ random
dropout on penultimate layer (Hinton et al., 2014).
in order to prevent co-adaptation of hidden units.
In our experiments, we set our drop out rate as 0.5
and learning rate as 0.95 by default. Following
Kim (2014), training is done through stochastic
gradient descent over shuffled mini-batches with
the Adadelta update rule (Zeiler, 2012).
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ancestor paths siblings
n pattern(s) n pattern(s)

3
m h g

2
s m

4
m h g g2 3

s m h t s m

5
m h g g2 g3 4

t s m h s m h g

Table 1: Tree-based convolution patterns. Word concatenation always starts with m, while h, g, and g2

denote parent, grand parent, and great-grand parent, etc., and “ ” denotes words excluded in convolution.

2.3 Convolution on Siblings
Ancestor paths alone is not enough to capture
many linguistic phenomena such as conjunction.
Inspired by higher-order dependency parsing (Mc-
Donald and Pereira, 2006; Koo and Collins, 2010),
we also incorporate siblings for a given word in
various ways. See Table 1 (right) for details.

2.4 Combined Model
Powerful as it is, structural information still does
not fully cover sequential information. Also, pars-
ing errors (which are common especially for in-
formal text such as online reviews) directly affect
DTCNN performance while sequential n-grams
are always correctly observed. To best exploit
both information, we want to combine both mod-
els. The easiest way of combination is to con-
catenate these representations together, then feed
into fully connected soft-max neural networks. In
these cases, combine with different feature from
different type of sources could stabilize the perfor-
mance. The final sentence representation is thus:

ĉ = [ĉ(1)
a , ..., ĉ(Na)

a︸ ︷︷ ︸
ancestors

; ĉ(1)
s , ..., ĉ(Ns)

s︸ ︷︷ ︸
siblings

; ĉ(1), ..., ĉ(N)︸ ︷︷ ︸
sequential

]

where Na, Ns, and N are the number of ancestor,
sibling, and sequential filters. In practice, we use
100 filters for each template in Table 1. The fully
combined representation is 1100-dimensional by
contrast to 300-dimensional for sequential CNN.

3 Experiments
We implement our DTCNN on top of the open
source CNN code by Kim (2014).1 Table 2
summarizes our results in the context of other
high-performing efforts in the literature. We use
three benchmark datasets in two categories: senti-
ment analysis on both Movie Review (MR) (Pang
and Lee, 2005) and Stanford Sentiment Treebank

1https://github.com/yoonkim/CNN sentence

(SST-1) (Socher et al., 2013) datasets, and ques-
tion classification on TREC (Li and Roth, 2002).

For all datasets, we first obtain the dependency
parse tree from Stanford parser (Manning et al.,
2014).2 Different window size for different choice
of convolution are shown in Table 1. For the
dataset without a development set (MR), we ran-
domly choose 10% of the training data to indicate
early stopping. In order to have a fare compari-
son with baseline CNN, we also use 3 to 5 as our
window size. Most of our results are generated
by GPU due to its efficiency, however CPU poten-
tially could generate better results.3 Our imple-
mentation can be found on Github.4

3.1 Sentiment Analysis
Both sentiment analysis datasets (MR and SST-
1) are based on movie reviews. The differences
between them are mainly in the different num-
bers of categories and whether the standard split
is given. There are 10,662 sentences in the MR
dataset. Each instance is labeled positive or neg-
ative, and in most cases contains one sentence.
Since no standard data split is given, following the
literature we use 10 fold cross validation to include
every sentence in training and testing at least once.
Concatenating with sibling and sequential infor-
mation obviously improves tree-based CNNs, and
the final model outperforms the baseline sequen-
tial CNNs by 0.4, and ties with Zhu et al. (2015).

Different from MR, the Stanford Sentiment
Treebank (SST-1) annotates finer-grained labels,
very positive, positive, neutral, negative and very
negative, on an extension of the MR dataset. There
are 11,855 sentences with standard split. Our
model achieves an accuracy of 49.5 which is sec-
ond only to Irsoy and Cardie (2014). We set batch
size to 100 for this task.

2The phrase-structure trees in SST-1 are actually automat-
ically parsed, and thus can not be used as gold-standard trees.

3GPU only supports float32 while CPU supports float64.
4https://github.com/cosmmb/DTCNN

Figure 2: Convolution patterns on trees. Word concatenation always starts with m, while h, g, and g2

denote parent, grand parent, and great-grand parent, etc., and “ ” denotes words excluded in convolution.

2.3 Convolution on Siblings
Ancestor paths alone is not enough to capture
many linguistic phenomena such as conjunction.
Inspired by higher-order dependency parsing (Mc-
Donald and Pereira, 2006; Koo and Collins, 2010),
we also incorporate siblings for a given word in
various ways. See Figure 2 (right) for details.

2.4 Combined Model
Powerful as it is, structural information still does
not fully cover sequential information. Also, pars-
ing errors (which are common especially for in-
formal text such as online reviews) directly affect
DCNN performance while sequential n-grams are
always correctly observed. To best exploit both in-
formation, we want to combine both models. The
easiest way of combination is to concatenate these
representations together, then feed into fully con-
nected soft-max neural networks. In these cases,
combine with different feature from different type
of sources could stabilize the performance. The
final sentence representation is thus:

ĉ = [ĉ(1)
a , ..., ĉ(Na)

a︸ ︷︷ ︸
ancestors

; ĉ(1)
s , ..., ĉ(Ns)

s︸ ︷︷ ︸
siblings

; ĉ(1), ..., ĉ(N)︸ ︷︷ ︸
sequential

]

where Na, Ns, and N are the number of ancestor,
sibling, and sequential filters. In practice, we use
100 filters for each template in Figure 2 . The fully
combined representation is 1,100-dimensional by
contrast to 300-dimensional for sequential CNN.

3 Experiments
Table 1 summarizes results in the context of other
high-performing efforts in the literature. We use
three benchmark datasets in two categories: senti-
ment analysis on both Movie Review (MR) (Pang
and Lee, 2005) and Stanford Sentiment Treebank
(SST-1) (Socher et al., 2013) datasets, and ques-
tion classification on TREC (Li and Roth, 2002).

For all datasets, we first obtain the dependency
parse tree from Stanford parser (Manning et al.,
2014).1 Different window size for different choice
of convolution are shown in Figure 2. For the
dataset without a development set (MR), we ran-
domly choose 10% of the training data to indicate
early stopping. In order to have a fare compari-
son with baseline CNN, we also use 3 to 5 as our
window size. Most of our results are generated by
GPU due to its efficiency, however CPU could po-
tentially get better results.2 Our implementation,
on top of Kim (2014)’s code,3 will be released.4

3.1 Sentiment Analysis
Both sentiment analysis datasets (MR and SST-
1) are based on movie reviews. The differences
between them are mainly in the different num-
bers of categories and whether the standard split
is given. There are 10,662 sentences in the MR
dataset. Each instance is labeled positive or neg-
ative, and in most cases contains one sentence.
Since no standard data split is given, following the
literature we use 10 fold cross validation to include
every sentence in training and testing at least once.
Concatenating with sibling and sequential infor-
mation obviously improves DCNNs, and the final
model outperforms the baseline sequential CNNs
by 0.4, and ties with Zhu et al. (2015).

Different from MR, the Stanford Sentiment
Treebank (SST-1) annotates finer-grained labels,
very positive, positive, neutral, negative and very
negative, on an extension of the MR dataset. There
are 11,855 sentences with standard split. Our
model achieves an accuracy of 49.5 which is sec-
ond only to Irsoy and Cardie (2014).

1The phrase-structure trees in SST-1 are actually automatically parsed,
and thus can not be used as gold-standard trees.

2GPU only supports float32 while CPU supports float64.
3
https://github.comw/yoonkim/CNN_sentence

4
https://github.com/cosmmb/DCNN
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Category Model MR SST-1 TREC TREC-2

This work
DCNNs: ancestor 80.4† 47.7† 95.4† 88.4†

DCNNs: ancestor+sibling 81.7† 48.3† 95.6† 89.0†

DCNNs: ancestor+sibling+sequential 81.9 49.5 95.4† 88.8†

CNNs
CNNs-non-static (Kim, 2014) – baseline 81.5 48.0 93.6 86.4∗

CNNs-multichannel (Kim, 2014) 81.1 47.4 92.2 86.0∗

Deep CNNs (Kalchbrenner et al., 2014) - 48.5 93.0 -

Recursive NNs
Recursive Autoencoder (Socher et al., 2011) 77.7 43.2 - -
Recursive Neural Tensor (Socher et al., 2013) - 45.7 - -
Deep Recursive NNs (Irsoy and Cardie, 2014) - 49.8 - -

Recurrent NNs LSTM on tree (Zhu et al., 2015) 81.9 48.0 - -
Other deep learning Paragraph-Vec (Le and Mikolov, 2014) - 48.7 - -
Hand-coded rules SVMS (Silva et al., 2011) - 95.0 90.8

Table 1: Results on Movie Review (MR), Stanford Sentiment Treebank (SST-1), and TREC datasets.
TREC-2 is TREC with fine grained labels. †Results generated by GPU (all others generated by CPU).
∗Results generated from Kim (2014)’s implementation.

3.2 Question Classification
In the TREC dataset, the entire dataset of 5,952
sentences are classified into the following 6 cate-
gories: abbreviation, entity, description, location
and numeric. In this experiment, DCNNs easily
outperform any other methods even with ancestor
convolution only. DCNNs with sibling achieve the
best performance in the published literature. DC-
NNs combined with sibling and sequential infor-
mation might suffer from overfitting on the train-
ing data based on our observation. One thing
to note here is that our best result even exceeds
SVMS (Silva et al., 2011) with 60 hand-coded
rules.

The TREC dataset also provides subcategories
such as numeric:temperature, numeric:distance,
and entity:vehicle. To make our task more real-
istic and challenging, we also test the proposed
model with respect to the 50 subcategories. There
are obvious improvements over sequential CNNs
from the last column of Table 1. Like ours, Silva
et al. (2011) is a tree-based system but it uses
constituency trees compared to ours dependency
trees. They report a higher fine-grained accuracy
of 90.8 but their parser is trained only on the Ques-
tionBank (Judge et al., 2006) while we used the
standard Stanford parser trained on both the Penn
Treebank and QuestionBank. Moreover, as men-
tioned above, their approach is rule-based while
ours is automatically learned.

3.3 Discussions and Examples
Compared with sentiment analysis, the advantage
of our proposed model is obviously more substan-
tial on the TREC dataset. Based on our error anal-
ysis, we conclude that this is mainly due to the

Category Model MR SST-1 TREC TREC-2

This work
DTCNNs: ancestor 80.4† 47.7† 95.4† 88.4†

DTCNNs: ancestor+sibling 81.7† 48.3† 95.6† 89.0†

DTCNNs: ancestor+sibling+sequential 81.9 49.5 95.4† 88.8†

CNNs
CNNs-non-static (Kim, 2014) – baseline 81.5 48.0 93.6 86.4∗

CNNs-multichannel (Kim, 2014) 81.1 47.4 92.2 86.0∗

Deep CNNs (Kalchbrenner et al., 2014) - 48.5 93.0 -

Recursive NNs
Recursive Autoencoder (Socher et al., 2011) 77.7 43.2 - -
Recursive Neural Tensor (Socher et al., 2013) - 45.7 - -
Deep Recursive NNs (Irsoy and Cardie, 2014) - 49.8 - -

Recurrent NNs LSTM on tree (Zhu et al., 2015) 81.9 48.0 - -
Other deep learning Paragraph-Vec (Le and Mikolov, 2014) - 48.7 - -
Hand-coded rules SVMS (Silva et al., 2011) - 95.0 90.8

Table 2: Results on Movie Review (MR), Stanford Sentiment Treebank (SST-1), and TREC datasets.
TREC-2 is TREC with fine grained labels. †Results generated by GPU (all others generated by CPU).
∗Results generated from Kim (2014)’s implementation.

What is Hawaii ’s state flower ?

root

(a) enty⇒ loc

What is natural gas composed of ?

root

(b) enty⇒ desc

What does a defibrillator do ?

root

(c) desc⇒ enty

Nothing plot wise is worth emailing home about

root

(d) mild negative⇒ mild positive

What is the temperature at the center of the earth ?

root

(e) NUM:temp⇒ NUM:dist

What were Christopher Columbus ’ three ships ?

root

(f) ENTY:veh⇒ LOC:other

Figure 2: Examples from TREC (a–c), SST-1 (d)
and TREC with fine-grained label (e–f) that are
misclassified by the baseline CNN but correctly
labeled by our DTCNN. For example, (a) should
be entity but is labeled location by CNN.

3.2 Question Classification
In the TREC dataset, the entire dataset of 5,952
sentences are classified into the following 6 cate-
gories: abbreviation, entity, description, location
and numeric. In this experiment, DTCNNs eas-
ily outperform any other methods even with an-
cestor convolution only. DTCNNs with sibling
achieve the best performance in the published lit-
erature. DTCNNs combined with sibling and se-
quential information might suffer from overfitting
on the training data based on our observation. One
thing to note here is that our best result even ex-
ceeds SVMS (Silva et al., 2011) with 60 hand-
coded rules. We set batch size to 210 for this task.

The TREC dataset also provides subcategories
such as numeric:temperature, numeric:distance,
and entity:vehicle. To make our task more real-
istic and challenging, we also test the proposed
model with respect to the 50 subcategories. There
are obvious improvements over sequential CNNs
from the last column of Table 2. Like ours, Silva
et al. (2011) is a tree-based system but it uses
constituency trees compared to ours dependency
trees. They report a higher fine-grained accuracy
of 90.8 but their parser is trained only on the Ques-
tionBank (Judge et al., 2006) while we used the
standard Stanford parser trained on both the Penn
Treebank and QuestionBank. Moreover, as men-
tioned above, their approach is rule-based while
ours is automatically learned. For this task, we set
batch size to 30.

3.3 Discussions and Examples
Compared with sentiment analysis, the advantage
of our proposed model is obviously more substan-
tial on the TREC dataset. Based on our error anal-

Figure 3: Examples from TREC (a–c), SST-1 (d)
and TREC with fine-grained label (e–f) that are
misclassified by the baseline CNN but correctly
labeled by our DCNN. For example, (a) should be
entity but is labeled location by CNN.
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What is the speed hummingbirds fly ?
(noun)

root

(a) num⇒ enty

What body of water are the Canary Islands in ?

root

(b) loc⇒ enty

What position did Willie Davis play in baseball ?

root

(c) hum⇒ enty

Figure 3: Examples from TREC datasets that are
misclassified by DTCNN but correctly labeled by
baseline CNN. For example, (a) should be numer-
ical but is labeled entity by DTCNN.

ysis, we conclude that this is mainly due to the
difference of the parse tree quality between the
two tasks. In sentiment analysis, the dataset is
collected from the Rotten Tomatoes website which
includes many irregular usage of language. Some
of the sentences even come from languages other
than English. The errors in parse trees inevitably
affect the classification accuracy. However, the
parser works substantially better on the TREC
dataset since all questions are in formal written
English, and the training set for Stanford parser5

already includes the QuestionBank (Judge et al.,
2006) which includes 2,000 TREC sentences.

Figure 2 visualizes examples where CNN errs
while DTCNN does not. For example, CNN la-
bels (a) as location due to “Hawaii” and “state”,
while the long-distance backbone “What – flower”
is clearly asking for an entity. Similarly, in (d),
DTCNN captures the obviously negative tree-
based trigram “Nothing – worth – emailing”. Note
that our model also works with non-projective de-
pendency trees such as the one in (b). The last
two examples in Figure 2 visualize cases where
DTCNN outperforms the baseline CNNs in fine-
grained TREC. In example (e), the word “temper-
ature” is at second from the top and is root of a
8 word span “the ... earth”. When we use a win-
dow of size 5 for tree convolution, every words
in that span get convolved with “temperature” and
this should be the reason why DTCNN get correct.

5http://nlp.stanford.edu/software/parser-faq.shtml

What is the melting point of copper ?

root

(a) num⇒ enty and desc

What did Jesse Jackson organize ?

root

(b) hum⇒ enty and enty

What is the electrical output in Madrid , Spain ?

root

(c) enty⇒ num and num

Figure 4: Examples from TREC datasets that are
misclassified by both DTCNN and baseline CNN.
For example, (a) should be numerical but is la-
beled entity by DTCNN and description by CNN.

Figure 3 showcases examples where baseline
CNNs get better results than DTCNNs. Exam-
ple (a) is misclassified as entity by DTCNN due
to parsing/tagging error (the Stanford parser per-
forms its own part-of-speech tagging). The word
“fly” at the end of the sentence should be a verb
instead of noun, and “hummingbirds fly” should
be a relative clause modifying “speed”.

There are some sentences that are misclassified
by both the baseline CNN and DTCNN. Figure 4
shows three such examples. Example (a) is not
classified as numerical by both methods due to the
ambiguous meaning of the word “point” which is
difficult to capture by word embedding. This word
can mean location, opinion, etc. Apparently, the
numerical aspect is not captured by word embed-
ding. Example (c) might be an annotation error.

From the mistakes made by DTCNNs, we find
the performance of DTCNN is mainly limited by
two factors: the accuracy of the parser and the
quality of word embedding. Future work will fo-
cus on these two issues.

4 Conclusions and Future Work

We have presented a very simple dependency tree-
based convolution framework which outperforms
sequential CNN baselines on various classification
tasks. Extensions of this model would consider
dependency labels and constituency trees. Also,
we would evaluate on gold-standard parse trees.

Figure 4: Examples from TREC datasets that are
misclassified by DCNN but correctly labeled by
baseline CNN. For example, (a) should be numer-
ical but is labeled entity by DCNN.

difference of the parse tree quality between the
two tasks. In sentiment analysis, the dataset is
collected from the Rotten Tomatoes website which
includes many irregular usage of language. Some
of the sentences even come from languages other
than English. The errors in parse trees inevitably
affect the classification accuracy. However, the
parser works substantially better on the TREC
dataset since all questions are in formal written
English, and the training set for Stanford parser5

already includes the QuestionBank (Judge et al.,
2006) which includes 2,000 TREC sentences.

Figure 3 visualizes examples where CNN errs
while DCNN does not. For example, CNN la-
bels (a) as location due to “Hawaii” and “state”,
while the long-distance backbone “What – flower”
is clearly asking for an entity. Similarly, in (d),
DCNN captures the obviously negative tree-based
trigram “Nothing – worth – emailing”. Note that
our model also works with non-projective depen-
dency trees such as the one in (b). The last two ex-
amples in Figure 3 visualize cases where DCNN
outperforms the baseline CNNs in fine-grained
TREC. In example (e), the word “temperature” is
at second from the top and is root of a 8 word span
“the ... earth”. When we use a window of size 5
for tree convolution, every words in that span get
convolved with “temperature” and this should be
the reason why DCNN get correct.

Figure 4 showcases examples where baseline
CNNs get better results than DCNNs. Example
(a) is misclassified as entity by DCNN due to pars-
ing/tagging error (the Stanford parser performs its

5
http://nlp.stanford.edu/software/parser-faq.shtml

What is the speed hummingbirds fly ?
(noun)

root

(a) num⇒ enty

What body of water are the Canary Islands in ?

root

(b) loc⇒ enty

What position did Willie Davis play in baseball ?

root

(c) hum⇒ enty

Figure 3: Examples from TREC datasets that are
misclassified by DTCNN but correctly labeled by
baseline CNN. For example, (a) should be numer-
ical but is labeled entity by DTCNN.

ysis, we conclude that this is mainly due to the
difference of the parse tree quality between the
two tasks. In sentiment analysis, the dataset is
collected from the Rotten Tomatoes website which
includes many irregular usage of language. Some
of the sentences even come from languages other
than English. The errors in parse trees inevitably
affect the classification accuracy. However, the
parser works substantially better on the TREC
dataset since all questions are in formal written
English, and the training set for Stanford parser5

already includes the QuestionBank (Judge et al.,
2006) which includes 2,000 TREC sentences.

Figure 2 visualizes examples where CNN errs
while DTCNN does not. For example, CNN la-
bels (a) as location due to “Hawaii” and “state”,
while the long-distance backbone “What – flower”
is clearly asking for an entity. Similarly, in (d),
DTCNN captures the obviously negative tree-
based trigram “Nothing – worth – emailing”. Note
that our model also works with non-projective de-
pendency trees such as the one in (b). The last
two examples in Figure 2 visualize cases where
DTCNN outperforms the baseline CNNs in fine-
grained TREC. In example (e), the word “temper-
ature” is at second from the top and is root of a
8 word span “the ... earth”. When we use a win-
dow of size 5 for tree convolution, every words
in that span get convolved with “temperature” and
this should be the reason why DTCNN get correct.

5http://nlp.stanford.edu/software/parser-faq.shtml

What is the melting point of copper ?

root

(a) num⇒ enty and desc

What did Jesse Jackson organize ?

root

(b) hum⇒ enty and enty

What is the electrical output in Madrid , Spain ?

root

(c) enty⇒ num and num

Figure 4: Examples from TREC datasets that are
misclassified by both DTCNN and baseline CNN.
For example, (a) should be numerical but is la-
beled entity by DTCNN and description by CNN.

Figure 3 showcases examples where baseline
CNNs get better results than DTCNNs. Exam-
ple (a) is misclassified as entity by DTCNN due
to parsing/tagging error (the Stanford parser per-
forms its own part-of-speech tagging). The word
“fly” at the end of the sentence should be a verb
instead of noun, and “hummingbirds fly” should
be a relative clause modifying “speed”.

There are some sentences that are misclassified
by both the baseline CNN and DTCNN. Figure 4
shows three such examples. Example (a) is not
classified as numerical by both methods due to the
ambiguous meaning of the word “point” which is
difficult to capture by word embedding. This word
can mean location, opinion, etc. Apparently, the
numerical aspect is not captured by word embed-
ding. Example (c) might be an annotation error.

From the mistakes made by DTCNNs, we find
the performance of DTCNN is mainly limited by
two factors: the accuracy of the parser and the
quality of word embedding. Future work will fo-
cus on these two issues.

4 Conclusions and Future Work

We have presented a very simple dependency tree-
based convolution framework which outperforms
sequential CNN baselines on various classification
tasks. Extensions of this model would consider
dependency labels and constituency trees. Also,
we would evaluate on gold-standard parse trees.

Figure 5: Examples from TREC datasets that are
misclassified by both DCNN and baseline CNN.
For example, (a) should be numerical but is la-
beled entity by DCNN and description by CNN.

own part-of-speech tagging). The word “fly” at
the end of the sentence should be a verb instead of
noun, and “hummingbirds fly” should be a relative
clause modifying “speed”.

There are some sentences that are misclassified
by both the baseline CNN and DCNN. Figure 5
shows three such examples. Example (a) is not
classified as numerical by both methods due to the
ambiguous meaning of the word “point” which is
difficult to capture by word embedding. This word
can mean location, opinion, etc. Apparently, the
numerical aspect is not captured by word embed-
ding. Example (c) might be an annotation error.

Shortly before submitting to ACL 2015 we
learned Mou et al. (2015, unpublished) have inde-
pendently reported concurrent and related efforts.
Their constituency model, based on their unpub-
lished work in programming languages (Mou et
al., 2014),6 performs convolution on pretrained re-
cursive node representations rather than word em-
beddings, thus baring little, if any, resemblance to
our dependency-based model. Their dependency
model is related, but always includes a node and
all its children (resembling Iyyer et al. (2014)),
which is a variant of our sibling model and always
flat. By contrast, our ancestor model looks at the
vertical path from any word to its ancestors, being
linguistically motivated (Shen et al., 2008).

4 Conclusions
We have presented a very simple dependency-
based convolution framework which outperforms
sequential CNN baselines on modeling sentences.

6Both their 2014 and 2015 reports proposed (independently of each other
and independently of our work) the term “tree-based convolution” (TBCNN).
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Abstract

Text regression has traditionally been
tackled using linear models. Here we
present a non-linear method based on a
deep convolutional neural network. We
show that despite having millions of pa-
rameters, this model can be trained on
only a thousand documents, resulting in a
40% relative improvement over sparse lin-
ear models, the previous state of the art.
Further, this method is flexible allowing
for easy incorporation of side information
such as document meta-data. Finally we
present a novel technique for interpreting
the effect of different text inputs on this
complex non-linear model.

1 Introduction

Text regression involves predicting a real world
phenomenon from textual inputs, and has been
shown to be effective in domains including elec-
tion results (Lampos et al., 2013), financial risk
(Kogan et al., 2009) and public health (Lampos
and Cristianini, 2010). Almost universally, the
text regression problem has been framed as lin-
ear regression, with the modelling innovation fo-
cussed on effective regression, e.g., using Lasso
penalties to promote feature sparsity (Tibshirani,
1996).1 Despite their successes, linear models are
limiting: text regression problems will often in-
volve complex interactions between textual inputs,
thus requiring a non-linear approach to properly
capture such phenomena. For instance, in mod-
elling movie revenue conjunctions of features are
likely to be important, e.g., a movie described as
‘scary’ is likely to have different effects for chil-
dren’s versus adult movies. While these kinds of

1Some preliminary work has shown strong results for non-
linear text regression using Gaussian Process models (Lam-
pos et al., 2014), however this approach has not been shown
to scale to high dimensional inputs.

features can be captured using explicit feature en-
gineering, this process is tedious, limited in scope
(e.g., to conjunctions) and – as we show here –
can be dramatically improved by representational
learning as part of a non-linear model.

In this paper, we propose an artificial neu-
ral network (ANN) for modelling text regression.
In language processing, ANNs were first pro-
posed for probabilistic language modelling (Ben-
gio et al., 2003), followed by models of sentences
(Kalchbrenner et al., 2014) and parsing (Socher
et al., 2013) inter alia. These approaches have
shown strong results through automatic learning
dense low-dimensional distributed representations
for words and other linguistic units, which have
been shown to encode important aspects of lan-
guage syntax and semantics. In this paper we
develop a convolutional neural network, inspired
by their breakthrough results in image process-
ing (Krizhevsky et al., 2012) and recent applica-
tions to language processing (Kalchbrenner et al.,
2014; Kim, 2014). These works have mainly fo-
cused on ‘big data’ problems with plentiful train-
ing examples. Given their large numbers of pa-
rameters, often in the millions, one would expect
that such models can only be effectively learned
on very large datasets. However we show here
that a complex deep convolution network can be
trained on about a thousand training examples, al-
though careful model design and regularisation is
paramount.

We consider the problem of predicting the fu-
ture box-office takings of movies based on reviews
by movie critics and movie attributes. Our ap-
proach is based on the method and dataset of Joshi
et al. (2010), who presented a linear regression
model over uni-, bi-, and tri-gram term frequency
counts extracted from reviews, as well as movie
and reviewer metadata. This problem is especially
interesting, as comparatively few instances are
available for training (see Table 1) while each in-
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train dev test total

# movies 1147 317 254 1718
# reviews per movie 4.2 4.0 4.1 4.1
# sentences per movie 95 84 82 91
# words per movie 2879 2640 2605 2794

Table 1: Movie review dataset (Joshi et al., 2010).

stance (movie) includes a rich array of data includ-
ing the text of several critic reviews from various
review sites, as well as structured data (genre, rat-
ing, actors, etc.) Joshi et al. found that regression
purely from movie meta-data gave strong predic-
tive accuracy, while text had a weaker but comple-
mentary signal. Their best results were achieved
by domain adaptation whereby text features were
conjoined with a review site identifier. Inspired by
Joshi et al. (2010) our model also operates over n-
grams, 1 ≤ n ≤ 3, and movie metadata, albeit
using an ANN in place of their linear model. We
use word embeddings to represent words in a low
dimensional space, a convolutional network with
max-pooling to represent documents in terms of
n-grams, and several fully connected hidden lay-
ers to allow for learning of complex non-linear in-
teractions. We show that including non-linearities
in the model is crucial for accurate modelling, pro-
viding a relative error reduction of 40% (MAE)
over their best linear model. Our final contribu-
tion is a novel means of model interpretation. Al-
though it is notoriously difficult to interpret the pa-
rameters of an ANN, we show a simple method of
quantifying the effect of text n-grams on the pre-
diction output. This allows for identification of the
most important textual inputs, and investigation of
non-linear interactions between these words and
phrases in different data instances.

2 Model

The outline of the convolutional network is shown
in Figure 1. We have n training examples of the
form {bi, ri, yi}ni=1, where bi is the meta data as-
sociated with movie i, yi is the target gross week-
end revenue, and ri is a collection of ui number of
reviews, ri = {xj , tj}ui

j=1 where each review has
review text xj and a site id tj . We concatenate all
the review texts di = (x1,x2, ...,xu) to form our
text input (see part I of Figure 1).

To acquire a distributed representation of the
text, we look up the input tokens in a pretrained
word embedding matrix E with size |V |×e, where
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Figure 1: Outline of the network architecture.

|V | is the size of our vocabulary and e is the em-
bedding dimensionality. This gives us a dense
document matrix Di,j = Edi,j with dimensions
m × e where m is the number of tokens in the
document.

Since the length of text documents vary, in part
II we apply convolutions with width one, two and
three over the document matrix to obtain a fixed
length representation of the text. The n-gram con-
volutions help identify local context and map that
to a new higher level feature space. For each fea-
ture map, the convolution takes adjacent word em-
beddings and performs a feed forward computa-
tion with shared weights over the convolution win-
dow. For a convolution with width 1 ≤ q ≤ m this
is

S(q)
i,· = (Di,·,Di+1,·, ...,Di+q−1,·)

C(q)
i,· = 〈S(q)

i,· ,W
(q)〉

where S(q)
i,· is q adjacent word embeddings con-

catenated, and C(q) is the convolution output ma-
trix with (m−q+1) rows after a linear transforma-
tion with weights W(q). To allow for a non-linear
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transformation, we make use of rectified linear ac-
tivation units, H(q) = max(C(q), 0), which are
universal function approximators. Finally, to com-
press the representation of text to a fixed dimen-
sional vector while ensuring that important infor-
mation is preserved and propagated throughout the
network, we apply max pooling over time, i.e. the
sequence of words, for each dimension, as shown
in part III,

p
(q)
j = maxH(q)

·,j

where p(q)
j is dimension j of the pooling layer for

convolution q, and p is the concatenation of all
pooling layers, p = (p(1),p(2), ...,p(q)).

Next, we perform a series of non-linear trans-
formations to the document vector in order to pro-
gressively acquire higher level representations of
the text and approximate a linear relationship in
the final output prediction layer. Applying multi-
ple hidden layers in succession can require expo-
nentially less data than mapping through a single
hidden layer (Bengio, 2009). Therefore, in part
IV, we apply densely connected neural net layers
of the form ok = h(g(ak,Wk)) where ak is the
input and ok = ak+1 is the output vector for layer
k, g is a linear transformation function 〈ak,Wk〉,
and h is the activation function, i.e. rectified linear
seen above. l = 3 hidden layers are applied be-
fore the final regression layer to produce the out-
put f = g(ol,wl+1) in part V.

The mean absolute error is measured between
the predictions f and the targets y, which is more
permissible to outliers than the squared error. The
cost J is defined as

J =
1
n

n∑
v=1

|fv − yv|.

The network is trained with stochastic gradient de-
scent and the Ada Delta (Zeiler, 2012) update rule
using random restarts. Stochastic gradient descent
is noisier than batch training due to a local esti-
mation of the gradient, but it can start converging
much faster. Ada Delta keeps an exponentially de-
caying history of gradients and updates in order to
adapt the learning rate for each parameter, which
partially smooths out the training noise. Regulari-
sation and hyperparmeter selection are performed
by early stopping on the development set. The
size of the vocabulary is 90K words. Note that
10% of our lexicon is not found in the embeddings

Model Description MAE($M)

Baseline mean 11.7
Linear Text 8.0
Linear Text+Domain+POS 7.4
Linear Meta 6.0
Linear Text+Meta 5.9
Linear Text+Meta+Domain+Deps 5.7

ANN Text 6.3
ANN Text+Domain 6.0
ANN Meta 3.9
ANN Text+Meta 3.4
ANN Text+Meta+Domain 3.4

Table 2: Experiment results on test set. Linear
models by (Joshi et al., 2010).

pretrained on Google News. Those terms are ini-
tialised with random small weights. The model
has around 4 million weights plus 27 million tun-
able word embedding parameters.

Structured data Besides text, injecting meta
data and domain information into the model likely
provides additional predictive power. Combin-
ing text with structured data early in the network
fosters joint non-linear interaction in subsequent
hidden layers. Hence, if meta data b is present,
we concatenate that with the max pooling layer
a1 = (p,b) in part III. Domain specific infor-
mation t is appended to each n-gram convolution
input (S(q)

i,· , t) in part II, where tz = 1z indicates
whether domain z has reviewed the movie.2 This
helps the network bias the convolutions, and thus
change which features get propagated in the pool-
ing layer.

3 Results

The results in Table 2 show that the neural net-
work performs very well, with around 40% im-
provement over the previous best results (Joshi et
al., 2010). Our dataset splits are identical, and we
have accurately reproduced the results of their lin-
ear model. Non-linearities are clearly helpful as
evidenced by the ANN Text model beating the bag
of words Linear Text model with a mean absolute
test error of 6.0 vs 8.0. Moreover, simply using
structured data in the ANN Meta beats all the Lin-
ear models by a sizeable margin. Further improve-
ments are realised through the inclusion of text,
giving the lowest error of 3.4. Note that Joshi et al.
(2010) preprocessed the text by stemming, down-

2Alternatively, site information can be encoded with one-
hot categorical variables.
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Model Description MAE($M)

fixed word2vec embeddings 3.4*
tuned word2vec embeddings 3.6
fixed random embeddings 3.6
tuned random embeddings 3.8

uni-grams 3.6
uni+bi-grams 3.5
uni+bi+tri-grams 3.4*
uni+bi+tri+four-grams 3.6

0 hidden layer 6.3
1 hidden layer 3.9
2 hidden layers 3.5
3 hidden layers 3.4*
4 hidden layers 3.6

Table 3: Various alternative configurations, based
on the ANN Text+Meta model. The asterisk (∗)
denotes the settings in the ANN Text+Meta model.

casing, and discarding feature instances that oc-
curred in fewer than five reviews. In contrast, we
did not perform any processing of the text or fea-
ture engineering, apart from tokenization, instead
learning this automatically.3

We find that both text and meta data con-
tain complementary signals with some informa-
tion overlap between them. This confirms the find-
ing of Bitvai and Cohn (2015) on another text re-
gression problem. The meta features alone almost
achieve the best results whereas text alone per-
forms worse but still well above the baseline. For
the combined model, the performance improves
slightly. In Table 3 we can see that contrary to ex-
pectations, fine tuning the word embeddings does
not help significantly compared to keeping them
fixed. Moreover, randomly initialising the embed-
dings and fixing them performs quite well. Fine
tuning may be a challenging optimisation due to
the high dimensional embedding space and the
loss of monolingual information. This is further
exacerbated due to the limited supervision signal.

One of the main sources of improvement ap-
pears to come from the non-linearity applied to the
neural network activations. To test this, we try us-
ing linear activation units in parts II and IV of the
network. Composition of linear functions yields a
linear function, and therefore we recover the lin-
ear model results. This is much worse than the
model with non-linear activations. Changing the
network depth, we find that the model performs
much better with a single hidden layer than with-

3Although we do make use of pretrained word embed-
dings in our text features.

out any, while three hidden layers are optimal. For
the weight dimensions we find square 1058 dimen-
sional weights to perform the best. The ideal num-
ber of convolutions are three with uni, bi and tri-
grams, but unigrams alone perform only slightly
worse, while taking a larger n-gram window n > 3
does not help. Average and sum pooling perform
comparatively well, while max pooling achieves
the best result. Note that sum pooling recovers a
non-linear bag-of-words model. With respect to
activation functions, both ReLU and sigmoid work
well.

Model extensions Multi task learning with task
identifiers, ANN Text+Domain, does improve the
ANN Text model. This suggests that the tendency
by certain sites to review specific movies is in it-
self indicative of the revenue. However this im-
provement is more difficult to discern with the
ANN Text+Meta+Domain model, possibly due to
redundancy with the meta data. An alternative ap-
proach for multi-task learning is to have a sepa-
rate convolutional weight matrix for each review
site, which can learn site specific characteristics
of the text. This can also be achieved with site
specific word embedding dimensions. However
neither of these methods resulted in performance
improvements. In addition, we experimented with
applying a hierarchical convolution over reviews
in two steps with k-max pooling (Kalchbrenner et
al., 2014), as well as parsing sentences recursively
(Socher et al., 2013), but did not observe any im-
provements.

For optimisation, both Ada Grad and Steepest
Gradient Descent had occasional problems with
local minima, which Ada Delta was able to es-
cape more often. In contrast to earlier work (Kim,
2014), applying dropout on the final layer did not
improve the validation error. The optimiser mostly
found good parameters after around 40 epochs
which took around 30 minutes on a NVidia Kepler
Tesla K40m GPU.

Model interpretation Next we perform anal-
ysis to determine which words and phrases in-
fluenced the output the most in the ANN Text
model. To do so, we set each phrase input to
zeros in turn and measure the prediction differ-
ence for each movie across the test set. We re-
port the min/max/average/count values in Table
4. We isolate the effect of each n-gram by mak-
ing sure the uni, bi and trigrams are independent,
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Figure 2: Projection of the last hidden layer of
test movies using t-SNE. Red means high and blue
means low revenue. The cross vs dot symbols in-
dicate a production budget above or below $15M.

i.e. we process “Hong Kong” without zeroing
“Hong” or “Kong”. About 95% of phrases re-
sult in no output change, including common sen-
timent words, which shows that text regression is
a different problem to sentiment analysis. We see
that words related to series “# 2”, effects, awards
“praise”, positive sentiment “intense”, locations,
references “Batman”, body parts “chest”, and oth-
ers such as “plot twist”, “evil”, and “cameo” re-
sult in increased revenue by up to $5 million.
On the other hand, words related to independent
films “vérité”, documentaries “the period”, for-
eign film “English subtitles” and negative senti-
ment decrease revenue. Note that the model has
identified structured data in the unstructured text,
such as related to revenue of prequels “39 mil-
lion”, crew members, duration “15 minutes in”,
genre “[sci] fi”, ratings, sexuality, profanity, re-
lease periods “late 2008 release”, availability “In
selected theaters” and themes. Phrases can be
composed, such as “action unfolds” amplifies “ac-
tion”, and “cautioned” is amplified by “strongly
cautioned”. “functional” is neutral, but “func-
tional at best” is strongly negative. Some words
exhibit both positive and negative impacts depend-
ing on the context. This highlights the limitation
of a linear model which is unable to discover these
non-linear relationships. “13 - year [old]” is posi-
tive in New in Town, a romantic comedy and nega-
tive in Zombieland, a horror. The character strings
“k /” (mannerism of reviewer), “they’re” (unique
apostrophe), “&#39” (encoding error) are high im-
pact and unique to specific review sites, showing
that the model indirectly uncovers domain infor-
mation. This can explain the limited gain that can
be achieved via multi task learning. Last, we have

Top 5 positive phrases min max avg #

sequel 20 4400 2300 28
flick 0 3700 1600 22
k / 1500 3600 2200 3
product 10 3400 1800 27
predecessor 22 3400 1400 13

Top 5 negative phrases min max avg #

Mildly raunchy lang. -3100 -3100 -3100 1
( Under 17 -2500 1 -570 75
Lars von -2400 -900 -1500 3
talk the language -2200 -2200 -2200 1
. their English -2200 -2200 -2200 1

Selected phrases min max avg #

CGI 145 3000 1700 28
action -7 1500 700 105
summer 3 1200 560 42
they’re 3 1300 530 68
1950s 10 1600 500 17
hit 8 950 440 72
fi -15 340 160 26
Cage 7 95 45 28
Hong Kong -440 40 -85 11
requires acc. parent -780 1 -180 77
English -850 6 -180 41
Sundance Film Festival -790 3 -180 10
written and directed -750 -3 -220 19
independent -990 -2 -320 12
some strong language -1600 6 -520 13

Table 4: Selected phrase impacts on the predic-
tions in $ USD(K) in the test set, showing min,
max and avg change in prediction value and num-
ber of occurrences (denoted #). Periods denote ab-
breviations (language, accompanying).

plotted the last hidden layer of each test set movie
with t-SNE (Van der Maaten and Hinton, 2008).
This gives a high level representation of a movie.
In Figure 2 it is visible that the test set movies can
be discriminated into high and low revenue groups
and this also correlates closely with their produc-
tion budget.

4 Conclusions

In this paper, we have shown that convolutional
neural networks with deep architectures greatly
outperform linear models even with very little su-
pervision, and they can identify key textual and
numerical characteristics of data with respect to
predicting a real world phenomenon. In addition,
we have demonstrated a way to intuitively inter-
pret the model. In the future, we will investi-
gate ways for automatically optimising the hyper-
parameters of the network (Snoek et al., 2012) and
various extensions to recursive or hierarchical con-
volutions.
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Abstract

Log-bilinear language models such as
SkipGram and GloVe have been proven to
capture high quality syntactic and seman-
tic relationships between words in a vector
space. We revisit the relationship between
SkipGram and GloVe models from a ma-
chine learning viewpoint, and show that
these two methods are easily merged into
a unified form. Then, by using the unified
form, we extract the factors of the config-
urations that they use differently. We also
empirically investigate which factor is re-
sponsible for the performance difference
often observed in widely examined word
similarity and analogy tasks.

1 Introduction

Neural-network-inspired word embedding meth-
ods such as Skip-Gram (SkipGram) have been
proven to capture high quality syntactic and se-
mantic relationships between words in a vector
space (Mikolov et al., 2013a). A similar embed-
ding method, called ‘Global Vector (GloVe)’, was
recently proposed. It has demonstrated significant
improvements over SkipGram on the widely used
‘Word Analogy’ and ‘Word Similarity’ benchmark
datasets (Pennington et al., 2014). Unfortunately,
a later deep re-evaluation has revealed that GloVe
does not consistently outperform SkipGram (Levy
et al., 2015); both methods provided basically the
same level of performance, and SkipGram even
seems ‘more robust (not yielding very poor re-
sults)’ than GloVe. Moreover, some other papers,
i.e., (Shi and Liu, 2014), and some researchers
in the community have discussed a relationship,
and/or which is superior, SkipGram or GloVe.

From this background, we revisit the relation-
ship between SkipGram and GloVe from a ma-
chine learning viewpoint. We show that it is nat-

V : set of vocabulary (set of words)
|V| : vocabulary size, or number of words in V
i : index of the input vector, where i ∈ {1, . . . , |V|}
j : index of the output vector, where j ∈ {1, . . . , |V|}
ei : input vector of the i-th word in V
oj : output vector of the j-th word in V

If i = j, then ei and oj are the input and output vec-
tors of the same word in V , respectively.

D : number of dimensions in input and output vectors
mi,j : (i, j)-factor of matrix M
si,j : dot product of input and output vectors, si,j = ei · oj
D : training data, D = {(in, jn)}Nn=1

Ψ(·) : objective function
σ(·) : sigmoid function, σ(x) = 1

1+exp(−x)
ci,j : co-occurrence of the i-th and j-th words in D
D′ : (virtual) negative sampling data
c′i,j : co-occurrence of the i-th and j-th words in D′
k : hyper-parameter of the negative sampling
β(·) : ‘weighting factor’ of loss function
Φ(·) : loss function

Table 1: List of notations used in this paper.

ural to think that these two methods are essen-
tially identical, with the chief difference being
their learning configurations.

The final goal of this paper is to provide a uni-
fied learning framework that encompasses the con-
figurations used in SkipGram and GloVe to gain a
deeper understanding of the behavior of these em-
bedding methods. We also empirically investigate
which learning configuration most clearly eluci-
dates the performance difference often observed in
word similarity and analogy tasks.

2 SkipGram and GloVe

Table 1 shows the notations used in this paper.

2.1 Matrix factorization view of SkipGram
SkipGram can be categorized as one of the
simplest neural language models (Mnih and
Kavukcuoglu, 2013). It generally assigns two dis-
tinct D-dimensional vectors to each word in vo-
cabulary V; one is ‘input vector’, and the other is
‘output vector’1.

1These two vectors are generally referred to as ‘word (or
target) vector’ and ‘context vector’. We use the terms ‘in-
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Roughly speaking, SkipGram models word-to-
word co-occurrences, which are extracted within
the predefined context window size, by the in-
put and output vectors. Recently, SkipGram
has been interpreted as implicitly factorizing the
matrix, where the factors are calculated from
co-occurrence information (Levy and Goldberg,
2014). Let mi,j be the (i, j)-factor of matrix M
to be ‘implicitly’ factorized by SkipGram. Skip-
Gram approximates each mi,j by the inner prod-
uct of the corresponding input and output vectors,
that is:

mi,j ≈ ei · oj , (1)

2.1.1 SkipGram with negative sampling
The primitive training sample for SkipGram is a
pair of a target word and its corresponding con-
text word. Thus, we can represent the training
data of SkipGram as a list of input and output in-
dex pairs, that is, D = {(in, jn)}Nn=1. Thus the
estimation problem of ‘SkipGram with negative
sampling (SGNS)’ is defined as the minimization
problem of objective function Ψ:

Ψ =−
∑

(in,jn)∈D
log
(
σ(ein · ojn)

)
−

∑
(in,jn)∈D′

log
(
1− σ(ein · ojn)

)
,

(2)

where the optimization parameters are ei and oj
for all i and j. Note that we explicitly represent the
negative sampling data D′ (Goldberg and Levy,
2014).

Let us assume that, in a preliminary step, we
count all co-occurrences in D. Then, the SGNS
objective in Eq. 2 can be rewritten as follows by a
simple reformulation:

Ψ =−
∑
i

∑
j

(
ci,j log

(
σ(ei · oj)

)
+c′i,j log

(
1− σ(ei · oj)

))
.

(3)

Here, let us substitute ei · oj in Eq. 3 for si,j ,
and then assume that all si,j are free parameters.
Namely, we can freely select the value of si,j in-
dependent from any other si′,j′ , where i 6= i′ and
j 6= j′, respectively. The partial derivatives of Ψ
with respect to si,j take the following form:

∂si,jΨ =−
(
ci,j
(
1− σ(si,j)

)− c′i,jσ(si,j)
)
.

(4)
put’ and ‘output’ to reduce the ambiguity since ‘word’ and
‘context’ are exchangeable by the definition of model (i.e.,
SkipGram or CBoW).

The minimizer can be obtained when ∂si,jΨ = 0
for all si,j . By using this relation, we can obtain
the following closed form solution:

si,j = log
(
ci,j
c′i,j

)
. (5)

Overall, SGNS approximates the log of the co-
occurrence ratio between ‘real’ training data D
and ‘virtual’ negative sampling data D′ by the in-
ner product of the corresponding input and output
vectors in terms of minimizing the SGNS objec-
tive written in Eq. 2, and Eq. 3 as well. Therefore,
we can obtain the following relation for SGNS:

mi,j = log
(
ci,j
c′i,j

)
≈ ei · oj . (6)

Note that the expectation of c′i,j is kcicj
|D| if the

negative sampling is assumed to follow unigram
probability cj

|D| , and the negative sampling data is
k-times larger than the training dataD, where ci =∑

j ci,j and cj =
∑

i ci,j
2. The above matches

‘shifted PMI’ as described in (Levy and Goldberg,
2014) when we substitute c′i,j for kcicj|D| in Eq. 6,

In addition, the word2vec implementation
uses a smoothing factor α to reduce the selec-
tion of high-occurrence-frequency words during
the negative sampling. The expectation of c′i,j
can then be written as: kci

(cj)
α∑

j′ (cj′ )α
. We refer

to log
(
ci,j

∑
j′ (cj′ )

α

kci(cj)α

)
as ‘α-parameterized shifted

PMI (SPMIk,α)’.

2.2 Matrix factorization view of GloVe
The GloVe objective is defined in the following
form (Pennington et al., 2014):

Ψ =
∑
i

∑
j

β(ci,j)
(
ei · oj − log(ci,j)

)2
, (7)

where β(·) represent a ‘weighting function’. In
particular, β(·) satisfies the relations 0 ≤ β(x) <
∞, and β(x) = 0 if x = 0. For example, the
following weighting function has been introduced
in (Pennington et al., 2014):

β(x) = min
(

1,
(
x/xmax

)γ)
. (8)

This is worth noting here that the original GloVe
introduces two bias terms, bi and bj , and defines

2Every input of the i-th word samples k words. Therefore,
the negative sampling number is kci. Finally, the expectation
can be obtained by multiplying count kci by probability cj

|D| .
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configuration SGNS GloVe
training unit sample-wise co-occurrence
loss function logistic (Eq. 11) squared (Eq. 12)

neg. sampling explicit no sampling
weight. func. β(·) fixed to 1 Eq. 8

fitting function SPMIk,α log(ci,j)
bias none bi and bj

Table 2: Comparison of the different configura-
tions used in SGNS and GloVe.

ei ·oj + bi + bj instead of just ei ·oj in Eq. 7. For
simplicity and ease of discussion, we do not ex-
plicitly introduce bias terms in this paper. This is
because, without loss of generality, we can embed
the effect of the bias terms in the input and output
vectors by introducing two additional dimensions
for all ei and oj , and fixing parameters ei,D+1 = 1
and oj,D+2 = 1.

According to Eq. 7, GloVe can also be viewed
as a matrix factorization method. Different
from SGNS, GloVe approximates the log of co-
occurrences:

mi,j = log(ci,j)≈ ei · oj , (9)

3 Unified Form of SkipGram and GloVe

An examination of the differences between Eqs. 6
and 9 finds that Eq. 6 matches Eq. 9 if c′i,j = 1.
Recall that c′i,j is the number of co-occurrences
of (i, j) in negative sampling data D′. Therefore,
what GloVe approximates is SGNS when the neg-
ative sampling data D′ is constructed as 1 for all
co-occurrences. From the viewpoint of matrix fac-
torization, GloVe can be seen as a special case of
SGNS, in that it utilizes a sort of uniform negative
sampling method.

Our assessment of the original GloVe paper
suggests that the name “Global Vector” mainly
stands for the architecture of the two stage learn-
ing framework. Namely, it first counts all the
co-occurrences in D, and then, it leverages the
gathered co-occurrence information for estimating
(possibly better) parameters. In contrast, the name
“SkipGram” stands mainly for the model type;
how it counts the co-occurrences in D. The key
points of these two methods seems different and
do not conflict. Therefore, it is not surprising to
treat these two similar methods as one method; for
example, SkipGram model with two-stage global
vector learning. The following objective function
is a generalized form that subsumes Eqs. 3 and 7:

Ψ =
∑
i

∑
j

β(ci,j)Φ(ei,oj , ci,j , c′i,j). (10)

hyper-parameter selected value
word2vec glove

context window (W ) 10
sub (Levy et al., 2015) dirty, t = 10−5 –
del (Levy et al., 2015) use 400,000 most frequent words
cds (Levy et al., 2015) α = 3/4 –
w+c (Levy et al., 2015) e + o
weight. func. (γ, xmax) – 3/4, 100
initial learning rate (η) 0.025 0.05
# of neg. sampling (k) 5 –
# of iterations (T ) 5 20
# of threads 56
# of dimensions (D) 300

Table 3: Hyper-parameters in our experiments.

In particular, the original SGNS uses β(ci,j) = 1
for all (i, j), and logistic loss function:

Φ(ei,oj , ci,j , c′i,j) = ci,j log
(
σ(ei · oj)

)
+c′i,j log

(
1− σ(ei · oj)

)
.

(11)
In contrast, GloVe uses a least squared loss func-
tion:

Φ(ei,oj , ci,j , c′i,j) =
(
ei · oj − log

(ci,j
c′i,j

))2
.

(12)
Table 2 lists the factors of each configuration used
differently in SGNS and GloVe.

Note that this unified form also includes
SkipGram with noise contrastive estimation
(SGNCE) (Mnih and Kavukcuoglu, 2013), which
approximatesmi,j = log( ci,jkcj

) in matrix factoriza-
tion view. This paper omits a detailed discussion
of SGNCE for space restrictions.

4 Experiments

Following the series of neural word embedding pa-
pers, our training data is taken from a Wikipedia
dump (Aug. 2014). We tokenized and lowercased
the data yielding about 1.8B tokens.

For the hyper-parameter selection, we mostly
followed the suggestion made in (Levy et al.,
2015). Table 3 summarizes the default values of
hyper-parameters used consistently in all our ex-
periments unless otherwise noted.

4.1 Benchmark datasets for evaluation

We prepared eight word similarity benchmark
datasets (WSimilarity), namely, R&G (Ruben-
stein and Goodenough, 1965), M&C (Miller and
Charles, 1991), WSimS (Agirre et al., 2009),
WSimR (Agirre et al., 2009), MEM (Bruni
et al., 2014), MTurk (Radinsky et al., 2011),
SCWS (Huang et al., 2012), and RARE (Luong
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method time WSimilarity WAnalogy
SGNS (original) 8856 65.4 (65.2, 65.7) 63.0 (62.2, 63.8)
GloVe (original) 8243 57.6 (57.5, 57.9) 64.8 (64.6, 65.0)
w/o bias terms 8027 57.6 (57.5, 57.7) 64.8 (64.5, 65.0)
fitting=SPMIk,α 8332 57.5 (57.2, 57.8) 65.0 (64.8. 65.1)

Table 4: Results: the micro averages of Spear-
man’s rho (WSimilarity) and accuracy (WAnal-
ogy) for all benchmark datasets.

et al., 2013). Moreover, we also prepared three
analogy benchmark datasets (WAnalogy), that is,
GSEM (Mikolov et al., 2013a), GSYN (Mikolov
et al., 2013a), and MSYN (Mikolov et al., 2013b).

4.2 SGNS and GloVe Results

Table 4 shows the training time and performance
results gained from our benchmark data. The col-
umn ‘time’ indicates average elapsed time (sec-
ond) for model learning. All the results are the av-
erage performance of ten runs. This is because
the comparison methods have some randomized
factors, such as initial value (since they are non-
convex optimization problems) and (probabilistic)
sampling method, which significantly impact the
results.

At first, we compared the original SGNS as im-
plemented in the word2vec package3 and the
original GloVe as implemented in the glove
package4. These results are shown in the first and
second rows in Table 4. In our experiments, SGNS
significantly outperformed GloVe in WSimilarity
while GloVe significantly outperformed SGNS in
WAnalogy. As we explained, these two methods
can be easily merged into a unified form. Thus,
there must be some differences in their configura-
tions that yields such a large difference in the re-
sults. Next, we tried to determine the clues as the
differences.

4.3 Impact of incorporating bias terms

The third row (w/o bias terms) in Table 4 shows
the results of the configuration without using the
bias terms in the glove package. A comparison
with the results of the second row, finds no mean-
ingful benefit to using the bias terms. In contrast,
obviously, the elapsed time for model learning is
consistently shorter since we can discard the bias
term update.

3https://code.google.com/p/word2vec/
4http://nlp.stanford.edu/projects/glove/

(a) WSimilarity
method W=2 3 5 10 20
SGNS (original) 64.9 65.1 65.4 65.4 64.9
GloVe (original) 53.6 55.7 57.0 57.6 57.8
w/o harmonic func. 54.6 56.9 57.8 58.2 57.9

(b) WAnalogy
method W=2 3 5 10 20
SGNS (original) 62.8 63.5 63.9 63.0 61.3
GloVe (original) 51.7 58.4 62.3 64.8 66.1
w/o harmonic func. 52.6 58.0 60.5 61.6 60.7

Table 5: Impact of the context window size, and
harmonic function.

W=2 3 5 10 20
(1) 0<ci,j<1 104M 213M 377M 649M 914M
(2) 1≤ci,j 167M 184M 207M 234M 251M
non-zero ci,j 271M 398M 584M 883M 1165M
ratio of (1) 38.5% 53.6% 64.5% 73.5% 78.4%

Table 6: The ratio of entries less than one in co-
occurrence matrix.

4.4 Impact of fitting function

The fourth row (fitting=SPMIk,α) in Table 4 shows
the performance when we substituted the fit-
ting function of GloVe, namely, log(ci,j), for
SPMIk=5,α=3/4 used in SGNS. Clearly, the per-
formance becomes nearly identical to the original
GloVe. Accordingly, the selection of fitting func-
tion has only a small impact.

4.5 Impact of context window size and
harmonic function

Table 5 shows the impact of context window size
W . The results of SGNS seem more stable against
W than those of GloVe.

Additionally, we investigated the impact of the
‘harmonic function’ used in GloVe. The ‘har-
monic function’ uses the inverse of context dis-
tance, i.e., 1/a if the context word is a-word away
from the target word, instead of just count 1 re-
gardless of the distance when calculating the co-
occurrences. Clearly, GloVe without using the
harmonic function shown in the third row of Ta-
ble 5 yielded significantly degraded performance
on WAnalogy, and slight improvement on WSimi-
larity. This fact may imply that the higher WAnal-
ogy performance of GloVe was derived by the ef-
fect of this configuration.

4.6 Link between harmonic function and
negative sampling

This section further discusses a benefit of har-
monic function.

Recall that GloVe does not explicitly consider
‘negative samples’. It fixes c′i,j = 1 for all (i, j)
as shown in Eq. 7. However, the co-occurrence

189



count given by using the harmonic function can
take values less than 1, i.e., ci,j = 2/3, if the i-
th word and the j-th word co-occurred twice with
distance 3. As a result, the value of the fitting func-
tion of GloVe becomes log(2/3). Interestingly,
this is essentially equivalent to co-occur 3 times in
the negative sampling data and 2 times in the real
data since the fitting function of the unified form
shown in Eq. 12 is log(ci,j/c′i,j) = log(2/3) when
ci,j = 2 and c′i,j = 3. It is not surprising that rare
co-occurrence words that occur only in long range
contexts may have almost no correlation between
them. Thus treating them as negative samples will
not create a problem in most cases. Therefore, the
harmonic function seems to ‘unexpectedly’ mimic
a kind of a negative sampling method; it is inter-
preted as ‘implicitly’ generating negative data.

Table 6 shows the ratio of the entries ci,j whose
value is less than one in matrix M. Remember
that vocabulary size was 400,000 in our experi-
ments. Thus, we had a total of 400K×400K=160B
elements in M, and most were 0. Here, we con-
sider only non-zero entries. It is clear that longer
context window sizes generated many more en-
tries categorized in 0 < ci,j < 1 by the har-
monic function. One important observation is that
the ratio of 0 < ci,j < 1 is gradually increas-
ing, which offers a similar effect to increasing the
number of negative samples. This can be a rea-
son why GloVe demonstrated consistent improve-
ments in WAnalogy performance as context win-
dow increased since larger negative sampling size
often improves performance (Levy et al., 2015).
Note also that the number of 0 < ci,j < 1 always
becomes 0 in the configuration without the har-
monic function. This is equivalent to using uni-
form negative sampling c′i,j = 1 as described in
Sec. 3. This fact also indicates the importance of
the negative sampling method.

4.7 Impact of weighting function

Table 7 shows the impact of weighting function
used in GloVe, namely, Eq 8. Note that ‘β(·)=1’
column shows the results when we fixed 1 for
all non-zero entries5. This is also clear that the
weighting function Eq 8 with appropriate param-
eters significantly improved the performance of
both WSimilarity and WAnalogy tasks. How-
ever unfortunately, the best parameter values for

5This is equivalent to set 0 to -x-max option in glove
implementation.

(a) WSimilarity
hyper param. β(·)=1 xmax = 1 10 100 10000
γ = 0.75 59.4 60.1 60.9 57.7 49.5
w/o harmonic func. 58.2 58.0 60.7 58.2 56.0
γ = 1.0 (59.4) 60.1 59.4 55.9 36.1
w/o harmonic func. (58.2) 58.3 60.7 57.7 46.7

(b) WAnalogy
hyper param. β(·)=1 xmax = 1 10 100 10000
γ = 0.75 55.7 61.1 64.3 64.8 28.4
w/o harmonic func. 53.4 52.6 60.3 61.6 42.5
γ = 1.0 (55.7) 61.0 63.8 59.1 7.5
w/o harmonic func. (53.4) 54.1 60.8 60.1 20.3

Table 7: Impact of the weighting function.

WSimilarity and WAnalogy tasks looks different.
We emphasize that harmonic function discussed

in the previous sub-section was still a necessary
condition to obtain the best performance, and bet-
ter performance in the case of ‘β(·)=1’ as well.

5 Conclusion

This paper reconsidered the relationship between
SkipGram and GloVe models in machine learn-
ing viewpoint. We showed that SGNS and GloVe
can be easily merged into a unified form. We
also extracted the factors of the configurations
that are used differently. We empirically inves-
tigated which learning configuration is responsi-
ble for the performance difference often observed
in widely examined word similarity and analogy
tasks. Finally, we found that at least two config-
urations, namely, the weighting function and har-
monic function, had significant impacts on the per-
formance. Additionally, we revealed a relation-
ship between harmonic function and negative sam-
pling. We hope that our theoretical and empirical
analyses will offer a deeper understanding of these
neural word embedding methods6.
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Abstract

In this paper, we apply the concept of pre-
training to hidden-unit conditional ran-
dom fields (HUCRFs) to enable learning
on unlabeled data. We present a simple
yet effective pre-training technique that
learns to associate words with their clus-
ters, which are obtained in an unsuper-
vised manner. The learned parameters are
then used to initialize the supervised learn-
ing process. We also propose a word clus-
tering technique based on canonical corre-
lation analysis (CCA) that is sensitive to
multiple word senses, to further improve
the accuracy within the proposed frame-
work. We report consistent gains over
standard conditional random fields (CRFs)
and HUCRFs without pre-training in se-
mantic tagging, named entity recognition
(NER), and part-of-speech (POS) tagging
tasks, which could indicate the task inde-
pendent nature of the proposed technique.

1 Introduction

Despite the recent accuracy gains of the deep
learning techniques for sequence tagging prob-
lems (Collobert and Weston, 2008; Collobert et
al., 2011; Mohamed et al., 2010; Deoras et al.,
2012; Xu and Sarikaya, 2013; Yao et al., 2013;
Mesnil et al., 2013; Wang and Manning, 2013;
Devlin et al., 2014), conditional random fields
(CRFs) (Lafferty et al., 2001; Sutton and McCal-
lum, 2006) still have been widely used in many
research and production systems for the problems
due to the effectiveness and simplicity of train-
ing, which does not involve task specific param-
eter tuning (Collins, 2002; McCallum and Li,
2003; Sha and Pereira, 2003; Turian et al., 2010;
Kim and Snyder, 2012; Celikyilmaz et al., 2013;
Sarikaya et al., 2014; Anastasakos et al., 2014;

Kim et al., 2014; Kim et al., 2015a; Kim et al.,
2015c; Kim et al., 2015b). The objective function
for CRF training operates globally over sequence
structures and can incorporate arbitrary features.
Furthermore, this objective is convex and can be
optimized relatively efficiently using dynamic pro-
gramming.

Pre-training has been widely used in deep learn-
ing (Hinton et al., 2006) and is one of the distin-
guishing advantages of deep learning models. The
best results obtained across a wide range of tasks
involve unsupervised pre-training phase followed
by the supervised training phase. The empirical
results (Erhan et al., 2010) suggest that unsuper-
vised pre-training has the regularization effect on
the learning process and also results in a model
parameter configuration that places the model near
the basins of attraction of minima that support bet-
ter generalization.

While pre-training became a standard steps in
many deep learning model training recipes, it has
not been applied to the family of CRFs. There
were several reasons for that; (i) the shallow and
linear nature of basic CRF model topology, which
limits their expressiveness to the inner product be-
tween data and model parameters, and (ii) Lack
of a training criterion and configuration to employ
pre-training on unlabeled data in a task indepen-
dent way.

Hidden-unit CRFs (HUCRFs) of Maaten et al.
(2011) provide a deeper model topology and im-
prove the expressive power of the CRFs but it
does not address how to train them in a task inde-
pendent way using unlabeled data. In this paper,
we present an effective technique for pre-training
of HUCRFs that can potentially lead to accuracy
gains over HUCRF and basic linear chain CRF
models. We cluster words in the text and treat clus-
ters as pseudo-labels to train an HUCRF. Then we
transfer the parameters corresponding to observa-
tions to initialize the training process on labeled
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Figure 1: Graphical representation of hidden unit
CRFs.

data. The intuition behind this is that words that
are clustered together tend to assume the same la-
bels. Therefore, learning the model parameters to
assign the correct cluster ID to each word should
accrue to assigning the correct task specific label
during supervised learning.

This pre-training step significantly reduces the
challenges in training a high-performance HUCRF
by (i) acquiring a broad feature coverage from un-
labeled data and thus improving the generalization
of the model to unseen events, (ii) finding a good a
initialization point for the model parameters, and
(iii) regularizing the parameter learning by min-
imizing variance and introducing a bias towards
configurations of the parameter space that are use-
ful for unsupervised learning.

We also propose a word clustering technique
based on canonical correlation analysis (CCA)
that is sensitive to multiple word senses. For ex-
ample, the resulting clusters can differentiate the
instance of “bank” in the sense of financial insti-
tutions and the land alongside the river. This is an
important point as different senses of a word are
likely to have a different task specific tag. Putting
them in different clusters would enable the HU-
CRF model to learn the distinction in terms of la-
bel assignment.

2 Model

2.1 HUCRF definition

A HUCRF incorporates a layer of binary-valued
hidden units z = z1 . . . zn ∈ {0, 1} for each pair
of observation sequence x = x1 . . . xn and label
sequence y = y1 . . . yn. It is parameterized by

Figure 2: Illustration of a pre-training scheme for
HUCRFs.

θ ∈ Rd and γ ∈ Rd′ and defines a joint probability
of y and z conditioned on x as follows:

pθ,γ(y, z|x) =

exp(θ>Φ(x, z) + γ>Ψ(z, y))∑
z′∈{0,1}n
y′∈Y(x,z′)

exp(θ>Φ(x, z′) + γ>Ψ(z′, y′))

where Y(x, z) is the set of all possible label
sequences for x and z, and Φ(x, z) ∈ Rd

and Ψ(z, y) ∈ Rd′ are global feature func-
tions that decompose into local feature
functions: Φ(x, z) =

∑n
j=1 φ(x, j, zj) and

Ψ(z, y) =
∑n

j=1 ψ(zj , yj−1, yj).

HUCRF forces the interaction between the ob-
servations and the labels at each position j to go
through a latent variable zj : see Figure 1 for illus-
tration. Then the probability of labels y is given
by marginalizing over the hidden units,

pθ,γ(y|x) =
∑

z∈{0,1}n
pθ,γ(y, z|x)

As in restricted Boltzmann machines (Larochelle
and Bengio, 2008), hidden units are conditionally
independent given observations and labels. This
allows for efficient inference with HUCRFs de-
spite their richness (see Maaten et al. (2011) for
details). We use a perceptron-style algorithm of
Maaten et al. (2011) for training HUCRFs.

2.2 Pre-training HUCRFs
How parameters are initialized for training is im-
portant for HUCRFs because the objective func-
tion is non-convex. Instead of random initializa-
tion, we use a simple and effective initialization
scheme (in a similar spirit to the pre-training meth-
ods in neural networks) that can leverage a large
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body of unlabeled data. This scheme is a simple
two-step approach.

In the first step, we cluster observed tokens in
M unlabeled sequences and treat the clusters as la-
bels to train an intermediate HUCRF. Let C(u(i))
be the “cluster sequence” of the i-th unlabeled se-
quence u(i). We compute:

(θ1, γ1) ≈ arg max
θ,γ

M∑
i=1

log pθ,γ(C(u(i))|u(i)))

In the second step, we train a final model on the
labeled data {(x(i), y(i))}Ni=1 using θ1 as an ini-
tialization point:

(θ2, γ2) ≈ arg max
θ,γ:

init(θ,θ1)

N∑
i=1

log pθ,γ(y(i)|x(i))

While we can use γ1 for initialization as well, we
choose to only use θ1 since the label space is task-
specific. This process is illustrated in Figure 2.

In summary, the first step is used to find
generic parameters between observations and hid-
den states; the second step is used to specialize the
parameters to a particular task. Note that the first
step also generates additional feature types absent
in the labeled data which can be useful at test time.

3 Multi-Sense Clustering via CCA

The proposed pre-training method requires assign-
ing a cluster to each word in unlabeled text. Since
it learns to associate the words to their clusters, the
quality of clusters becomes important. A straight-
forward approach would be to perform Brown
clustering (Brown et al., 1992), which has been
very effective in a variety of NLP tasks (Miller et
al., 2004; Koo et al., 2008).

However, Brown clustering has some undesir-
able aspects for our purpose. First, it assigns a
single cluster to each word type. Thus a word that
can be used very differently depending on its con-
text (e.g., “bank”) is treated the same across the
corpus. Second, the Brown model uses only un-
igram and bigram statistics; this can be an issue
if we wish to capture semantics in larger contexts.
Finally, the algorithm is rather slow in practice for
large vocabulary size.

To mitigate these limitations, we propose multi-
sense clustering via canonical correlation analy-
sis (CCA). While there are previous work on in-
ducing multi-sense representations (Reisinger and

CCA-PROJ
Input: samples (x(1), y(1)) . . . (x(n), y(n)) ∈ {0, 1}d ×
{0, 1}d′

, dimension k

Output: projections A ∈ Rd×k and B ∈ Rd′×k

• Calculate B ∈ Rd×d′
, u ∈ Rd, and v ∈ Rd′

:

Bi,j =

n∑
l=1

[[x
(l)
i = 1]][[y

(l)
j = 1]]

ui =

n∑
l=1

[[x
(l)
i = 1]] vi =

n∑
l=1

[[y
(l)
i = 1]]

• Define Ω̂ = diag(u)−1/2Bdiag(v)−1/2.

• Calculate rank-k SVD Ω̂. Let U ∈ Rd×k (V ∈ Rd′×k)
be a matrix of the left (right) singular vector corre-
sponding to the largest k singular values.

• Let A = diag(u)−1/2U and B = diag(v)−1/2V .

Figure 3: Algorithm for deriving CCA projections
from samples of two variables.

Mooney, 2010; Huang et al., 2012; Neelakantan et
al., 2014), our proposed method is simpler and is
shown to perform better in experiments.

3.1 Review of CCA
CCA is a general technique that operates on a
pair of multi-dimensional variables. CCA finds
k dimensions (k is a parameter to be specified)
in which these variables are maximally correlated.
Let x(1) . . . x(n) ∈ Rd and y(1) . . . y(n) ∈ Rd′ be
n samples of the two variables. For simplicity, as-
sume that these variables have zero mean. Then
CCA computes the following for i = 1 . . . k:

arg max
ai∈Rd, bi∈Rd′ :
a>i ai′=0 ∀i′<i
b>i bi′=0 ∀i′<i

∑n
l=1(a>i x

(l))(b>i y
(l))√∑n

l=1(a>i x(l))2
√∑n

l=1(b>i y(l))2

In other words, each (ai, bi) is a pair of pro-
jection vectors such that the correlation between
the projected variables a>i x

(l) and b>i y
(l) (now

scalars) is maximized, under the constraint that
this projection is uncorrelated with the previous
i − 1 projections. A method based on singu-
lar value decomposition (SVD) provides an effi-
cient and exact solution to this problem (Hotelling,
1936). The resulting solution A ∈ Rd×k (whose
i-th column is ai) and B ∈ Rd′×k (whose i-th col-
umn is bi) can be used to project the variables from
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Input: word-context pairs from a corpus of length n:
D = {(w(l), c(l))}nl=1, dimension k

Output: cluster C(l) ≤ k for l = 1 . . . n

• Use the algorithm in Figure 3 to compute projection
matrices (ΠW , ΠC) = CCA-PROJ(D, k).

• For each word type w, perform k-means clustering on
Cw = {Π>Cc(l) ∈ Rk : w(l) = w} to partition occur-
rences of w in the corpus into at most k clusters.

• Label each word w(l) with the cluster obtained from
the previous step. Let D̄ = {(w̄(l), c̄(l))}nl=1 denote
this new dataset.

• (ΠW̄ , ΠC̄) = CCA-PROJ(D̄, k)

• Perform k-means clustering on {Π>̄W w̄(l) ∈ Rk}.

• Let C(l) be the cluster corresponding to Pi>̄W v(l).

Figure 4: Algorithm for clustering of words in a
corpus sensitive to multiple word senses.

the original d- and d′-dimensional spaces to a k-
dimensional space:

x ∈ Rd −→ A>x ∈ Rk

y ∈ Rd′ −→ B>y ∈ Rk

The new k-dimensional representation of each
variable now contains information about the other
variable. The value of k is usually selected to be
much smaller than d or d′, so the representation
is typically also low-dimensional. The CCA algo-
rithm is given in Figure 3: we assume that samples
are 0-1 indicator vectors. In practice, calculating
the CCA projections is fast since there are many
efficient SVD implantations available. Also, CCA
can incorporate arbitrary context definitions unlike
the Brown algorithm.

3.2 Multi-sense clustering
CCA projections can be used to obtain vector
representations for both words and contexts. If
we wished for only single-sense clusters (akin
to Brown clusters), we could simply perform k-
means on word embeddings.

However, we can exploit context embeddings to
infer word senses. For each word type, we create
a set of context embeddings corresponding to all
occurrences of that word type. Then we cluster
these embeddings; we use an implementation of
k-means which automatically determines the num-
ber of clusters upper bounded by k. The number

of word senses, k, is set to be the number of la-
bel types occurring in labeled data (for each task-
specific training set).

We use the resulting context clusters to deter-
mine the sense of each occurrence of that word
type. For instance, an occurrence of “bank” might
be labeled as “bank1” near “financial” or “Chase”
and “bank2” near “shore” or “edge”.

This step is for disambiguating word senses, but
what we need for our pre-training method is the
partition of words in the corpus. Thus we perform
a second round of CCA on these disambiguated
words to obtain corresponding word embeddings.
As a final step, we perform k-means clustering on
the disambiguated word embeddings to obtain the
partition of words in the corpus. The algorithm is
shown in Table 4.

4 Experiments

To validate the effectiveness of our pre-training
method, we experiment on three sequence label-
ing tasks: semantic tagging, named entity recogni-
tion (NER), and part-of-speech (POS) tagging. We
used L-BFGS for training CRFs 1 and the averaged
perceptron for training HUCRFs. The number of
hidden variables was set to 500.

4.1 Semantic tagging

The goal of semantic tagging is to assign the cor-
rect semantic tag to a words in a given utter-
ance. We use a training set of 50-100k queries
across domains and the test set of 5-10k queries.
For pre-training, we collected 100-200k unlabeled
text from search log data and performed a stan-
dard preprocessing step. We use n-gram features
up to n = 3, regular expression features, do-
main specific lexicon features and Brown clus-
ters. We present the results for various config-
urations in Table 1. HUCRF with random ini-
tialization from Gaussian distribution (HUCRFG)
boosts the average performance up to 90.52%
(from 90.39% of CRF). HUCRF with pre-training
with Brown clusters (HUCRFB) and CCA-based
clusters (HUCRFC) further improves performance
to 91.36% and 91.37%, respectively.

Finally, when we use multi-sense cluster
(HUCRFC+), we obtain an F1-score of 92.01%.
We also compare other alternative pre-training
methods. HUCRF with pre-training RBM

1For CRFs, we found that L-BFGS had higher perfor-
mance than SGD and the average percetpron.
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alarm calendar comm. note ondevice places reminder weather home avg
CRF 92.8 89.59 92.13 88.02 88.21 89.64 87.72 96.93 88.51 90.39
HUCRFG 91.79 89.56 92.08 88.42 88.64 90.99 89.21 96.38 87.63 90.52
HUCRFR 91.64 89.6 91.77 88.64 87.43 88.54 88.83 95.88 88.17 90.06
HUCRFB 92.86 90.58 92.8 88.72 89.37 91.14 90.05 97.63 89.08 91.36
HUCRFC 92.82 90.61 92.84 88.69 88.94 91.45 90.31 97.62 89.04 91.37
HUCRFS 91.2 90.53 92.43 88.7 88.09 90.91 89.54 97.24 88.91 90.84
HUCRFNS 90.8 89.88 91.54 87.83 88.15 91.02 88.2 96.77 89.02 90.36
HUCRFC+ 92.86 91.94 93.72 89.18 89.97 93.22 91.51 97.95 89.66 92.22

Table 1: Comparison of slot F1 scores on nine personal assistant domains. The numbers in boldface
are the best performing method. Subscripts mean the following: G = random initialization from a
Gaussian distribution with variance 10−4, R = pre-training with Restricted Boltzmann Machine (RBM)
using contrastive divergence of (Hinton, 2002), C = pre-training with CCA-based clusters, B = pre-
training with Brown clusters, S = pre-training with skip-ngram multi-sense clusters with fixed cluster
size 5, NS = pre-training with non-parametric skip-ngram multi-sense clusters, C+ = pre-training with
CCA-based multi-sense clusters.

(HUCRFR) does not perform better than with
random initialization. The skip-gram clusters
(HUCRFS , HUCRFSN ) do not perform well ei-
ther. Some examples of disambiguated word oc-
currences are shown below, demonstrating that the
algorithm in Figure 3 yields intuitive clusters.

NER POS
Test-A Test-B Test-A Test-B

CRF 90.75 86.37 95.51 94.99
HUCRFG 89.99 86.72 95.14 95.08
HUCRFR 90.12 86.43 95.42 94.14
HUCRFB 90.27 87.24 95.55 95.33
HUCRFC 90.9 86.89 95.67 95.23
HUCRFS 90.18 86.84 95.48 95.07
HUCRFNS 90.14 85.66 95.35 94.82
HUCRFC+ 92.04 88.41 95.88 95.48

Table 2: F1 Score for NER task and Accuracy for
POS task.

word context

Book

a book(1) store within 5 miles of my address
find comic book(1) stores in novi michigan

book(2) restaurant for tomorrow
book(2) taxi to pizza hut

look for book(3) chang dong tofu house in pocono
find book(3) bindery seattle

High

restaurant nearby with high(1) ratings
show me high(1) credit restaurant nearby

the address for shelley high(2) school
directions to leota junior high(2) school

what’s the distance to kilburn high(3) road
domino’s pizza in high(3) ridge missouri

Table 3: Examples of disambiguated word occur-
rences.

4.2 NER & POS tagging
We use CoNLL 2003 dataset for NER and POS
with the standard train/dev/test split. For pre-

training, we used the Reuters-RCV1 corpus. It
contains 205 millions tokens with 1.6 million
types. We follow same preprocessing steps as in
semantic tagging. Also, we use the NER features
used in Turian et al. (2010) and POS features used
in Maaten et al. (2011).

We present the results for both tasks in Table 2.
In both tasks, the HUCRFC+ yields the best per-
formance, achieving error reduction of 20% (Test-
A) and 13% (Test-B) for NER as well as 15%
(Test-A) and 8% (Test-B) for POS over HUCRFR.
Note that HUCRF does not always perform bet-
ter than CRF when initialized randomly. How-
ever, However, HUCRF consistently outperforms
CRF with the pre-training methods proposed in
this work.

5 Conclusion

We presented an effective technique for pre-
training HUCRFs. Our method transfers observa-
tion parameters trained on clustered text to initial-
ize the training process. We also proposed a word
clustering scheme based on CCA that is sensitive
to multiple word senses. Using our pre-training
method, we reported significant improvement over
several baselines in three sequence labeling tasks.
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Abstract

Automatic resolution of Crossword Puz-
zles (CPs) heavily depends on the qual-
ity of the answer candidate lists produced
by a retrieval system for each clue of the
puzzle grid. Previous work has shown
that such lists can be generated using In-
formation Retrieval (IR) search algorithms
applied to the databases containing previ-
ously solved CPs and reranked with tree
kernels (TKs) applied to a syntactic tree
representation of the clues. In this pa-
per, we create a labelled dataset of 2 mil-
lion clues on which we apply an innovative
Distributional Neural Network (DNN) for
reranking clue pairs. Our DNN is com-
putationally efficient and can thus take ad-
vantage of such large datasets showing a
large improvement over the TK approach,
when the latter uses small training data. In
contrast, when data is scarce, TKs outper-
form DNNs.

1 Introduction

Automatic solvers of CPs require accurate list of
answer candidates to find good solutions in little
time. Candidates can be retrieved from the DBs
of previously solved CPs (CPDBs) since clues are
often reused, and thus querying CPDBs with the
target clue allows us to recuperate the same (or
similar) clues.

In this paper, we propose for the first time the
use of Distributional Neural Networks to improve
the ranking of answer candidate lists. Most im-
portantly, we build a very large dataset for clue
retrieval, composed of 2,000,493 clues with their
associated answers, i.e., this is a supervised cor-
pus where large scale learning models can be de-
veloped and tested. This dataset is an interesting

∗Work done when student at University of Trento

resource that we make available to the research
community1. To assess the effectiveness of our
DNN model, we compare it with the current state
of the art model (Nicosia et al., 2015) in rerank-
ing CP clues, where tree kernels (Moschitti, 2006)
are used to rerank clues according to their syntac-
tic/semantic similarity with the query clue.

The experimental results on our dataset demon-
strate that:

(i) DNNs are efficient and can greatly benefit
from large amounts of data;

(ii) when DNNs are applied to large-scale data,
they largely outperform traditional feature-
based rerankers as well as kernel-based mod-
els; and

(iii) if limited training data is available for train-
ing, tree kernel-based models are more accu-
rate than DNNs

2 Clue Reranking Models for CPs

In this section, we briefly introduce the general
idea of CP resolution systems and the state-of-the-
art models for reranking answer candidates.

2.1 CP resolution systems
The main task of a CP resolution system is the
generation of candidate answer lists for each clue
of the target puzzle (Littman et al., 2002). Then
a solver for Probabilistic-Constraint Satisfaction
Problems, e.g., (Pohl, 1970), tries combinations
of letters that satisfy the crossword constraints.
The combinations are derived from words found
in dictionaries or in the lists of answer candidates.
The latter can be generated using large crossword
databases as well as several expert modules ac-
cessing domain-specific databases (e.g., movies,
writers and geography). WebCrow, one of the

1http://ikernels-portal.disi.unitn.it/
projects/webcrow/
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Rank Clue Answer

1 Actress Pflug who played Lt. Dish in ”MASH” Jo Ann
2 Actress Pflug who played in ”MASH” (1970) Jo Ann
3 Actress Jo Ann Pflug
4 MASH Actress Jo Ann Pflug
5 MASH Crush

Table 1: Candidate list for the query clue: Jo Ann
who played Lt. ”Dish” in 1970’s ”MASH” (an-
swer: Pflug)

best systems (Ernandes et al., 2005), incorporates
knowledge sources and an effective clue retrieval
model from DB. It carries out basic linguistic anal-
ysis such as part-of-speech tagging and lemmati-
zation and takes advantage of semantic relations
contained in WordNet, dictionaries and gazetteers.
It also uses a Web module constituted by a search
engine (SE), which can retrieve text snippets re-
lated to the clue.

Clearly, lists of better quality, i.e., many correct
candidates in top positions, result in higher accu-
racy and speed of the solver. Thus the design of
effective answer rankers is extremely important.

2.2 Clue retrieval and reranking

One important source of candidate answers is the
DB of previously solved clues. In (Barlacchi et
al., 2014a), we proposed the BM25 retrieval model
to generate clue lists, which were further refined
by applying our reranking models. The latter pro-
mote the most similar, which are probably asso-
ciated with the same answer of the query clue, to
the top. The reranking step is important because
SEs often fail to retrieve the correct clues in the
first position. For example, Table 1 shows the first
five clues retrieved for the query clue: Jo Ann who
played Lt. ”Dish” in 1970’s ”MASH”. BM25 re-
trieved the wrong clue, Actress Pflug who played
Lt. Dish in ”MASH”, at the top since it has a larger
bag-of-words overlap with the query clue.

2.3 Reranking with Kernels

We applied our reranking framework for question
answering systems (Moschitti, 2008; Severyn and
Moschitti, 2012; Severyn et al., 2013a; Severyn
et al., 2013b; Severyn and Moschitti, 2013). This
retrieves a list of related clues by using the tar-
get clue as a query in an SE (applied to the Web
or to a DB). Then, both query and candidates are
represented by shallow syntactic structures (gen-
erated by running a set of NLP parsers) and tradi-

tional similarity features which are fed to a kernel-
based reranker. Hereafter, we give a brief descrip-
tion of our models for clue reranking whereas the
reader can refer to our previous work (Barlacchi
et al., 2014a; Nicosia et al., 2015; Barlacchi et al.,
2014b) for more specific details.

Given a query clue qc and two retrieved clues
c1, c2, we can rank them by using a classifi-
cation approach: the two clues c1 and c2 are
reranked by comparing their classification scores:
SVM(〈q, c1〉) and SVM(〈q, c2〉). The SVM classi-
fier uses the following kernel applied to two pairs
of query/clues, p = 〈q, ci〉 and p′ = 〈q′, c′j〉:

K(p, p′) = TK(q, q′) + TK(ci, c′j)+

FV (q, ci) · FV (q′, c′j),

where TK can be any tree kernel, e.g., the syntac-
tic tree kernel (STK) also called SST by Moschitti
(2006), and FV is the feature vector representation
of the input pair, e.g., 〈q, ci〉 or 〈q′, c′j〉. STK maps
trees into the space of all possible tree fragments
constrained by the rule that the sibling nodes from
their parents cannot be separated. It enables the
exploitation of structural features, which can be
effectively combined with more traditional fea-
tures (described hereafter).

Feature Vectors (FV). We compute the following
similarity features between clues: (i) tree kernel
similarity applied to intra-pairs, i.e., between the
query and the retrieved clues; (ii) DKPro Simi-
larity, which defines features used in the context
of the Semantic Textual Similarity (STS) chal-
lenge (Bär et al., 2013); and (iii) WebCrow fea-
tures (WC), which are the similarity measures
computed on the clue pairs by WebCrow (using
the Levenshtein distance) and the SE score.

3 Distributional models for clue
reranking

The architecture of our distributional matching
model for measuring similarity between clues is
presented in Fig. 1. Its main components are:

(i) sentence matrices sci ∈ Rd×|ci| obtained by
the concatenation of the word vectors wj ∈
Rd (with d being the size of the embeddings)
of the corresponding wordswj from the input
clues ci;

(ii) a distributional sentence model
f : Rd×|ci| → Rm that maps the sentence
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Figure 1: Distributional sentence matching model for computing similarity between clues.

matrix of an input clue ci to a fixed-size
vector representations xci of size m;

(iii) a layer for computing the similarity between
the obtained intermediate vector representa-
tions of the input clues, using a similarity ma-
trix M ∈ Rm×m – an intermediate vector
representation xc1 of a clue c1 is projected to
a x̃c1 = xc1M, which is then matched with
xc2 (Bordes et al., 2014), i.e., by computing a
dot-product x̃c1xc2 , thus resulting in a single
similarity score xsim;

(vi) a set of fully-connected hidden layers that
models the similarity between clues using
their vector representations produced by the
sentence model (also integrating the single
similarity score from the previous layer); and

(v) a softmax layer that outputs probability
scores reflecting how well the clues match
with each other.

The choice of the sentence model plays a cru-
cial role as the resulting intermediate representa-
tions of the input clues will affect the successive
step of computing their similarity. Recently, dis-
tributional sentence models, where f(s) is rep-
resented by a sequence of convolutional-pooling
feature maps, have shown state-of-the-art results
on many NLP tasks, e.g., (Kalchbrenner et al.,

2014; Kim, 2014). In this paper, we opt for a sim-
ple solution where f(sci) =

∑
i wi/|ci|, i.e., the

word vectors, are averaged to a single fixed-sized
vector x ∈ Rd. Our preliminary experiments re-
vealed that this simpler model works just as well
as more complicated single or multi-layer convo-
lutional architectures. We conjecture that this is
largely due to the nature of the language used in
clues, which is very dense and where the syntactic
information plays a minor role.

Considering recent deep learning models for
matching sentences, our network is most similar
to the models in Hu et al. (2014) applied for com-
puting sentence similarity and in Yu et al.(2014)
(answer sentence selection in Question Answer-
ing) with the following differences:

(i) In contrast to more complex convolutional
sentence models explored in (Hu et al., 2014)
and in (Yu et al., 2014), our sentence model
is composed of a single averaging operation.

(ii) To compute the similarity between the vec-
tor representation of the input sentences, our
network uses two methods: (i) computing the
similarity score obtained by transforming one
clue into another using a similarity matrix M
(explored in (Yu et al., 2014)), and (ii) di-
rectly modelling interactions between inter-
mediate vector representations of the input
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clues via fully-connected hidden layers (used
by (Hu et al., 2014)).

4 Experiments

Our experiments compare different ranking mod-
els, i.e., BM25 as the IR baseline, and several
rerankers, and our distributional neural network
(DNN) for the task of clue reranking.

4.1 Experimental setup

Data. We compiled our crossword corpus combin-
ing (i) CPs downloaded from the Web2 and (ii) the
clue database provided by Otsys3. We removed
duplicates, fill-in-the-blank clues (which are better
solved by using other strategies) and clues repre-
senting anagrams or linguistic games.

We collected over 6.3M pairs of clue/answer
and after removal of duplicates, we obtained a
compressed dataset containing 2M unique and
standard clues, with associated answers, which we
called CPDB. We used these clues to build a Small
Dataset (SD) and a Large Dataset (LD) for rerank-
ing. The two datasets are based on pairs of clues:
query and retrieved clues. Such clues are retrieved
using a BM25 model on CPDB.

For creating SD, we used 8k clues that (i) were
randomly extracting from CPDB and (ii) satisfy-
ing the property that at least one correct clue (i.e.,
having the same answer of the query clue) is in
the first retrieved 10 clues (of course the query
clue is eliminated from the ranked list provided
by BM25). In total we got about 120K examples,
84,040 negative and 35,960 positive clue4.

For building LD, we collected 200k clues with
the same property above. More precisely we
obtained 1,999,756 pairs (10×200k minus few
problematic examples) with 599,025 positive and
140,0731 negative pairs of queries with their re-
trieved clues. Given the large number of examples,
we only used such dataset in classification modal-
ity, i.e., we did not form reranking examples (pairs
of pairs).

2http://www.crosswordgiant.com
3http://www.otsys.com/clue
4A true reranker should be built using pairs of clue pairs,

where the positive pairs are those having the correct pair as
the first member. This led to form 127,109 reranking exam-
ples, with 66,011 positive and 61,098 negative pairs. How-
ever, in some experiments, which we do not report in the
paper, we observed that the performance both of the simple
classifier as well as the true reranker were similar, thus we
decided to use the simpler classifier.

Structural model. We use SVM-light-TK5,
which enables the use of structural kernels (Mos-
chitti, 2006). We applied structural kernels to shal-
low tree representations and a polynomial kernel
of degree 3 to feature vectors (FV).

Distributional neural network model. We pre-
initialize the word embeddings by running the
word2vec tool (Mikolov et al., 2013) on the En-
glish Wikipedia dump. We opt for a skipgram
model with window size 5 and filtering words with
frequency less than 5. The dimensionality of the
embeddings is set to 50. The input sentences are
mapped to fixed-sized vectors by computing the
average of their word embeddings. We use a sin-
gle non-linear hidden layer (with rectified linear
(ReLU) activation function) whose size is equal to
the size of the previous layer.

The network is trained using SGD with shuf-
fled mini-batches using the Adagrad update
rule (Duchi et al., 2011). The batch size is set to
100 examples. We used 25 epochs with early stop-
ping, i.e., we stop the training if no update to the
best accuracy on the dev set (we create the dev
set by allocating 10% of the training set) is made
for the last 5 epochs. The accuracy computed on
the dev set is the Mean Average Precision (MAP)
score. To extract the DNN features we simply take
the output of the hidden layer just before the soft-
max.

Evaluation. We used standard metrics widely
used in QA: the Mean Reciprocal Rank (MRR)
and Mean Average Precision (MAP).

4.2 Results

Table 2 summarizes the results of our different
reranking models trained on a small dataset (SD)
of 120k examples and a large dataset (LD) with
2M examples.

The first column reports the BM25 result; the
second column shows the performance of SVM
perf (SVMp), which is a very fast variant of SVM,
using FV; the third column reports the state-of-the-
art model for crossword clue reranking (Nicosia et
al., 2015), which uses FV vector and tree kernels,
i.e., SVM(TK).

Regarding the other systems: DNNMSD is the
DNN model trained on the small data (SD) of
120k training pairs; SVMp(DNNFLD) is SVM
perf trained with (i) the features derived from

5http://disi.unitn.it/moschitti/
Tree-Kernel.htm
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Training classifiers with the Small Dataset (SD) (120K instances)

BM25 SVMp SVM(TK) DNNMSD SVMp(DNNFLD) SVM(DNNFLD ,TK)

MRR 37.57 41.95 43.59 40.08 46.12 45.50
MAP 27.76 30.06 31.79 28.25 33.75 33.71

Training classifiers with the Large Dataset (LD) (2 million instances)

BM25 SVMp SVM(TK) DNNMLD SVMp(DNNFLD ,−FV) SVMp(DNNFLD)

MRR 37.57 41.47 – 46.10 46.36 46.27
MAP 27.76 29.95 – 33.81 34.07 33.86

Table 2: SVM models and DNN trained on 120k (small dataset) and 2 millions (large dataset) examples.
Feature vectors are used with all models except when indicated by −FV

DNN trained on a large clue dataset LD and (ii)
the FV; and finally, SVM(DNNFLD,TK) is SVM
using DNN features (generated from LD), FV and
TK. It should be noted that:

(i) SVMp is largely improved by TK;

(ii) DNNMSD on relatively small data delivers
an accuracy lower than FV;

(iii) if SVMp is trained with DNNMLD, i.e., fea-
tures derived from the dataset of 2M clues,
the accuracy greatly increases; and

(iv) finally, the combination with TK, i.e.,
SVM(DNNFLD,TK), does not significantly
improve the previous results.

In summary, when a dataset is relatively small
DNNM fails to deliver any noticeable improve-
ment over the SE baseline even when combined
with additional similarity features. SVM and
TK models generalize much better on the smaller
dataset.

Additionally, it is interesting to see that training
an SVM on a small number of examples enriched
with the features produced by a DNN trained on
large data gives us the same results of DNN trained
on the large dataset. Hence, it is desired to use
larger training collections to build an accurate
distributional similarity matching model that can
be then effectively combined with other feature-
based or tree kernel models, although at the mo-
ment the combination does not significantly im-
prove TK models.

Regarding the LD training setting it can be ob-
served that:

(i) the second column shows that adding more
training examples to SVMp does not increase
accuracy (compared with SD result);

(ii) DNNMLD delivers high accuracy suggesting
that a large dataset is essential to its training;
and

(iii) again SVMp using DNN features deliver
state-of-the-art accuracy independently of us-
ing or not additional features (i.e., see −FV,
which excludes the latter).

5 Conclusions

In this paper, we have explored various reranker
models to improve automatic CP resolution. The
most important finding is that our distributional
neural network model is very effective in estab-
lishing similarity matching between clues. We
combine the features produced by our DNN model
with other rerankers to greatly improve over the
previous state-of-the-art results. Finally, we col-
lected a very large dataset composed of 2 millions
clue/answer pairs that can be useful to the NLP
community for developing semantic textual simi-
larity models.

Future research will be devoted to find models
to effectively combine TKs and DNN. In partic-
ular, our previous model exploiting Linked Open
Data in QA (Tymoshenko et al., 2014) seems very
promising to find correct answer to clues. This as
well as further research will be integrated in our
CP system described in (Barlacchi et al., 2015).
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Abstract

With massively parallel corpora of hun-
dreds or thousands of translations of the
same text, it is possible to automatically
perform typological studies of language
structure using very large language sam-
ples. We investigate the domain of word
order using multilingual word alignment
and high-precision annotation transfer in a
corpus with 1144 translations in 986 lan-
guages of the New Testament. Results are
encouraging, with 86% to 96% agreement
between our method and the manually cre-
ated WALS database for a range of differ-
ent word order features. Beyond reproduc-
ing the categorical data in WALS and ex-
tending it to hundreds of other languages,
we also provide quantitative data for the
relative frequencies of different word or-
ders, and show the usefulness of this for
language comparison. Our method has
applications for basic research in linguis-
tic typology, as well as for NLP tasks
like transfer learning for dependency pars-
ing, which has been shown to benefit from
word order information.

1 Introduction

Since the work of Greenberg (1963), word order
features have played a central role in linguistic ty-
pology research. There is a great deal of varia-
tion across languages, and interesting interactions
between different features which may hint at cog-
nitive constraints in the processing of human lan-
guage. A full theoretical discussion on word order
typology is beyond the scope of this paper, but the
interested reader is referred to e.g. Dryer (2007)
for an overview of the field.

This study uses multilingual word alignment
(Östling, 2014) and high-precision annotation pro-

jection of part-of-speech (PoS) tags and depen-
dency parse trees to investigate five different
word order properties in 986 different languages,
through a corpus of New Testament translations.
The results are validated through comparison to
relevant chapters in the World Atlas on Language
Structures, WALS (Dryer and Haspelmath, 2013),
and we find a very high level of agreement be-
tween this database and our method.

We identify two primary applications of this
method. First, it provides a new tool for basic re-
search in linguistic typology. Second, it has been
shown that using these word order features leads
to increased accuracy during dependency parsing
model transfer (Täckström et al., 2013). These
benefits can now be extended to hundreds of more
languages. The quantified word order characteris-
tics computed for each of the 986 languages in the
New Testament corpus, including about 600 not in
the WALS samples for these features, are available
for download.1

2 Related work

Using parallel texts for linguistic typology has be-
come increasingly popular recently, as massively
parallel texts with hundreds or thousands of lan-
guages have become easily accessible through the
web (Cysouw and Wälchli, 2007; Dahl, 2007;
Wälchli, 2014). Specific applications include
data-driven language classification (Mayer and
Cysouw, 2012) and lexical typology (Wälchli and
Cysouw, 2012). However, unlike our work, none
of these authors developed automatic methods for
studying syntactic properties like word order, nor
did they utilize recent advances in the field of word
alignment algorithms.

1http://www.ling.su.se/
acl2015-wordorder.zip
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3 Method

The first step consists of using supervised systems
for annotating the source texts with Universal PoS
Tags (Petrov et al., 2012) and dependency struc-
ture in the Universal Dependency Treebank format
(McDonald et al., 2013). For PoS tagging, we use
the Stanford Tagger (Toutanova et al., 2003) fol-
lowed by a conversion step from the Penn Tree-
bank tagset to the “universal” PoS tags using the
tables published by Petrov et al. Next, we use the
MaltParser dependency parser (Nivre et al., 2007)
trained on the Universal Dependency Treebank us-
ing MaltOptimizer (Ballesteros and Nivre, 2012).

The corpus is then aligned using the multilin-
gual alignment tool of Östling (2014). This model
learns an “interlingua” representation of the text,
in this case the New Testament, to which all trans-
lations are then aligned independently. An inter-
lingua sentence e is assumed to generate the cor-
responding sentences f (l) for each of the L lan-
guages through a set of alignment variables a(l)

for each language. This can be seen as a multilin-
gual extension of the IBM model 1 (Brown et al.,
1993) with Dirichlet priors (Mermer and Saraçlar,
2011), where not only the alignment variables are
hidden but also the source e. The probability of a
sentence and its alignments (inL languages) under
this model is

P (a(1...L),f (1...L)|e) =
L∏

l=1

J∏
j=1

pt(f
(l)
j |ea(l)

j

) ·
I∏

i=1

pc(ei)
(1)

where the translation distributions pt are assumed
to have symmetric Dirichlet priors and the source
token distribution pc a Chinese Restaurant Process
prior. Given the parallel sentences f (1...L), then
a(1...L) and e are sampled using Gibbs sampling.
The advantage of this method is that the multi-
source transfer can be done once, to the interlin-
gua representation, then transferred in a second
step to all of the 986 languages investigated. It
would be possible to instead perform 986 separate
multi-source projection steps, but at the expense of
having to perform a large number of bitext align-
ments.

From the annotated source texts, PoS and de-
pendency annotations are transferred to the inter-
lingua representation. Since alignments are noisy
and low recall is acceptable in this task, we use
an aggressive filtering scheme: dependency links

must be transferred from at least 80% of source
texts in order to be included. For PoS tags,
which are only used to double-check grammati-
cal relations and should not impact precision neg-
atively, the majority tag among aligned words is
used. Apart from compensating for noisy align-
ments and parsing errors, this method also helps
to catch violations against the direct correspon-
dence assumption (Hwa et al., 2002) by filter-
ing out instances where different source texts use
different constructions, favoring the most proto-
typical cases. Each word order feature is coded
in terms of dependency relations, with additional
constraints on the parts of speech that can be in-
volved. For instance, when investigating the order
between nouns and their modifying adjectives we
look for an AMOD dependency relation between
an ADJ-tagged and a NOUN-tagged word, and note
the order between the adjective and the noun. This
method rests on the assumption that translation
equivalents have the same grammatical functions
across translations, which is not always the case.
For instance, if one language uses a passive con-
struction where the source texts all use the active
voice, we would obtain the wrong order between
subject and object.

To summarize, our algorithm consists of the fol-
lowing steps:

1. Compute an interlingua representation of the
parallel text, as well as word alignments link-
ing it to each of the translations.

2. Annotate a subset of translations with PoS
tags and dependency structure.

3. Use multi-source annotation projection from
this subset to the interlingua representation,
including only dependency links where the
same link is projected from at least 80% of
the source translations.

4. Use single-source annotation projection from
the interlingua representation to each of the
986 translations.

5. For each construction of interest, and for each
language, count the frequency of each order-
ing of its constituents.

4 Evaluation

We evaluate our method through comparison
to the WALS database (Dryer and Haspelmath,
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SOV SVO OSV OVS VSO VOS
Polynesian (Hawaiian, Maori)

3 31 2 2 70 3
6 26 5 4 76 18

Sinitic (Mandarin, Hakka)
54 235 6 0 3 5
18 84 1 2 5 3

Turkic (Kara-Kalpak, Kumyk)
114 2 8 7 0 0
89 1 12 11 4 1

Table 1: Number of transitive clauses with a given
order of subject/object/verb, according to our al-
gorithm, for six languages (from three families).

2013), by manual analysis of selected cases, and
by cluster analysis of the word order properties
computed for each language by our method.

4.1 Data and methodology

A corpus of web-crawled translations of the New
Testament was used, comprising 1144 translations
in 986 different languages. Of these, we used five
English translations as source texts for annotation
projection. Ideally more languages should be used
as sources, but since we only had access to com-
plete annotation pipelines for English and German
we only considered these two languages, and pre-
liminary experiments using some German transla-
tions in addition to the English ones did not lead
to significantly different results. A typologically
more diverse set of source languages would help
to identify those instances in the text which are
most consistently translated across languages, in
order to reduce the probability that peculiarities of
the source language(s) will bias the results.

In order to evaluate our method automatically,
we used data from the WALS database (Dryer and
Haspelmath, 2013) which classifies languages ac-
cording to a large number of features. Several fea-
tures concern word order, and we focused on five
of these (listed in Table 2). Only languages which
are represented both in the New Testament cor-
pus and the WALS data were used for the evalua-
tion. In addition, we exclude languages for which
WALS does not indicate a particular word order.
This might be due to e.g. lacking adpositions alto-
gether (which makes the adposition/noun order of
that language undefined), or because no specific
order is considered dominant.

The frequencies of all possible word orders for

a feature are then counted, and for the purpose of
evaluation the most common order is chosen as the
algorithm’s output. Although the relative frequen-
cies of the different possible word orders are dis-
carded for the sake of comparability with WALS,
these frequencies are themselves an important re-
sult of our work and tell a much richer story of the
word order properties (see Table 1 and Figure 1).

Counting the number of instances (token fre-
quency) of each word order is the most straight-
forward way to estimate the relative proportions of
each ordering, but the results are biased towards
the behavior of the most frequent words, which
often have idiosyncratic, non-productive features.
Therefore, we also compute the corresponding
statistics where each type is counted only once for
each word order it participates in, disregarding its
frequency. The type-based counts should better
capture the behavior of productive patterns in the
language. For the purpose of this study, we define
the type of our relations as follows:

• adjective-noun: the form of the adjective

• adposition-noun: the forms of both adposi-
tion and noun

• verb-(subject)-(object): the form of the verb

For instance, given the following three sentences:
“we see him,” “I see her” and “them I see”, we
would increase the count by one for SVO order
and for OVS order, because these are the orders in
which the verb see has been observed to partici-
pate.

In cases where there are multiple translations
into a particular language, information is aggre-
gated from all these translations into a single pro-
file for the language. This is problematic in some
cases, such as when a very long time separates two
translations and word order characteristics have
evolved, or simply due to different translators or
source texts. However, since the typical case is a
single translation per language, and WALS only
contains one data point per language, we leave
inter-language comparison to future research.

4.2 Results and Discussion

Table 1 shows how the output of our token-based
algorithm looks for three pairs of languages se-
lected from different families. The absolute counts
vary due to our filtering procedure and differing
numbers of translations, but as we might expect
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Figure 1: Hierarchical clustering based on word order statistics from our algorithm. Language families
represented are (G)ermanic, (R)omance, (T)urkic, (P)olynesian and (S)initic.

the relative numbers are quite similar within each
pair.

As a way of visualizing our data, we also
tried performing hierarchical clustering of lan-
guages, by normalizing the word order count vec-
tors and treating them (together) as a single 14-
dimensional vector. The result confirmed that lan-
guages can be grouped remarkably well on basis
of these five automatically extracted word order
features. A subset of the clustering containing
all languages from five language families repre-
sented in the New Testament corpus can be found
in Figure 1. While the clustering mostly follows
traditional genealogical boundaries, it is perhaps
more interesting to look at the cases where it does
not. The most glaring case is the wide split be-
tween the West Germanic and the North Germanic
languages, which in spite of their shared ances-
try have widely different word order characteris-
tics. Interestingly, English is not grouped with
the West Germanic languages, but rather with the
North Germanic languages which it has been in
close contact with.2 One can also note that the
Sinitic languages, with respect to word order, are
quite close to the North Germanic languages.

Table 2 shows the agreement between the algo-
rithm’s output and the corresponding WALS chap-

2One reviewer pointed us to the controversial claim of
Emonds (2011), that modern English in fact is a North Ger-
manic language, albeit with strong influence from the extinct
West Germanic language of Old English.

ter for each feature. The level of agreement is
high, even though the sample consists mainly of
languages unrelated to English, from which the
dependency structure and PoS annotations were
transferred. The most common column gives the
ratio of the most common ordering for each fea-
ture (according to WALS), which can serve as a
naive baseline.

As expected, the lowest level of agreement is
observed for WALS chapter 81A, which has a
lower baseline since it allows six permutations of
the verb, subject and object, whereas all the other
features are binary. In addition, this feature re-
quires that two dependency relations (subject-verb
and object-verb) have been correctly transferred,
which substantially reduces the number of rela-
tions available for comparison.

The fact that sources sometimes differ as to
the basic word order of a given language makes
it evident that the disagreement reported in Ta-
ble 2 is not necessarily due to errors made by
our algorithm. Another example of this can be
found when looking at the order of adjective and
noun in some Romance languages (Spanish, Cata-
lan, Portuguese, French and Italian), which are all
classified as having noun-adjective order (Dryer,
2013a). It turns out that adjective-noun order in
fact dominates in all of these languages, narrowly
when using type counts and by a fairly large mar-
gin when using token counts. This result was
confirmed by manual inspection, which leads us
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Table 2: Agreement between WALS and our results, on languages present in both datasets. The relative
frequency of the most common ordering is given for comparison. Types is the agreement using type-
based counts (see text for details), whereas Tokens uses token-based counts.

Feature Languages Types Tokens Most common
81A: Subject, Object, Verb (Dryer, 2013e) 342 85.4% 85.7% SOV: 43.3%
82A: Subject, Verb (Dryer, 2013d) 376 89.4% 90.4% SV: 79.8%
83A: Object, Verb (Dryer, 2013c) 387 96.4% 96.4% VO: 54.8%
85A: Adposition, Noun Phrase (Dryer, 2013b) 329 94.8% 95.1% Prep: 50.4%
87A: Adjective, Noun (Dryer, 2013a) 334 85.9% 88.0% AdjN: 68.9%

to search further for an explanation for the dis-
crepancy.3 The Universal Dependency Treebank
(McDonald et al., 2013) version 2 contains sub-
corpora in French, Italian, Spanish and Brazilian
Portuguese. In all of these, noun-adjective or-
der is dominant, which casts further doubts on
our result. The key difference turns out to be the
genre: whereas the modern texts used for the Uni-
versal Dependency Treebank have mainly noun-
adjective order, we used our supervised annota-
tion pipeline to confirm that the French transla-
tions of the New Testament indeed are dominated
by adjective-noun order. This should serve as a
warning about extrapolating too far from results
obtained in one very specific genre, let alone in a
single text.

5 Conclusions and future directions

The promising results from this study show that
high-precision annotation transfer is a realistic
way of exploring word order features in very large
language samples, when a suitable parallel text is
available. Although the WALS features on word
order already use very large samples (over a thou-
sand languages), using our method with the New
Testament corpus contributes about 600 additional
data points per feature, and adds quantitative data
for all of the 986 languages contained in the cor-
pus.

There are many other structural properties of
languages that could be investigated with high-
precision annotation transfer in massively paral-
lel corpora, not just regarding word order but also
within in domains such as negation, comparison
and tense/aspect systems. While there are lim-
its to the quality and types of answers obtainable,
our work demonstrates that for some problems it is
possible to obtain quick, quantitative answers that

3Thanks to Francesca Di Garbo for helping with this.

can be used to guide more traditional and thorough
typological research.

On the technical side, the alignment model used
is based on a non-symmetrized IBM model 1, and
more elaborate methods for alignment and annota-
tion projection could potentially lead to more ac-
curate results. Preliminary results however indi-
cate that adding a HMM-based word order model
akin to Vogel et al. (1996) actually leads to some-
what reduced agreement with the WALS classifi-
cation, because the projections become biased to-
wards the word order characteristics of the source
language(s), in our case English. This indicates
that using the less accurate but also less biased
IBM model 1 is in fact an advantage, when ag-
gressive high-precision filtering is used.
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Abstract

A defining symptom of autism spectrum
disorder (ASD) is the presence of re-
stricted and repetitive activities and inter-
ests, which can surface in language as a
perseverative focus on idiosyncratic top-
ics. In this paper, we use semantic sim-
ilarity measures to identify such idiosyn-
cratic topics in narratives produced by
children with and without ASD. We find
that neurotypical children tend to use the
same words and semantic concepts when
retelling the same narrative, while chil-
dren with ASD, even when producing ac-
curate retellings, use different words and
concepts relative not only to neurotypical
children but also to other children with
ASD. Our results indicate that children
with ASD not only stray from the target
topic but do so in idiosyncratic ways ac-
cording to their own restricted interests.

1 Introduction

Autism spectrum disorder (ASD) is a neurode-
velopmental disorder characterized by impaired
communication and social behavior. One of the
core symptoms is a preoccupation with specific re-
stricted interests (American Psychiatric Associa-
tion, 2013), and several commonly used diagnos-
tic instruments for ASD instruct examiners to eval-
uate the degree to which subjects display this char-
acteristic (Lord et al., 2002; Rutter et al., 2003).
In verbal individuals with ASD, such a preoccu-
pation can be expressed as a tendency to fixate on
a particular idiosyncratic topic.

Previous research relying on expert annota-
tion of spoken language in children with ASD
has found that their spoken narratives and con-
versations include significantly more instances

of irrelevant content and more topic digressions
(Loveland et al., 1990; Losh and Capps, 2003;
Lam et al., 2012). Similar results at the lexical
level have been reported using automated anno-
tations (Prud’hommeaux and Rouhizadeh, 2012;
Rouhizadeh et al., 2013). There has been little
work, however, in characterizing the precise direc-
tion of the departure from a target topic, leaving
open the question of whether children with ASD
are instigating similar, potentially reasonable topic
changes or whether they are introducing idiosyn-
cratic topics consistent with their own restricted
interests.

In this paper, we attempt to automatically iden-
tify topic digressions in the narrative retellings
of children with ASD and to determine whether
these digressions are influenced by their idiosyn-
cratic or restricted interests. From a corpus of
spoken retellings of the same brief narrative, we
extract several measures designed to capture dif-
ferent facets of semantic similarity between a pair
of retellings. We find that the retellings of chil-
dren with typical development (TD) semantically
resemble one another much more than they resem-
ble retellings by children with ASD. This indicates
that TD children are adhering to a common tar-
get topic, while children with ASD are introduc-
ing topic changes. More strikingly, the similar-
ity between pairs of ASD retellings is even lower,
suggesting that children with ASD are straying
from the target topic in individual and idiosyn-
cratic ways. Although we do not yet have manual
annotations to confirm that these topic shifts corre-
spond to the particular restricted interests of each
study participant, our methods and results show
the potential of using automated analysis for re-
vealing diagnostically relevant linguistic features.

2 Data

Thirty-nine children with typical development
(TD) and 21 high-functioning children with ASD,
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ranging in age from 4 to 9 years, participated
in this study. ASD was diagnosed via clinical
consensus according to the DSM-IV-TR criteria
(American Psychiatric Association, 2000) and the
established thresholds on two widely-used diag-
nostic instruments: the Autism Diagnostic Obser-
vation Schedule (Lord et al., 2002) and the So-
cial Communication Questionnaire (Rutter et al.,
2003). No children met the criteria for a lan-
guage impairment, and there were no significant
between-group differences in age or full-scale IQ.

To elicit retellings, we used the Narrative Mem-
ory subtest of the NEPSY (Korkman et al., 1998),
a large battery of tasks testing neurocognitive
functioning in children. In the NEPSY Narrative
Memory (NNM) subtest, the subject listens to a
brief narrative about a boy and his dog and then
must retell the narrative to the examiner. Figure 1
shows two sample retellings from our corpus. The
NNM was administered by a trained clinician
to each study participant, and each participant’s
retelling was recorded, transcribed, and evaluated
according to the published scoring guidelines.

Under standard administration of the NNM, a
retelling is scored according to how many story
elements from a predetermined list it contains.
The guidelines for scoring do not require verba-
tim recall for most elements and generally allow
the use of synonyms and paraphrases. As is typ-
ically reported when comparing matched groups
(Diehl et al., 2006), we observed no significant
difference in the standard NNM free recall score
between the TD group (mean = 6.25, sd = 3.43)
and the ASD group (mean = 4.90, sd = 3.72). It
might seem that a low similarity score between
two retellings simply indicates that one retelling
includes fewer story elements. However, given the
equivalent number of story elements recalled by
the two groups, we can assume that a low similar-
ity score indicates a difference in the quality rather
than the quantity of information in the retellings.

3 Semantic similarity measures

We expect that two different retellings of the same
narrative will lie in the same lexico-semantic space
and will thus have high similarity scores. In this
work we use well-known similarity measures with
two modifications. Children with autism tend to
use more off-topic and unexpected words. Such
words always have high inverse document fre-
quency (IDF) scores since they are very specific to

a particular retelling. By including IDF weights,
a similarity measure would be biased toward off-
topic words rather than actual content words in
the story elements. Conventional IDF weights are
therefore not useful for our particular purpose. In-
stead, we remove closed-class function words to
avoid their bias in our similarity measures. In ad-
dition, we lemmatize our narrative corpus to re-
duce the sparsity due to inflectional variation.

3.1 Word overlap measures

3.1.1 Jaccard similarity coefficient
The Jaccard similarity coefficient (SimJac) (Jac-
card, 1912) is a simple word overlap measure be-
tween a pair of narratives n and m defined as the
size of intersection of the words in narratives n and
m, relative to the size of word union of n and m:

SimJacc(n,m) =
|n ∩m|
|n ∪m| (1)

3.1.2 Cosine similarity score
Cosine similarity score SimCos is the similarity
between two narratives by cosine of the angle be-
tween their vector. We use a non-weighted cosine
similarity based on the following formula, where
tfw,n is the term frequency of word w in narra-
tive n:

SimCos(n,m)=

∑
w∈n∩m

tfw,n × tfw,m√ ∑
wi∈n

(tfwi,n)2
√ ∑

wj∈m
(tfwj ,m)2

(2)

3.1.3 Relative frequency measure
Relative frequency measure (SimRF ) (Hoad and
Zobel, 2003) is an author identity measure for
identifying plagiarism at the document level. This
measure normalizes the frequency of the words
appearing in both narratives n and m by the over-
all length of the two narratives, as well as the rel-
ative frequency of the words common to the two
narratives. We used a simplified variation of this
measure, described by Metzler et al. (2005) and
formulated as follows:

SimRF (n,m) =
1

1 + max(|n|,|m|)
min(|m|,|m|)

×
∑

w∈n∩m

1
1 + |tfw,n − tfw,m| (3)
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Jim went up a tree with a ladder. He lost his shoe he got stuck he hung from a branch. Pepper took his shoe. He
showed it to his sister and she helped him down. Let me look at this picture with my trusty vision gadget.

The boy got stuck and someone rescued him and pepper was a really smart dog. Dogs have a great sense of smell
too, like T-rex. T-rex could smell things that were really far away. T-rex could be over there and the meat could be
way back there under the couch Well, that guy got stuck on the tree and then he, and then Pepper, his shoe fell out
of the tree. Anna rescued it. Pepper brought his shoe back and Anna rescued them.

Figure 1: Two topically different NNM retellings with similar free recall scores (6 and 5, respectively).

3.1.4 BLEU
BLEU (Papineni et al., 2002) is commonly used
measure of n-gram overlap for automatically eval-
uating machine translation output. Because it is a
precision metric, the BLEU score for any pair of
narratives n andm will depend on which narrative
is considered the “reference”. To create a single
BLEU-based overlap score for each pair of narra-
tives, we calculate SimBLEU(n,m) as the mean of
BLEU(m,n) and BLEU(n,m).

3.2 Knowledge-based measures
It is reasonable to expect people to use syn-
onyms or semantically similar words in their nar-
ratives retellings. It is therefore possible that chil-
dren with autism are discussing the appropriate
topic but choosing unusual words within that topic
space in their retellings. We therefore use a set of
measures that consider the semantic overlap of two
narratives using WordNet (Fellbaum, 1998) sim-
ilarities (Achananuparp et al., 2008), in order to
distinguish instances of atypical but semantically
appropriate language from true examples of poor
topic maintenance. Because WordNet-based simi-
larity measures only consider word pairs with the
same part-of-speech, we POS-tagged the data us-
ing a perceptron tagger (Yarmohammadi, 2014).

3.2.1 WordNet-based vector similarity

In a modified version ofWordNet-based vector
similarity, SimWV ), (Li et al., 2006), we first cre-
ate vectors vn and vm for each narrative n and m,
where each element corresponds to a word in the
type union of n and m. We assign values to each
element e in vn using the following formulation:

S(e, n) =

{
1 if e ∈ n
max
wi∈n

LS(e, wi) otherwise (4)

where LS is Lin’s universal similarity (Lin, 1998).
In other words, if the element e is present in n,

S(e, n) will be 1. If not, the most similar word
to e will be chosen from words in n using Lin’s
universal similarity and S(e, n) will be that maxi-
mum score. The same procedure is applied to vm,
and finally the similarity score between n andm is
derived from the cosine score between vn and vm.

3.2.2 WordNet-based mutual similarity
In a modified version of WordNet-based mutual
similarity (SimWM ) (Mihalcea et al., 2006), we
find the maximum similarity score S(wi,m) for
each word wi in narrative n with words in narra-
tive m as described in Equation 4. The same pro-
cedure is applied to narrative m, and SimWM is
calculated as follows:

SimWM (n,m)=
1
2
(

∑
wi∈n

S(wi,m)

|n| +

∑
wj∈m

S(wj , n)

|m| )

(5)

4 Results

For each of the semantic similarity measures, we
build a similarity matrix comparing every possi-
ble pair of children. Because this pairwise simi-
larity matrix is diagonally symmetrical, we need
only consider the top right section of the matrix
above the diagonal in our analyses. Table 1 shows
the mean semantic overlap scores between the nar-
ratives for each of the three sub-matrices described
above. We see that for both the word-overlap
and the knowledge-based semantic similarity mea-
sures described in Section 3, TD children are most
similar to other TD children. ASD children are
less similar to TD children than TD children are to
one another; and children with ASD are even less
similar to other ASD children than to TD children.

Our goal is to explore the degree of similar-
ity, as measured by the semantic overlap mea-
sures, within and across diagnostic groups. With
this in mind, we consider the following three
sub-matrices for each similarity matrix: one in
which each TD child is compared with every other
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TD.TD TD.ASD ASD.ASD

SimJac 0.19 0.14 0.11
SimCos 0.42 0.34 0.28
SimRF 2.07 1.52 1.08
SimBLEU 0.36 0.29 0.24
SimWV 0.54 0.47 0.42
SimWM 0.80 0.69 0.59

Table 1: Average semantic overlap scores for each group.

measure statistic p-values

TD.TD vs ASD.ASD TD.TD vs TD.ASD TD.ASD vs ASD.ASD

SimJac
t .014 .022 .022
w .012 .002 .002

SimCos
t .025 .043 .027
w .025 .001 .001

SimRF
t .056 .072 .046
w .012 .002 .002

SimBLEU
t .032 .039 .034
w .036 .002 .002

SimWV
t .014 .008 .028
w .01 .01 .01

SimWM
t .018 .007 .042
w .018 .002 .002

Table 2: Monte Carlo significance test p-values for each similarity measure.

TD child (the TD.TD sub-matrix); one in which
each ASD child is compared with every other
ASD child (the ASD.ASD sub-matrix); and one in
which each child is compared with the children in
the diagnostic group to which he does not belong
(the TD.ASD sub-matrix).

Note that we have no a priori reason to assume
that the similarity scores are from any particu-
lar distribution. In order to calculate the statis-
tical significance of these between-group differ-
ences, we therefore apply a Monte Carlo permu-
tation method, a non-parametric procedure com-
monly used in non-standard significance testing
situations. For each pair of sub-matrices (e.g.,
TD.TD vs ASD.ASD) we calculate two statistics
that compare the cells in one sub-matrix with the
cells in other sub-matrices: the t-statistic, using
the Welch Two Sample t-test; and the w-statistic,
using the Wilcoxon rank sum test. We next take
a large random sample with replacement from all
possible permutations of the data by shuffling the
diagnosis labels of the children 1000 times. We
then calculate two above statistics for each shuffle
and count the number of times the observed values
exceed the values produced by the 1000 shuffles.

Applying the Monte Carlo permutation method,

we calculate the statistical significance of the
following comparisons: TD.TD vs ASD.ASD;
TD.TD vs TD.ASD; and TD.ASD vs ASD.ASD.
Table 2 summarizes the results of these signifi-
cance tests. In all cases, the differences are signif-
icant at p < 0.05 except for the first two compar-
isons in the t-test permutation of SimRF , which
narrowly eluded significance.

5 Conclusions and future work

High-functioning children with ASD have long
been described as “little professors”, using pedan-
tic or overly-adult language (Asperger, 1944).
Low lexical overlap similarity measures by them-
selves might indicate that children with ASD are
using semantically appropriate but infrequent or
sophisticated words that were not used by other
children. We note, however, that the knowledge-
based overlap measures follow the same pattern
as the purely lexical overlap measures. This sug-
gests that it not the case that children with ASD
are simply using rare synonyms of the more com-
mon words used by TD children. Instead, it seems
that the children with ASD are moving away from
the target topic and following their own individual
and idiosyncratic semantic paths. These findings
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provide additional quantitative evidence not only
for the common qualitative observation that young
children with ASD have difficulty with topic main-
tenance but also for the more general behavioral
symptom of idiosyncratic and restricted interests.

The overlap measures presented in this paper
could be used as features for machine learning
classification of ASD in combination with other
linguistic features we have explored, including the
use of off-topic lexical items (Rouhizadeh et al.,
2013), features associated with poor pragmatic
competence (Prud’hommeaux et al., 2014), and
repetitive language measures (van Santen et al.,
2013). Recall, however, that a clinician must con-
sider a wide range of social, communication, and
behavioral criteria when making a diagnosis of
ASD, making it unlikely that language features
alone could perfectly predict a diagnosis of ASD.
The more significant potential in our approaches
is more likely to lie in the area of language deficit
detection and remediation.

A focus of our future work will be to manually
annotate the data to determine the frequency and
nature of the topic excursions. It is our expecta-
tion that children with ASD do not only veer from
the target topic more frequently than typically de-
veloping children but also pursue topics of their
own individual specific interests. We also plan to
apply our methods to ASR output rather than man-
ual transcripts. Despite the high word error rates
typically observed with this sort of audio data, we
anticipate that our methods, which rely primarily
on content words, will be relatively robust.

The work presented here demonstrates the util-
ity of applying automated analysis methods to spo-
ken language collected in a clinical settings for
diagnostic and remedial purposes. Carefully de-
signed tools using such methods could provide
helpful information not only to clinicians and ther-
apists working with children with ASD but also
to researchers exploring the specific linguistic and
behavioral deficits associated with ASD.
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Abstract

We consider the task of identifying and la-
beling the semantic arguments of a predi-
cate that evokes a FrameNet frame. This
task is challenging because there are only
a few thousand fully annotated sentences
for supervised training. Our approach aug-
ments an existing model with features de-
rived from FrameNet and PropBank and
with partially annotated exemplars from
FrameNet. We observe a 4% absolute in-
crease in F1 versus the original model.

1 Introduction

Paucity of data resources is a challenge for
semantic analyses like frame-semantic parsing
(Gildea and Jurafsky, 2002; Das et al., 2014) using
the FrameNet lexicon (Baker et al., 1998; Fillmore
and Baker, 2009).1 Given a sentence, a frame-
semantic parse maps word tokens to frames they
evoke, and for each frame, finds and labels its ar-
gument phrases with frame-specific roles. An ex-
ample appears in figure 1.

In this paper, we address this argument iden-
tification subtask, a form of semantic role label-
ing (SRL), a task introduced by Gildea and Juraf-
sky (2002) using an earlier version of FrameNet.
Our contribution addresses the paucity of annotated
data for training using standard domain adaptation
techniques. We exploit three annotation sources:

• the frame-to-frame relations in FrameNet, by
using hierarchical features to share statistical
strength among related roles (§3.2),

• FrameNet’s corpus of partially-annotated ex-
emplar sentences, by using “frustratingly
easy” domain adaptation (§3.3), and

‡ Corresponding author: mkshirsa@cs.cmu.edu
1http://framenet.icsi.berkeley.edu

do you want me to hold off until  I finish July and August ?

Experiencer

Event

End_pointAgent

ACTIVITY_FINISH: complete.v  
conclude.v  finish.v …
HOLDING_OFF_ON: hold off.v  
wait.v

DESIRING: eager.a  hope.n  
hope.v  interested.a  itch.v  
want.v  wish.n  wish.v …Focal_participant

Agent

Desirable_action: ∅

Activity

A1

A1

A0 A1 finish-v-01

stay-v-01

want-v-01

A3

A0

FrameNet

the people really want us to stay the course and finish the job .
PropBank

AM-ADV

Figure 1: Part of a sentence from FrameNet full-text an-
notation. 3 frames and their arguments are shown: DESIR-
ING is evoked by want, ACTIVITY_FINISH by finish, and HOLD-
ING_OFF_ON by hold off. Thin horizontal lines representing
argument spans are labeled with role names. (Not shown: July
and August evoke CALENDRIC_UNIT and fill its Unit role.)

do you want me to hold off until  I finish July and August ?
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ACTIVITY_FINISH: complete.v  
conclude.v  finish.v …
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wait.v
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want.v  wish.n  wish.v …Focal_participant
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Desirable_action: ∅
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stay-v-01

want-v-01
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the people really want us to stay the course and finish the job .
PropBank

AM-ADV

Figure 2: A PropBank-annotated sentence from OntoNotes
(Hovy et al., 2006). The PB lexicon defines rolesets (verb
sense–specific frames) and their core roles: e.g., finish-v-01
‘cause to stop’, A0 ‘intentional agent’, A1 ‘thing finishing’, and
A2 ‘explicit instrument, thing finished with’. (finish-v-03, by
contrast, means ‘apply a finish, as to wood’.) Clear similarities
to the FrameNet annotations in figure 1 are evident, though
PB uses lexical frames rather than deep frames and makes
some different decisions about roles (e.g., want-v-01 has no
analogue to Focal_participant).

• a PropBank-style SRL system, by using guide
features (§3.4).2

These expansions of the training corpus and the
feature set for supervised argument identification
are integrated into SEMAFOR (Das et al., 2014),
the leading open-source frame-semantic parser
for English. We observe a 4% F1 improvement
in argument identification on the FrameNet test
set, leading to a 1% F1 improvement on the full
frame-semantic parsing task. Our code and mod-
els are available at http://www.ark.cs.cmu.edu/
SEMAFOR/.

2 FrameNet

FrameNet represents events, scenarios, and rela-
tionships with an inventory of frames (such as

2Preliminary experiments training on PropBank annota-
tions mapped to FrameNet via SemLink 1.2.2c (Bonial et al.,
2013) hurt performance, likely due to errors and coverage
gaps in the mappings.
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SHOPPING and SCARCITY). Each frame is associ-
ated with a set of roles (or frame elements) called
to mind in order to understand the scenario, and
lexical predicates (verbs, nouns, adjectives, and
adverbs) capable of evoking the scenario. For ex-
ample, the BODY_MOVEMENT frame has Agent and
Body_part as its core roles, and lexical entries in-
cluding verbs such as bend, blink, crane, and curtsy,
plus the noun use of curtsy. In FrameNet 1.5, there
are over 1,000 frames and 12,000 lexical predi-
cates.

2.1 Hierarchy
The FrameNet lexicon is organized as a network,
with several kinds of frame-to-frame relations
linking pairs of frames and (subsets of) their ar-
guments (Ruppenhofer et al., 2010). In this work,
we consider two kinds of frame-to-frame relations:
Inheritance: E.g., ROBBERY inherits from
COMMITTING_CRIME, which inherits from MIS-
DEED. Crucially, roles in inheriting frames
are mapped to corresponding roles in inher-
ited frames: ROBBERY.Perpetrator links to
COMMITTING_CRIME.Perpetrator, which links to
MISDEED.Wrongdoer, and so forth.
Subframe: This indicates a subevent within a
complex event. E.g., the CRIMINAL_PROCESS frame
groups together subframes ARREST, ARRAIGN-
MENT and TRIAL. CRIMINAL_PROCESS.Defendant,
for instance, is mapped to ARREST.Suspect,
TRIAL.Defendant, and SENTENCING.Convict.

We say that a parent of a role is one that has
either the Inheritance or Subframe relation to it.
There are 4,138 Inheritance and 589 Subframe
links among role types in FrameNet 1.5.

Prior work has considered various ways of group-
ing role labels together in order to share statisti-
cal strength. Matsubayashi et al. (2009) observed
small gains from using the Inheritance relation-
ships and also from grouping by the role name
(SEMAFOR already incorporates such features).
Johansson (2012) reports improvements in SRL for
Swedish, by exploiting relationships between both
frames and roles. Baldewein et al. (2004) learn
latent clusters of roles and role-fillers, reporting
mixed results. Our approach is described in §3.2.

2.2 Annotations
Statistics for the annotations appear in table 1.
Full-text (FT): This portion of the FrameNet cor-
pus consists of documents and has about 5,000
sentences for which annotators assigned frames

Full-Text Exemplars
train test train test

Sentences 2,780 2,420 137,515 4,132
Frames 15,019 4,458 137,515 4,132
Overt arguments 25,918 7,210 278,985 8,417

TYPES
Frames 642 470 862 562
Roles 2,644 1,420 4,821 1,224
Unseen frames vs. train: 46 0
Roles in unseen frames vs. train: 178 0
Unseen roles vs. train: 289 38
Unseen roles vs. combined train: 103 32

Table 1: Characteristics of the training and test data. (These
statistics exclude the development set, which contains 4,463
frames over 746 sentences.)

and arguments to as many words as possible. Be-
ginning with the SemEval-2007 shared task on
FrameNet analysis, frame-semantic parsers have
been trained and evaluated on the full-text data
(Baker et al., 2007; Das et al., 2014).3 The full-text
documents represent a mix of genres, prominently
including travel guides and bureaucratic reports
about weapons stockpiles.
Exemplars: To document a given predicate, lexi-
cographers manually select corpus examples and
annotate them only with respect to the predicate
in question. These singly-annotated sentences
from FrameNet are called lexicographic exem-
plars. There are over 140,000 sentences containing
argument annotations and relative to the FT dataset,
these contain an order of magnitude more frame
annotations and over two orders of magnitude more
sentences. As these were manually selected, the
rate of overt arguments per frame is noticeably
higher than in the FT data. The exemplars formed
the basis of early studies of frame-semantic role
labeling (e.g., Gildea and Jurafsky, 2002; Thomp-
son et al., 2003; Fleischman et al., 2003; Litkowski,
2004; Kwon et al., 2004). Exemplars have not yet
been exploited successfully to improve role label-
ing performance on the more realistic FT task.4

2.3 PropBank

PropBank (PB; Palmer et al., 2005) is a lexicon and
corpus of predicate–argument structures that takes
a shallower approach than FrameNet. FrameNet
frames cluster lexical predicates that evoke sim-

3Though these were annotated at the document level,
and train/development/test splits are by document, the frame-
semantic parsing is currently restricted to the sentence level.

4Das and Smith (2011, 2012) investigated semi-supervised
techniques using the exemplars and WordNet for frame iden-
tification. Hermann et al. (2014) also improve frame iden-
tification by mapping frames and predicates into the same
continuous vector space, allowing statistical sharing.
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ilar kinds of scenarios In comparison, PropBank
frames are purely lexical and there are no formal
relations between different predicates or their roles.
PropBank’s sense distinctions are generally coarser-
grained than FrameNet’s. Moreover, FrameNet lex-
ical entries cover many different parts of speech,
while PropBank focuses on verbs and (as of re-
cently) eventive noun and adjective predicates. An
example with PB annotations is shown in figure 2.

3 Model

We use the model from SEMAFOR (Das et al.,
2014), detailed in §3.1, as a starting point. We ex-
periment with techniques that augment the model’s
training data (§3.3) and feature set (§3.2, §3.4).

3.1 Baseline

In SEMAFOR, the argument identification task is
treated as a structured prediction problem. Let
the classification input be a dependency-parsed
sentence x, the token(s) p constituting the pred-
icate in question, and the frame f evoked by p (as
determined by frame identification). We use the
heuristic procedure described by (Das et al., 2014)
for extracting candidate argument spans for the
predicate; call this spans(x, p, f ). spans always
includes a special span denoting an empty or non-
overt role, denoted ∅. For each candidate argument
a ∈ spans(x, p, f ) and each role r, a binary feature
vector φφφ(a,x, p, f ,r) is extracted. We use the fea-
ture extractors from (Das et al., 2014) as a baseline,
adding additional ones in our experiments (§3.2–
§3.4). Each a is given a real-valued score by a
linear model:

scorew(a ∣ x, p, f ,r) =w⊺φφφ(a,x, p, f ,r) (1)

The model parameters w are learned from data (§4).
Prediction requires choosing a joint assignment

of all arguments of a frame, respecting the con-
straints that a role may be assigned to at most one
span, and spans of overt arguments must not over-
lap. Beam search, with a beam size of 100, is used
to find this argmax.5

3.2 Hierarchy Features

We experiment with features shared between re-
lated roles of related frames in order to capture

5Recent work has improved upon global decoding tech-
niques (Das et al., 2012; Täckström et al., 2015). We expect
such improvements to be complementary to the gains due to
the added features and data reported here.

statistical generalizations about the kinds of argu-
ments seen in those roles. Our hypothesis is that
this will be beneficial given the small number of
training examples for individual roles.

All roles that have a common parent based on
the Inheritance and Subframe relations will share
a set of features in common. Specifically, for each
base feature φ which is conjoined with the role r
in the baseline model (φ ∧ "role=r"), and for each
parent r′ of r, we add a new copy of the feature
that is the base feature conjoined with the parent
role, (φ ∧"parent_role=r′"). We experimented with
using more than one level of the hierarchy (e.g.,
grandparents), but the additional levels did not im-
prove performance.

3.3 Domain Adaptation and Exemplars

Daumé (2007) proposed a feature augmentation
approach that is now widely used in supervised
domain adaptation scenarios. We use a variant
of this approach. Let Dex denote the exemplars
training data, and Dft denote the full text training
data. For every feature φ(a,x, p, f ,r) in the base
model, we add a new feature φft(⋅) that fires only
if φ(⋅) fires and x ∈ Dft. The intuition is that each
base feature contributes both a “general” weight
and a “domain-specific” weight to the model; thus,
it can exhibit a general preference for specific roles,
but this general preference can be fine-tuned for
the domain. Regularization encourages the model
to use the general version over the domain-specific,
if possible.

3.4 Guide Features

Another approach to domain adaptation is to train a
supervised model on a source domain, make predic-
tions using that model on the target domain, then
use those predictions as additional features while
training a new model on the target domain. The
source domain model is effectively a form of pre-
processing, and the features from its output are
known as guide features (Johansson, 2013; Kong
et al., 2014).6

In our case, the full text data is our target do-
main, and PropBank and the exemplars data are our
source domains, respectively. For PropBank, we
run the SRL system of Illinois Curator 1.1.4 (Pun-

6This is related to the technique of model stacking, where
successively richer models are trained by cross-validation on
the same dataset (e.g., Cohen and Carvalho, 2005; Nivre and
McDonald, 2008; Martins et al., 2008).
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yakanok et al., 2008)7 on verbs in the full-text data.
For the exemplars, we train baseline SEMAFOR
on the exemplars and run it on the full-text data.

We use two types of guide features: one encodes
the role label predicted by the source model, and
the other indicates that a span a was assigned some
role. For the exemplars, we use an additional fea-
ture to indicate that the predicted role matches the
role being filled.

4 Learning

Following SEMAFOR, we train using a local ob-
jective, treating each role and span pair as an in-
dependent training instance. We have made two
modifications to training which had negligible im-
pact on full-text accuracy, but decreased training
time significantly:8

• We use the online optimization method
AdaDelta (Zeiler, 2012) with minibatches, in-
stead of the batch method L-BFGS (Liu and
Nocedal, 1989). We use minibatches of size
4,000 on the full text data, and 40,000 on the
exemplar data.

• We minimize squared structured hinge loss
instead of a log-linear loss. Let ((x, p, f ,r),a)
be the ith training example. Then the squared
hinge loss is given by Lw(i) =

(max
a′
{w⊺φφφ(a′,x, p, f ,r)

+111{a′ /= a} }−w⊺φφφ(a,x, p, f ,r))
2

We learn w by minimizing the `2-regularized aver-
age loss on the dataset:

w∗ = argmin
w

1
N

N

∑
i=1

Lw(i)+
1
2

λ∥w∥22 (2)

5 Experimental Setup

We use the same FrameNet 1.5 data and train/test
splits as Das et al. (2014). Automatic syntactic de-
pendency parses from MSTParserStacked (Martins
et al., 2008) are used, as in Das et al. (2014).
Preprocessing. Out of 145,838 exemplar sen-
tences, we removed 4,191 sentences which had
no role annotations. We removed sentences that ap-
peared in the full-text data. We also merged spans
which were adjacent and had the same role label.

7http://cogcomp.cs.illinois.edu/page/software_

view/SRL
8With SEMAFOR’s original features and training data, the

result of the above changes is that full-text F1 decreases from
59.3% to 59.1%, while training time (running optimization to
convergence) decreases from 729 minutes to 82 minutes.

Training Configuration Model P R F1
(Features) Size (%) (%) (%)

FT (Baseline) 1.1 65.6 53.8 59.1

FT (Hierarchy) 1.9 67.2 54.8 60.4

Exemplars
guide
ÐÐÐ→ FT 1.2 65.2 55.9 60.2

FT+Exemplars (Basic) 5.0 66.0 58.2 61.9
FT+Exemplars (DA) 5.8 65.7 59.0 62.2

PB-SRL
guide
ÐÐÐ→ FT 1.2 65.0 54.8 59.5

Combining the best methods

PB-SRL
guide
ÐÐÐ→ FT+Exemplars 5.5 67.4 58.8 62.8

FT+Exemplars (Hierarchy) 9.3 66.0 60.4 63.1

Table 2: Argument identification results on the full-text test
set. Model size is in millions of features.

Hyperparameter tuning. We determined the
stopping criterion and the `2 regularization parame-
ter λ by tuning on the FT development set, search-
ing over the following values for λ : 10−5, 10−7,
10−9, 10−12.
Evaluation. A complete frame-semantic parsing
system involves frame identification and argument
identification. We perform two evaluations: one as-
suming gold-standard frames are given, to evaluate
argument identification alone; and one using the
output of the system described by Hermann et al.
(2014), the current state-of-the-art in frame identi-
fication, to demonstrate that our improvements are
retained when incorporated into a full system.

6 Results

Argument Identification. We present precision,
recall, and F1-measure microaveraged across the
test instances in table 2, for all approaches. The
evaluation used in Das et al. (2014) assesses both
frames and arguments; since our focus is on SRL,
we only report performance for arguments, ren-
dering our scores more interpretable. Under our
argument-only evaluation, the system of Das et al.
(2014) gets 59.3% F1.

The first block shows baseline performance. The
next block shows the benefit of FrameNet hierarchy
features (+1.2% F1). The third block shows that
using exemplars as training data, especially with
domain adaptation, is preferable to using them as
guide features (2.8% F1 vs. 0.9% F1). PropBank
SRL as guide features offers a small (0.4% F1) gain.

The last two rows of table 2 show the perfor-
mance upon combining the best approaches. Both
use full-text and exemplars for training; the first
uses PropBank SRL as guide features, and the sec-
ond adds hierarchy features. The best result is the
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Figure 3: F1 for each role appearing in the test set, ranked by
frequency. F1 values have been smoothed with loess, with
a smoothing parameter of 0.2. “Siblings” refers to hierarchy
features.

latter, gaining 3.95% F1 over the baseline.

Role-level evaluation. Figure 3(b) shows F1 per
frame element, for the baseline and the three best
models. Each x-axis value is one role, sorted by
decreasing frequency (the distribution of role fre-
quencies is shown in figure 3(a)). For frequent
roles, performance is similar; our models achieve
gains on rarer roles.

Full system. When using the frame output of
Hermann et al. (2014), F1 improves by 1.1%, from
66.8% for the baseline, to 67.9% for our combined
model (from the last row in table 2).

7 Conclusion

We have empirically shown that auxiliary semantic
resources can benefit the challenging task of frame-
semantic role labeling. The significant gains come
from the FrameNet exemplars and the FrameNet hi-
erarchy, with some signs that the PropBank scheme
can be leveraged as well.

We are optimistic that future improvements to
lexical semantic resources, such as crowdsourced
lexical expansion of FrameNet (Pavlick et al., 2015)
as well as ongoing/planned changes for PropBank
(Bonial et al., 2014) and SemLink (Bonial et al.,
2013), will lead to further gains in this task. More-

over, the techniques discussed here could be further
explored using semi-automatic mappings between
lexical resources (such as UBY; Gurevych et al.,
2012), and correspondingly, this task could be used
to extrinsically validate those mappings.

Ours is not the only study to show benefit from
heterogeneous annotations for semantic analysis
tasks. Feizabadi and Padó (2015), for example,
successfully applied similar techniques for SRL of
implicit arguments.9 Ultimately, given the diversity
of semantic resources, we expect that learning from
heterogeneous annotations in different corpora will
be necessary to build automatic semantic analyzers
that are both accurate and robust.
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Abstract

This paper addresses a novel task of se-
mantically analyzing the comparative con-
structions inherent in attributive superla-
tive expressions against structured knowl-
edge bases (KBs). The task can be de-
fined in two-fold: first, selecting the com-
parison dimension against a KB, on which
the involved items are compared; and sec-
ond, determining the ranking order, in
which the items are ranked (ascending or
descending). We exploit Wikipedia and
Freebase to collect training data in an un-
supervised manner, where a neural net-
work model is then learnt to select, from
Freebase predicates, the most appropriate
comparison dimension for a given superla-
tive expression, and further determine its
ranking order heuristically. Experimen-
tal results show that it is possible to learn
from coarsely obtained training data to
semantically characterize the comparative
constructions involved in attributive su-
perlative expressions.

1 Introduction

Superlatives are fairly common in natural lan-
guages and play an essential role in daily commu-
nications, when in conveying comparisons among
a set of items or degrees of certain properties.
Properly analyzing superlative expressions holds
the promise for many applications such as ques-
tion answering (QA), text entailment, sentiment
analysis and so on. In literature, analysis of
superlatives has drawn more interests from both
formal linguistics and semantics(Szabolcsi, 1986;
Gawron, 1995; Heim, 1999; Farkas and Kiss,
2000), but relatively less attention from the com-
putational linguistics and NLP communities(Bos
and Nissim, 2006; Jindal and Liu, 2006; Scheible,
2007; Scheible, 2009).

Earlier computational treatments to superlatives
focus on the categorizations of superlatives(Bos
and Nissim, 2006; Scheible, 2009), where the
most common but important type is being part
of a noun phrase or describing certain properties
or attributes of the subjects, named as attribu-
tive superlatives or ISA-superlatives, accounting
for around 90% of appearances in newswire. A
typical example is Nile is the longest river in the
world.

In most cases, the gist behind such superlative
expressions is the comparative constructions that
the utterance intends to convey to readers, e.g., in
the Nile example, Nile is longer than any other
rivers in the world. Semantically understanding
such attributive superlative expressions boils down
to interpreting the comparative construction in-
volved in the utterance in the following four as-
pects:

1. Target: one or more items that work as the
protagonist of the utterance, and are being
compared within the comparative construc-
tion, e.g., Nile;

2. Comparison set: the set of items that are
being compared against in the utterance(Bos
and Nissim, 2006), e.g., all rivers in the
world;

3. Comparison dimension: the attribute or
property that the items are compared upon,
e.g., the length of a river;

4. Ranking order: the order in which the items
in the comparison set are sorted according to
the dimension, in an ascending or descending
order, e.g., we should rank all rivers regard-
ing their lengths in a descending order to get
the longest at the top.

So far, there have been only a few computa-
tional treatments for superlatives, addressing the
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importance of categorizing superlatives, identify-
ing the target and comparison set(Bos and Nissim,
2006; Jindal and Liu, 2006; Scheible, 2009), while
putting less attention on other aspects.

In fact, grounding the comparison dimension
into a canonical predicate of a KB can help pro-
vide more accurate interpretations for the involved
comparative constructions. In question answering
over structured KBs, accurate treatments for su-
perlatives will not only help build more precise of
structured queries, but also support shallow func-
tional reasoning, e.g., formally analyzing the fifth
longest river in the world, will explore the most of
the structured nature of KBs, and is advantageous
to traditional IR based methods.

However, selecting an appropriate comparison
dimension against a structured KB is not a trivial
task. Usually, the numbers of adjective superla-
tives and gradable KB predicates are large, so that
it is impossible to craft mapping rules to cover
every pair of adjective superlative and predicate.
Consequently, preparing wide-coverage annotated
data to help automate this procedure is also labor-
intensive and time consuming. Moreover, some
adjectives are widely used, but often vague to de-
cide a dimension by themselves(Bos and Nissim,
2006). One may need to draw support from their
context and even common sense knowledge.

In this paper, we propose a novel task, se-
mantically interpreting the comparative construc-
tions inherent in attributive superlative expres-
sions again structured KBs, e.g., Freebase(Google,
2013), specifically, focusing on selecting appro-
priate comparison dimensions and corresponding
ranking orders. To this end, we collect training
data from roughly aligned Wikipedia resources
and knowledge facts in Freebase, from which we
build a neural network model to reveal the un-
derlying correspondence between the comparative
construction, as well as its context, and a Freebase
predicate. Our method leverages the potentials of
structured KBs and large amount of text resources
in Wikipedia without relying on human annotated
data.

We evaluate our interpretation of superlatives
in two tasks, and experimental results show that
it is possible to learn the comparison dimensions
in form of canonical knowledge bases predicates
from roughly collected training data, which is
noisy in nature but provides the essentials to se-
mantically characterize superlative expressions.

2 The Task

Given a sentence with an attributive superlative ex-
pression, our task is to find on which dimension
the comparison happens against a KB and how the
comparison results are arranged, i.e., (1) Dimen-
sion Selection: decide the dimension on which
the involved items are compared, and ground the
selected dimension into Freebase predicates. (2)
Ranking Order Determination: given the com-
parison set and the selected dimension, determine
the order in which the involved items are ranked
within the comparisons, in an ascending or de-
scending order? For superlatives coupled with or-
dinals, we also need to assign the standing in the
rankings.

In the Nile example, we expect to in-
terpret the longest river into a vector
<fb:geography.river.length, descending, 1>,
where all rivers in the world are compared upon
Freebase predicate fb:geography.river.length,
sorted in a descending order and the referred
target ranks the first.

3 The WikiDiF Dataset

Previous superlative datasets are built to facili-
tate superlative extraction, classification, and com-
parison set identification(Bos and Nissim, 2006;
Scheible, 2012). There are currently no available
datasets that can be used directly for our task, es-
pecially no annotations against structured KBs.

We therefore present a distantly supervised
method to collect annotated training data from rich
text resources of Wikipedia and the help of Free-
base, without much human involvement. The key
assumption behind our method is that if a superla-
tive expression frequently appears in a context
that may describe a KB predicate, then this predi-
cate probably plays an important role in the com-
parative construction triggered by this superlative.
Inspired by recent advances in relation extrac-
tion(Mintz et al., 2009), given a Freebase predi-
cate, we are able to collect many sentences from
Wikipedia pages, which more or less describe this
predicate, without extra human annotation. These
sentences in turn can be used to collect the co-
occurrences between a superlative expression and
this predicate.

In more detail, we first find all Free-
base predicates that may involve in compara-
tive constructions, i.e., all gradable predicates,
e.g., fb:geography.river.length, on which differ-
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ent rivers can be compared with each other. In
practice, we simply treat all Freebase predicates
that take objects of type ∈ {/type/int, /type/float,
/type/datetime} as gradable predicates. In total,
we collect 8,968,383 <subj, rel, obj> triples cov-
ering all 1,795 gradable predicates from Freebase
dump.

Next, we extract, from Wikipedia pages, all sen-
tences containing superlative expressions, as well
as their ±3 context sentences1. To detect superla-
tives, we rely on part-of-speech tags (JJS, RBS)
which can achieve a high recall in practice accord-
ing to (Jindal and Liu, 2006). By doing so, we col-
lect 7,734,006 sentences with superlative expres-
sions from Wikipedia.

Finally, for each collected triple <subj, rel,
obj> , we match subj and obj into our sentence
collection, including those contextual sentences.
This gives us 20,609 sentences with superlative
expressions that potentially describe our collected
knowledge triples with gradable predicates. For
example, the following sentences from the page of
Nile in Wikipedia may describes a Freebase fact
<Nile, fb:geography.river.length, 6,853>:

“The Nile is a major north-flowing river
in northeastern Africa, generally re-
garded as the longest river in the world.
It is 6,853 km (4,258 miles) long. ”

where we can see that longest has implied a com-
parative construction among all rivers in the world
and fb:geography.river.length is the involved hid-
den comparison dimension.

Our resulting dataset, WikiDiF, contains 20,609
sentences paired with Freebase predicates, cov-
ering 2,335 superlative words and 340 Freebase
predicates2. In WikiDiF, there are on average 8.8
sentences per superlative word targeting for about
2 predicates, and for commonly seen superlatives,
e.g., largest or biggest, there are on average 70
sentences per superlative word targeting for 30
predicates. Compared to other human annotated
datasets, WikiDiF is admittedly noisy in nature,

1In Wikipedia, sentences with superlative expressions
may not always contain the knowledge facts that support the
superlative constructions, which often appear in their neigh-
bouring sentences. For example, highest, and its supporting
fact, (Everest, 8,848 metres), are not in the same sentence, but
indeed very near: Mount Everest, also known ..., is Earth’s
highest mountain. It is located in ... of the Himalayas. Its
peak is 8,848 metres (29,029 ft) above sea level.

2We also filter out predicates whose objects are very com-
mon in the documents, e.g., 1 or 2, which is difficult to collect
training data.

but exploits the underlying connections between
knowledge facts and their possibly correspond-
ing textual descriptions, where the pseudo co-
occurrences of superlative expressions and Free-
base predicates will work as a proxy for us to for-
mally analyze the involved comparative construc-
tions.

4 Comparison Dimension Selection

Our WikiDiF dataset contains utterances with
roughly annotated superlative-predicate pairs,
which helps us to model the dimension selection
task as a classification problem. Given a superla-
tive word S and its context C, our goal is to find a
gradable Freebase predicate R that maximizes the
conditional probability P (R |C, S):

R∗ = arg max
R∈candS

P (R |C, S)

where we can limit our search space to a candi-
date set candS according to the domain and type
constraints regarding the comparison set.

Currently, our WikiDiF covers limited predi-
cates and training instances for each superlative S,
traditional classification models may suffer from
the coverage and data sparsity issues. Here, we
adopt a classic one-layer neural network (NN)
model with the help of word embeddings to predict
how likely a predicate R can work as the compar-
ison dimension given S and its context vector.

We start by constructing vector representations
of words and store them in a table L. We use
the publicly available word embeddings trained by
SENNA (Collobert et al., 2011), with 50 dimen-
sions throughout our experiments.

We construct the context vector for each in-
stance by concatenating the vectors of context
words within a window of ±k. If there are not
enough words within the window, special filling
vectors will be used.

V = (wjS−k, ..., wjS−1, wjS+1, ..., wjS+k)
where jS is the index of superlative S in the sen-
tence, and w is the vector of context word or spe-
cial filling parameter.

The output layer of the NN model is a standard
softmax function, which takes a sigmoid nonlin-
earity of the context vectors as input. Therefore,
the probability of ith predicate in Freebase is cho-
sen as the comparison dimension given superlative
S and its context C can be written as:

P (Ri |C, S) =
ezi∑q=1

n ezq
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Figure 1: Neural network for dimension selection.

where zi is estimated using a sigmoid function:

zi = σi(W T
m×nV + b)

where n is the number of candidate predicates for
superlative S,m is the length of concatenated vec-
tor V , Wm×n is the parameter matrix, b is the bias
vector, and σi is the sigmoid function that applies
to the i-th element of argument vector.

Training this standard one-layer neural network
model can be straightforward, and the parame-
ters W , b and filling vectors can be updated using
stochastic gradient descent (SGD).

5 Ranking Order Determination

To exploit the most from a structured KB, we
use an effective heuristic method to decide the
ranking order when a superlative expression S
triggers a comparative construction regarding a
KB predicate R. For each pair of (S,R), we
first find from R’s supporting sentences the ones
that contain superlative S, and further trace the
<subj∗, R, obj∗> tuples from the KB which
these sentences are assumed to describe. We
next look up into the KB, and find other tuples
<subjo, R, objo> with the same predicate R. If
subjo and subj∗ are of the same type, and most
objo < obj∗, we will say the ranking order for ex-
pression S is descending when implying predicate
R, otherwise, ascending order.

In the Nile example, if we find in our KB that
nearly all other entities of type river have smaller

values than 6,853 in fb:geography.river.length , we
can conclude that the ranking order for longest re-
garding fb:geography.river.length is descending ,
i.e., we should rank all rivers descendingly to get
the longest one at the top.

Ordinals are processed as a post-processing step
to interpret ordinals into a numerical values.

6 Experiments

The main purposes of this work is to answer the
following two questions: (1) can we learn from
noisy training data without much human involve-
ment to semantically interpret attributive superla-
tive expressions via structured KBs? (2) can our
semantic analysis help better understand utter-
ances with superlative expressions?

6.1 Interpreting Superlative Comparisons

We first evaluate our models in the vanilla setup
defined in Section 23, in terms of accuracy of di-
mension selection (Accd), precision of predicates
covered by WikiDiF (Pd), and precision of rank-
ing order determination (Po).
Datasets: We manually annotate superlative ex-
pressions from QALD-4 evaluation dataset(Unger
et al., 2014) and TREC QA (2002, 2003)
datasets(NIST, 2003), and guarantee that all the
labeled superlative instances can be grounded to
gradable Freebase predicates. The resulting ques-
tion dataset contains 135 questions covering 44
Freebase predicates. Additionally, we manu-
ally annotate 77 declarative sentences covering 24
Freebase predicates from WSJ and Wikipedia as
the declarative dataset.

We build a Naı̈ve Bayes model using co-
occurrences as a baseline to predict proper dimen-
sions. We further implement a simple baseline to
decide the ranking order, by measuring the relat-
edness between a superlative word and two sets
of seed words using word embeddings. The two
seed sets, {most, more, much, many} and {least,
less, few, little}, potentially indicate two ranking
orders, respectively.

We can see in Table 1 that our method can better
capture the underlying connections between su-
perlative expressions and KB predicates. Com-
paring with the baseline, our model benefits from
the NN architecture and distributional word rep-
resentations and avoids data sparsity to some ex-

3We assume that the domain and type constraints regard-
ing the comparison set are known
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Questions Declaratives
Model Accd Pd Po Accd Pd Po

Baselines 40.7 81.7 95.5 25.9 78.5 97.4

Ours 48.9 92.9 99.2 33.8 92.8 100

Table 1: Performances of superlative interpreta-
tions on two datasets

tent. Our model achieves over 90% of precision on
the predicates covered by our training data, show-
ing that it is possible to learn from noisy train-
ing data to characterize comparison dimensions
against a KB. However, the relatively lower ac-
curacy is mainly due to that some predicates in
the testing data are not covered by our WikiDiF,
which only covers 19% of gradable Freebase pred-
icates. Regarding the ranking order determination,
our simple heuristic method makes the most of
Freebase triples, and outperforms the relatedness
based baseline, which does not take Freebase into
account.

By looking at the different performances on
question and declarative sentences, we can see
that our method performs better on relatively sim-
pler and shorter questions, while a slightly worse
on longer declarative sentences. This is not sur-
prising, since questions are often simple in struc-
ture and ask for a straightforward property about
the target, while declarative sentences are usu-
ally complicated in syntax, which a ±5 context
words window may not be able to capture. An-
other reason is that for newswire, there are many
predicates that are similar in definitions but with
tiny differences, which often confuse our methods,
e.g., fb:business.business operation.assets and
fb:business.business operation.current assets.

6.2 Question Answering over Freebase

We also investigate how our semantic analysis
for superlatives can help improve question an-
swering on two benchmark datasets, Free917(Cai
and Yates, 2013) and WebQuestions(Berant et al.,
2013), which contain 35 questions with attributive
superlative expressions in total. We inject our for-
mal analysis as superlative-triggered aggregation
operations into an existing system, Xu14(Xu et al.,
2014). Note that we leave the comparison set to
be decided by Xu14’s parser.

The 35 superlative-triggered complex questions
can not be correctly answered by most state-
of-the-art systems(Berant et al., 2013; Yao and

Van Durme, 2014; Xu et al., 2014), since they
can not properly analyze the superlative-triggered
functions. When integrated with our analysis,
Xu14 is able to correctly answer 14 out of 35
such questions (40%), significantly outperform-
ing other systems. The remaining 21 questions
are mainly idiomatic usage, e.g., the Best Actor
Award, or with predicates not covered by WikiDiF.

The result shows that our analysis can help QA
systems better handle superlative-triggered aggre-
gation functions, which previous works fail to do.
This also gives a good reason to introduce the
analysis for comparison constructions into the QA
community, which will leverage the potentials of
structured KBs to better deal with complex ques-
tions.

7 Conclusion

In this paper, we present a novel attempt to se-
mantically analyze the comparisons involved in
attributive superlative expressions by investigat-
ing on which dimension the comparative construc-
tion works and how the comparison results are ar-
ranged. We leverage Freebase and their roughly
aligned textural descriptions from Wikipedia, and
learn from such training data to characterize a
comparative construction in two aspects, the di-
mension of the comparison and its ranking order.

Currently, our analysis suffers from the limited
coverage of our WikiDiF. In the future, it would be
interesting to improve our method to cover more
KB predicates, and extend our NN model with
more advanced structures to further improve the
performances and also simultaneously character-
ize the target and comparison set involved.
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Abstract

Multi-modal semantics has relied on fea-
ture norms or raw image data for per-
ceptual input. In this paper we examine
grounding semantic representations in ol-
factory (smell) data, through the construc-
tion of a novel bag of chemical compounds
model. We use standard evaluations for
multi-modal semantics, including measur-
ing conceptual similarity and cross-modal
zero-shot learning. To our knowledge, this
is the first work to evaluate semantic sim-
ilarity on representations grounded in ol-
factory data.

1 Introduction

Distributional semantics represents the meanings
of words as vectors in a “semantic space”, rely-
ing on the distributional hypothesis: the idea that
words that occur in similar contexts tend to have
similar meanings (Turney and Pantel, 2010; Clark,
2015). Although these models have been success-
ful, the fact that the meaning of a word is repre-
sented as a distribution over other words implies
they suffer from the grounding problem (Harnad,
1990); i.e. they do not account for the fact that
human semantic knowledge is grounded in phys-
ical reality and sensori-motor experience (Louw-
erse, 2008).

Multi-modal semantics attempts to address this
issue and there has been a surge of recent
work on perceptually grounded semantic models.
These models learn semantic representations from
both textual and perceptual input and outperform
language-only models on a range of tasks, includ-
ing modelling semantic similarity and relatedness,
and predicting compositionality (Silberer and La-
pata, 2012; Roller and Schulte im Walde, 2013;
Bruni et al., 2014). Perceptual information is ob-
tained from either feature norms (Silberer and La-
pata, 2012; Roller and Schulte im Walde, 2013;

Hill and Korhonen, 2014) or raw data sources such
as images (Feng and Lapata, 2010; Leong and Mi-
halcea, 2011; Bruni et al., 2014; Kiela and Bottou,
2014). The former are elicited from human anno-
tators and thus tend to be limited in scope and ex-
pensive to obtain. The latter approach has the ad-
vantage that images are widely available and easy
to obtain, which, combined with the ready avail-
ability of computer vision methods, has led to raw
visual information becoming the de-facto percep-
tual modality in multi-modal models.

However, if our objective is to ground seman-
tic representations in perceptual information, why
stop at image data? The meaning of lavender is
probably more grounded in its smell than in the
visual properties of the flower that produces it.
Olfactory (smell) perception is of particular in-
terest for grounded semantics because it is much
more primitive compared to the other perceptual
modalities (Carmichael et al., 1994; Krusemark et
al., 2013). As a result, natural language speak-
ers might take aspects of olfactory perception “for
granted”, which would imply that text is a rel-
atively poor source of such perceptual informa-
tion. A multi-modal approach would overcome
this problem, and might prove useful in, for ex-
ample, metaphor interpretation (the sweet smell of
success; rotten politics) and cognitive modelling,
as well as in real-world applications such as au-
tomatically retrieving smells or even producing
smell descriptions. Here, we explore grounding
semantic representations in olfactory perception.

We obtain olfactory representations by con-
structing a novel bag of chemical compounds
(BoCC) model. Following previous work in multi-
modal semantics, we evaluate on well known con-
ceptual similarity and relatedness tasks and on
zero-shot learning through induced cross-modal
mappings. To our knowledge this is the first
work to explore using olfactory perceptual data for
grounding linguistic semantic models.
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Olfactory-Relevant Examples

MEN sim SimLex-999 sim

bakery bread 0.96 steak meat 0.75

grass lawn 0.96 flower violet 0.70

dog terrier 0.90 tree maple 0.55

bacon meat 0.88 grass moss 0.50

oak wood 0.84 beach sea 0.47

daisy violet 0.76 cereal wheat 0.38

daffodil rose 0.74 bread flour 0.33

Table 1: Examples of pairs in the evaluation
datasets where olfactory information is relevant,
together with the gold-standard similarity score.

2 Tasks

Following previous work in grounded semantics,
we evaluate performance on two tasks: conceptual
similarity and cross-modal zero-shot learning.

2.1 Conceptual similarity

We evaluate the performance of olfactory multi-
modal representations on two well-known similar-
ity datasets: SimLex-999 (Hill et al., 2014) and the
MEN test collection (Bruni et al., 2014). These
datasets consist of concept pairs together with a
human-annotated similarity score. Model perfor-
mance is evaluated using the Spearman ρs corre-
lation between the ranking produced by the cosine
of the model-derived vectors and that produced by
the gold-standard similarity scores.

Evidence suggests that the inclusion of visual
representations only improves performance for
certain concepts, and that in some cases the in-
troduction of visual information is detrimental to
performance on similarity and relatedness tasks
(Kiela et al., 2014). The same is likely to be true
for other perceptual modalities: in the case of a
comparison such as lily-rose, the olfactory modal-
ity certainly is meaningful, while this is probably
not the case for skateboard-swimsuit. Some exam-
ples of relevant pairs can be found in Table 1.

Hence, we had two annotators rate the two
datasets according to whether smell is relevant to
the pairwise comparison. The annotation criterion
was as follows: if both concepts in a pairwise com-
parison have a distinctive associated smell, then
the comparison is relevant to the olfactory modal-
ity. Only if both annotators agree is the com-
parison deemed olfactory-relevant. This annota-
tion leads to a total of four evaluation sets: the

MEN test collection MEN (3000 pairs) and its
olfactory-relevant subset OMEN (311 pairs); and
the SimLex-999 dataset SLex (999 pairs) and its
olfactory-relevant subset OSLex (65 pairs). The
inter-annotator agreement on the olfactory rele-
vance judgments was high (κ = 0.94 for the MEN
test collection and κ = 0.96 for SimLex-999).1

2.2 Cross-modal zero-shot learning

Cross-modal semantics, instead of being con-
cerned with improving semantic representations
through grounding, focuses on the problem of ref-
erence. Using, for instance, mappings between
visual and textual space, the objective is to learn
which words refer to which objects (Lazaridou et
al., 2014). This problem is very much related to
the object recognition task in computer vision, but
instead of using just visual data and labels, these
cross-modal models also utilize textual informa-
tion (Socher et al., 2014; Frome et al., 2013). This
approach allows for zero-shot learning, where the
model can predict how an object relates to other
concepts just from seeing an image of the object,
but without ever having seen the object previously
(Lazaridou et al., 2014).

We evaluate cross-modal zero-shot learning
performance through the average percentage cor-
rect at N (P@N), which measures how many of the
test instances were ranked within the top N high-
est ranked nearest neighbors. A chance baseline is
obtained by randomly ranking a concept’s nearest
neighbors. We use partial least squares regression
(PLSR) to induce cross-modal mappings from the
linguistic to the olfactory space and vice versa.2

Due to the nature of the olfactory data source
(see Section 3), it is not possible to build olfac-
tory representations for all concepts in the test sets.
However, cross-modal mappings yield an addi-
tional benefit: since linguistic representations have
full coverage over the datasets, we can project
from linguistic space to perceptual space to also
obtain full coverage for the perceptual modalities.
This technique has been used to increase coverage
for feature norms (Fagarasan et al., 2015). Con-
sequently, we are in a position to compare percep-
tual spaces directly to each other, and to linguistic

1To facilitate further work in multi-modal semantics be-
yond vision, our code and data have been made publicly
available at http://www.cl.cam.ac.uk/˜dk427/aroma.html.

2To avoid introducing another parameter, we set the num-
ber of latent variables in the cross-modal PLSR map to a third
of the number of dimensions of the perceptual representation.
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Melon 3 3

Pineapple 3 3

Licorice 3

Anise 3 3
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Beer 3 3

Table 2: A BoCC model.

space, over the entire dataset, as well as on the rel-
evant olfactory subsets. When projecting into such
a space and reporting results, the model is prefixed
with an arrow (→) in the corresponding table.

3 Olfactory Perception

The Sigma-Aldrich Fine Chemicals flavors and
fragrances catalog3 (henceforth SAFC) is one of
the largest publicly accessible databases of se-
mantic odor profiles that is used extensively in
fragrance research (Zarzo and Stanton, 2006).
It contains organoleptic labels and the chemical
compounds—or more accurately the perfume raw
materials (PRMs)—that produce them. By auto-
matically scraping the catalog we obtained a total
of 137 organoleptic smell labels from SAFC, with
a total of 11,152 associated PRMs. We also exper-
imented with Flavornet4 and the LRI and odour
database5, but found that the data from these were
more noisy and generally of lower quality.

For each of the smell labels in SAFC we count
the co-occurrences of associated chemical com-
pounds, yielding a bag of chemical compounds
(BoCC) model. Table 2 shows an example sub-
space of this model. Although the SAFC cata-
log is considered sufficiently comprehensive for
fragrance research (Zarzo and Stanton, 2006), the
fact that PRMs usually occur only once per smell
label means that the representations are rather
sparse. Hence, we apply dimensionality reduc-
tion to the original representation to get denser

3http://www.sigmaaldrich.com/industries/flavors-and-
fragrances.html

4http://www.flavornet.org
5http://www.odour.org.uk

Figure 1: Performance of olfactory representa-
tions when using SVD to reduce the number of
dimensions.

Dataset Linguistic BoCC-Raw BoCC-SVD

OMEN (35) 0.40 0.42 0.53

Table 3: Comparison of olfactory representations
on the covered OMEN dataset.

vectors. We call the model without any dimen-
sionality reduction BOCC-RAW and use singu-
lar value decomposition (SVD) to create an ad-
ditional BOCC-SVD model with reduced dimen-
sionality. Positive pointwise mutual information
(PPMI) weighting is applied to the raw space be-
fore performing dimensionality reduction.

The number of dimensions in human olfactory
space is a hotly debated topic in the olfactory
chemical sciences (Buck and Axel, 1991; Zarzo
and Stanton, 2006). Recent studies involving
multi-dimensional scaling on the SAFC catalog
revealed approximately 32 dimensions in olfactory
perception space (Mamlouk et al., 2003; Mamlouk
and Martinetz, 2004). We examine this finding
by evaluating the Spearman ρs correlation on the
pairs of OMEN that occur in the SAFC database
(35 pairs). The coverage on SimLex was not suffi-
cient to also try that dataset (only 5 pairs). Figure
1 shows the results. It turns out that the best olfac-
tory representations are obtained with 30 dimen-
sions. In other words, our findings appear to cor-
roborate recent evidence suggesting that olfactory
space (at least when using SAFC as a data source)
is best modeled using around 30 dimensions.

3.1 Linguistic representations

For the linguistic representations we use the con-
tinuous vector representations from the log-linear
skip-gram model of Mikolov et al. (2013), specif-
ically the 300-dimensional vector representations
trained on part of the Google News dataset (about
100 billion words) that have been released on the
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MEN OMEN SLex OSLex

Linguistic 0.78 0.38 0.44 0.30

→BoCC-Raw 0.38 0.36 0.19 0.23

→BoCC-SVD 0.46 0.51 0.23 0.48

Multi-modal 0.69 0.53 0.40 0.49

Table 4: Comparison of linguistic, olfactory and
multi-modal representations.

Mapping P@1 P@5 P@20 P@50

Chance 0.0 3.76 13.53 36.09

Olfactory⇒ Ling. 1.51 8.33 24.24 47.73

Ling. ⇒ Olfactory 4.55 15.15 43.18 67.42

Table 5: Zero-shot learning performance for
BoCC-SVD.

Word2vec website.6

3.2 Conceptual Similarity

Results on the 35 covered pairs of OMEN for the
two BoCC models are reported in Table 3. Ol-
factory representations outperform linguistic rep-
resentations on this subset. In fact, linguistic rep-
resentations perform poorly compared to their per-
formance on the whole of MEN. The SVD model
performs best, improving on the linguistic and raw
models with a 33% and 26% relative increase in
performance, respectively.

We use a cross-modal PLSR map, trained on
all available organoleptic labels in SAFC, to ex-
tend coverage and allow for a direct compari-
son between linguistic representations and cross-
modally projected olfactory representations on the
entire datasets and relevant subsets. The results
are shown in Table 4. As might be expected, lin-
guistic performs better than olfactory on the full
datasets. On the olfactory-relevant subsets, how-
ever, the projected BOCC-SVD model outper-
forms linguistic for both datasets. Performance in-
creases even further when the two representations
are combined into a multi-modal representation by
concatenating the L2-normalized linguistic and ol-
factory (→BOCC-SVD) vectors.

3.3 Zero-shot learning

We learn a cross-modal mapping between the two
spaces and evaluate zero-shot learning. We use all
137 labels in the SAFC database that have corre-
sponding linguistic vectors for the training data.

6https://code.google.com/p/word2vec/

apple bacon brandy cashew

pear smoky rum hazelnut

banana roasted whiskey peanut

melon coffee wine-like almond

apricot mesquite grape hawthorne

pineapple mossy fleshy jam

chocolate lemon cheese caramel

cocoa citrus grassy nutty

sweet geranium butter roasted

coffee grapefruit oily maple

licorice tart creamy butterscotch

roasted floral coconut coffee

Table 6: Example nearest neighbors for BoCC-
SVD representations.

For each term, we train the map on all other la-
bels and measure whether the correct instance is
ranked within the top N neighbors. We use the
BOCC-SVD model for the olfactory space, since
it performed best on the conceptual similarity task.
Table 5 shows the results. It appears that mapping
linguistic to olfactory is easier than mapping olfac-
tory to linguistic, which may be explained by the
different number of dimensions in the two spaces.
One could say that it is easier to find the chemical
composition of a “smelly” word from its linguistic
representation, than it is to linguistically represent
or describe a chemical composition.

3.4 Qualitative analysis

We also examined the BoCC representations qual-
itatively. As Table 6 shows, the nearest neigh-
bors are remarkably semantically coherent. The
nearest neighbors for bacon and cheese, for ex-
ample, accurately sum up how one might describe
those smells. The model also groups together nuts
and fruits, and expresses well what chocolate and
caramel smell (or taste) like.

4 Conclusions

We have studied grounding semantic representa-
tions in raw olfactory perceptual information. We
used a bag of chemical compounds model to ob-
tain olfactory representations and evaluated on
conceptual similarity and cross-modal zero-shot
learning, with good results. It is possible that the
olfactory modality is well-suited to other forms of
evaluation, but in this initial work we chose to fol-
low standard practice in multi-modal semantics to
allow for a direct comparison.
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This work opens up interesting possibilities in
analyzing smell and even taste. It could be applied
in a variety of settings beyond semantic similarity,
from chemical information retrieval to metaphor
interpretation to cognitive modelling. A specula-
tive blue-sky application based on this, and other
multi-modal models, would be an NLG applica-
tion describing a wine based on its chemical com-
position, and perhaps other information such as its
color and country of origin.
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Abstract

We present a novel scheme for word-
based Japanese typed dependency parser
which integrates syntactic structure analy-
sis and grammatical function analysis such
as predicate-argument structure analysis.
Compared to bunsetsu-based dependency
parsing, which is predominantly used in
Japanese NLP, it provides a natural way
of extracting syntactic constituents, which
is useful for downstream applications such
as statistical machine translation. It also
makes it possible to jointly decide de-
pendency and predicate-argument struc-
ture, which is usually implemented as two
separate steps. We convert an existing
treebank to the new dependency scheme
and report parsing results as a baseline
for future research. We achieved a bet-
ter accuracy for assigning function labels
than a predicate-argument structure ana-
lyzer by using grammatical functions as
dependency label.

1 Introduction

The goal of our research is to design a Japanese
typed dependency parsing that has sufficient lin-
guistically derived structural and relational infor-
mation for NLP applications such as statistical
machine translation. We focus on the Japanese-
specific aspects of designing a kind of Stanford
typed dependencies (de Marneffe et al., 2008).

Syntactic structures are usually represented as
dependencies between chunks calledbunsetsus. A
bunsetsu is a Japanese grammatical and phono-
logical unit that consists of one or more con-
tent words such as a noun, verb, or adverb fol-
lowed by a sequence of zero or more function
words such as auxiliary verbs, postpositional par-
ticles, or sentence-final particles. Most publicly

available Japanese parsers, including CaboCha1

(Kudo et al., 2002) and KNP2 (Kawahara et al.,
2006), return bunsetsu-based dependency as syn-
tactic structure. Such parsers are generally highly
accurate and have been widely used in various
NLP applications.

However, bunsetsu-based representations also
have two serious shortcomings: one is the discrep-
ancy between syntactic and semantic units, and the
other is insufficient syntactic information (Butler
et al., 2012; Tanaka et al., 2013).

Bunsetsu chunks do not always correspond to
constituents (e.g. NP, VP), which complicates the
task of extracting semantic units from bunsetsu-
based representations. This kind of problem of-
ten arises in handling such nesting structures as
coordinating constructions. For example, there
are three dependencies in a sentence (1): a co-
ordinating dependencyb2 – b3 and ordinary de-
pendenciesb1 – b3 and b3 – b4. In extracting
predicate-argument structures, it is not possible to
directly extract a coordinated noun phraseワイ
ンと酒 “wine and sake” as a direct object of the
verb飲んだ “drank”. In other words, we need
an implicit interpretation rule in order to extract
NP in coordinating construction: head bunsetsu
b3 should be divided into a content word酒 and
a function wordの, then the content word should
be merged with the dependent bunsetsub2.

(1) b1飲んだ
nonda
drank

| b2ワイン
wain
wine

と
to
CONJ

| b3酒
sake
sake

の
no
GEN

|b4リスト
risuto
list

‘A list of wine and sake that (someone) drank’

Therefore, predicate-argument structure analysis
is usually implemented as a post-processor of
bunsetsu-based syntactic parser, not just for as-
signing grammatical functions, but for identifying
constituents, such as an analyzer SynCha3 (Iida

1
http://taku910.github.io/cabocha/ .

2
http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?KNP .

3
http://www.cl.cs.titech.ac.jp/ ∼ryu-i/syncha/ .
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魚 /フライ を 食べ た か /も /しれ /ない 三毛 /猫
fish / fry -ACC eat -PAST may calico / cat

“the calico cat that may have eaten fried fish”
SUW NN / NN PCS VB AUX P / P / VB / AUX NN / NN
LUW NN PCS VB AUX AUX NN

Figure 1: A tokenized and chunked sentence.

et al., 2011), which uses the parsing results from
CaboCha. We assume that using a word as a pars-
ing unit instead of a bunsetsu chunk helps to main-
tain consistency between syntactic structure anal-
ysis and predicate-argument structure analysis.

Another problem is that linguistically different
constructions share the same representation. The
difference of a gapped relative clause and a gapless
relative clause is a typical example. In sentences
(2) and (3), we cannot discriminate the two rela-
tions between bunsetsusb2 andb3 using unlabeled
dependency: the former is a subject-predicate con-
struction of the noun猫 “cat” and the verb食べ
る “eat” (subject gap relative clause) while the lat-
ter is not a predicate-argument construction (gap-
less relative clause).

(2) b1 魚
sakana
fish

を
o
ACC

|b2 食べ
tabe
eat

た
ta
PAST

| b3 猫
neko
cat

‘the cat that ate fish’
(3) b1 魚

sakana
fish

を
o
ACC

| b2 食べ
tabe
eat

た
ta
PAST

| b3 話
hanashi
story

‘the story about having eaten fish’

We aim to build a Japanese typed depen-
dency scheme that can properly deal with syn-
tactic constituency and grammatical functions in
the same representation without implicit interpre-
tation rules. The design of Japanese typed depen-
dencies is described in Section 3, and we present
our evaluation of the dependency parsing results
for a parser trained with a dependency corpus in
Section 4.

2 Related work

Mori et al. (2014) built word-based dependency
corpora in Japanese. The reported parsing
achieved an unlabeled attachment score of over
90%; however, there was no information on
the syntactic relations between the words in this
corpus. Uchimoto et al. (2008) also proposed
the criteria and definitions of word-level depen-
dency structure mainly for annotation of a sponta-
neous speech corpus, the Corpus of Spontaneous
Japanese (CSJ) (Maekawa et al., 2000), and they
do not make a distinction between detailed syntac-
tic functions either.

....NP.....

..NN...

..
三毛猫

calico cat.

..

..IP-REL sbj.....

..AUX...

..
かもしれない

may.

..

..VP.....

..AUX...

..
た

-PAST.

..

..VP.....

..VB...

..
食べ
eat.

..

..PP-OBJ.....

..PCS...

..
を

-ACC.

..

..NN...

..
魚フライ
fried fish

.

dobj

.

pobj

.

aux

.

aux

.

rcmod nsubj

Head Final type 1 (HF1)

....NP.....

..NN...

..
三毛猫

calico cat.

..

..IP-REL sbj.....

..VP.....

..AUX...

..
かもしれない

may.

..

..VP.....

..PCS...

..
た

-PAST.

..

..VB...

..
食べ
eat.

..

..PP-OBJ.....

..PCS...

..
を

-ACC.

..

..NN...

..
魚フライ
fried fish

.

dobj

.

pobj

.

aux

.

aux

.

rcmod nsubj

Head Final type 2 (HF2)

....NP.....

..NN...

..
三毛猫

calico cat.

..

..IP-REL sbj.....

..VP.....

..AUX...

..
かもしれない

may.

..

..VP.....

..AUX...

..
た

-PAST.

..

..VB...

..
食べ
eat.

..

..PP-OBJ.....

..PCS...

..
を

-ACC.

..

..NN...

..
魚フライ
fried fish

.

dobj

.

pobj

.

aux

.

aux

.

rcmod nsubj

Predicate Content words Head type (PCH)

‘ the calico cat that may have eaten fried fish. ’

Figure 2: Example structures in three dependency
schemes. Boldface words are content words that
may be predicates or arguments. Thick lines de-
note dependencies with types related to predicate-
argument structures.

238



Category Dep. type
case (argument) nsubj subject

dobj direct object
iobj indirect object

case (adjunct) tmod temporal
lmod locative

gapped relative clause rcmodnsubjsubject gap relative clause
rcmoddobj direct object gap relative clause
rcmod iobj indirect object gap relative clause

adnominal clause ncmod gapless relative clause
adverbial clause advcl
coordinating construction conj
apposition appos
function word relation aux relation between an auxiliary

verb and other word
pobj relation between a particle

and other word

Table 1: Dependency types (excerpt).

We proposed a typed dependency scheme based
on the well-known and widely used Stanford typed
dependencies (SD), which originated in English
and has since been extended to many languages,
but not to Japanese. The Universal dependencies
(UD) (McDonald et al., 2013; de Marneffe et al.,
2014) has been developed based on SD in order to
design the cross-linguistically consistent treebank
annotation4. The UD for Japanese has also been
discussed, but no treebanks have been provided
yet. We focus on the feasibility of word-based
Japanese typed dependency parsing rather than on
cross-linguistic consistency. We plan to examine
the conversion between UD and our scheme in the
future.

3 Typed dependencies in Japanese

To design a scheme of Japanese typed depen-
dencies, there are three essential points: what
should be used as parsing units, which dependency
scheme is appropriate for Japanese sentence struc-
ture, and what should be defined as dependency
types.

3.1 Parsing unit

Defining a word unit is indispensable for word-
based dependency parsing. However, this is not
a trivial question, especially in Japanese, where
words are not segmented by white spaces in its or-
thography. We adopted two types of word units
defined by NINJL5 for building the Balanced
Corpus of Contemporary Written Japanese (BC-
CWJ) (Maekawa et al., 2014; Den et al., 2008):
Short unit word (SUW) is the shortest token con-
veying morphological information, and the long
unit word (LUW) is the basic unit for parsing, con-
sisting of one or more SUWs. Figure 1 shows ex-

4
http://universaldependencies.github.io/docs/.

5National Institute for Japanese Language and Linguistics.

ample results from the preprocessing of parsing.
In the figure, “/” denotes a border of SUWs in an
LUW, and “∥” denotes a bunsetsu boundary.

3.2 Dependency scheme

Basically, Japanese dependency structure is re-
garded as an aggregation of pairs of a left-
side dependent word and a right-side head word,
i.e. right-headed dependency, since Japanese is a
head-final language. However, how to analyze a
predicate constituent is a matter of debate. We de-
fine two types of schemes depending on the struc-
ture related to the predicate constituent: first con-
joining predicate and arguments, and first conjoin-
ing predicate and function words such as auxiliary
verbs.

As shown in sentence (4), a predicate bunsetsu
consists of a main verb followed by a sequence
of auxiliary verbs in Japanese. We consider two
ways of constructing a verb phrase (VP). One is
first conjoining the main verb and its arguments to
construct VP as in sentence (4a), and the other is
first conjoining the main verb and auxiliary verbs
as in sentence (4b). These two types correspond to
sentences (5a) and (5b), respectively, in English.

(4) 猫
cat
が
NOM

魚
fish
を
ACC

食べ
eat

た
PAST

かもしれない
may

‘the cat may have eaten the fish’
a. [ [ [VP 猫が

S
魚を
O

食べ ]
V

た ]
aux
かもしれない ]
aux

b. [ 猫が [
S

魚を [VP
O

食べ
V

た
aux
かもしれない ]]]
aux

(5) a. [ The
S

cat[ may
aux

have
aux

[VP eaten
V

the fish] ] ] .
O

b. [ The
S

cat[ [VP may
aux

have
aux

eaten]
V

the fish] ] .
O

The structures in sentences (4a) and (5a) are
similar to a structure based on generative gram-
mar. On the other hand, the structures in sentences
(4b) and (5b) are similar to the bunsetsu structure.

We defined two dependency schemesHead Fi-
nal type 1 (HF1) andHead Final type 2(HF2) as
shown in Figure 2, which correspond to structures
of sentences (4a) and (4b), respectively. Addi-
tionally, we introducedPredicate Content word
Head type (PCH), where a content word (e.g.
verb) is treated as a head in a predicate phrase so as
to link the predicate to its argument more directly.

3.3 Dependency type

We defined 35 dependency types for Japanese
based on SD, where 4-50 types are assigned for
syntactic relations in English and other languages.
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LUW (Long Unit Word) source
l FORM form LUW chunker
l LEMMA lemma LUW chunker
l UPOS POS LUW chunker
l INFTYPE inflection type LUW chunker
l INFFORM inflection form LUW chunker
l CPOS non-terminal symbol ∗

l SEMCLASS semantic class thesaurus∗∗

l PNCLASS NE class thesaurus∗∗

SUW (Short Unit Word)
s FORMR form (rightmost) tokenizer
s FORML form (leftmost) tokenizer
s LEMMAR lemma (rightmost) tokenizer
s LEMMAL lemma (leftmost) tokenizer
s UPOSR POS tokenizer
s CPOSR non-terminal symbol ∗

s SEMCLASSR semantic class thesaurus∗∗

s PNCLASSR NE class thesaurus∗∗

Table 2: Word attributes used for parser features.
∗ 26 non-terminal symbols (e.g.NN, VB) are employed as

coarse POS tags (CPOS) from an original treebank.∗∗ Se-

mantic classesSEMCLASSandPNCLASSare used for gen-

eral nouns and proper nouns, respectively from a Japanese

thesaurus (Ikehara et al., 1997) to generalize the nouns.

Table 1 shows the major dependency types. To
discriminate between a gapped relative clause and
a gapless relative clause as described in Section
1, we assigned two dependency typesrcmodand
ncmodrespectively. Moreover, we introduced gap
information by subdividingrcmodinto three types
to extract predicate-argument relations, while the
original SD make no distinction between them.

The labels of case and gapped relative clause
enable us to extract predicate-argument struc-
tures by simply tracing dependency paths.
In the case ofHF1 in Figure 2, we find two
paths between content words:魚フライ “fried
fish”(NN)←pobj←dobj← 食べ “eat”(VB) and
食べ (VB)←aux←aux←rcmod nsubj← 三毛

猫 “calico cat”(NN). By marking the dependency
typesdobj and rcmodnsubj, we can extract the
arguments for predicate食べる, i.e.,魚フライ as
a direct object and三毛猫 as a subject.

4 Evaluation

We demonstrated the performance of the typed de-
pendency parsing based on our scheme by using
the dependency corpus automatically converted
from a constituent treebank and an off-the-self
parser.

4.1 Resources

We used a dependency corpus that was converted
from the Japanese constituent treebank (Tanaka et
al., 2013) built by re-annotating the Kyoto Uni-
versity Text Corpus (Kurohashi et al., 2003) with
phrase structure and function labels. The Kyoto

corpus consists of approximately 40,000 sentences
from newspaper articles, and from these 17,953
sentences have been re-annotated. The treebank is
designed to have complete binary trees, which can
be easily converted to dependency trees by adapt-
ing head rules and dependency-type rules for each
partial tree. We divided this corpus into 15,953
sentences (339,573 LUWs) for the training set and
2,000 sentences (41,154 LUWs) for the test set.

4.2 Parser and features

In the analysis process, sentences are first tok-
enized into SUW and tagged with SUW POS by
the morphological analyzer MeCab (Kudo et al.,
2004). The LUW analyzer Comainu (Kozawa et
al., 2014) chunks the SUW sequences into LUW
sequences. We used the MaltParser (Nivre et al.,
2007), which marked over 81 % in labeled attach-
ment score (LAS), for English SD. Stack algo-
rithm (projective) and LIBLINEAR were chosen
as the parsing algorithm and the learner, respec-
tively. We built and tested the three types of pars-
ing models with the three dependency schemes.

Features of the parsing model are made by
combining word attributes as shown in Table
2. We employed SUW-based attributes as well
as LUW-based attributes because LUW contains
many multiword expressions such as compound
nouns, and features combining LUW-based at-
tributes tend to be sparse. The SUW-based at-
tributes are extracted by using the leftmost or
rightmost SUW of the target LUW. For instance,
for LUW 魚フライ in Figure 1, the SUW-based
attributes ares LEMMAL (the leftmost SUW’s
lemma魚 “fish”) and s LEMMAR (the rightmost
SUW’s lemmaフライ “fry”).

4.3 Results

The parsing results for the three dependency
schemes are shown in Table 3 (a). The depen-
dency schemesHF1 andHF2 are comparable, but
PCH is slightly lower than them, which is prob-
ably becausePCH is a more complicated struc-
ture, having left-to-right dependencies in the pred-
icate phrase, than the head-final typesHF1 and
HF2. The performances of the LUW-based pars-
ings are considered to be comparable to the results
of a bunsetsu-dependency parser CaboCha on the
same data set, i.e. a UAS of 92.7%, although we
cannot directly compare them due to the difference
in parsing units. Table 3 (b) shows the results for
each dependency type. The argument types (nsubj,
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Scheme UAS LAS
HF1 94.09 89.49
HF2 94.21 89.66
PCH 93.53 89.22

(a) Overall results

F1 score
dep. type HF1 HF2 PCH
nsubj 80.47 82.12 81.08
dobj 92.06 90.28 92.29
iobj 82.05 80.22 81.89
tmod 55.54 56.01 54.09
lmod 52.10 53.56 48.48
rcmodnsubj 60.38 61.10 62.95
rcmoddobj 28.07 33.33 39.46
rcmod iobj 32.65 33.90 36.36
ncmod 82.81 83.07 82.94
advcl 65.28 66.70 60.69
conj 70.78 70.68 69.53
appos 51.11 57.45 46.32
(b) Results for each dependency type

Table 3: Parsing results.

Scheme Precision Recall F1 score
HF1 82.1 71.4 76.4
HF2 81.9 67.0 73.7
PCH 82.5 72.4 77.1
SynCha 76.6 65.3 70.5

Table 4: Predicate-argument structure analysis.

dobj and iobj) resulted in relatively high scores
in comparison to the temporal (tmod) and locative
(lmod) cases. These types are typically labeled as
belonging to the postpositional phrase consisting
of a noun phrase and particles, and case particles
such asが “ga”, を “o” andに “ni” strongly sug-
gest an argument by their combination with verbs,
while particlesに andで “de” are widely used out-
side the temporal and locative cases.

Predicate-argument structure We ex-
tracted predicate-argument structure informa-
tion as triplets, which are pairs of predicates
and arguments connected by a relation, i.e.
(pred , rel , arg), from the dependency parsing re-
sults by tracing the paths with the argument and
gapped relative clause types.pred in a triplet is
a verb or an adjective,arg is a head noun of an
argument, andrel is nsubj, dobj or iobj.

The gold standard data is built by converting
predicate-argument structures in NAIST Text Cor-
pus (Iida et al., 2007) into the above triples. Ba-
sically, the cases “ga”, “o” and “ni” in the corpus
correspond to “nsubj”, “dobj“ and “iobj”, respec-
tively, however, we should apply the alternative
conversion to passive or causative voice, since the
annotation is based on active voice. The conver-
sion for case alternation was manually done for

each triple. We filtered out the triples including
zero pronouns or arguments without the direct de-
pendencies on their predicates from the converted
triples, finally 6,435 triplets remained.

Table 4 shows the results of comparing the ex-
tracted triples with the gold data.PCH marks the
highest score here in spite of getting the lowest
score in the parsing results. It is assumed that the
characteristics ofPCH, where content words tend
to be directly linked, are responsible. The table
also contains the results of the predicate-argument
structure analyzer SynCha. Note that we focus on
only the relations between a predicate and its de-
pendents, while SynCha is designed to deal with
zero anaphora resolution in addition to predicate-
argument structure analysis over syntactic depen-
dencies. Since SynCha uses the syntactic pars-
ing results of CaboCha in a cascaded process, the
parsing error may cause conflict between syntac-
tic structure and predicate-argument structure. A
typical example is that case where a gapped rel-
ative clause modifies a noun phrase Aの B “B
of A”, e.g., [VP 庭 から 逃げ た] [NP 猫 の 足

跡] “footprints of the cat that escaped from a
garden.” If the noun A is an argument of a main
predicate in a relative clause, the predicate is a de-
pendent of the noun A; however, this is not actu-
ally reliable because two analyses are separately
processed. There are 75 constructions of this type
in the test set; the LUW-based dependency pars-
ing captured 42 correct predicate-argument rela-
tions (and dependencies), while the cascaded pars-
ing was limited to obtaining 6 relations.

5 Conclusion

We proposed a scheme of Japanese typed-
dependency parsing for dealing with constituents
and capturing the grammatical function as a de-
pendency type that bypasses the traditional lim-
itations of bunsetsu-based dependency parsing.
The evaluations demonstrated that a word-based
dependency parser achieves high accuracies that
are comparable to those of a bunsetsu-based de-
pendency parser, and moreover, provides detailed
syntactic information such as predicate-argument
structures. Recently, discussion has begun toward
Universal Dependencies, including Japanese. The
work presented here can be viewed as a feasibility
study of UD for Japanese. We are planning to port
our corpus and compare our scheme with UD to
contribute to the improvement of UD for Japanese.
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Abstract

We present KLcpos3 , a language similar-
ity measure based on Kullback-Leibler di-
vergence of coarse part-of-speech tag tri-
gram distributions in tagged corpora. It
has been designed for multilingual delexi-
calized parsing, both for source treebank
selection in single-source parser trans-
fer, and for source treebank weighting in
multi-source transfer. In the selection task,
KLcpos3 identifies the best source treebank
in 8 out of 18 cases. In the weighting task,
it brings +4.5% UAS absolute, compared
to unweighted parse tree combination.

1 Introduction

The approach of delexicalized dependency parser
transfer is to train a parser on a treebank for a
source language (src), using only non-lexical fea-
tures, most notably part-of-speech (POS) tags, and
to apply that parser to POS-tagged sentences of a
target language (tgt) to obtain dependency parse
trees. Delexicalized transfer yields worse results
than a supervised lexicalized parser trained on a
target language treebank. However, for languages
with no treebanks available, it may be useful to
obtain at least a lower-quality parse tree for tasks
such as information retrieval.

Usually, multiple source treebanks are avail-
able, and it is non-trivial to select the best one for a
given target language. As a solution, we present a
language similarity measure based on KL diver-
gence (Kullback and Leibler, 1951) of distribu-
tions of coarse POS tag trigrams in POS-tagged
corpora, which we call KLcpos3 . The measure has
been designed and tuned specifically for multilin-
gual delexicalized parser transfer, and it often suc-
ceeds in selecting the best source treebank in a
single-source setting, as well as in appropriately
weighting the source treebanks by similarity to the

target language in a multi-source parse tree com-
bination approach.

2 Related Work

Delexicalized parser transfer was conceived by
Zeman and Resnik (2008), who also introduced
two important preprocessing steps – mapping
treebank-specific POS tagsets to a common set
using Interset (Zeman, 2008), and harmonizing
treebank annotation styles into a common style,
which later developed into the HamleDT harmo-
nized treebank collection (Zeman et al., 2012).

McDonald et al. (2011) applied delexicalized
transfer in a setting with multiple source treebanks
available, finding that the problem of selecting the
best source treebank without access to a target lan-
guage treebank for evaluation is non-trivial. They
combined all source treebanks by concatenating
them but noted that this yields worse results than
using only the best source treebank.

An alternative is the (monolingual) parse tree
combination method of Sagae and Lavie (2006),
who apply several independent parsers to the in-
put sentence and combine the resulting parse trees
using a maximum spanning tree algorithm. Sur-
deanu and Manning (2010) enrich tree combi-
nation with weighting, assigning each parser a
weight based on its Unlabelled Attachment Score
(UAS). In our work, we introduce an extension of
this method to a crosslingual setting by combining
parsers for different languages and using source-
target language similarity to weight them.

Several authors (Naseem et al., 2012; Søgaard
and Wulff, 2012; Täckström et al., 2013b) em-
ployed WALS (Dryer and Haspelmath, 2013)
to estimate source-target language similarity for
delexicalized transfer, focusing on genealogy dis-
tance and word-order features. Søgaard and Wulff
(2012) also introduced weighting into the tree-
bank concatenation approach, using a POS n-
gram model trained on a target-language corpus
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to weight source sentences in a weighted percep-
tron learning scenario (Cavallanti et al., 2010). KL
divergence (Kullback and Leibler, 1951) of POS
tag distributions, as well as several other measures,
was used by Plank and Van Noord (2011) to esti-
mate monolingual domain similarity.

As is quite common in parsing papers, includ-
ing those dealing with semi-supervised and unsu-
pervised parsing, we use gold POS tags in all our
experiments. This enables us to evaluate the ef-
fectiveness of our parsing method alone, not influ-
enced by errors stemming from the POS tagging.
Based on the published results, it seems to be con-
siderably easier to induce POS tags than syntactic
structure for under-resourced languages, as there
are several high-performance weakly-supervised
POS taggers. Das and Petrov (2011) report an av-
erage accuracy of 83% using word-aligned texts,
compared to 97% reached by a supervised tag-
ger. Täckström et al. (2013a) further improve this
to 89% by leveraging Wiktionary. For some lan-
guages, there are even less resources available;
Agić et al. (2015b) were able to reach accuracies
around 70% by using partial or full Bible transla-
tion. Our methods could thus be applied even in
a more realistic scenario, where gold POS tags are
not available for the target text, by using a weakly-
supervised POS tagger. We intend to evaluate the
performance of our approach in such a setting in
future.

3 Delexicalized Parser Transfer

Throughout this work, we use MSTperl (Rosa,
2015b), an implementation of the unlabelled
single-best MSTParser of McDonald et al.
(2005b), with first-order features and non-
projective parsing, trained using 3 iterations of
MIRA (Crammer and Singer, 2003).1

Our delexicalized feature set is based on the set
of McDonald et al. (2005a) with lexical features
removed. It consists of combinations of signed
edge length (distance of head and parent, bucketed
for values above 4 and for values above 10) with
POS tag of the head, dependent, their neighbours,
and all nodes between them.2 We use the Univer-
sal POS Tagset (UPOS) of Petrov et al. (2012).

1Note that while our approach does not depend in princi-
ple on the actual parser used, our results and conclusions may
not be valid for other parsers.

2The feature set, as well as scripts and configuration files
for the presented experiments, are available in (Rosa, 2015a).

3.1 Single-source Delexicalized Transfer

In the single-source parser transfer, the delexical-
ized parser is trained on a single source treebank,
and applied to the target corpus. The problem thus
reduces to selecting a source treebank that will
lead to a high performance on the target language.

3.2 Multi-source Delexicalized Transfer

In our work, we extend the monolingual parse tree
combination method to a multi-source crosslin-
gual delexicalized parser transfer setting:

1. Train a delexicalized parser on each source
treebank.

2. Apply each of the parsers to the target sen-
tence, obtaining a set of parse trees.

3. Construct a weighted directed graph as a
complete graph over all tokens of the target
sentence, where each edge is assigned a score
equal to the number of parse trees in which it
appears (each parse tree contributes by either
0 or 1 to the edge score). In the weighted vari-
ant of the method, the contribution of each
parse tree is multiplied by its weight.

4. Find the final dependency parse tree as the
maximum spanning tree over the graph, us-
ing the algorithm of Chu and Liu (1965) and
Edmonds (1967).

4 KLcpos3 Language Similarity

We introduce KLcpos3 , a language similarity mea-
sure based on distributions of coarse POS tags in
source and target POS-tagged corpora. This is mo-
tivated by the fact that POS tags constitute a key
feature for delexicalized parsing.

The distributions are estimated as frequencies of
UPOS trigrams3 in the treebank training sections:

f(cpos i−1, cpos i, cpos i+1) =

=
count(cpos i−1, cpos i, cpos i+1)∑
∀cposa,b,c

count(cposa, cposb, cposc)
; (1)

we use a special value for cpos i−1 or cpos i+1 if
cpos i appears at sentence beginning or end.

We then apply the Kullback-Leibler divergence

3Bigrams and tetragrams performed comparably on the
weighting task, but worse on the selection task. Using more
fine-grained POS tags led to worse results as fine-grained fea-
tures tend to be less shared across languages.
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DKL(tgt ||src) to compute language similarity:4

KLcpos3(tgt , src) =

=
∑

∀cpos3∈tgt
ftgt(cpos3) · log

ftgt(cpos3)
fsrc(cpos3)

, (2)

where cpos3 is a coarse POS tag trigram. For
the KL divergence to be well-defined, we set the
source count of each unseen trigram to 1.

4.1 KLcpos3 for Source Selection

For the single-source parser transfer, we compute
KLcpos3 distance of the target corpus to each of
the source treebanks and choose the closest source
treebank to use for the transfer.

4.2 KL−4
cpos3 for Source Weighting

To convert KLcpos3 from a negative measure of
language similarity to a positive source parser
weight for the multi-source tree combination
method, we take the fourth power of its inverted
value.5 The parse tree produced by each source
parser is then weighted by KL−4

cpos3(tgt , src).

5 Dataset

We carry out our experiments using HamleDT 2.0
of Rosa et al. (2014), a collection of 30 treebanks
converted into Universal Stanford Dependencies
(de Marneffe et al., 2014), with POS tags con-
verted into UPOS; we use gold-standard POS tags
in all experiments. We use the treebank training
sections for parser training and language similarity
estimation, and the test sections for evaluation.6

5.1 Tuning

To avoid overfitting the exact definition of KLcpos3

and KL−4
cpos3 to the 30 treebanks, we used only 12

4The KL divergence is non-symmetric; DKL(P ||Q) ex-
presses the amount of information lost when a distribution Q
is used to approximate the true distribution P . Thus, in our
setting, we use DKL(tgt ||src), as we try to minimize the loss
of using a src parser as an approximation of a tgt parser.

5A high value of the exponent strongly promotes the most
similar source language, giving minimal power to the other
languages, which is good if there is a very similar source lan-
guage. A low value enables combining information from a
larger number of source languages. We chose a compromise
value of 4 based on performance on the development data.

6Contrary to the motivation, we do not evaluate our
method on truly underresourced languages, since automatic
intrinsic evaluation is not possible on languages without tree-
banks. Still, e.g., Bengali and Telugu can be considered low-
resourced, since their treebanks are very small.

Measure Avg SD Best

KL−4
cpos3

(tgt , src) 51.0 16.7 6

KL−4
cpos3

(src, tgt) 50.6 17.4 4

JS−4
cpos3

(tgt , src) 49.6 18.0 2

coscpos3(tgt , src) 49.0 17.7 1

Table 1: Weighted multi-source transfer using var-
ious similarity measures. Evaluation using aver-
age UAS on the development set.
Avg = Average UAS.
SD = Standard sample deviation of UAS, serving as an indi-
cation of robustness of the measure.
Best = Number of targets for which the measure scored best.

development treebanks for hyperparameter tuning:
ar, bg, ca, el, es, et, fa, fi, hi, hu, it, ja.7

Table 1 contains evaluation of several lan-
guage similarity measures considered in the tuning
phase, applied to weighted multi-source transfer
and evaluated using average UAS on the develop-
ment set. We evaluated KL divergences computed
in both directions, as well as Jenses-Shannon di-
vergence (Lee, 2001) and cosine similarity. Based
on the results, KL−4

cpos3 was selected, as it per-
formed best in all aspects.

Once the hyperparameters were fixed, we ap-
plied the parser transfer methods to the full set of
30 treebanks; our final evaluation is based on the
results on the 18 test treebanks as targets.

5.2 Other datasets

Additionally, we also report preliminary results on
the Prague style conversion of HamleDT, which
loosely follows the style of the Prague Depen-
dency Treebank of Böhmová et al. (2003), and on
the subset of CoNLL 2006 and 2007 shared tasks
(Buchholz and Marsi, 2006; Nilsson et al., 2007)
that was used by McDonald et al. (2011).8

6 Evaluation

6.1 Results

Table 2 contains the results of our methods both on
the test languages and the development languages.

7We tuned the choice of the similarity measure, POS n-
gram length, and the way of turning KLcpos3 into KL−4

cpos3
.

To tune our method to perform well in many different situa-
tions, we chose the development set to contain both smaller
and larger treebanks, a pair of very close languages (ca, es), a
very solitary language (ja), multiple members of several lan-
guage families (Uralic, Romance), and both primarily left-
branching (bg, el) and right-branching (ar, ja) languages.

8The CoNLL subset is: da, de, el, en, es, it, nl, pt, sv.
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For each target language, we used all remaining 29
source languages for training (in the single-source
method, only one of them is selected and applied).

Our baseline is the treebank concatenation
method of McDonald et al. (2011), i.e., a single
delexicalized parser trained on the concatenation
of the 29 source treebanks.

As an upper bound,9 we report the results of
the oracle single-source delexicalized transfer: for
each target language, the oracle source parser is
the one that achieves the highest UAS on the target
treebank test section.10 For space reasons, we do
not include results of a higher upper bound of a su-
pervised delexicalized parser (trained on the target
treebank), which has an average UAS of 68.5%. It
was not surpassed by our methods for any target
language, although it was reached for Telugu, and
approached within 5% for Czech and Latin.

6.2 Discussion
The results show that KLcpos3 performs well
both in the selection task and in the weighting
task, as both the single-source and the weighted
multi-source transfer methods outperform the un-
weighted tree combination on average, as well as
the treebank concatenation baseline. In 8 of 18
cases, KLcpos3 is able to correctly identify the ora-
cle source treebank for the single-source approach.
In two of these cases, weighted tree combination
further improves upon the result of the single-
source transfer, i.e., surpasses the oracle; in the
remaining 6 cases, it performs identically to the
single-source method. This proves KLcpos3 to be a
successful language similarity measure for delex-
icalized parser transfer, and the weighted multi-
source transfer to be a better performing approach
than the single-source transfer.

The weighted tree combination is better than its
unweighted variant only for half of the target lan-
guages, but it is more stable, as indicated by its
lower standard deviation, and achieves an average
UAS higher by 4.5% absolute. The unweighted
tree combination, as well as treebank concatena-
tion, perform especially poorly for English, Ger-
man, Tamil, and Turkish, which are rich in deter-
miners, unlike the rest of the treebanks;11 there-

9This is a hard upper-bound for the single-source transfer,
but can be surpassed by the multi-source transfer.

10We do not report the matrix of all source/target combina-
tion results, as this amounts to 870 numbers.

11In the treebanks for these four languages, determiners
constitute around 5-10% of all tokens, while most other tree-
banks contain no determiners at all; in some cases, this is

Tgt TB Oracle Single-src Multi-src
lang conc del trans KL ×1 ×w

bn 61.0 te 66.7 0.5 te 66.7 63.2 66.7
cs 60.5 sk 65.8 0.3 sk 65.8 60.4 65.8
da 56.2 en 55.4 0.5 sl 42.1 54.4 50.3
de 12.6 en 56.8 0.7 en 56.8 27.6 56.8
en 12.3 de 42.6 0.8 de 42.6 21.1 42.6
eu 41.2 da 42.1 0.7 tr 29.1 40.8 30.6
grc 43.2 et 42.2 1.0 sl 34.0 44.7 42.6
la 38.1 grc 40.3 1.2 cs 35.0 40.3 39.7
nl 55.0 da 57.9 0.7 da 57.9 56.2 58.7
pt 62.8 en 64.2 0.2 es 62.7 67.2 62.7
ro 44.2 it 66.4 1.6 la 30.8 51.2 50.0
ru 55.5 sk 57.7 0.9 la 40.4 57.8 57.2
sk 52.2 cs 61.7 0.2 sl 58.4 59.6 58.4
sl 45.9 sk 53.9 0.2 sk 53.9 47.1 53.9
sv 45.4 de 61.6 0.6 da 49.8 52.3 50.8
ta 27.9 hi 53.5 1.1 tr 31.1 28.0 40.0
te 67.8 bn 77.4 0.4 bn 77.4 68.7 77.4
tr 18.8 ta 40.3 0.7 ta 40.3 23.2 41.1
Test 44.5 55.9 0.7 48.6 48.0 52.5
SD 16.9 10.8 14.4 15.0 11.8
ar 37.0 ro 43.1 1.7 sk 41.2 35.3 41.3
bg 64.4 sk 66.8 0.4 sk 66.8 66.0 67.4
ca 56.3 es 72.4 0.1 es 72.4 61.5 72.4
el 63.1 sk 61.4 0.7 cs 60.7 62.3 63.8
es 59.9 ca 72.7 0.0 ca 72.7 64.3 72.7
et 67.5 hu 71.8 0.9 da 64.9 70.5 72.0
fa 30.9 ar 35.6 1.1 cs 34.7 32.5 33.3
fi 41.9 et 44.2 1.1 et 44.2 41.7 47.1
hi 24.1 ta 56.3 1.1 fa 20.8 24.6 27.2
hu 55.1 et 52.0 0.7 cs 46.0 56.5 51.2
it 52.5 ca 59.8 0.3 pt 54.9 59.5 59.6
ja 29.2 tr 49.2 2.2 ta 44.9 28.8 34.1
Dev 48.5 57.1 0.9 52.0 50.3 53.5
SD 15.2 12.5 16.1 16.5 16.7
All 46.1 56.4 0.8 50.0 48.9 52.9
SD 16.1 11.3 15.0 15.4 13.7
PRG test 60.0 49.7 55.7 58.1
PRG dev 64.0 57.5 58.0 61.1
PRG all 61.5 52.8 56.6 59.3
CoNLL 58.3 53.1 58.1 55.7

Table 2: Evaluation using UAS on test target tree-
banks (upper part of the table) and development
target treebanks (lower part).
For each target language, all 29 remaining non-target tree-
banks were used for training the parsers. The best score
among our transfer methods is marked in bold; the base-
line and upper bound scores are marked in bold if equal to
or higher than that.
Legend:
Tgt lang = Target treebank language.
TB conc = Treebank concatenation.
Oracle del trans = Single-source delexicalized transfer using
the oracle source language.
Single-src = Single-source delexicalized transfer using source
language with lowest KLcpos3 distance to the target language
(language bold if identical to oracle).
Multi-src = Multi-source delexicalized transfer, unweighted
(×1) and KL−4

cpos3
weighted (×w).

Test, Dev, All, SD = Average on test/development/all, and its
standard sample deviation.
PRG, CoNLL = Preliminary results (average UAS) on Prague
conversion of HamleDT, and on subset of CoNLL used by
McDonald et al. (2011).
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fore, determiners are parsed rather randomly.12 In
the weighted methods, this is not the case any-
more, as for a determiner-rich target language,
determiner-rich source languages are given a high
weight.

For target languages for which KLcpos3 of the
closest source language was lower or equal to its
average value of 0.7, the oracle treebank was iden-
tified in 7 cases out of 12 and a different but com-
petitive one in 2 cases; when higher than 0.7, an
appropriate treebank was only chosen in 1 case out
of 6. When KLcpos3 failed to identify the oracle,
weighted tree combination was always better or
equal to single-source transfer but mostly worse
than unweighted tree combination. This shows
that for distant languages, KLcpos3 does not per-
form as good as for close languages.

We believe that taking multiple characteristics
of the languages into account would improve the
results on distant languages. A good approach
might be to use an empirical measure, such as
KLcpos3 , combined with supervised information
from other sources, such as WALS. Alternatively,
a backoff approach, i.e. combining KLcpos3 with
e.g. KLcpos2 , might help to tackle the issue.

Still, for target languages dissimilar to any
source language, a better similarity measure will
not help much, as even the oracle results are usu-
ally poor. More fine-grained resource combination
methods are probably needed there, such as selec-
tively ignoring word order, or using different sets
of weights based on POS of the dependent node.

6.3 Evaluation on Other Datasets

In (Rosa, 2015c), we show that the accuracies ob-
tained when parsing HamleDT treebanks in the
Universal Stanford Dependencies annotation style
are significantly lower than when using the Prague
style. Preliminary experiments using the Prague
style conversion of HamleDT generally show our
methods to be effective even on that dataset, al-
though the performance of KLcpos3 is lower in
source selection – it achieves lower UAS than un-
weighted tree combination, and only identifies the
oracle source treebank in 30% cases. This may be
due to us having used only the Stanfordized tree-
banks for tuning the exact definition of the mea-
sure.

related to properties of the treebank annotation or its harmo-
nization rather than properties of the language.

12UAS of determiner attachment tends to be lower than
5%, which is several times less than for any other POS.

Preliminary trials on the subset of CoNLL used
by McDonald et al. (2011) indicated that our meth-
ods do not perform well on this dataset. The best
results by far are achieved by the unweighted com-
bination, i.e., it is best not to use KLcpos3 at all
on this dataset. We believe this to be a deficiency
of the dataset rather than of our methods – it is
rather small, and there is low diversity in the lan-
guages involved, most of them being either Ger-
manic or Romanic. The HamleDT dataset is larger
and more diverse, and we believe it to correspond
better to the real-life motivation for our methods,
thus providing a more trustworthy evaluation.

In the near future, we intend to reevaluate our
methods using the Universal Dependencies tree-
bank collection (Nivre et al., 2015; Agić et al.,
2015a), which currently contains 18 languages of
various types and seems to be steadily growing. A
potential benefit of this collection is the fact that
the annotation style harmonization seems to be
done with more care and in a more principled way
than in HamleDT, presumably leading to a higher
quality of the dataset.

7 Conclusion

We presented KLcpos3 , an efficient language sim-
ilarity measure designed for delexicalized depen-
dency parser transfer. We evaluated it on a large
set of treebanks, and showed that it performs well
in selecting the source treebank for single-source
transfer, as well as in weighting the source tree-
banks in multi-source parse tree combination.

Our method achieves good results when applied
to similar languages, but its performance drops for
distant languages. In future, we plan to explore
combinations of KLcpos3 with other language sim-
ilarity measures, so that similarity of distant lan-
guages is estimated more reliably.

In this work, we only used the unlabelled first-
order MSTParser. We intend to also employ other
parsers in future, possibly in combination, and in
a labelled as well as unlabelled setting.
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Christopher Manning, Héctor Alonso Martı́nez,
Ryan McDonald, Anna Missilä, Simonetta Monte-
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Abstract

Recent work on supertagging using a feed-
forward neural network achieved signifi-
cant improvements for CCG supertagging
and parsing (Lewis and Steedman, 2014).
However, their architecture is limited to
considering local contexts and does not
naturally model sequences of arbitrary
length. In this paper, we show how di-
rectly capturing sequence information us-
ing a recurrent neural network leads to fur-
ther accuracy improvements for both su-
pertagging (up to 1.9%) and parsing (up
to 1% F1), on CCGBank, Wikipedia and
biomedical text.

1 Introduction

Combinatory Categorial Grammar (CCG; Steed-
man, 2000) is a highly lexicalized formalism;
the standard parsing model of Clark and Curran
(2007) uses over 400 lexical categories (or su-
pertags), compared to about 50 POS tags for typ-
ical CFG parsers. This makes accurate disam-
biguation of lexical types much more challenging.
However, the assignment of lexical categories can
still be solved reasonably well by treating it as
a sequence tagging problem, often referred to as
supertagging (Bangalore and Joshi, 1999). Clark
and Curran (2004) show that high tagging accu-
racy can be achieved by leaving some ambiguity to
the parser to resolve, but with enough of a reduc-
tion in the number of tags assigned to each word
so that parsing efficiency is greatly increased.

In addition to improving parsing efficiency, su-
pertagging also has a large impact on parsing ac-
curacy (Curran et al., 2006; Kummerfeld et al.,
2010), since the derivation space of the parser
is determined by the supertagger, at both train-

*All work was completed before the author joined Face-
book.

ing and test time. Clark and Curran (2007) en-
hanced supertagging using a so-called adaptive
strategy, such that additional categories are sup-
plied to the parser only if a spanning analysis can-
not be found. This strategy is used in the de
facto C&C parser (Curran et al., 2007), and the
two-stage CCG parsing pipeline (supertagging and
parsing) continues to be the choice for most re-
cent CCG parsers (Zhang and Clark, 2011; Auli
and Lopez, 2011; Xu et al., 2014).

Despite the effectiveness of supertagging, the
most widely used model for this task (Clark and
Curran, 2007) has a number of drawbacks. First,
it relies too heavily on POS tags, which leads
to lower accuracy on out-of-domain data (Rimell
and Clark, 2008). Second, due to the sparse, in-
dicator feature sets mainly based on raw words
and POS tags, it shows pronounced performance
degradation in the presence of rare and unseen
words (Rimell and Clark, 2008; Lewis and Steed-
man, 2014). And third, in order to reduce com-
putational requirements and feature sparsity, each
tagging decision is made without considering any
potentially useful contextual information beyond a
local context window.

Lewis and Steedman (2014) introduced a feed-
forward neural network to supertagging, and ad-
dressed the first two problems mentioned above.
However, their attempt to tackle the third prob-
lem by pairing a conditional random field with
their feed-forward tagger provided little accuracy
improvement and vastly increased computational
complexity, incurring a large efficiency penalty.

We introduce a recurrent neural network-based
(RNN) supertagging model to tackle all the above
problems, with an emphasis on the third one.
RNNs are powerful models for sequential data,
which can potentially capture long-term depen-
dencies, based on an unbounded history of pre-
vious words (§2); similar to Lewis and Steedman
(2014) we only use distributed word representa-
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tions (§2.2). Our model is highly accurate, and by
integrating it with the C&C parser as its adaptive
supertagger, we obtain substantial accuracy im-
provements, outperforming the feed-forward setup
on both supertagging and parsing.

2 Supertagging with a RNN

2.1 Model
We use an Elman recurrent neural network (El-
man, 1990) which consists of an input layer xt,
a hidden state (layer) ht with a recurrent connec-
tion to the previous hidden state ht−1 and an out-
put layer yt. The input layer is a vector represent-
ing the surrounding context of the current word
at position t, whose supertag is being predicted.1

The hidden state ht−1 keeps a representation of all
context history up to the current word. The cur-
rent hidden state ht is computed using the current
input xt and hidden state ht−1 from the previous
position. The output layer represents probability
scores of all possible supertags, with the size of
the output layer being equal to the size of the lexi-
cal category set.

The parameterization of the network consists
of three matrices which are learned during super-
vised training. Matrix U contains weights be-
tween the input and hidden layers, V contains
weights between the hidden and output layers, and
W contains weights between the previous hidden
state and the current hidden state. The following
recurrence2 is used to compute the activations of
the hidden state at word position t:

ht = f(xtU + ht−1W), (1)

where f is a non-linear activation function; here
we use the sigmoid function f(z) = 1

1+e−z . The
output activations are calculated as:

yt = g(htV), (2)

where g is the softmax activation function g(zi) =
ezi∑
j ezj that squeezes raw output activations into a

probability distribution.

2.2 Word Embeddings
Our RNN supertagger only uses continuous vec-
tor representations for features and each feature

1This is different from some RNN models (e.g., Mikolov
et al. (2010)) where the input is a one-hot vector.

2We assume the input to any layer is a row vector unless
otherwise stated.

type has an associated look-up table, which maps
a feature to its distributed representation. In to-
tal, three feature types are used. The first type is
word embeddings: given a sentence of N words,
(w1, w2, . . . , wN ), the embedding feature of wt

(for 1 ≤ t ≤ N ) is obtained by projecting it onto
a n-dimensional vector space through the look-up
table Lw ∈ R|w|×n, where |w| is the size of the vo-
cabulary. Algebraically, the projection operation
is a simple vector-matrix product where a one-hot
vector bj ∈ R1×|w| (with zeros everywhere except
at the jth position) is multiplied with Lw:

ewt = bjLw ∈ R1×n, (3)

where j is the look-up index for wt.
In addition, as in Lewis and Steedman (2014),

for every word we also include its 2-character suf-
fix and capitalization as features. Two more look-
up tables are used for these features. Ls ∈ R|s|×m

is the look-up table for suffix embeddings, where
|s| is the suffix vocabulary size. Lc ∈ R2×m

is the look-up table for the capitalization embed-
dings. Lc contains only two embeddings, repre-
senting whether or not a given word is capitalized.

We extract features from a context window sur-
rounding the current word to make a tagging de-
cision. Concretely, with a context window of size
k, bk/2c words either side of the target word are
included. For a word wt, its continuous feature
representation is:

fwt = [ewt ; swt ; cwt ], (4)

where ewt ∈ R1×n, swt ∈ R1×m and cwt ∈
R1×m are the output vectors from the three differ-
ent look-up tables, and [ewt ; swt ; cwt ] denotes the
concatenation of three vectors and hence fwt ∈
R1×(n+2m). At word position t, the input layer of
the network xt is:

xt = [fwt−bk/2c ; . . . fwt ; . . . ; fwt+bk/2c ], (5)

where xt ∈ R1×k(n+2m) and the right-hand side is
the concatenation of all feature representations in
a size k context window.

We use pre-trained word embeddings
from Turian et al. (2010) to initialize look-
up table Lw, and we apply a set of word
pre-processing techniques at both training and
test time to reduce sparsity. All words are first
lower-cased, and all numbers are collapsed into
a single digit ‘0’. If a lower-cased hyphenated
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word does not have an entry in the pre-trained
word embeddings, we attempt to back-off to the
substring after the last hyphen. For compound
words and numbers delimited by “\/”, we attempt
to back-off to the substring after the delimiter.
After pre-processing, the Turian embeddings have
a coverage of 94.25% on the training data; for
out-of-vocabulary words, three separate randomly
initialized embeddings are used for lower-case
alphanumeric words, upper-case alphanumeric
words, and non-alphanumeric symbols. For
padding at the start and end of a sentence, the “un-
known” entry from the pre-trained embeddings is
used. Look-up tables Ls and Lc are also randomly
initialized, and all look-up tables are modified
during supervised training using backpropagation.

3 Experiments

Datasets and Baseline. We follow the standard
splits of CCGBank (Hockenmaier and Steedman,
2007) for all experiments using sections 2-21 for
training, section 00 for development and section
23 as in-domain test set. The Wikipedia corpus
from Honnibal et al. (2009) and the Bioinfer cor-
pus (Pyysalo et al., 2007) are used as two out-
of-domain test sets. We compare supertagging
accuracy with the MaxEnt C&C supertagger and
the neural network tagger of Lewis and Steed-
man (2014) (henceforth NN), and we also evaluate
parsing accuracy using these three supertaggers as
a front-end to the C&C parser. We use the same
425 supertag set used in both C&C and NN.

Hyperparameters and Training. For Lw, we
use the scaled 50-dimensional Turian embeddings
(n = 50 for Lw) as initialization. We have ex-
perimented during development with using 100-
dimensional embeddings and found no improve-
ments in the resulting model. Out-of-vocabulary
embedding values in Lw and all embedding values
in Ls and Lc are initialized with a uniform distri-
bution in the interval [−2.0, 2.0]. The embedding
dimension size m of Ls and Lc is set to 5. Other
parameters of the network {U,V,W} are initial-
ized with values drawn uniformly from the inter-
val [−2.0, 2.0], and are then scaled by their corre-
sponding input vector size. We experimented with
context window sizes of 3, 5, 7, 9 and 11 during
development and found a window size of 7 gives
the best performing model on the dev set. We use
a fixed learning rate of 0.0025 and a hidden state
size of 200.

Model Accuracy Time
C&C (gold POS) 92.60 -
C&C (auto POS) 91.50 0.57
NN 91.10 21.00
RNN 92.63 -
RNN+dropout 93.07 2.02

Table 1: 1-best tagging accuracy and speed com-
parison on CCGBank Section 00 with a single
CPU core (1,913 sentences), tagging time in secs.

To train the model, we optimize cross-entropy
loss with stochastic gradient descent using mini-
batched backpropagation through time (BPTT;
Rumelhart et al., 1988; Mikolov, 2012); the mini-
batch size for BPTT, again tuned on the dev set, is
set to 9.

Embedding Dropout Regularization. Without
any regularization, we found cross-entropy error
on the dev set started to increase while the error on
the training set was continuously driven to a very
small value (Fig. 1a). With the suspicion of over-
fitting, we experimented with l1 and l2 regulariza-
tion and learning rate decay but none of these tech-
niques gave any noticeable improvements for our
model. Following Legrand and Collobert (2014),
we instead implemented word embedding dropout
as a regularization for all the look-up tables, since
the capacity of our tagging model mainly comes
from the look-up tables, as in their system. We
observed more stable learning and better general-
ization of the trained model with dropout. Similar
to other forms of droput (Srivastava et al., 2014),
we randomly drop units and their connections to
other units at training time. Concretely, we apply
a binary dropout mask to xt, with a dropout rate
of 0.25, and at test time no mask is applied, but
the input to the network, xt, at each word position
is scaled by 0.75. We experimented during devel-
opment with different dropout rates, but found the
above choice to be optimal in our setting.

3.1 Supertagging Results

We use the RNN model which gives the high-
est 1-best supertagging accuracy on the dev set
as the final model for all experiments. Without
any form of regularization, the best model was ob-
tained at the 20th epoch, and it took 35 epochs for
the dropout model to peak (Fig. 1b). We use the
dropout model for all experiments and, unlike the
C&C supertagger, no tag dictionaries are used.

Table 1 shows 1-best supertagging accuracies
on the dev set. The accuracy of the C&C supertag-
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Figure 1: Learning curve and 1-best tagging accuracy of the RNN model on CCGBank Section 00. Plot
(c) shows ambiguity vs. multi-tagging accuracy for all supertaggers (auto POS).
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Figure 2: Multi-tagging accuracy for all supertagging models on CCGBank Section 23, Wikipedia and
Bio-GENIA data (auto POS).

RNN NN C&C (auto pos) C&C (gold pos)
β WORD SENT amb. WORD SENT amb. WORD SENT amb. WORD SENT amb.
0.075 97.33 66.07 1.27 96.83 61.27 1.34 96.34 60.27 1.27 97.34 67.43 1.27
0.030 98.12 74.39 1.46 97.81 70.83 1.58 97.05 65.50 1.43 97.92 72.87 1.43
0.010 98.71 81.70 1.84 98.54 79.25 2.06 97.63 70.52 1.72 98.37 77.73 1.72
0.005 99.01 84.79 2.22 98.84 83.38 2.55 97.86 72.24 1.98 98.52 79.25 1.98
0.001 99.41 90.54 3.90 99.29 89.07 4.72 98.25 80.24 3.57 99.17 87.19 3.00

Table 2: Multi-tagging accuracy and ambiguity comparison (supertags/word) at the default C&C β levels
on CCGBank Section 00.

Model Section 23 Wiki Bio
C&C (gold POS) 93.32 88.80 91.85
C&C (auto POS) 92.02 88.80 89.08
NN 91.57 89.00 88.16
RNN 93.00 90.00 88.27

Table 3: 1-best tagging accuracy compari-
son on CCGBank Section 23 (2,407 sentences),
Wikipedia (200 sentences) and Bio-GENIA (1,000
sentences).

ger drops about 1% with automatically assigned
POS tags, while our RNN model gives higher ac-
curacy (+0.47%) than the C&C supertagger with
gold POS tags. All timing values are obtained on
a single Intel i7-4790k core, and all implementa-
tions are in C++ except NN which is implemented
using Torch and Java, and therefore we believe the
efficiency of NN could be vastly improved with an
implementation with a lower-level language.

Table 2 compares different supertagging mod-
els for multi-tagging accuracy at the default β
levels used by the C&C parser on the dev set.
The β parameter determines the average number
of supertags assigned to each word (ambiguity)
by a supertagger when integrated with the parser;
categories whose probabilities are not within β
times the probability of the 1-best category are
pruned. At the first β level (0.075), the three su-
pertagging models give very close ambiguity lev-
els, but our RNN model clearly outperforms NN
and C&C (auto POS) in both word (WORD) and
sentence (SENT) level accuracies, giving similar
word-level accuracy as C&C (gold POS). For other
β levels (except β = 0.001), the RNN model gives
comparable ambiguity levels to the C&C model
which uses a tagdict, while being much more ac-
curate than both the other two models.
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LP LR LF SENT CAT cov.
C&C (normal) 85.18 82.53 83.83 31.42 92.39 100
C&C (hybrid) 86.07 82.77 84.39 32.62 92.57 100
C&C (normal + RNN) 86.74 84.58 85.65 34.13 93.60 100
C&C (hybrid + RNN) 87.73 84.83 86.25 34.97 93.84 100
C&C (normal) 85.18 84.32 84.75 31.73 92.83 99.01 (C&C cov)
C&C (hybrid) 86.07 84.49 85.28 32.93 93.02 99.06 (C&C cov)
C&C (normal + RNN) 86.81 86.01 86.41 34.37 93.80 99.01 (C&C cov)
C&C (hybrid + RNN) 87.77 86.25 87.00 35.20 94.04 99.06 (C&C cov)
C&C (normal + RNN) 86.74 86.15 86.45 34.33 93.81 99.42
C&C (hybrid + RNN) 87.73 86.41 87.06 35.17 94.05 99.42

Table 4: Parsing development results on CCGBank Section 00 (auto POS).
CCGBank Section 23 Wikipedia Bioinfer

LP LR LF cov. LP LR LF cov. LP LR LF cov.
C&C 86.24 84.85 85.54 99.42 81.58 80.08 80.83 99.50 77.78 76.07 76.91 95.40
C&C (+ NN) 86.71 85.56 86.13 99.92 82.65 81.36 82.00 100 79.77 78.62 79.19 97.40
C&C (+ RNN) 87.68 86.47 87.07 99.96 83.22 81.78 82.49 100 80.10 78.21 79.14 97.80
C&C 86.24 84.17 85.19 100 81.58 79.48 80.52 100 77.78 71.44 74.47 100
C&C (+ NN) 86.71 85.40 86.05 100 - - - - 79.77 75.35 77.50 100
C&C (+ RNN) 87.68 86.41 87.04 100 - - - - 80.10 75.52 77.74 100

Table 5: Parsing test results on all three domains (auto POS). We evaluate on all sentences (100%
coverage) as well as on only those sentences that returned spanning analyses (% cov.). RNN and NN
both have 100% coverage on the Wikipedia data.

Fig. 1c compares multi-tagging accuracies of all
the models on the dev set. For all models, the same
β levels are used (ranging from 0.075 to 10−4,
and all C&C default values are included). The
RNN model consistently outperforms other mod-
els across different ambiguity levels.

Table 3 shows 1-best accuracies of all models
on the test data sets (Bio-GENIA gold-standard
CCG lexical category data from Rimell and Clark
(2008) are used, since no gold categories are avail-
able in the Bioinfer data). With gold-standard POS

tags, the C&C model outperforms both the NN and
RNN models on CCGBank and Bio-GENIA; with
auto POS, the accuracy of the C&C model drops
significantly, due to its high reliance on POS tags.

Fig. 2 shows multi-tagging accuracies on all
test data (using β levels ranging from 0.075 to
10−6, and all C&C default values are included).
On CCGBank, the RNN model has a clear accu-
racy advantage, while on the other two data sets,
the accuracies given by the NN model are closer
to the RNN model at some ambiguity levels, rep-
resenting these data sets are still more challenging
than CCGBank. However, both the NN and RNN
models are more robust than the C&C model on the
two out-of-domain data sets.

3.2 Parsing Results

We integrate our supertagging model into the C&C

parser, at both training and test time, using all de-
fault parser settings; C&C hybrid model is used for

CCGBank and Wikipedia; the normal-form model
is used for the Bioinfer data, in line with Lewis and
Steedman (2014) and Rimell and Clark (2008).
Parsing development results are shown in Table 4;
for out-of-domain data sets, no separate develop-
ment experiments were done. Final results are
shown in Table 5, and we substantially improve
parsing accuracies on CCGBank and Wikipedia.
The accuracy of our model on CCGBank repre-
sents a F1 score improvement of 1.53%/1.85%
over the C&C baseline, which is comparable to
the best known accuracy reported in Auli and
Lopez (2011). However, our RNN-supertagging-
based model is conceptually much simpler, with
no change to the parsing model required at all.

4 Conclusion

We presented a RNN-based model for CCG su-
pertagging, which brings significant accuracy im-
provements for supertagging and parsing, on both
in- and out-of-domain data sets. Our supertagger
is fast and well-suited for large scale processing.
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Abstract

We define a dynamic oracle for the Cov-
ington non-projective dependency parser.
This is not only the first dynamic oracle
that supports arbitrary non-projectivity,
but also considerably more efficient
(O(n)) than the only existing oracle with
restricted non-projectivity support. Ex-
periments show that training with the dy-
namic oracle significantly improves pars-
ing accuracy over the static oracle baseline
on a wide range of treebanks.

1 Introduction

Greedy transition-based dependency parsers build
analyses for sentences incrementally by following
a sequence of transitions defined by an automaton,
using a scoring model to choose the best trans-
ition to take at each state (Nivre, 2008). While
this kind of parsers have become very popular,
as they achieve competitive accuracy with espe-
cially fast parsing times; their raw accuracy is still
behind that of slower alternatives like transition-
based parsers that use beam search (Zhang and
Nivre, 2011; Choi and McCallum, 2013). For this
reason, a current research challenge is to improve
the accuracy of greedy transition-based parsers as
much as possible without sacrificing efficiency.

A relevant recent advance in this direction is
the introduction of dynamic oracles (Goldberg and
Nivre, 2012), an improvement in the training pro-
cedure of greedy parsers that can boost their ac-
curacy without any impact on parsing speed. An
oracle is a training component that selects the best
transition(s) to take at a given configuration, us-
ing knowledge about the gold tree. Traditionally,
transition-based parsers were trained to follow a
so-called static oracle, which is only defined on
the configurations of a canonical computation that
generates the gold tree, returning the next trans-
ition in said computation. In contrast, dynamic

oracles are non-deterministic (not limited to one
sequence, but supporting all the possible computa-
tions leading to the gold tree), and complete (also
defined for configurations where the gold tree is
unreachable, choosing the transition(s) that lead to
a tree with minimum error). This extra robustness
in training provides higher parsing accuracy.

However, defining a usable dynamic oracle for
a given parser is non-trivial in general, due to
the need of calculating the loss of each configura-
tion, i.e., the minimum Hamming loss to the gold
tree from a tree reachable from that configuration.
While it is always easy to do this in exponential
time by simulating all possible computations in
the algorithm to obtain all reachable trees, it is
not always clear how to achieve this calculation
in polynomial time. At the moment, this prob-
lem has been solved for several projective pars-
ers exploiting either arc-decomposability (Gold-
berg and Nivre, 2013) or tabularization of compu-
tations (Goldberg et al., 2014). However, for pars-
ers that can handle crossing arcs, the only known
dynamic oracle (Gómez-Rodrı́guez et al., 2014)
has been defined for a variant of the parser by At-
tardi (2006) that supports a restricted set of non-
projective trees. To our knowledge, no dynamic
oracles are known for any transition-based parser
that can handle unrestricted non-projectivity.

In this paper, we define such an oracle for
the Covington non-projective parser (Covington,
2001; Nivre, 2008), which can handle arbitrary
non-projective dependency trees. As this al-
gorithm is not arc-decomposable and its tabular-
ization is NP-hard (Neuhaus and Bröker, 1997),
we do not use the existing techniques to define
dynamic oracles, but a reasoning specific to this
parser. It is worth noting that, apart from being the
first dynamic oracle supporting unrestricted non-
projectivity, our oracle is very efficient, solving the
loss calculation in O(n). In contrast, the restricted
non-projective oracle of Gómez-Rodrı́guez et al.
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(2014) has O(n8) time complexity.
The rest of the paper is organized as follows:

after a quick outline of Covington’s parser in
Sect. 2, we present the oracle and prove its cor-
rectness in Sect. 3. Experiments are reported in
Sect. 4, and Sect. 5 contains concluding remarks.

2 Preliminaries

We will define a dynamic oracle for the non-
projective parser originally defined by Covington
(2001), and implemented by Nivre (2008) under
the transition-based parsing framework. For space
reasons, we only sketch the parser very briefly, and
refer to the above reference for more details.

Parser configurations are of the form c =
〈λ1, λ2, B,A〉, where λ1 and λ2 are lists of par-
tially processed words,B is another list (called the
buffer) with currently unprocessed words, andA is
the set of dependencies built so far. Suppose that
we parse a string w1 · · ·wn, whose word occur-
rences will be identified with their indices 1 · · ·n
for simplicity. Then, the parser starts at an initial
configuration cs(w1 . . . wn) = 〈[], [], [1 . . . n], ∅〉,
and executes transitions chosen from those in Fig-
ure 1 until a terminal configuration of the form
{〈λ1, λ2, [], A〉 ∈ C} is reached, and the sen-
tence’s parse tree is obtained from A.1

The transition semantics is very simple, mirror-
ing the double nested loop traversing word pairs in
the formulation by Covington (2001). When the
algorithm is in a configuration 〈λ1|i, λ2, j|B,A〉,
we will say that it is considering the focus words
i and j, located at the end of the first list and at the
beginning of the buffer. A decision is then made
about whether these two words should be linked
with a rightward arc i→ j (Right-Arc transition),
a leftward arc i ← j (Left-Arc transition) or not
linked (No-Arc transition). The first two choices
will be unavailable in configurations where the
newly-created arc would violate the single-head
constraint (a node cannot have more than one in-
coming arc) or the acyclicity constraint (cycles
are not allowed). In any of these three transitions,
i is then moved to the second list to make i−1 and
j the focus words for the next step. Alternatively,
we can choose to read a new word from the string
with a Shift transition, so that the focus words in

1The arcs in A form a forest, but we convert it to a tree by
linking any node without a head as a dependent of an artifi-
cial node at position 0 that acts as a dummy root. From now
on, when we refer to some dependency graph as a tree, we
assume that this transformation is being implicitly made.

the resulting configuration will be j and j + 1.
The result is a parser that can generate any pos-

sible dependency tree for the input, and runs in
quadratic worst-case time. Although in theory this
complexity can seem like a drawback compared to
linear-time transition-based parsers (e.g. (Nivre,
2003; Gómez-Rodrı́guez and Nivre, 2013)), it has
been shown by Volokh and Neumann (2012) to ac-
tually outperform linear algorithms in practice, as
it allows for relevant optimizations in feature ex-
traction that cannot be implemented in other pars-
ers. In fact, one of the fastest dependency parsers
to date uses this algorithm (Volokh, 2013).

3 The oracle

As sketched in Sect. 1, a dynamic oracle is a train-
ing component that, given a configuration c and
a gold tree tG, provides the set of transitions that
are applicable in c and lead to trees with minimum
Hamming loss with respect to tG. The Hamming
loss between a tree t and tG, written L(t, tG), is
the number of nodes that have a different head in t
than in tG. Following Goldberg and Nivre (2013),
we say that a set of arcs A is reachable from con-
figuration c, written c  A, if there is some (pos-
sibly empty) path of transitions from c to some
configuration c′ = 〈λ1, λ2, B,A

′〉, with A ⊆ A′.
Then, we can define the loss of a configuration as

`(c) = min
t|c t

L(t, tG),

and the set of transitions that must be returned by
a correct dynamic oracle is then

od(c, tG) = {τ | `(c)− `(τ(c)) = 0},
i.e., the transitions that do not increase configur-
ation loss, and hence lead to the best parse (in
terms of loss) reachable from c. Therefore, imple-
menting a dynamic oracle reduces to computing
the loss `(c) for each configuration c.

Goldberg and Nivre (2013) show that the calcu-
lation of the loss is easy for parsers that are arc-
decomposable, i.e., those where for every config-
uration c and arc setA that is tree-compatible (i.e.
that can be a part of a well-formed parse2), c A
is entailed by c  (i → j) for every i → j ∈ A.
That is, if each arc in a tree-compatible set is indi-
vidually reachable from configuration c, then that

2In the cited paper, tree-compatibility required projectiv-
ity, as the authors were dealing with projective parsers. In
our case, since the parser is non-projective, tree-compatibility
only consists of the single-head and acyclicity constraints.
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Shift: 〈λ1, λ2, j|B,A〉 ⇒ 〈λ1 · λ2|j, [], B,A〉
No-Arc: 〈λ1|i, λ2, B,A〉 ⇒ 〈λ1, i|λ2, B,A〉
Left-Arc: 〈λ1|i, λ2, j|B,A〉 ⇒ 〈λ1, i|λ2, j|B,A ∪ {j → i}〉

only if @k | k → i ∈ A (single-head) and i→∗ j 6∈ A (acyclicity).

Right-Arc: 〈λ1|i, λ2, j|B,A〉 ⇒ 〈λ1, i|λ2, j|B,A ∪ {i→ j}〉
only if @k | k → j ∈ A (single-head) and j →∗ i 6∈ A (acyclicity).

Figure 1: Transitions of the Covington non-projective dependency parser.

0 1 2 3 4

Figure 2: An example of non-arc-decomposability
of the Covington parser: graphical representation
of configuration c = 〈[1, 2], [], [3, 4], A = {1 →
2}〉. The solid arc corresponds to the arc set A,
and the circled indexes mark the focus words. The
dashed arcs represent the gold tree tG.

set of arcs is reachable from c. If this holds, then
computing the loss of a configuration c reduces to
determining and counting the gold arcs that are not
reachable from c, which is easy in most parsers.

Unfortunately, the Covington parser is not arc-
decomposable. This can be seen in the example of
Figure 2: while any of the gold arcs 2→3, 3→4,
4→1 can be reachable individually from the depic-
ted configuration, they are not jointly reachable as
they form a cycle with the already-built arc 1→2.
Thus, the configuration has only one individually
unreachable arc (0→2), but its loss is 2.

However, it is worth noting that non-arc-
decomposability in the parser is exclusively due
to cycles. If a set of individually reachable arcs do
not form a cycle together with already-built arcs,
then we can show that the set will be reachable.
This idea is the basis for an expression to compute
loss based on counting individually unreachable
arcs, and then correcting for the effect of cycles:

Theorem 1 Let c = 〈λ1, λ2, B,A〉 be a config-
uration of the Covington parser, and tG the set of
arcs of a gold tree. We call I(c, tG) = {x → y ∈
tG | c  (x → y)} the set of individually reach-
able arcs of tG; note that this set may overlap A.
Conversely, we call U(c, tG) = tG \ I(c, tG) the
set of individually unreachable arcs of tG from c.
Finally, let nc(G) denote the number of cycles in

a graph G.
Then `(c) = |U(c, tG)|+ nc(A ∪ I(c, tG)). 2

We now sketch the proof. To prove Theorem 1,
it is enough to show that (1) there is at least one
tree reachable from c with exactly that Hamming
loss to tG, and (2) there are no trees reachable from
cwith a smaller loss. To this end, we will use some
properties of the graphA∪I(c, tG). First, we note
that no node in this graph has in-degree greater
than 1. In particular, each node except for the
dummy root has exactly one head, either explicit
or (if no head has been assigned inA or in the gold
tree) the dummy root. No node has more than one
head: a node cannot have two heads in A because
the parser transitions enforce the single-head con-
straint, it cannot have two heads in I(c, tG) be-
cause tG must satisfy this constraint as well, and it
cannot have one head in A and another in I(c, tG)
because the corresponding arc in I(c, tG) would
be unreachable due to the single-head constraint.

This, in turn, implies that the graphA∪I(c, tG)
has no overlapping cycles, as overlapping cycles
can only appear in graphs with in-degree greater
than 1. This is the key property enabling us to
exactly calculate loss using the number of cycles.

To show (1), consider the graph A ∪ I(c, tG).
In each of its cycles, there is at least one arc
that belongs to I(c, tG), as A must satisfy the
acyclicity constraint. We arbitrarily choose one
such arc from each cycle, and remove it from
the graph. Note that this results in removing ex-
actly nc(A ∪ I(c, tG)) arcs, as we have shown
that the cycles in A ∪ I(c, tG) are disjoint. We
call the resulting graph B(c, tG). As it has max-
imum in-degree 1 and it is acyclic (because we
have broken all the cycles), B(c, tG) is a tree, mod-
ulo our standard assumption that headless nodes
are assumed to be linked to the dummy root.

This tree B(c, tG) is reachable from c and has
loss `(c) = |U(c, tG)|+nc(A∪I(c, tG)). Reach-
ability is shown by building a sequence of trans-
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itions that will visit the pairs of words corres-
ponding to remaining arcs in order, and inter-
calating the corresponding Left-Arc or Right-Arc
transitions, which cannot violate the acyclicity or
single-head constraints. The term U(c, tG) in the
loss stems from the fact that A ∪ I(c, tG) can-
not contain arcs in U(c, tG), and the term nc(A ∪
I(c, tG)) from not including the nc(A ∪ I(c, tG))
arcs that we discarded to break cycles.

Finally, from these observations, it is easy to
see that B(c, tG) has the best loss among reach-
able trees, and thus prove (2): the arcs in U(c, tG)
are always unreachable by definition, and for each
cycle in nc(A ∪ I(c, tG)), the acyclicity con-
straint forces us to miss at least one arc. As
the cycles are disjoint, this means that we neces-
sarily miss at least nc(A ∪ I(c, tG)) arcs, hence
|U(c, tG)| + nc(A ∪ I(c, tG)) is indeed the min-
imum loss among reachable trees. �

Thus, to calculate the loss of a configuration c,
we only need to compute both of the terms in The-
orem 1. For the first term, note that if c has focus
words i and j (i.e., c = 〈λ1|i, λ2, j|B,A〉), then
an arc x→ y is in U(c, tG) if it is not in A, and at
least one of the following holds:
• j > max(x, y), as in this case we have read

too far in the string and will not be able to get
x and y as focus words,
• j = max(x, y) ∧ i < min(x, y), as in this

case we have max(x, y) as the right focus
word but the left focus word is to the left of
min(x, y), and we cannot move it back,
• there is some z 6= 0, z 6= x such that z → y ∈
A, as in this case the single-head constraint
prevents us from creating x→ y,
• x and y are on the same weakly connected

component of A, as in this case the acyclicity
constraint will not let us create x→ y.

All of these arcs can be trivially enumerated in
O(n) time (in fact, they can be updated in O(1)
if we start from the configuration that preceded c).
The second term of the loss, nc(A∪I(c, tG)), can
be computed by obtaining I(c, tG) as tG\U(c, tG)
to then apply a standard cycle-finding algorithm
(Tarjan, 1972) which, for a graph with maximum
in-degree 1, runs in O(n) time.

Algorithm 1 presents the resulting loss cal-
culation algorithm in pseudocode form, where
COUNTCYCLES is a function that counts the num-
ber of cycles in the given graph in linear time as
mentioned above. Note that the for loop runs in

Algorithm 1 Computation of the loss of a config-
uration.

1: function LOSS(c = 〈λ1|i, λ2, j|B,A〉, tG)
2: U ← ∅ . Variable U is for U(c, tG)
3: for each x→ y ∈ (tG \A) do
4: left ← min(x, y)
5: right ← max(x, y)
6: if j > right ∨
7: (j = right ∧ i < left)∨
8: (∃z > 0, z 6= x : z → y ∈ A)∨
9: WEAKLYCONNECTED(A, x, y) then

10: U ← u ∪ {x→ y}
11: I ← tG \U . Variable I is for I(c, tG)
12: return |U |+ COUNTCYCLES(A ∪ I )

linear time: the condition on line 8 can be com-
puted in constant time by recovering the head of
y. The call to WEAKLYCONNECTED in line 9
finds out whether the two given nodes are weakly
connected in A, and can also be resolved in
O(1), by querying the disjoint set data structure
that implementations of the Covington algorithm
commonly use for the parser’s acyclicity checks
(Nivre, 2008).

It is worth noting that the linear-time com-
plexity can also be achieved by a standalone im-
plementation of the loss calculation algorithm,
without recurse to the parser’s auxiliary data struc-
tures (although this is dubiously practical). To
do so, we can implement WEAKLYCONNECTED

so that the first call computes the connected com-
ponents of A in linear time (Hopcroft and Tarjan,
1973) and subsequent calls use this information to
find out if two nodes are weakly connected in con-
stant time.

On the other hand, a more efficient implementa-
tion than the one shown in Algorithm 1 (which we
chose for clarity) can be achieved by more tightly
coupling the oracle to the parser, as the relevant
sets of arcs associated with a configuration can be
obtained incrementally from those of the previous
configuration.

4 Experiments

To evaluate the performance of our approach, we
conduct experiments on both static and dynamic
Covington non-projective oracles. Concretely, we
train an averaged perceptron model for 15 itera-
tions on nine datasets from the CoNLL-X shared
task (Buchholz and Marsi, 2006) and all data-
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Unigrams
L0w; L0p; L0wp; L0l; L0hw; L0hp; L0hl; L0l′w; L0l′p;
L0l′ l; L0r′w; L0r′p; L0r′ l; L0h2w; L0h2p; L0h2l; L0lw;
L0lp; L0ll; L0rw; L0rp; L0rl; L0wd; L0pd;
L0wvr; L0pvr; L0wvl; L0pvl; L0wsl; L0psl; L0wsr;
L0psr; L1w; L1p; L1wp; R0w; R0p; R0wp; R0l′w;
R0l′p; R0l′ l; R0lw; R0lp; R0ll; R0wd; R0pd; R0wvl;
R0pvl;R0wsl; R0psl; R1w; R1p; R1wp; R2w; R2p;
R2wp; CLw; CLp; CLwp; CRw; CRp; CRwp;
Pairs
L0wp+R0wp; L0wp+R0w; L0w+R0wp; L0wp+R0p;
L0p+R0wp; L0w+R0w; L0p+R0p;R0p+R1p;
L0w+R0wd; L0p+R0pd;
Triples
R0p+R1p+R2p; L0p+R0p+R1p; L0hp+L0p+R0p;
L0p+L0l′p+R0p; L0p+L0r′p+R0p; L0p+R0p+R0l′p;
L0p+L0l′p+L0lp; L0p+L0r′p+L0rp;
L0p+L0hp+L0h2p; R0p+R0l′p+R0lp;

Table 1: Feature templates. L0 and R0 denote
the left and right focus words; L1, L2, . . . are the
words to the left of L0 and R1, R2, . . . those to the
right of R0. Xih means the head of Xi, Xih2 the
grandparent, Xil and Xil′ the farthest and closest
left dependents, and Xir and Xir′ the farthest and
closest right dependents, respectively. CL and
CR are the first and last words between L0 andR0

whose head is not in the interval [L0, R0]. Finally,
w stands for word form; p for PoS tag; l for de-
pendency label; d is the distance between L0 and
R0; vl, vr are the left/right valencies (number of
left/right dependents); and sl, sr the left/right label
sets (dependency labels of left/right dependents).

sets from the CoNLL-XI shared task (Nivre et al.,
2007). We use the same feature templates for all
languages, which result from adapting the features
described by Zhang and Nivre (2011) to the data
structures of the Covington non-projective parser,
and are listed in detail in Table 1.

Table 2 reports the accuracy obtained by the
Covington non-projective parser with both or-
acles. As we can see, the dynamic oracle imple-
mented in the Covington algorithm improves over
the accuracy of the static version on all datasets
except Japanese and Swedish, and most improve-
ments are statistically significant at the .05 level.3

In addition, the Covington dynamic oracle
achieves a greater average improvement in ac-
curacy than the Attardi dynamic oracle (Gómez-
Rodrı́guez et al., 2014) over their respective static
versions. Concretely, the Attardi oracle accom-
plishes an average improvement of 0.52 percent-

3Note that the loss of accuracy in Japanese and Swedish
is not statistically significant.

s-Covington d-Covington
Language UAS LAS UAS LAS
Arabic 80.03 71.32 81.47∗ 72.77∗
Basque 75.76 69.70 76.49∗ 70.27∗
Catalan 88.66 83.92 89.28 84.26
Chinese 83.94 79.59 84.68∗ 80.16∗
Czech 77.38 71.21 78.58∗ 72.59∗
English 84.64 83.72 86.14∗ 84.96∗
Greek 79.33 72.65 80.52∗ 73.67∗
Hungarian 77.70 74.32 78.22 74.61
Italian 83.39 79.66 83.66 79.91
Turkish 82.14 76.00 82.38 76.15
Bulgarian 87.68 84.55 88.48∗ 85.32∗
Danish 84.07 79.99 84.98∗ 80.85∗
Dutch 80.28 77.55 81.17∗ 78.54∗
German 86.12 83.93 87.47∗ 85.15∗
Japanese 93.92 92.51 93.79 92.42
Portuguese 85.70 82.78 86.23 83.27
Slovene 75.31 68.97 76.76∗ 70.35∗
Spanish 78.82 75.84 79.87∗ 76.97∗
Swedish 86.78 81.29 86.66 81.21
Average 82.72 78.39 83.52 79.13

Table 2: Parsing accuracy (UAS and LAS, in-
cluding punctuation) of Covington non-projective
parser with static (s-Covington) and dynamic (d-
Covington) oracles on CoNLL-XI (first block) and
CoNLL-X (second block) datasets. For each lan-
guage, we run five experiments with the same
setup but different seeds and report the averaged
accuracy. Best results for each language are shown
in boldface. Statistically significant improvements
(α = .05) (Yeh, 2000) are marked with ∗.

age points in UAS and 0.71 in LAS, while our ap-
proach achieves 0.80 in UAS and 0.74 in LAS.

5 Conclusion

We have defined the first dynamic oracle for
a transition-based parser supporting unrestricted
non-projectivity. The oracle is very efficient, com-
puting loss in O(n), compared to O(n8) for the
only previously known dynamic oracle with sup-
port for a subset of non-projective trees (Gómez-
Rodrı́guez et al., 2014).

Experiments on the treebanks from the CoNLL-
X and CoNLL-XI shared tasks show that the dy-
namic oracle significantly improves accuracy on
many languages over a static oracle baseline.
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Abstract

We present a novel solution to improve
the performance of Chinese word seg-
mentation (CWS) using a synthetic word
parser. The parser analyses the inter-
nal structure of words, and attempts to
convert out-of-vocabulary words (OOVs)
into in-vocabulary fine-grained sub-words.
We propose a pipeline CWS system that
first predicts this fine-grained segmenta-
tion, then chunks the output to recon-
struct the original word segmentation stan-
dard. We achieve competitive results on
the PKU and MSR datasets, with substan-
tial improvements in OOV recall.

1 Introduction

Since Chinese has no spaces between words to in-
dicate word boundaries, Chinese word segmenta-
tion is a task to determine word boundaries be-
tween characters. In recent years, research in Chi-
nese word segmentation has progressed signifi-
cantly, with state-of-the-art performing at around
96% in precision and recall (Xue, 2003; Zhang
and Clark, 2007; Li and Sun, 2009).

However, frequent OOVs are still a crucial issue
that causes low accuracy in word segmentation.
Li and Zhou (2012) defined those words that are
OOVs but consisting of frequent internal parts as
pseudo-OOV words and estimated that over 60%
of OOVs are pseudo-OOVs in five common Chi-
nese corpora. For instance, PKU corpus does not
contain the word陈列室 (exhibition room), even
though the word陈列 (exhibit) and室 (room) ap-
pear hundreds of times. Goh et al. (2006) also
claimed that most OOVs are proper nouns taking
the form of Chinese synthetic words.

These previous works suggest that by analysing
the internal structure of the synthetic words, we
can transform pseudo-OOVs into in-vocabulary

words (IVs). By running a synthetic word parser
on each of the words in a CWS training set, we can
generate a fine-grained segmentation standard that
contains more IVs. Since the current conditional
random field (CRF) word segmenters (Tseng et al.,
2005; Sun and Xu, 2011) perform well on IVs, this
transforming process can conceivably improve the
handling of pseudo-OOV words, as long as we can
recover the original word segmentation standard
from the fine-grained sub-word segmentation.

In recent years, some related works about im-
proving OOV problem in CWS have been ongo-
ing. Sun et al. (2012) presented a joint model for
Chinese word segmentation and OOVs detection.
Their models achieved fast training speed, high ac-
curacies and increase on OOV recall. Sun (2011)
proposed a similar sub-word structure which is
generated by merging the segmentations provided
by different segmenters (a word-based segmenter,
a character-based segmenter and a local character
classifier). However, her models does not predict
the sub-words of all the synthetic words, but those
words with different segmented results of the three
segmenters. Her work maximizes the agreement
of different models to improve CWS performance.
Different from her work, we aim to provide an uni-
fied way to incorporate morphological information
of the synthetic words into the CWS task.

In this paper, we propose a pipeline word seg-
mentation system to address the pseudo-OOV
problem. Our word segmentation system first con-
verts the original training data into a fine-grained
standard by parsing all words with a synthetic
word parser (Section 2.1), then trains a CRF-
based sub-word segmenter (Section 2.2). A sec-
ond CRF chunker is trained to recover the origi-
nal word segmentation given the fine-grained re-
sults of the first CRF. The intuition is that fine-
grained sub-word segmentations resolve pseudo-
OOVs into IVs, which are easier to predict cor-
rectly by the first CRF. Secondly, by training an-
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other CRF that predicts the original word segmen-
tation given the fine-grained segmentation as in-
put, we can recover the fine-grained output into
original word segmentation standard (Section 2.3).
The flow chart of our word segmentation system is
shown in Figure 1.

Synthetic Word 
Parser

CRF-Based Word 
Segmenter

CRF-Based 
Chunking Model

Testing Data

NoTraining

Training Data

Training Data  
(fine-grained)

Training

Fine-grained 
Output

Original 
Standard Output

Figure 1: The Flow Chart of the Chinese Word
Segmentation System.

2 System Components

2.1 Synthetic Word Parser

Intuitively, Chinese synthetic words contain inter-
nal morphological information that is helpful to
recognize OOVs. Cheng et al. (2014) proposed
a character-based parser to parse the internal tree
structure of words. For instance, the tree and flat
segmented result of the word 市政府 (munici-
pal government) are shown in Figure 2. In this
work, we train a graph-based parser (McDonald,
2006) on the data released by Cheng et al. (2014)
and include the dictionary (NAIST Chinese Dic-
tionary1) features and Brown clustering features
extracted from a large unlabeled corpus (Chinese
Gigaword Second Edition2) as described in Cheng
et al. (2014).

For native Chinese speakers, single character
and two character words are usually treated as the

1http://cl.naist.jp/index.php?%B8%F8%B3%AB%A5%E
A%A5%BD%A1%BC%A5%B9%2FNCD

2https://catalog.ldc.upenn.edu/LDC2005T14

smallest units. In this work, we parse all the words
in the PKU and MSR training data with character
length greater than two. By replacing the words
with the flat segmented results, we convert the
training data into a fine-grained word segmenta-
tion standard as shown in Figure 3.

Figure 2: The Tree Structure of a Sample Word
and the Flat Segmented Result.

Original 市政府 /办公厅 /等 /单位
CWS tags B I E / B I E / S / B E

Fine-grained 市 /政府 /办公 /厅 /等 /单位
CWS tags S / B E / B E / S / S / B E

Figure 3: A Sample Sentence of Labeling Chinese
word segmentation tags on the Original and Fine-
grained Standard. In this work, we adopt 4-tag set
for word segmentation. ”B” denotes the beginning
character of a word. ”I” denotes the middle char-
acter of a word. ”E” denotes the end character of
a word. ”S” denotes a single character word.

2.2 CRF-based Word Segmenter

Xue et al. (2003) proposed a method which treated
Chinese word segmentation as a character-based
sequential labeling problem and exploited sev-
eral discriminative learning algorithms. Tseng
et al. (2005) adopted the CRFs as the learning
method and obtained the best results in the second
international Chinese word segmentation bakeoff-
2005. Moreover, Sun and Xu (2011) attempted to
extract information from large unlabeled data to
enhance the Chinese word segmentation results.

In this work, we train a traditional CRF-based
supervised model on the fine-grained training data,
include the dictionary (NAIST Chinese Dictio-
nary) features and access variety features extracted
from a large unlabeled corpus (Chinese Giga-
word Second Edition) as described in Sun and
Xu (2011).
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2.3 CRF-based Chunking Model

In order to obtain the word segmentation result
with original word segmentation standard, we
train a CRF-based chunking model on the original
and fine-grained training data. We show a sam-
ple sentence of labeling chunking tags in Figure 4.
Comparing two sentences, we label all common
units with the tag ”S”. The words市 and政府 are
tagged as ”B” and ”E”, since 市 is the beginning
part of the synthetic word市政府 and政府 is the
ending part. In the chunking process, the frequent
prefix市 is coordinated with neighbouring units to
compose the synthetic word市政府.

For each labeling, we include previous, current
and next word as the features for the chunking
model.

Original 市政府 /办公厅 /等 /单位
Fine-grained 市 /政府 /办公 /厅 /等 /单位

Chunking tags B / E / B / E / S / S

Figure 4: A Sample Sentence of Labeling Chunk-
ing Tags. In this work, we adopt 4-tag set for
chunking. ”B” denotes the beginning part of a syn-
thetic word. ”I” denotes the middle part. ”E” de-
notes the end part. ”S” denotes a single word.

3 Experiments

3.1 Settings

Cheng et al. (2014) released a dictionary of
31,849 synthetic words with internal structure an-
notated. Since transliteration words (e.g. 贝克
汉姆 Becham) exist in Chinese, our synthetic
word parser should perform well not only on syn-
thetic words but also on transliteration words.
We extracted 6,574 transliteration words from the
NAIST Chinese Dictionary and automatically as-
signed flat structures for these words. As a result,
we obtained 38,423 words as the training data for
our parser.

The second international Chinese word seg-
mentation bakeoff-2005 provided two annotated
simplified Chinese corpora: PKU and MSR. We
conducted all word segmentation experiments on
these two corpora.

We used CRF++3 (version 0.58) as the imple-
mentation of CRFs in our experiments with the de-
fault regularization algorithm L2.

3The CRF++ package can be found in the following web-
site: http://taku910.github.io/crfpp/

3.2 Word Segmentation Results

Table 1 summarizes the word segmentation re-
sults on PKU and MSR corpora. For compari-
son, we give a baseline result by training a CRF
word segmenter on the original PKU and MSR
data sets with the same features. Our proposed
system is expected to improve the word segmen-
tation performance on pseudo-OOVs. Compared
to the baseline, there are significant increases on
OOV recall from 0.792 to 0.822 on PKU and 0.682
to 0.717 on MSR. We also evaluated the pseudo-
OOV recall and observed 4% increases from the
baseline to the proposed system. Our proposed
system achieves higher F-score with 0.961 on
PKU and 0.971 on MSR. Comparing to other sys-
tems, our proposed method obtains the state-of-
the-art F-score as the results of Zhang et al. (2013)
who extracted dynamic statistical features from
both in-domain and out-domain corpus and our
OOV recall significantly outperforms theirs with
a 9% lead. In MSR, we obtain very close OOV
recall and slightly lower F-score than the state-of-
the-art system (Sun et al., 2009), which adopted a
latent variable CRF model. However, our system
significantly outperforms their system in PKU. In
both corpora, our proposed system outperforms
the best ”Bakeoff-2005” results.

We also test the statistical significance of the
results by using the criterion (Sproat and Emer-
son, 2003; Emerson, 2005). The 95% confidence
interval is given as ±2

√
p(1− p)/n, where n is

the number of words in the test data. They treat
two systems as significantly different (at the 95%
confidence level), if at least one of their precision-
based confidences ”Cp” or recall-based ”Cr” are
different. As the results shown in Table 2, the
baseline and proposed method are significantly
different on precision and recall in both PKU and
MSR corpus. In conclusion, our proposed method
significantly outperforms the baseline.

3.3 Additional Experiments

We conducted additional experiments to evaluate
the performance of the synthetic word parser and
CRF-based chunking model.

First, we are interested in how much parsing ac-
curacy is needed for good results. Figure 5 dis-
plays the OOV recall results of our word segmen-
tation system when the synthetic word parser is
trained with amounts of labeled synthetic words
data. As the data size increases, our word segmen-
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System
PKU MSR

P R F Roov Rpseudo P R F Roov Rpseudo

Baseline 0.957 0.960 0.959 0.792 0.797 0.971 0.968 0.970 0.682 0.689
Proposed method 0.960 0.962 0.961 0.822 0.838 0.972 0.970 0.971 0.717 0.73
Zhang et al. (2013) 0.965 0.958 0.961 0.731 - - - - - -
Sun et al. (2009) 0.956 0.948 0.952 0.778 - 0.973 0.973 0.973 0.722 -
Bakeoff-2005 0.953 0.946 0.950 0.636 - 0.962 0.966 0.964 0.717 -

Table 1: Comparison of the Proposed Method to the Baseline and Previous works on PKU and MSR
Corpora. Here, ”Rpseudo” denotes the recall of pseudo-OOV words. ”Bakeoff-2005” denotes the best
results of the second international Chinese word segmentation bakeoff-2005 on two corpora. Since
we use extra resources and our proposed method replies on the synthetic word parser trained on an
dictionary with internal structure annotated, the results cannot be directly compared with the state-of-
the-art systems.

System
PKU MSR

Words P Cp R Cr Words P Cp R Cr

Baseline 104372 0.957 ±0.00126 0.960 ±0.00121 106873 0.971 ±0.00103 0.968 ±0.00108
Proposed 104372 0.960 ±0.00121 0.962 ±0.00118 106873 0.972 ±0.00101 0.970 ±0.00104

Table 2: The Statistical Significance Test of the Word Segmentation Results on PKU and MSR Corpora.

tation system obtains consistent gains on OOV re-
call on both corpora. On the whole 38K words
training data, our system reaches the highest OOV
recall. An interesting observation is that the OOV
recall on MSR is more sensitive on data size
changing. The main reason is the different anno-
tation standard of the two corpus. PKU is a cor-
respondingly fine-grained annotated corpus with
shorter average word length than MSR. Our syn-
thetic word parser reaches high parsing accuracy
on short length words (three-character and four-
character words) even with a small training data
size. With the increase of word length, the parser
needs more training data. These factors cause that
our system reaches high OOV recall on PKU start-
ing from a small training data size and obtains
more OOV recall gains on MSR when increasing
the training data size.

Our pipeline system adopts a chunking model
to recover the original standard from the fine-
grained standard. One question is how difficult
is this task. Unfortunately, we do not have the
gold fine-grained input to evaluate the perfor-
mance of our chunking model directly; i.e. it is
not clear whether a segmentation error is due to
mis-predictions in the first or second CRF. There-
fore, we use the synthetic word parser to parse all
the words in the gold testing data and generate an
artificial gold fine-grained input for the chunking
model. This data keeps the original word bound-
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Figure 5: The OOV Recall Evaluation and
the Character Labeled Accuracy (5-fold cross-
validation) of the Synthetic Word Parser on Train-
ing Data Size.

aries and can be used to observe the chunking per-
formance. Table 3 shows that the chunking model
on the artificial data obtains a 0.822 to 0.847 im-
provement in OOV recall. We can interpret this
to mean that 0.025 improvement is possible if the
first CRF was perfect; on the other hand, the gap
between 0.847 and 1.0 shows that potentially the
second CRF is a harder task. However, the real
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gap is less for the lose of the parsing step and the
existence of non-pseudo OOVs.

System
PKU MSR

F Roov F Roov

Proposed 0.961 0.822 0.971 0.717
Artifical gold 0.965 0.847 0.973 0.743

Table 3: The Word Segmentation evaluation of
the Chunking Model. ”Artificial gold” denotes
the word segmentation result when the chunking
model runs on the artificial gold input.

3.4 Analysis
As we expected, the proposed method obtains sig-
nificant improvement on OOV recall. In both cor-
pora, we observed a number of OOVs are seg-
mented correctly. For instance,管理法 (manage-
ment law) is an OOV word in PKU corpus. In this
word,管理 (management) appears frequently and
法 (law) is a common suffix in Chinese synthetic
words, such as行政法 (administrative law) or国
际法 (international law). This type of pseudo-
OOVs share a major contribution to upgrade the
system performance. We also observed that some
polysemous words bring ambiguities to the chunk-
ing step. The character 会 carries the meanings
”will” as an auxiliary verb or ”meeting” in a syn-
thetic word运动会 (sports meeting).

4 Conclusion

In this paper, we presented a series processes to
reduce OOV rate and extract morphological infor-
mation inside Chinese synthetic words on a fine-
grained word segmentation standard. As a result,
we can improve the Chinese word segmentation
performance (especially on pseudo-OOVs) with-
out introducing any new feature types. Our pro-
posed method achieved the state-of-the-art F-score
and OOV recall on two common corpus PKU and
MSR. However, note that we only exploited the
flat segmented results of internal word structure
here. As future work, we plan to exploit the full
tree structure of synthetic words to improve not
only CWS but also additional downstream tasks
such as sentence parsing.
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Abstract

We present a simple method for learning
part-of-speech taggers for languages like
Akawaio, Aukan, or Cakchiquel – lan-
guages for which nothing but a translation
of parts of the Bible exists. By aggre-
gating over the tags from a few annotated
languages and spreading them via word-
alignment on the verses, we learn POS
taggers for 100 languages, using the lan-
guages to bootstrap each other. We eval-
uate our cross-lingual models on the 25
languages where test sets exist, as well as
on another 10 for which we have tag dic-
tionaries. Our approach performs much
better (20-30%) than state-of-the-art unsu-
pervised POS taggers induced from Bible
translations, and is often competitive with
weakly supervised approaches that assume
high-quality parallel corpora, representa-
tive monolingual corpora with perfect to-
kenization, and/or tag dictionaries. We
make models for all 100 languages avail-
able.

1 Introduction

Most previous work in cross-lingual NLP has been
limited to training and evaluating on no more than
a dozen languages, typically all from the major
Indo-European languages. While it has been ob-
served repeatedly that using multiple source lan-
guages improves performance (Yarowsky et al.,
2001; Yarowsky and Ngai, 2001; Fossum and Ab-
ney, 2005; McDonald et al., 2011), most avail-
able techniques work best for closely related lan-
guages.

In contrast, this paper presents an effort to learn
POS taggers for truly low-resource languages,
with minimum assumptions about the available
language resources. Most low-resource languages

are non-Indo-European, and typically, their typo-
logical and geographic neighbors have sparse re-
sources as well. However, for a surprisingly large
number of languages, translations of the Bible (or
parts of it) exist. Due to the canonical nature and
the verse format, these translations are viable par-
allel data, albeit lacking annotation. In our exper-
iments, we use word alignments across all pairs
of 100 parallel Bible translations to bootstrap an-
notation projections for those languages without
any (even just weakly) supervised taggers. The
projections provide both pseudo-annotated data as
well as tag dictionaries for all languages. We use
both resources to train semi-supervised POS tag-
gers following Garrette and Baldridge (2013).

Our contributionWe present a novel approach to
learning POS taggers for truly low-resource lan-
guages, where only a translation of (parts of) the
Bible is available. We obtain results competi-
tive with approaches that assume the availability
of larger volumes of more representative paral-
lel corpora, perfectly tokenized monolingual cor-
pora, and/or tag dictionaries for the target lan-
guages. Additionally, we make the POS tagging
models for 100 languages publicly available and
extend the mappings in Petrov et al. (2011) for six
new languages (Hindi, Croatian, Icelandic, Nor-
wegian, Persian, and Serbian). The models, map-
pings, as well as a complete list of all the re-
sources used in these experiments, are available at
https://bitbucket.org/lowlands/.

2 Experiments
Our approach is a combination of simple tech-
niques. Part of the process is depicted in Figure 1,
and the algorithm is presented in Algorithm 1. As-
sume we have n languages for which we assume
the availability of m verses of the Bible. We run
IBM-21 on all n(n − 1) pairs of languages. As-
sume also manually POS-annotated training data

1
github.com/clab/fast_align
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l1 … EN HR DE … ln
…

versej

…

U početku bijaše Riječ

Am Anfang war das Wort
ADP NOUN VERB DET NOUN

ADP DET NOUN VERB DET NOUN
In the beginning was the word

HR EN DE … voted confidence
U ADP ADP … ADP 0.8667

početku NOUN, DET NOUN … NOUN 0.7448

bijaše VERB VERB … VERB 0.8560

Riječ DET, NOUN DET, NOUN … NOUN 0.6307

Figure 1: An illustration of our approach.

is available for the first k of these languages. We
then run taggers for these languages on the corre-
sponding translations of the Bible to predict tags
for all tokens in these translations.

We can think of this partially annotated multi-
parallel corpus as a tensor object. Each column
is a language li, and each row a verse vj (triv-
ially sentence-aligned to the corresponding verses
in the other columns). In each cell of this ma-
trixM(i, j, ·), we have a sequence of word tokens.
For two languages, l1 and l2, the word tokens in
M(1, j, ·) can be aligned (by IBM-2) to multiple
word tokens in M(2, j, ·), but not all words need
to be aligned.

After running supervised POS taggers on the
k languages for which we have training data, we
have POS-annotated the word tokens in k columns
of our tensor object. We then project the POS
tag of each word token w to all other word tokens
aligned to w. In our experiments, k = 17 or 18 (if
the target language is not one of the languages for
which we have training data), which means each
word token will potentially have many POS tags
projected onto it. Note that the number of tags can
exceed 18, since many-to-many word alignments
are allowed.

We now use these projections to train POS tag-
gers for the remaining n − k languages. We
use aggregated projected annotations as token-
level supervision. We aggregate from the incom-
ing projected POS tags by majority voting. We
also use the complete set of projections onto each

word type in the target language as a type-level
tag dictionary. We combine the tag dictionary
and the token-level projections to train discrimina-
tive, type-constrained POS taggers (Collins, 2002;
Täckström et al., 2013). Below we refer to these
POS taggers as using k sources (k-SRC).

These n many POS taggers can now also be
used to obtain predictions for all word tokens in
our tensor object. This corresponds to doing the
second loop over lines 8–17 in Algorithm 1. For
each of our n languages, we thus complete the ten-
sor by projecting tags into word tokens from the
n − 1 remaining source languages. For the k su-
pervised languages, we project the tags produced
by the supervised POS taggers rather than the tags
obtained by projection. We can then train our fi-
nal POS taggers for all n languages – 100, in our
case – using projections from 99 languages (n-1-
SRC). Note that we also train projected taggers for
those languages for which we have annotated data.
This is to enable us to evaluate our methodology
on more languages.

Algorithm 1 Train n taggers with supervision for
k
1: Let M be a tensor with M(i, j, ·) the word-aligned token

sequence in the jth verse of the Bible in language i
2: for i ≤ k do
3: Train TNT tagger for li using manually annotated data
4: for j ≤ m do
5: Obtain POS predictions for M(i, j, ·)
6: end for
7: end for
8: for I ∈ {0, 1} do
9: if i > k, I = 1 then

10: Train TNT tagger for li using projected annota-
tions in M(i, ·, ·)

11: end if
12: Populate M(i, ·, ·) by propagating tags across align-

ments
13: for i ≤ n do
14: Use majority voting to obtain one tag per word
15: Obtain type-level tag dictionary from all the data
16: Train TNT/GAR tagger for li using projected an-

notations in M(i, ·, ·) and tag dictionary
17: end for
18: end for

DataWe use the 100 translations of (parts of) the
Bible available as part of the Edinburgh Multi-
lingual Parallel Bible Corpus (Christodouloupou-
los and Steedman, 2014).2 This dataset includes
translations into languages such as Akawaio,
Aukan or Cakchiquel. The majority of these lan-
guages are non-Indoeuropean, and 39 of them
have less than one million speakers. For 54 of

2
homepages.inf.ed.ac.uk/s0787820/bible/
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UNSUPERVISED UPPER BOUNDS

BASELINES OUR SYSTEMS WEAKLY SUP SUPERVISED

OOV BROWN 2HMM TNT-k-SRC TNT-n-1-SRC GAR-k-SRC GAR-n-1-SRC DAS LI GAR TNT

bul YT 31.8 54.5 71.8 78.0 77.7 75.7 75.7 - - 83.1 96.9
ces YT 44.3 51.9 66.3 71.7 73.3 70.9 71.4 - - - 98.7
dan YT 28.6 58.6 69.6 78.6 79.0 73.7 73.3 83.2 83.3 78.8 96.7
deu YT 36.8 45.3 70.0 80.5 80.2 77.6 77.6 82.8 85.8 87.1 98.1
eng YT 38.0 58.2 62.6 72.4 73.0 72.2 72.6 - 87.1 80.8 96.7

eus NT 64.6 46.0 41.6 63.4 62.8 57.3 56.9 - - 66.9 93.7
fra YT 26.1 42.0 76.5 76.1 76.6 78.6 80.2 - - 85.5 95.1
ell YT 63.7 43.0 49.8 51.9 52.3 57.9 59.0 82.5 79.2 64.4 -
hin Y 36.1 59.5 69.2 70.9 67.6 70.8 71.5 - - - -
hrv Y 34.7 52.8 65.6 67.8 67.1 67.2 66.7 - - - -

hun YT 41.2 45.9 57.4 70.0 70.4 71.3 72.0 - - 77.9 95.6
isl Y 19.7 42.6 65.9 70.6 69.0 68.7 68.3 - - - -
ind YT 29.4 52.6 73.1 76.6 76.8 74.9 76.0 - - 87.1 95.1
ita YT 24.0 45.1 78.3 76.5 76.9 78.5 79.2 86.8 86.5 83.5 95.8
plt Y 35.0 48.9 44.3 56.4 56.6 62.0 64.6 - - - -

mar Y 33.0 55.8 45.8 52.0 52.9 52.8 52.3 - - - -
nor YT 27.5 56.1 73.0 77.0 76.7 75.4 76.0 - - 84.3 97.7
pes Y 33.6 57.9 61.5 59.3 59.6 59.1 60.8 - - - -
pol YT 36.4 52.2 68.7 75.6 75.1 70.8 74.0 - - - 95.7
por YT 27.9 54.5 74.3 82.9 83.8 81.1 82.0 87.9 84.5 87.3 96.8

slv Y 15.8 42.1 78.1 79.5 80.5 68.7 70.1 - - - -
spa YT 21.9 52.6 47.3 81.1 81.4 82.6 82.6 84.2 86.4 88.7 96.2
srp Y 41.7 59.3 47.3 69.6 69.2 67.9 67.2 - - - 94.7
swe YT 31.5 58.5 68.4 74.7 75.2 71.4 71.9 80.5 86.1 76.1 94.7
tur YT 41.6 53.7 46.8 60.5 61.3 56.5 57.9 - - 72.2 89.1

average ≤ 50 52.2 64.4 72.1 72.2 70.8 71.5

Table 1: Results on 25 test languages. Y=entire Bible available. N=only New Testament available.
T=manually annotated data available for training (but not used to obtain results for the language itself).
Unsupervised baselines are evaluated using optimal 1:1 mappings.

these languages, we have a translation of the entire
Bible. For 42, we only have the New Testament,
and for the remaining four we only have parts of
the New Testament. We note that Bible trans-
lations typically have fewer POS-unambiguous
words than newswire (Christodouloupoulos and
Steedman, 2014). We also note that in rare cases
sentences span multiple verses, which means, we
sometimes train POS taggers on partial sentences.
See Christodouloupoulos and Steedman (2014)
for further discussion of the resource. Most of
the manually annotated resources were obtained
from the CoNLL 2006-2007 releases of various
treebanks, the NLTK corpora, the HamleDT re-
sources, and the Universal Dependencies project.
We provide a complete overview of the resources
at https://bitbucket.org/lowlands/

ModelsWe train TNT POS taggers (Brants, 2000)
using only token-level projections. We also train
semi-supervised POS taggers using the approach
in Garrette and Baldridge (2013) (GAR), using
both projections and dictionaries, as well as the
unlabelled Bible translations.3 We use the English
data as development data. We train TNT and GAR

3
github.com/dhgarrette/

low-resource-pos-tagging-2014/

using k or n− 1 source languages, leading to four
taggers in total.

Baselines Our baselines are two standard unsu-
pervised POS induction algorithms: Brown clus-
tering using the implementation by Percy Liang4

and second-order unsupervised HMMs using lo-
gistic regression for emission probabilities (Berg-
Kirkpatrick et al., 2010; Li et al., 2012), with and
without our Bible tag dictionaries.5

Upper bounds The weakly supervised system
in Das and Petrov (2011) (DAS) relies on larger
volumes of more representative and perfectly tok-
enized parallel data than we assume, as well as a
representative sample of unlabeled data. Such data
is simply not available for many of the languages
considered here. The weakly supervised system in
Li et al. (2012) (LI) also relies on crowd-sourced
type-level tag dictionaries, not available for most
of the languages of concern to us. We present their
reported results. Finally, we train the two base
POS taggers (GAR and TNT) on the manually an-
notated data available for 17 of our languages, to
be able to compare against state-of-the-art perfor-
mance of supervised POS taggers.

4
github.com/percyliang/brown-cluster

5
code.google.com/p/wikily-supervised-pos-tagger/
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Results Our results on the 25 test languages are
consistently better than the unsupervised base-
lines, with the exceptions of Marathi and Persian,
and by a very large margin. Our average per-
formance across the languages with OOV rates
smaller than 50% is above 70%. While previous
papers on weakly supervised POS tagging (e.g.,
DAS and LI) have presented slightly better results
for the small set of Indo-European languages in
the CoNLL 2006–7 shared tasks, we emphasize
again that our set-up requires fewer resources and
does not rely on perfectly tokenized training data.
Our parallel data also suffers from a severe, but
more realistic domain bias. Note that doing the
second round of projections (n-1-SRC) often im-
proves performance by about a percentage point,
but this improvement is not consistent across lan-
guages. We observe that most errors are due to
our systems predicting too many nouns. Note that
for the two languages with underlined OOV rates
(≥ 50), performance is very low. This is due to
differences in orthography and tokenization. We
leave out those results in the averages, but leave
them in the results table.

To evaluate on more low-resource languages,
we also extracted tag dictionaries from Wik-
tionary for another 10 languages, from Afrikaans
to Swahili. Figure 2 presents the type-level in-
vocabulary tag errors of the projected tags in the
Bible. This figure is similar to the ones used in
Li et al. (2012). We also computed token-level ac-
curacies, where every tag assignment licensed by
Wiktionary counts as correct. For three languages,
results were 80-90%: Afrikaans, Lithuanian, and
Russian. For another three languages, results were
50-70%: Hebrew, Romanian, and Swahili. Results
were 35-50% for the remaining four languages:
Latin, Maori, Albanian, and Ewe.

3 Related work
The Bible has been used as a resource for ma-
chine translation and multi-lingual information
retrieval before, e.g., (Chew et al., 2006). It
has also been used in cross-lingual POS tagging
(Yarowsky et al., 2001; Fossum and Abney, 2005),
NP-chunking (Yarowsky et al., 2001; Yarowsky
and Ngai, 2001) and cross-lingual dependency
parsing (Sukhareva and Chiarcos, 2014) before.
Yarowsky et al. (2001) and Fossum and Abney
(2005) use word-aligned parallel translations of
the Bible to project the predictions of POS taggers
for several language pairs, including English,
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Figure 2: Type-level in-vocabulary tag errors as
the percentage of word types assigned a set of tags
that is disjoint, identical to, overlaps, is a subset,
or is a superset of the Wiktionary tags.

German, and Spanish to Czech and French. The
resulting annotated target language corpora enable
them to train POS taggers for these languages.
Yarowsky and Ngai (2001) showed similar results
using just the Hansards corpus on English to
French and Chinese. Our work is inspired by
these approaches, yet broader in scope on both the
source and target side.

Das and Petrov (2011) use word-aligned text
to automatically create type-level tag dictionaries.
Earlier work on building tag dictionaries from
word-aligned text includes Probst (2003). Their
tag dictionaries contain target language trigrams
to be able to disambiguate ambiguous target
language words. To handle the noise in the
automatically obtained dictionaries, they use label
propagation on a similarity graph to smooth and
expand the label distributions. Our approach is
similar to theirs in using projections to obtain
type-level tag dictionaries, but we keep the token
supervision and type supervision apart and end up
with a model more similar to that of Täckström
et al. (2013), who combine word-aligned text
with crowdsourced type-level tag dictionaries.
Täckström et al. (2013) constrain Viterbi search
via type-level tag dictionaries, pruning all tags
not licensed by the dictionary. For the remaining
tags, they use high-confidence word alignments
to further prune the Viterbi search. We follow
Täckström et al. (2013) in using our automatically
created, not crowdsourced, tag dictionaries to
prune tags during search, but we use word align-
ments to obtain token-level annotations that we
use as annotated training data, similar to Fossum
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and Abney (2005), Yarowsky et al. (2001), and
Yarowsky and Ngai (2001).

Duong et al. (2013) use word-alignment
probabilities to select training data for their
cross-lingual POS models. They consider a
simple single-source training set-up. We also tried
ranking projected training data by confidence,
using an ensemble of projections from 17–99
source languages and majority voting to obtain
probabilities for the token-level target-language
projections, but this did not lead to improvements
on the English development data.

4 Conclusions
We present a novel approach to learning POS
taggers, assuming only that parts of the Bible are
available for the target language. Our approach
combines annotation projection, bootstrapping,
and label propagation to learn POS taggers that
perform significantly better than unsupervised
baselines, and often competitive to state-of-the-art
weakly supervised POS taggers that assume more
and better resources are available.

Acknowledgements
This research is funded by the ERC Starting Grant
LOWLANDS No. 313695.

References
Taylor Berg-Kirkpatrick, Alexandre Bouchard-Cote,

John DeNero, , and Dan Klein. 2010. Painless un-
supervised learning with features. In Proceedings of
NAACL.

Thorsten Brants. 2000. Tnt: a statistical part-of-
speech tagger. In ANLP.

Peter Chew, Steve Verzi, Travis Bauer, and Jonathan
McClain. 2006. Evaluation of the bible as a re-
source for cross-language information retrieval. In
ACL Workshop on n Multilingual Language Re-
sources and Interoperability.

Cristos Christodouloupoulos and Mark Steedman.
2014. A massively parallel corpus: the bible in 100
languages. Language Resources and Evaluation.

Michael Collins. 2002. Discriminative Training Meth-
ods for Hidden Markov Models: Theory and Exper-
iments with Perceptron Algorithms. In EMNLP.

Dipanjan Das and Slav Petrov. 2011. Unsupervised
part-of-speech tagging with bilingual graph-based
projections. In ACL.

Long Duong, Paul Cook, Steven Bird, and Pavel
Pecina. 2013. Simpler unsupervised pos tagging
with bilingual projections. In Proceedings of ACL.

Victoria Fossum and Steven Abney. 2005. Automati-
cally inducing a part-of-speech tagger by projecting
from multiple source languages across aligned cor-
pora. In IJCNLP.

Dan Garrette and Jason Baldridge. 2013. Learning a
part-of-speech tagger from two hours of annotation.
In NAACL.

Shen Li, João Graça, and Ben Taskar. 2012. Wiki-ly
supervised part-of-speech tagging. In EMNLP.

Ryan McDonald, Slav Petrov, and Keith Hall. 2011.
Multi-source transfer of delexicalized dependency
parsers. In EMNLP.

Slav Petrov, Dipanjan Das, and Ryan McDonald.
2011. A universal part-of-speech tagset. CoRR
abs/1104.2086.

Katharina Probst. 2003. Using ‘smart’ bilingual pro-
jection to feature-tag a monolingual dictionary. In
CoNLL.

Maria Sukhareva and Christian Chiarcos. 2014. Di-
achronic proximity vs. data sparsity in cross-lingual
parser projection. In COLING Workshop on Apply-
ing NLP Tools to Similar Languages, Varieties and
Dialects.
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Abstract

Distant supervision is a widely applied ap-
proach to automatic training of relation
extraction systems and has the advantage
that it can generate large amounts of la-
belled data with minimal effort. How-
ever, this data may contain errors and
consequently systems trained using dis-
tant supervision tend not to perform as
well as those based on manually labelled
data. This work proposes a novel method
for detecting potential false negative train-
ing examples using a knowledge inference
method. Results show that our approach
improves the performance of relation ex-
traction systems trained using distantly su-
pervised data.

1 Introduction

Distantly supervised relation extraction relies on
automatically labelled data generated using infor-
mation from a knowledge base. A sentence is
annotated as a positive example if it contains a
pair of entities that are related in the knowledge
base. Negative training data is often generated us-
ing a closed world assumption: pairs of entities not
listed in the knowledge base are assumed to be un-
related and sentences containing them considered
to be negative training examples. However this as-
sumption is violated when the knowledge base is
incomplete which can lead to sentences containing
instances of relations being wrongly annotated as
negative examples.

We propose a method to improve the quality of
distantly supervised data by identifying possible
wrongly annotated negative instances. Our pro-
posed method includes a version of the Path Rank-
ing Algorithm (PRA) (Lao and Cohen, 2010; Lao
et al., 2011) which infers relation paths by com-
bining random walks though a knowledge base.

We use this knowledge inference to detect possi-
ble false negatives (or at least entity pairs closely
connected to a target relation) in automatically la-
belled training data and show that their removal
can improve relation extraction performance.

2 Related Work

Distant supervision is widely used to train relation
extraction systems with Freebase and Wikipedia
commonly being used as knowledge bases, e.g.
(Mintz et al., 2009; Riedel et al., 2010; Krause
et al., 2012; Zhang et al., 2013; Min et al., 2013;
Ritter et al., 2013). The main advantage is its
ability to automatically generate large amounts of
training data automatically. On the other hand,
this automatically labelled data is noisy and usu-
ally generates lower performance than approaches
trained using manually labelled data. A range of
filtering approaches have been applied to address
this problem including multi-class SVM (Nguyen
and Moschitti, 2011) and Multi-Instance learn-
ing methods (Riedel et al., 2010; Surdeanu et al.,
2012). These approaches take into account the fact
that entities might occur in different relations at
the same time and may not necessarily express the
target relation. Other approaches focus directly on
the noise in the data. For instance Takamatsu et al.
(2012) use a generative model to predict incorrect
data while Intxaurrondo et al. (2013) use a range
of heuristics including PMI to remove noise. Au-
genstein et al. (2014) apply techniques to detect
highly ambiguous entity pairs and discard them
from their labelled training set.

This work proposes a novel approach to the
problem by applying an inference learning method
to identify potential false negatives in distantly la-
belled data. Our method makes use of a modi-
fied version of PRA to learn relation paths from a
knowledge base and uses this information to iden-
tify false negatives.
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3 Data and Methods

We chose to apply our approach to relation ex-
traction tasks from the biomedical domain since
this has proved to be an important problem within
these documents (Jensen et al., 2006; Hahn et al.,
2012; Cohen and Hunter, 2013; Roller and Steven-
son, 2014). In addition, the first application of dis-
tant supervision was to biomedical journal articles
(Craven and Kumlien, 1999). In addition, the most
widely used knowledge source in this domain, the
UMLS Metathesaurus (Bodenreider, 2004), is an
ideal resource to apply inference learning given its
rich structure.

We develop classifiers to identify relations
found in two subsets of UMLS: the National Drug
File-Reference Terminology (ND-FRT) and the
National Cancer Institute Thesaurus (NCI). A cor-
pus of approximately 1,000,000 publications is
used to create the distantly supervised training
data. The corpus contains abstracts published be-
tween 1990 and 2001 annotated with UMLS con-
cepts using MetaMap (Aronson and Lang, 2010).

3.1 Distantly labelled data

Distant supervision is carried out for a target
UMLS relation by identifying instance pairs and
using them to create a set of positive instance
pairs. Any pairs which also occur as an instance
pair of another UMLS relation are removed from
this set. A set of negative instance pairs is then
created by forming new combinations that do not
occur within the positive instance pairs. Sentences
containing a positive or negative instance pair are
then extracted to generate positive and negative
training examples for the relation. These candi-
date sentences are then stemmed (Porter, 1997)
and PoS tagged (Charniak and Johnson, 2005).

The sets of positive and negative training exam-
ples are then filtered to remove sentences that meet
any of the following criteria: contain the same
positive pair more than once; contain both a posi-
tive and negative pair; more than 5 words between
the two elements of the instance pair; contain very
common instance pairs.

3.2 PRA-Reduction

PRA (Lao and Cohen, 2010; Lao et al., 2011)
is an algorithm that infers new relation instances
from knowledge bases. By considering a knowl-
edge base as a graph, where nodes are connected
through typed relations, it performs random walks

over it and finds bounded-length relation paths that
connect graph nodes. These paths are used as
features in a logistic regression model, which is
meant to predict new relations in the graph. Al-
though initially conceived as an algorithm to dis-
cover new links in the knowledge base, PRA can
also be used to learn relevant relation paths for
any given relation. For instance, if x and y are
related via sibling relation, the model trained by
PRA would learn that the relation path parent(x,a)
∧ parent(a,y)1 is highly relevant, as siblings share
the same parents.

Knowledge graphs were extracted from the ND-
FRT and NCI vocabularies generating approxi-
mately 200, 000 related instance pairs for ND-
FRT and 400, 000 for NCI. PRA is then run on
both graphs in order to learn paths for each tar-
get relation. Table 1 shows examples of the paths
PRA generated for the relation biological-process-
involves-gene-product together with their weights.
We only make use of relation paths with positive
weights generated by PRA.

path weight
gene-encodes-gene-product(x,a) ∧ gene-
plays-role-in-process(a,y)

10.53

isa(x,a) ∧ biological-process-involves-gene-
product(a,y)

6.17

isa(x,a) ∧ biological-process-involves-gene-
product(a,y)

2.80

gene-encodes-gene-product(x,a) ∧ gene-
plays-role-in-process(a,b) ∧ isa(b,y)

-0.06

Table 1: Example PRA-induced paths and weights
for the NCI relation biological-process-involves-
gene-product.

The paths induced by PRA are used to iden-
tify potential false negatives in the negative train-
ing examples (Section 3.1). Each negative training
example is examined to check whether the entity
pair is related in UMLS by following any of the
relation paths extracted by PRA for the relevant
target relation. Examples containing related en-
tity pairs are assumed to be false negatives, since
the relation can be inferred from the knowledge
base, and removed from the set of negatives train-
ing examples. For instance, using the path in the
top row of Table 1, sentences containing the enti-
ties x and y would be removed if the path gene-
encodes-gene-product(x,a) ∧ gene-plays-role-in-
process(a,y) could be identified within UMLS.

1An underline (‘ ’) prefix represents the inverse of a rela-
tion while ∧ represents path composition.
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3.3 Evaluation

Relation Extraction system: The MultiR system
(Hoffmann et al., 2010) with features described by
Surdeanu et al. (2011) was used for the experi-
ments.
Datasets: Three datasets were created to train
MultiR and evaluate performance. The first (Un-
filtered) uses the data obtained using distant su-
pervision (Section 3.1) without removing any ex-
amples identified by PRA. The overall ratio of
positive to negative sentences in this dataset was
1:5.1. However, this changes to 1:2.3 after remov-
ing examples identified by PRA. Consequently the
bias in the distantly supervised data was adjusted
to 1:2 to increase comparability across configura-
tions. Reducing bias was also found to increase re-
lation extraction performance, producing a strong
baseline. The PRA-reduced dataset is created by
applying PRA reduction (Section 3.2) to the Un-
filtered dataset to remove a portion of the nega-
tive training examples. Removing these examples
produces a dataset that is smaller than Unfiltered
and with a different bias. Changing the bias of
the training data can influence the classification re-
sults. Consequently the Random-reduced dataset
was created by removing randomly selected nega-
tive examples from Unfiltered to produce a dataset
with the same size and bias as PRA-reduced. The
Random-reduced dataset is used to show that ran-
domly removing negative instances leads to lower
results than removing those suggested by PRA.

Evaluation: Two approaches were used to eval-
uate performance.

The Held-out datasets consist of the Unfiltered,
PRA-reduced and Random-reduced data sets. The
set of entity pairs obtained from the knowledge
base is split into four parts and a process similar
to 4-fold cross validation applied. In each fold the
automatically labelled sentences obtained from the
pairs in 3 of the quarters are used as training data
and sentences obtained from the remaining quarter
used for testing.

The Manually labelled dataset contains 400
examples of the relation may-prevent and 400 of
may-treat which were manually labelled by two
annotators who were medical experts. Both rela-
tions are taken from the ND-FRT subset of UMLS.
Each annotator was asked to label every sentence
and then re-examine cases where there was dis-
agreement. This process lead to inter-annotator
agreement of 95.5% for may-treat and 97.3% for

may-prevent. The annotated data set is publicly
available2. Any sentences in the training data con-
taining an entity pair that occurs within the man-
ually labelled dataset are removed. Although this
dataset is smaller than the held-out dataset, its an-
notations are more reliable and it is therefore likely
to be a more accurate indicator of performance ac-
curacy. This dataset is more balanced than the
held-out data with a ratio of 1:1.3 for may-treat
and 1:1.8 for may-prevent.

Evaluation metric: Our experiments use en-
tity level evaluation since this is the most appropri-
ate approach to determine suitability for database
population. Precision and recall are computed
based on the proportion of entity pairs identified.
For the held-out data the set of correct entity pairs
are those which occur in sentences labeled as pos-
itive examples of the relation and which are also
listed as being related in UMLS. For the manually
labelled data it is simply the set of entity pairs that
occur in positive examples of the relation.

4 Results

4.1 Held-out data
Table 2 shows the results obtained using the held-
out data. Overall results, averaged across all re-
lations with maximum recall, are shown in the top
portion of the table and indicate that applying PRA
improves performance. Although the highest pre-
cision is obtained using the Unfiltered classifier,
the PRA-reduced classifier leads to the best recall
and F1. Performance of the Random-reduced clas-
sifier indicates that the improvement is not simply
due to a change in the bias in the data but that the
examples it contains lead to an improved model.

The lower part of Table 2 shows results for each
relation. The PRA-reduced classifier produces the
best results for the majority of relations and always
increases recall compared to Unfiltered.

It is perhaps surprising that removing false neg-
atives from the training data leads to an increase
in recall, rather than precision. False negatives
cause the classifier to generate an overly restrictive
model of the relation and to predict positive ex-
amples of a relation as negative. Removing them
leads to a less constrained model and higher recall.

There are two relations where there is also an in-
crease in precision (contraindicating-class-of and
mechanism-of-action-of ) and these are also the
ones for which the fewest training examples are

2https://sites.google.com/site/umlscorpus/home
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Unfiltered Random-reduced PRA-reduced
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Overall 62.30 51.82 56.58 44.49 74.26 55.64 56.85 77.10 65.44
NCI relations

biological process involves gene product 89.61 43.18 57.86 65.67 78.79 71.38 70.63 84.85 76.97
disease has normal cell origin 60.20 83.86 69.95 43.2 95.21 58.85 42.80 91.88 57.91

gene product has associated anatomy 41.65 64.04 49.96 29.22 74.63 41.81 37.94 65.28 47.82
gene product has biochemical function 86.43 72.00 78.33 60.66 91.57 72.90 70.58 95.80 81.17

process involves gene 78.92 50.71 61.54 51.38 80.64 62.73 68.16 87.34 76.47
ND-FRT relations

contraindicating class of 40.00 20.83 26.14 28.48 72.50 39.58 41.30 82.50 54.33
may prevent 27.48 14.69 18.87 20.61 44.79 27.94 38.11 35.63 36.64

may treat 48.66 39.63 43.14 39.57 50.00 43.84 50.88 57.93 54.11
mechanism of action of 47.15 40.63 43.12 40.25 59.38 47.62 52.85 59.38 55.82

Table 2: Evaluation using held-out data

Unfiltered Random-reduced PRA-reduced
relation Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

may prevent 54.17 21.67 30.95 53.57 25.00 34.09 39.66 38.33 38.98
may treat 40.00 47.48 43.42 43.21 50.36 46.51 41.05 67.63 51.09

Table 3: Evaluation using manually labelled data
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Figure 1: Precision/Recall Curve for Held-out data

available. The classifier has access to such a lim-
ited amount of data for these relations that remov-
ing the false negatives identified by PRA allows it
to learn a more accurate model.

Figure 1 presents a precision/recall curve com-
puted using MultiR’s output probabilities. Results
for the PRA-reduced and the Random-reduced
classifiers show that reducing the amount of nega-
tive training data increases recall. However, using
PRA-reduced generally leads to higher precision,
indicating that PRA is able to identify suitable in-
stances for removal from the training set. The Un-
filtered classifier produces good results but preci-
sion and recall are lower than PRA-reduced.

4.2 Manually labelled

Table 3 shows results of evaluation on the more
reliable manually labelled data set. The best over-

all performance is once again obtained using the
PRA-reduced classifier. There is an increase in re-
call for both relations and a slight increase in pre-
cision for may treat. Performance of the Random-
reduced classifier also improves due to an increas-
ing recall but remains below PRA-reduced. Per-
formance of the Random-reduced classifier is also
better than Unfiltered, with the overall improve-
ment largely resulting from increased recall, but
below PRA-reduced. These results confirm that re-
moving examples identified by PRA improves the
quality of training data.

Further analysis indicated that the PRA-reduced
classifier produces the fewest false negatives in its
predictions on the manually annotated dataset. It
incorrectly labels 82 entity pairs (45 may-treat, 37
may-prevent) as negative while Unfiltered predicts
120 (73, 47) and Random-reduced 114 (69, 45).
This supports our initial hypothesis that remov-
ing potential false negatives from training data im-
proves classifier predictions.

5 Conclusions and Future Work

This paper proposes a novel approach to identify-
ing incorrectly labelled instances generated using
distant supervision. Our method applies an infer-
ence learning method to detect and discard pos-
sible false negatives from the training data. We
show that our method improves performance for
a range of relations in the biomedical domain by
making use of information from UMLS.

In future we would like to explore alternative
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methods for selecting PRA relation paths to iden-
tify false negatives. Furthermore we would like
to examine the PRA-reduced data in more detail.
We would like to find which kind of entity pairs
are detected by our proposed method and whether
the reduced data can also be used to extend the
positive training data. We would also like to ap-
ply the approach to other domains and alternative
knowledge bases. Finally it would be interesting
to compare our approach to other state of the art re-
lation extraction systems for distant supervision or
biased-SVM approaches such as Liu et al. (2003).
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Abstract
In contrast with traditional relation ex-
traction, which only considers a fixed set
of relations, Open Information Extraction
(Open IE) aims at extracting all types
of relations from text. Because of data
sparseness, Open IE systems typically ig-
nore lexical information, and instead em-
ploy parse trees and Part-of-Speech (POS)
tags. However, the same syntactic struc-
ture may correspond to different relations.
In this paper, we propose to use a lexical-
ized tree kernel based on the word embed-
dings created by a neural network model.
We show that the lexicalized tree kernel
model surpasses the unlexicalized model.
Experiments on three datasets indicate that
our Open IE system performs better on the
task of relation extraction than the state-
of-the-art Open IE systems of Xu et al.
(2013) and Mesquita et al. (2013).

1 Introduction

Relation Extraction (RE) is the task of recognizing
relationships between entities mentioned in text.
In contrast with traditional relation extraction, for
which a target set of relations is fixed a priori,
Open Information Extraction (Open IE) is a gen-
eralization of RE that attempts to extract all re-
lations (Banko et al., 2007). Although Open IE
models that extract N-ary relations have been pro-
posed, here we concentrate on binary relations.

Most Open IE systems employ syntactic infor-
mation such as parse trees and part of speech
(POS) tags, but ignore lexical information. How-
ever, previous work suggests that Open IE would
benefit from lexical information because the same
syntactic structure may correspond to different re-
lations. For instance, the relation <Annacone,

coach of, Federer> is correct for the sentence
“Federer hired Annacone as a coach”, but not for
the sentence “Federer considered Annacone as a
coach,” even though they have the same depen-
dency path structure (Mausam et al., 2012). Lex-
ical information is required to distinguish the two
cases.

Here we propose a lexicalized tree kernel model
that combines both syntactic and lexical informa-
tion. In order to avoid lexical sparsity issues, we
investigate two smoothing methods that use word
vector representations: Brown clustering (Brown
et al., 1992) and word embeddings created by
a neural network model (Collobert and Weston,
2008). To our knowledge, we are the first to ap-
ply word embeddings and to use lexicalized tree
kernel models for Open IE.

Experiments on three datasets demonstrate that
our Open IE system achieves absolute improve-
ments in F-measure of up to 16% over the cur-
rent state-of-the-art systems of Xu et al. (2013)
and Mesquita et al. (2013). In addition, we ex-
amine alternative approaches for including lexical
information, and find that excluding named enti-
ties from the lexical information results in an im-
proved F-score.

2 System Architecture

The goal of the Open IE task is to extract from
text a set of triples {< E1, R, E2 >}, where E1

and E2 are two named entities, and R is a textual
fragment that indicates the semantic relation be-
tween the two entities. We concentrate on binary,
single-word relations between named entities. The
candidate relation words are extracted from depen-
dency structures, and then filtered by a supervised
tree kernel model.

Our system consists of three modules: entity
extraction, relation candidate extraction, and tree
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Figure 1: Our Open IE system structure.

kernel filtering. The system structure is outlined
in Figure 1. We identify named entities, parse sen-
tences, and convert constituency trees into depen-
dency structures using the Stanford tools (Man-
ning et al., 2014). Entities within a fixed token dis-
tance (set to 20 according to development results)
are extracted as pairs {< E1, E2 >}. We then
identify relation candidates R for each entity pair
in a sentence, using dependency paths. Finally,
the candidate triples {< E1, R, E2 >} are paired
with their corresponding tree structures, and pro-
vided as input to the SVM tree kernel. Our Open
IE system outputs the triples that are classified as
positive. In the following sections, we describe the
components of the system in more detail.

3 Relation Candidates

Relation candidates are words that may repre-
sent a relation between two entities. We consider
only lemmatized nouns, verbs and adjectives that
are within two dependency links from either of
the entities. Following Wu and Weld (2010) and
Mausam et al. (2012), we use dependency pat-
terns rather than POS patterns, which allows us to
identify relation candidates which are farther away
from entities in terms of token distance.

We extract the first two content words along the
dependency path between E1 and E2. In the fol-
lowing example, the path is E1 → encounter →
build → E2, and the two relation word candidates
between “Mr. Wathen” and “Plant Security Ser-
vice” are encounter and build, of which the latter
is the correct one.

If there are no content words on the dependency
path between the two entities, we instead consider
words that are directly linked to either of them.
In the following example, the only relation candi-
date is the word battle, which is directly linked to
“Edelman.”

The relation candidates are manually annotated
as correct/incorrect in the training data for the tree
kernel models described in the following section.

4 Lexicalized Tree Kernel

We use a supervised lexicalized tree kernel to filter
negative relation candidates from the results of the
candidate extraction module. For semantic tasks,
the design of input structures to tree kernels is as
important as the design of the tree kernels them-
selves. In this section, we introduce our tree struc-
ture, describe the prior basic tree kernel, and fi-
nally present our lexicalized tree kernel function.

4.1 Tree Structure

In order to formulate the input for tree kernel
models, we need to convert the dependency path
to a tree-like structure with unlabelled edges.
The target dependency path is the shortest path
that includes the triple and other content words
along the path. Consider the following example,
which is a simplified representation of the sen-
tence “Georgia-Pacific Corp.’s unsolicited $3.9
billion bid for Great Northern Nekoosa Corp. was
hailed by Wall Street.” The candidate triple iden-
tified by the relation candidate extraction module
is <Georgia-Pacific Corp., bid, Great Northern
Nekoosa Corp.>.

Our unlexicalized tree representation model is
similar to the unlexicalized representations of Xu
et al. (2013), except that instead of using the POS
tag of the path’s head word as the root, we cre-
ate an abstract Root node. We preserve the depen-
dency labels, POS tags, and entity information as
tree nodes: (a) the top dependency labels are in-
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(a) An un-lexicalized dependency tree. (b) A lexicalized dependency tree.

Figure 2: An unlexicalized tree and the corresponding lexicalized tree.

cluded as children of the abstract Root node, other
labels are attached to the corresponding parent la-
bels; (b) the POS tag of the head word of the de-
pendence path is a child of the Root; (c) other POS
tags are attached as children of the dependency la-
bels; and (d) the relation tag ‘R’ and the entity tags
‘NE’ are the terminal nodes attached to their re-
spective POS tags. Figure 2(a) shows the unlexi-
calized dependency tree for our example sentence.

Our lexicalized tree representation is derived
from the unlexicalized representation by attaching
words as terminal nodes. In order to reduce the
number of nodes, we collapse the relation and en-
tity tags with their corresponding POS tags. Fig-
ure 2(b) shows the resulting tree for the example
sentence.

4.2 Tree Kernels
Tree kernel models extract features from parse
trees by comparing pairs of tree structures. The
essential distinction between different tree kernel
functions is the ∆ function that calculates simi-
larity of subtrees. Our modified kernel is based on
the SubSet Tree (SST) Kernel proposed by Collins
and Duffy (2002). What follows is a simplified de-
scription of the kernel; a more detailed description
can be found in the original paper.

The general function for a tree kernel model
over trees T1 and T2 is:

K(T1, T2) =
∑

n1∈T1

∑
n2∈T2

∆(n1, n2), (1)

where n1 and n2 are tree nodes. The ∆ function
of SST kernel is defined recursively:

1. ∆(n1, n2) = 0 if the productions (context-
free rules) of n1 and n2 are different.

2. Otherwise, ∆(n1, n2) = 1 if n1 and n2 are
matching pre-terminals (POS tags).

3. Otherwise,
∆(n1, n2) =

∏
j(1 + ∆(c(n1, j), c(n2, j)),

where c(n, j) is the jth child of n.

4.3 Lexicalized Tree Kernel
Since simply adding words to lexicalize a tree ker-
nel leads to sparsity problems, a type of smoothing
must be applied. Bloehdorn and Moschitti (2007)
measure the similarity of words using WordNet.
Croce et al. (2011) employ word vectors created
by Singular Value Decomposition (Golub and Ka-
han., 1965) from a word co-occurrence matrix.
Plank and Moschitti (2013) use word vectors cre-
ated by Brown clustering algorithm (Brown et al.,
1992), which is another smoothed word represen-
tation that represents words as binary vectors. Sri-
vastava et al. (2013) use word embeddings of Col-
lobert and Weston (2008), but their tree kernel
does not incorporate POS tags or dependency la-
bels.

We propose using word embeddings created
by a neural network model (Collobert and We-
ston, 2008), in which words are represented by
n-dimensional real valued vectors. Each dimen-
sion represents a latent feature of the word that re-
flects its semantic and syntactic properties. Next,
we describe how we embed these vectors into tree
kernels.

Our lexicalized tree kernel model is the same as
SST, except in the following case: if n1 and n2 are
matching pre-terminals (POS tags), then

∆(n1, n2) = 1 + G(c(n1), c(n2)), (2)

where c(n) denotes the word w that is the unique
child of n, and G(w1, w2) = exp(−γ∥w1−w2∥2)
is a Gaussian function for two word vectors, which
is a valid kernel.

We examine the contribution of different types
of words by comparing three methods of including
lexical information: (1) relation words only; (2) all
words (relation words, named entities, and other
words along the dependency path fragment); and
(3) all words, except named entities. The words
that are excluded are assumed to be different; for
example, in the third method, G(E1, E2) is always
zero, even if the entities, E1 and E2, are the same.
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5 Experiments

Here we evaluate alternative tree kernel configura-
tions, and compare our Open IE system to previ-
ous work.

We perform experiments on three datasets (Ta-
ble 1): the Penn Treebank set (Xu et al., 2013),
the New York Times set (Mesquita et al., 2013),
and the ClueWeb set which we created for this
project from a large collection of web pages.1 The
models are trained on the Penn Treebank training
set and tested on the three test sets, of which the
Penn Treebank set is in-domain, and the other two
sets are out-of-domain. For word embedding and
Brown clustering representations, we use the data
provided by Turian et al. (2010). The SVM param-
eters, as well as the Brown cluster size and code
length, are tuned on the development set.

Set train dev test
Penn Treebank 750 100 100
New York Times — 300 500
ClueWeb — 450 250

Table 1: Data sets and their size (number of sen-
tences).

Table 2 shows the effect of different smooth-
ing and lexicalization techniques on the tree ker-
nels. In order to focus on tree kernel functions,
we use the relation candidate extraction (Section
3) and tree structure (Section 4.1) proposed in
this paper. The results in the first two rows indi-
cate that adding unsmoothed lexical information
to the method of Xu et al. (2013) is not help-
ful, which we attribute to data sparsity. On the
other hand, smoothed word representations do im-
prove F-measure. Surprisingly, a neural network
approach of creating word embeddings actually
achieves a lower recall than the method of Plank
and Moschitti (2013) that uses Brown clustering;
the difference in F-measure is not statistically sig-
nificant according to compute-intensive random-
ization test (Padó, 2006).

With regards to lexicalization, the inclusion of
relation words is important. However, unlike
Plank and Moschitti (2013), we found that it is
better to exclude the lexical information of entities
themselves, which confirms the findings of Riedel
et al. (2013). We hypothesize that the correctness
of a relation triple in Open IE is not closely re-

1The Treebank set of (Xu et al., 2013), with minor correc-
tions, and the ClueWeb set are appended to this publication.

Smoothing Lexical info P R F1

none (Xu13) none 85.7 72.7 78.7
none all words 89.8 66.7 76.5
Brown (PM13) relation only 88.7 71.2 79.0
Brown (PM13) all words 84.5 74.2 79.0
Brown (PM13) excl. entities 86.2 75.8 80.7
embedding relation only 93.9 69.7 80.0
embedding all words 93.8 68.2 79.0
embedding excl. entities 95.9 71.2 81.7

Table 2: The results of relation extraction with al-
ternative smoothing and lexicalization techniques
on the Penn Treebank set (with our relation candi-
date extraction and tree structure).

lated to entities. Consider the example mentioned
in (Riedel et al., 2013): for relations like “X vis-
its Y”, X could be a person or organization, and Y
could be a location, organization, or person.

Our final set of experiments evaluates the best-
performing version of our system (the last row
in Table 2) against two state-of-the-art Open IE
systems: Mesquita et al. (2013), which is based
on several hand-crafted dependency patterns; and
Xu et al. (2013), which uses POS-based relation
candidate extraction and an unlexicalized tree ker-
nel. Tree kernel systems are all trained on the
Penn Treebank training set, and tuned on the cor-
responding development sets.

The results in Table 3 show that our system con-
sistently outperforms the other two systems, with
absolute gains in F-score between 4 and 16%. We
include the reported results of (Xu et al., 2013)
on the Penn Treebank set, and of (Mesquita et al.,
2013) on the New York Times set. The ClueWeb
results were obtained by running the respective
systems on the test set, except that we used our
relation candidate extraction method for the tree
kernel of (Xu et al., 2013). We conclude that the
substantial improvement on the Penn Treebank set
can be partly attributed to a superior tree kernel,
and not only to a better relation candidate extrac-
tion method. We also note that word embeddings
statistically outperform Brown clustering on the
ClueWeb set, but not on the other two sets.

The ClueWeb set is quite challenging because
it contains web pages which can be quite noisy.
As a result we’ve found that a number of Open IE
errors are caused by parsing. Conjunction struc-
tures are especially difficult for both parsing and
relation extraction. For example, our system ex-
tracts the relation triple <Scotland, base, Scott>
from the sentence “Set in 17th century Scotland
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P R F1

Penn Treebank set
Xu et al. (2013)* 66.1 50.7 57.4
Brown (PM13) 82.8 65.8 73.3
Ours (embedding) 91.8 61.6 73.8

New York Times set
Mesquita et al. (2013)* 72.8 39.3 51.1
Brown (PM13) 83.5 44.0 57.6
Ours (embedding) 85.9 40.7 55.2

ClueWeb set
Xu et al. (2013) 54.3 35.8 43.2
Mesquita et al. (2013) 63.3 29.2 40.0
Brown (PM13) 54.1 31.1 39.5
Ours (embedding) 45.8 51.9 48.7

Table 3: Comparison of complete Open IE sys-
tems. The asterisks denote results reported in pre-
vious work.

and based on a novel by Sir Walter Scott, its high
drama...” with the wrong dependency path Scot-

land
conj and→ based

prep by→ Scott. In the future, we
will investigate whether adding information from
context words that are not on the dependency path
between two entities may alleviate this problem.

6 Conclusion

We have proposed a lexicalized tree kernel model
for Open IE, which incorporates word embeddings
learned from a neural network model. Our sys-
tem combines a dependency-based relation candi-
date extraction method with a lexicalized tree ker-
nel, and achieves state-of-the-art results on three
datasets. Our experiments on different configu-
rations of the smoothing and lexicalization tech-
niques show that excluding named entity informa-
tion is a better strategy for Open IE.

In the future, we plan to mitigate the perfor-
mance drop on the ClueWeb set by adding in-
formation about context words around relation
words. We will also investigate other ways of col-
lapsing different types of tags in the lexicalized
tree representation.
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Abstract

Previous research on relation classification
has verified the effectiveness of using de-
pendency shortest paths or subtrees. In
this paper, we further explore how to make
full use of the combination of these de-
pendency information. We first propose
a new structure, termed augmented de-
pendency path (ADP), which is composed
of the shortest dependency path between
two entities and the subtrees attached to
the shortest path. To exploit the semantic
representation behind the ADP structure,
we develop dependency-based neural net-
works (DepNN): a recursive neural net-
work designed to model the subtrees, and
a convolutional neural network to capture
the most important features on the shortest
path. Experiments on the SemEval-2010
dataset show that our proposed method
achieves state-of-art results.

1 Introduction

Relation classification aims to classify the seman-
tic relations between two entities in a sentence. It
plays a vital role in robust knowledge extraction
from unstructured texts and serves as an interme-
diate step in a variety of natural language process-
ing applications. Most existing approaches follow
the machine learning based framework and focus
on designing effective features to obtain better
classification performance.

The effectiveness of using dependency relation-
s between entities for relation classification has
been reported in previous approaches (Bach and
Badaskar, 2007). For example, Suchanek et al.
(2006) carefully selected a set of features from
tokenization and dependency parsing, and extend-
ed some of them to generate high order features

∗Contribution during internship at Microsoft Research.

in different ways. Culotta and Sorensen (2004)
designed a dependency tree kernel and attached
more information including Part-of-Speech tag,
chunking tag of each node in the tree. Interesting-
ly, Bunescu and Mooney (2005) provided an im-
portant insight that the shortest path between two
entities in a dependency graph concentrates most
of the information for identifying the relation be-
tween them. Nguyen et al. (2007) developed these
ideas by analyzing multiple subtrees with the guid-
ance of pre-extracted keywords. Previous work
showed that the most useful dependency informa-
tion in relation classification includes the shortest
dependency path and dependency subtrees. These
two kinds of information serve different functions
and their collaboration can boost the performance
of relation classification (see Section 2 for detailed
examples). However, how to uniformly and ef-
ficiently combine these two components is still
an open problem. In this paper, we propose a
novel structure named Augmented Dependency
Path (ADP) which attaches dependency subtrees
to words on a shortest dependency path and focus
on exploring the semantic representation behind
the ADP structure.

Recently, deep learning techniques have been
widely used in exploring semantic representation-
s behind complex structures. This provides us
an opportunity to model the ADP structure in a
neural network framework. Thus, we propose a
dependency-based framework where two neural
networks are used to model shortest dependency
paths and dependency subtrees separately. One
convolutional neural network (CNN) is applied
over the shortest dependency path, because CNN
is suitable for capturing the most useful features in
a flat structure. A recursive neural network (RN-
N) is used for extracting semantic representations
from the dependency subtrees, since RNN is good
at modeling hierarchical structures. To connect
these two networks, each word on the shortest
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Figure 1: Sentences and their dependency trees.
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Figure 2: Augmented dependency paths.

path is combined with a representation generated
from its subtree, strengthening the semantic rep-
resentation of the shortest path. In this way, the
augmented dependency path is represented as a
continuous semantic vector which can be further
used for relation classification.

2 Problem Definition and Motivation

The task of relation classification can be defined
as follows. Given a sentence S with a pair of
entities e1 and e2 annotated, the task is to identify
the semantic relation between e1 and e2 in ac-
cordance with a set of predefined relation classes
(e.g., Content-Container, Cause-Effect). For ex-
ample, in Figure 2, the relation between two en-
tities e1=thief and e2=screwdriver is Instrument-
Agency.

Bunescu and Mooney (2005) first used short-
est dependency paths between two entities to
capture the predicate-argument sequences (e.g.,
“thief←broke→screwdriver” in Figure 2), which
provide strong evidence for relation classification.
As we observe, the shortest paths contain more
information and the subtrees attached to each node
on the shortest path are not exploited enough. For
example, Figure 2a and 2b show two instances
which have similar shortest dependency paths but
belong to different relation classes. Methods only
using the path will fail in this case. However, we

can distinguish these two paths by virtue of the
attached subtrees such as “dobj→commandment”
and “dobj→ignition”. Based on many observa-
tions like this, we propose the idea that combines
the subtrees and the shortest path to form a more
precise structure for classifying relations. This
combined structure is called “augmented depen-
dency path (ADP)”, as illustrated in Figure 2.

Next, our goal is to capture the semantic repre-
sentation of the ADP structure between two enti-
ties. We first adopt a recursive neural network to
model each word according to its attached depen-
dency subtree. Based on the semantic information
of each word, we design a convolutional neural
network to obtain salient semantic features on the
shortest dependency path.

3 Dependency-Based Neural Networks

In this section, we will introduce how we use neu-
ral network techniques and dependency informa-
tion to explore the semantic connection between
two entities. We dub our architecture of model-
ing ADP structures as dependency-based neural
networks (DepNN). Figure 3 illustrates DepNN
with a concrete example. First, we associate each
word w and dependency relation r with a vector
representation xw,xr ∈ Rdim. For each word
w on the shortest dependency path, we develop
an RNN from its leaf words up to the root to
generate a subtree embedding cw and concatenate
cw with xw to serve as the final representation of
w. Next, a CNN is designed to model the shortest
dependency path based on the representation of
its words and relations. Finally our framework
can efficiently represent the semantic connection
between two entities with consideration of more
comprehensive dependency information.

3.1 Modeling Dependency Subtree

The goal of modeling dependency subtrees is to
find an appropriate representation for the words on
the shortest path. We assume that each word w
can be interpreted by itself and its children on the
dependency subtree. Then, for each wordw on the
subtree, its word embedding xw ∈ Rdim and sub-
tree representation cw ∈ Rdimc are concatenated
to form its final representation pw ∈ Rdim+dimc .
For a word that does not have a subtree, we set
its subtree representation as cLEAF . The subtree
representation of a word is derived through trans-
forming the representations of its children words.
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During the bottom-up construction of the subtree,
each word is associated with a dependency rela-
tion such as dobj as in Figure 3. For each depen-
dency relation r, we set a transformation matrix
Wr ∈ Rdimc×(dim+dimc) which is learned during
training. Then we can get,

cw = f(
∑

q∈Children(w)

WR(w,q)
· pq + b) (1)

pq = [xq, cq] (2)

where R(w,q) denotes the dependency relation be-
tween word w and its child word q. This process
continues recursively up to the root word on the
shortest path.

3.2 Modeling Shortest Dependency Path
To classify the semantic relation between two en-
tities, we further explore the semantic representa-
tion behind their shortest dependency path, which
can be seen as a sequence of words and dependen-
cy relations as the bold-font part in Figure 2. As
the convolutional neural network (CNN) is good
at capturing the salient features from a sequence
of objects, we design a CNN to tackle the shortest
dependency path.

A CNN contains a convolution operation over
a window of object representations, followed by
a pooling operation. As we know, a word w
on the shortest path is associated with the repre-
sentation pw through modeling the subtree. For
a dependency relation r on the shortest path,
we set its representation as a vector xr ∈
Rdim. As a sliding window is applied on the

sequence, we set the window size as k. For
example, when k = 3, the sliding windows of
a shortest dependency path with n words are:
{[rs w1 r1], [r1 w2 r2], . . . , [rn−1 wn re]} where
rs and re are used to denote the beginning and
end of a shortest dependency path between two
entities.

We concatenate k neighboring words (or de-
pendency relations) representations into a new
vector. Assume Xi ∈ Rdim·k+dimc·nw as the
concatenated representation of the i-th window,
where nw is the number of words in one window.
A convolution operation involves a filter W1 ∈
Rl×(dim·k+dimc·nw), which operates on Xi to pro-
duce a new feature vector Li with l dimensions,

Li = W1Xi (3)

where the bias term is ignored for simplicity.
Then W1 is applied to each possible window

in the shortest dependency path to produce a
feature map: [L0, L1, L2, · · · ]. Next, we adop-
t the widely-used max-over-time pooling opera-
tion (Collobert et al., 2011), which can retain
the most important features, to obtain the final
representation L from the feature map. That is,
L = max(L0,L1,L2, . . . ).

3.3 Learning
Like other relation classification systems, we al-
so incorporate some lexical level features such
as named entity tags and WordNet hypernyms,
which prove useful to this task. We concatenate
them with the ADP representation L to produce
a combined vector M . We then pass M to a
fully connected softmax layer whose output is
the probability distribution y over relation labels.

M = [L,LEX] (4)

y = softmax(W2M + b2) (5)

Then, the optimization objective is to minimize
the cross-entropy error between the ground-truth
label vector and the softmax output. Pa-
rameters are learned using the back-propagation
method (Rumelhart et al., 1988).

4 Experiments

We compare DepNN against multiple baselines on
SemEval-2010 dataset (Hendrickx et al., 2010).

The training set includes 8000 sentences, and
the test set includes 2717 sentences. There are 9
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relation types, and each type has two directions.
Instances which don’t fall in any of these classes
are labeled as Other. The official evaluation metric
is the macro-averaged F1-score (excluding Other)
and the direction is considered. We use dependen-
cy trees generated by the Stanford Parser (Klein
and Manning, 2003) with the collapsed option.

4.1 Contributions of different components
We first show the contributions from different
components of DepNN. Two different kinds of
word embeddings for initialization are used in the
experiments. One is the 50-d embeddings pro-
vided by SENNA (Collobert et al., 2011). The
second is the 200-d embeddings used in (Yu et
al., 2014), trained on Gigaword with word2vec1.
All the hyperparameters are set with 5-fold cross-
validation.

Model
F1

50-d 200-d
baseline (Path words) 73.8 75.5
+Depedency relations 80.3 81.8
+Attached subtrees 81.2 82.8
+Lexical features 82.7 83.6

Table 1: Performance of DepNN with different
components.

We start with a baseline model using a CNN
with only the words on the shortest path. We then
add dependency relations and attached subtrees.
The results indicate that both parts are effective
for relation classification. The rich linguistic in-
formation embedded in the dependency relations
and subtrees can on one hand, help distinguish dif-
ferent functions of the same word, and on the other
hand infer an unseen word’s role in the sentence.
Finally, the lexical features are added and DepNN
achieves state-of-the-art results.

4.2 Comparison with Baselines
In this subsection, we compare DepNN with sev-
eral baseline relation classification approaches.
Here, DepNN and the baselines are all based on
the 200-d embeddings trained on Gigaword due to
the larger corpus and higher dimensions.

SVM (Rink and Harabagiu, 2010): This is the
top performed system in SemEval-2010. It utilizes
many external corpora to extract features from the
sentence to build an SVM classifier.

1https://code.google.com/p/word2vec/

Model Additional Features F1

SVM
POS, PropBank, morphological

82.2WordNet, TextRunner, FrameNet
dependency parse, etc.

MV-RNN POS, NER, WordNet 81.82

CNN WordNet 82.7
FCM NER 83.0
DT-RNN NER 73.1

DepNN WordNet 83.0
NER 83.6

Table 2: Results on SemEval-2010 dataset with
Gigaword embeddings.

MV-RNN (Socher et al., 2012): This model
finds the path between the two entities in the con-
stituent parse tree and then learns the distributed
representation of its highest node with a matrix for
each word to make the compositions specific.

CNN: Zeng et al. (2014) build a convolutional
model over the tokens of a sentence to learn the
sentence level feature vector. It uses a special
position vector that indicates the relative distances
of current input word to two marked entities.

FCM (Yu et al., 2014): FCM decomposes the
sentence into substructures and extracts features
for each of them, forming substructure embed-
dings. These embeddings are combined by sum-
pooling and input into a softmax classifier.

DT-RNN (Socher et al., 2014) : This is an
RNN for modeling dependency trees. It combines
node’s word embedding with its children through
a linear combination but not a subtree embedding.
We adapt the augmented dependency path into a
dependency subtree and apply DT-RNN.

As shown in Table 2, DepNN achieves the best
result (83.6) using NER features. WordNet fea-
tures can also improve the performance of DepN-
N, but not as obvious as NER. Yu et al. (2014)
had similar observations, since the larger number
of WordNet tags may cause overfitting. SVM
achieves a comparable result, though the quality
of feature engineering highly relies on human ex-
perience and external NLP resources. MV-RNN
models the constituent parse trees with a recursive
procedure and its F1-score is about 1.8 percent
lower than DepNN. Meanwhile, MVR-NN is very
slow to train, since each word is associated with a
matrix. Both CNN and FCM use features from the
whole sentence and achieve similar performance.
DT-RNN is the worst of all baselines, though it

2MV-RNN achieves a higher F1-score (82.7) on SENNA
embeddings reported in the original paper.
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also considers the information from shortest de-
pendency paths and attached subtrees. As we ana-
lyze, shortest dependency paths and subtrees play
different roles in relation classification. However,
we can see that DT-RNN does not distinguish the
modeling processes of shortest paths and subtrees.
This phenomenon is also seen in a kernel-based
method (Wang, 2008), where the tree kernel per-
forms worse than the shortest path kernel. We also
look into the DepNN model and find it can identify
different patterns of words and the dependency
relations. For example, in the Instrument-Agency
relation, the word “using” and the dependency re-
lation “prep with” are found playing a major role.

5 Conclusion

In this paper, we propose to classify relations
between entities by modeling the augmented de-
pendency path in a neural network framework.
We present a novel approach, DepNN, to taking
advantages of both convolutional neural network
and recursive neural network to model this struc-
ture. Experiment results demonstrate that DepNN
achieves state-of-the-art performance.
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Abstract

We propose a new approach to the task
of fine grained entity type classifications
based on label embeddings that allows for
information sharing among related labels.
Specifically, we learn an embedding for
each label and each feature such that la-
bels which frequently co-occur are close in
the embedded space. We show that it out-
performs state-of-the-art methods on two
fine grained entity-classification bench-
marks and that the model can exploit the
finer-grained labels to improve classifica-
tion of standard coarse types.

1 Introduction

Entity type classification is the task of assign-
ing type labels (e.g., person, location,
organization) to mentions of entities in doc-
uments. These types are useful for deeper natural
language analysis such as coreference resolution
(Recasens et al., 2013), relation extraction (Yao et
al., 2010), and downstream applications such as
knowledge base construction (Carlson et al., 2010)
and question answering (Lin et al., 2012).

Standard entity type classification tasks use a
small set of coarse labels, typically fewer than 20
(Hirschman and Chinchor, 1997; Sang and Meul-
der, 2003; Doddington et al., 2004). Recent work
has focused on a much larger set of fine grained
labels (Ling and Weld, 2012; Yosef et al., 2012;
Gillick et al., 2014). Fine grained labels are typ-
ically subtypes of the standard coarse labels (e.g.,
artist is a subtype of person and author is
a subtype of artist), so the label space forms a
tree-structured is-a hierarchy. See Figure 1 for the
label sets used in our experiments. A mention la-
beled with type artist should also be labeled
with all ancestors of artist. Since we allow
mentions to have multiple labels, this is a multi-
label classification task. Multiple labels typically

correspond to a single path in the tree (from root
to a leaf or internal node).

An important aspect of context-dependent fine
grained entity type classification is that mentions
of an entity can have different types depending
on the context. Consider the following example:
Madonna starred as Breathless Mahoney in the
film Dick Tracy. In this context, the most appropri-
ate label for the mention Madonna is actress,
since the sentence talks about her role in a film. In
the majority of other cases, Madonna is likely to
be labeled as a musician.

The main difficulty in fine grained entity type
classification is the absence of labeled training ex-
amples. Training data is typically generated au-
tomatically (e.g. by mapping Freebase labels of
resolved entities), without taking context into ac-
count, so it is common for mentions to have noisy
labels. In our example, the labels for the mention
Madonna would include musician, actress,
author, and potentially others, even though not
all of these labels apply here. Ideally, a fine
grained type classification system should be ro-
bust to such noisy training data, as well as capable
of exploiting relationships between labels during
learning. We describe a model that uses a rank-
ing loss—which tends to be more robust to la-
bel noise—and that learns a joint representation of
features and labels, which allows for information
sharing among related labels.1 A related idea to
learn output representations for multiclass docu-
ment classification and part-of-speech tagging was
considered in Srikumar and Manning (2014). We
show that it outperforms state-of-the-art methods
on two fine grained entity-classification bench-
marks. We also evaluate our model on standard
coarse type classification and find that training em-
bedding models on all fine grained labels gives
better results than training it on just the coarse

1Turian et al. (2010), Collobert et al. (2011), and Qi et
al. (2014) consider representation learning for coarse label
named entity recognition.
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Figure 1: Label sets for Gillick et al. (2014)—left, GFT—and Ling and Weld (2012)—right, FIGER.

types of interest.

2 Models

In this section, we describe our approach, which is
based on the WSABIE (Weston et al., 2011) model.

Notation We use lower case letters to denote
variables, bold lower case letters to denote vectors,
and bold upper case letters to denote matrices. Let
x ∈ RD be the feature vector for a mention, where
D is the number of features and xd is the value of
the d-th feature. Let y ∈ {0, 1}T be the corre-
sponding binary label vector, where T is the num-
ber of labels. yt = 1 if and only if the mention
is of type t. We use yt to denote a one-hot binary
vector of size T , where yt = 1 and all other entries
are zero.

Model To leverage the relationships among the
fine grained labels, we would like a model that can
learn an embedding space for labels. Our model,
based on WSABIE, learns to map both feature vec-
tors and labels to a low dimensional space RH

(H is the embedding dimension size) such that
each instance is close to its label(s) in this space;
see Figure 2 for an illustration. Relationships be-
tween labels are captured by their distances in the
embedded space: co-occurring labels tend to be
closer, whereas mutually exclusive labels are fur-
ther apart.

Formally, we are interested in learning the map-
ping functions:

f(x) : RD → RH

∀t ∈ {1, 2, . . . , T}, g(yt) : {0, 1}T → RH

In this work, we parameterize them as linear func-
tions f(x,A) = Ax and g(yt,B) = Byt, where
A ∈ RH×D and B ∈ RH×T are parameters.

The score of a label t (represented as a one-hot
label vector yt) and a feature vector x is the dot

A> B> ytx

Ax
Byt

RH

Figure 2: An illustration of the standard WSABIE model.
x is the feature vector extracted from a mention, and yt is
its label. Here, black cells indicate non-zero and white cells
indicate zero values. The parameters are matrices A and B
which are used to map the feature vector x and the label vec-
tor yt into an embedding space.

product between their embeddings:

s(x,yt; A,B) = f(x,A) · g(yt,B) = Ax ·Byt

For brevity, we denote this score by s(x,yt). Note
that the total number of parameters is (D+T )×H ,
which is typically less than the number of pa-
rameters in standard classification models that use
regular conjunctions of input features with label
classes (e.g., logistic regression) when H < T .

Learning Since we expect the training data to
contain some extraneous labels, we use a ranking
loss to encourage the model to place positive la-
bels above negative labels without competing with
each other. Let Y denote the set of positive labels
for a mention, and let Ȳ denote its complement.
Intuitively, we try to rank labels in Y higher than
labels in Ȳ. Specifically, we use the weighted ap-
proximate pairwise (WARP) loss of Weston et al.
(2011). For a mention {x,y}, the WARP loss is:

∑
t∈Y

∑
t̄∈Ȳ

R(rank(x,yt))max(1− s(x,yt) + s(x,yt̄), 0)

where rank(x,yt) is the margin-infused rank of
label t: rank(x,yt) =

∑
t̄∈Ȳ I(1 + s(x,yt̄) >

s(x,yt)), R(rank(x,yt)) is a function that trans-
forms this rank into a weight. In this work, since
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each mention can have multiple positive labels,
we choose to optimize precision at k by setting
R(k) =

∑k
i=1

1
i . Favoring precision over recall in

fine grained entity type classification makes sense
because if we are not certain about a particular fine
grained label for a mention, we should use its an-
cestor label in the hierarchy.

In order to learn the parameters with this WARP
loss, we use stochastic (sub)gradient descent.

Inference During inference, we consider the
top-k predicted labels, where k is the maximum
depth of the label hierarchy, and greedily remove
labels that are not consistent with other labels (i.e.,
not on the same path of the tree). For example, if
the (ordered) top-k labels are person, artist,
and location, we output only person and
artist as the predicted labels. We use a thresh-
old δ such that ŷt = 1 if s(x,yt) > δ and ŷt = 0
otherwise.

Kernel extension We extend the WSABIE

model to include a weighting function between
each feature and label, similar in spirit to We-
ston et al. (2014). Recall that the WSABIE

scoring function is: s(x,yt) = Ax · Byt =∑
d(Adxd)>Bt, where Ad and Bt denote the col-

umn vectors of A and B. We can weight each
(feature, label) pair by a kernel function prior to
computing the embedding:

s(x,yt) =
∑

d

Kd,t(Adxd)>Bt,

where K ∈ RD×T is the kernel matrix. We use
a N -nearest neighbor kernel2 and set Kd,t = 1
if Ad is one of N -nearest neighbors of the label
vector Bt, and Kd,t = 0 otherwise. In all our
experiments, we set N = 200.

To incorporate the kernel weighting function,
we only need to make minor modifications to the
learning procedure. At every iteration, we first
compute the similarity between each feature em-
bedding and each label embedding. For each label
t, we then set the kernel values for the N most
similar features to 1, and the rest to 0 (update K).
We can then follow the learning algorithm for the
standard WSABIE model described above. At in-
ference time, we fix K so this extension is only
slightly slower than the standard model.

2We explored various kernels in preliminary experiments
and found that the nearest neighbor kernel performs the best.

The nearest-neighbor kernel introduces nonlin-
earities to the embedding model. It implicitly
plays the role of a label-dependent feature selector,
learning which features can interact with which la-
bels and turns off potentially noisy features that
are not in the relevant label’s neighborhood.

3 Experiments

Setup and Baselines We evaluate our methods
on two publicly available datasets that are man-
ually annotated with gold labels for fine grained
entity type classification: GFT (Google Fine
Types; Gillick et al., 2014) and FIGER (Ling and
Weld, 2012). On the GFT dataset, we compare
with state-of-the-art baselines from Gillick et al.
(2014): flat logistic regression (FLAT), an exten-
sion of multiclass logistic regression for multilabel
classification problems; and multiple independent
binary logistic regression (BINARY), one per label
t ∈ {1, 2, . . . , T}. On the FIGER dataset, we com-
pare with a state-of-the-art baseline from Ling and
Weld (2012).

We denote the standard embedding method by
WSABIE and its extension by K-WSABIE. We fix
our embedding size to H = 50. We report micro-
averaged precision, recall, and F1-score for each
of the competing methods (this is called Loose Mi-
cro by Ling and Weld). When development data is
available, we use it to tune δ by optimizing F1-
score.

Training data Because we have no manually
annotated data, we create training data using the
technique described in Gillick et al. (2014). A set
of 133,000 news documents are automatically an-
notated by a parser, a mention chunker, and an
entity resolver that assigns Freebase types to en-
tites, which we map to fine grained labels. This
approach results in approximately 3 million train-
ing examples which we use to train all the mod-
els evaluated below. The only difference between
models trained for different tasks is the mapping
from Freebase types. See Gillick et al. (2014) for
details.

Table 1 lists the features we use—the same set
as used by Gillick et al. (2014), and very similar to
those used by Ling and Weld. String features are
randomly hashed to a value in 0 to 999,999, which
simplifies feature extraction and adds some addi-
tional regularization (Ganchev and Dredze, 2008).
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Feature Description Example
Head The syntactic head of the mention phrase “Obama”
Non-head Each non-head word in the mention phrase “Barack”, “H.”
Cluster Word cluster id for the head word “59”
Characters Each character trigram in the mention head “:ob”, “oba”, “bam”, “ama”, “ma:”
Shape The word shape of the words in the mention phrase “Aa A. Aa”
Role Dependency label on the mention head “subj”
Context Words before and after the mention phrase “B:who”, “A:first”
Parent The head’s lexical parent in the dependency tree “picked”
Topic The most likely topic label for the document “politics”

Table 1: List of features used in our experiments, similar to features in Gillick et al. (2014). Features are extracted from each
mention. The example mention in context is ... who Barack H. Obama first picked ....

GFT Dev GFT Test FIGER
Total mentions 6,380 11,324 778
at Level 1 3,934 7,975 568
at Level 2 2,215 2,994 210
at Level 3 251 335 –

Table 2: Mention counts in our datasets.

GFT evaluation There are T = 86 fine grained
labels in the GFT dataset, as listed in Figure 1. The
four top-level labels are: person, location,
organization, and other; the remaining la-
bels are subtypes of these labels. The maximum
depth of a label is 3. We split the dataset into a
development set (for tuning hyperparameters) and
test set (see Table 2).

The overall experimental results are shown in
Table 3. Embedding methods performed well.
Both WSABIE and K-WSABIE outperformed the
baselines by substantial margins in F1-score,
though the advantage of the kernel version over
the linear version is only marginally significant.

To visualize the learned embeddings, we project
label embeddings down to two dimensions using
PCA in Figure 3. Since there are only 4 top-level
labels here, the fine grained labels are color-coded
according to their top-level labels for readability.
We can see that related labels are clustered to-
gether, and the four major clusters correspond to
to the top-level labels. We note that these first two
components only capture 14% of the total variance
of the full 50-dimensional space.

Method P R F1
FLAT 79.22 60.18 68.40
BINARY 80.05 62.20 70.01
WSABIE 80.58 66.20 72.68
K-WSABIE 80.11 67.01 72.98

Table 3: Precision (P), Recall (R), and F1-score on the GFT
test dataset for four competing models. The improvements
for WSABIE and K-WSABIE over both baselines are statisti-
cally significant (p < 0.01).

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8

-0
.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

PC1

PC
2

organization
company

broadcast
news

education
governmentmilitary

music

political_party

sports_league

sports_teamstock_exchangetransit

location

celestial

city
country

geographybody_of_water

islandmountain
park
structure

airport

hospitalhotel

restaurant

sports_facilitytheatertransit
bridgerailway

road

other

art

broadcast

film
music

stage
writing

award
body_part

currency

event

accident election

holiday

natural_disaster
sports_event

violent_conflict food

health

malady

treatment

heritage

internet
language

programming_language

legal
living_thinganimal

product

car

computer

mobile_phone

software

scientific

sports_and_leisure

supernatural

personartist
actor

author
director

music

athlete

business
coach

doctor

education
teacher

legal

militarypolitical_figure

religious_leader

title

organization
location
other
person

Figure 3: Two-dimensional projections of label embed-
dings for GFT dataset. See text for details.

FIGER evaluation Our second evaluation
dataset is FIGER from Ling and Weld (2012). In
this dataset, there are T = 112 labels organized
in a two-level hierarchy; however, only 102
appear in our training data (see Figure 1, taken
from their paper, for the complete set of labels).
The training labels include 37 top-level labels
(e.g., person, location, product, art,
etc.) and 75 second-level labels (e.g., actor,
city, engine, etc.) The FIGER dataset is much
smaller than the GFT dataset (see Table 2).

Our experimental results are shown in Ta-
ble 4. Again, K-WSABIE performed the best,
followed by the standard WSABIE model. Both
of these methods significantly outperformed Ling
and Weld’s best result.

Method P R F1
Ling and Weld (2012) – – 69.30
WSABIE 81.85 63.75 71.68
K-WSABIE 82.23 64.55 72.35

Table 4: Precision (P), Recall (R), and F1-score on the
FIGER dataset for three competing models. We took the F1
score from Ling and Weld’s best result (no precision and re-
call numbers were reported). The improvements for WSABIE
and K-WSABIE over the baseline are statistically significant
(p < 0.01).
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Feature learning We investigate whether hav-
ing a large fine grained label space is helpful in
learning a good representation for feature vec-
tors (recall that WSABIE learns representations for
both feature vectors and labels). We focus on the
task of coarse type classification, where we want
to classify a mention into one of the four top-level
GFT labels. We fix the training mentions and learn
WSABIE embeddings for feature vectors and la-
bels by (1) training only on coarse labels and (2)
training on all labels; we evaluate the models only
on coarse labels. Training with all labels gives
an improvement of about 2 points (F1 score) over
training with just coarse labels, as shown in Ta-
ble 5. This suggests that including additional sub-
type labels can help us learn better feature embed-
dings, even if we are not explicitly interested in the
deeper labels.

Training labels P R F1
Coarse labels only 82.41 77.87 80.07
All labels 85.18 79.28 82.12

Table 5: Comparison of two WSABIE models on coarse
type classification for GFT. The first model only used coarse
top-level labels, while the second model was trained on all 86
labels.

4 Discussion

Design of fine grained label hierarchy Results
at different levels of the hierarchies in Table 6
show that it is more difficult to discriminate among
deeper labels. However, it appears that the depth-
2 FIGER types are easier to discriminate than the
depth-2 (and depth-3) GFT labels. This may sim-
ply be an artifact of the very small FIGER dataset,
but it suggests it may be worthwhile to flatten the
other subtree ini GFT since many of its subtypes
do not obviously share any information.

GFT P R F1
LEVEL 1 85.22 80.55 82.82
LEVEL 2 56.02 37.14 44.67
LEVEL 3 65.12 7.89 14.07
FIGER P R F1
LEVEL 1 82.82 70.42 76.12
LEVEL 2 68.28 47.14 55.77

Table 6: WSABIE model’s Precision (P), Recall (R), and
F1-score at each level of the label hierarchies for GFT (top)
and FIGER (bottom).

5 Conclusion

We introduced embedding methods for fine
grained entity type classifications that outperforms
state-of-the-art methods on benchmark entity-
classification datasets. We showed that these

methods learned reasonable embeddings for fine-
type labels which allowed information sharing
across related labels.
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Abstract

We examine a key task in biomedical
text processing, normalization of disorder
mentions. We present a multi-pass sieve
approach to this task, which has the ad-
vantage of simplicity and modularity. Our
approach is evaluated on two datasets, one
comprising clinical reports and the other
comprising biomedical abstracts, achiev-
ing state-of-the-art results.

1 Introduction

Entity linking is the task of mapping an entity
mention in a text document to an entity in a knowl-
edge base. This task is challenging because (1) the
same word or phrase can be used to refer to differ-
ent entities, and (2) the same entity can be referred
to by different words or phrases. In the biomedical
text processing community, the task is more com-
monly known as normalization, where the goal is
to map a word or phrase in a document to a unique
concept in an ontology (based on the description
of that concept in the ontology) after disambiguat-
ing potential ambiguous surface words or phrases.
Unlike in the news domain, in the biomedical do-
main it is rare for the same word or phrase to re-
fer to multiple different concepts. However, dif-
ferent words or phrases often refer to the same
concept. Given that mentions in biomedical text
are relatively unambiguous, normalizing them in-
volves addressing primarily the second challenge
mentioned above.

The goal of this paper is to advance the state
of the art in normalizing disorder mentions in
documents from two genres, clinical reports and
biomedical abstracts. For example, given the dis-
order mention swelling of abdomen, a normaliza-
tion system should map it to the concept in the
ontology associated with the term abdominal dis-
tention. Not all disorder mentions can be mapped

ShARe NCBI
(Clinical (Biomedical
Reports) Abstracts)

Train Test Train Test
Documents 199 99 692 100
Disorder mentions 5816 5351 5921 964
Mentions w/ ID 4178 3615 5921 964
ID-less mentions 1638 1736 0 0

Table 1: Corpus statistics.

to a given ontology, however. The reason is that
the ontology may not include all of the possible
concepts. Hence, determining whether a disorder
mention can be mapped to a concept in the given
ontology is part of the normalization task. Note
that disorders have been the target of many re-
search initiatives in the biomedical domain, as one
of its major goals is to alleviate health disorders.

Our contributions are three-fold. First, we pro-
pose a simpler and more modular approach to
normalization than existing approaches: a multi-
pass sieve approach. Second, our system achieves
state-of-the-art results on datasets from two gen-
res, clinical reports and biomedical abstracts. To
our knowledge, we are the first to present normal-
ization results on two genres. Finally, to facilitate
comparison with future work on this task, we re-
lease the source code of our system.1

2 Corpora

We evaluate our system on two standard corpora
(see Table 1 for their statistics):

The ShARe/CLEF eHealth Challenge corpus
(Pradhan et al., 2013) contains 298 de-identified
clinical reports from US intensive care partitioned
into 199 reports for training and 99 reports for test-
ing. In each report, each disorder mention is man-
ually annotated with either the unique identifier of
the concept in the reference ontology to which it
refers, or “CUI-less” if it cannot be mapped to any

1The code is available from http://www.hlt.
utdallas.edu/˜jld082000/normalization/.
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Figure 1: Example concepts in the ontologies. The first one is taken from SNOMED-CT and the second one is taken

from MEDIC ontologies. In each concept, only its ID and the list of terms associated with it are shown.

concept in the reference ontology. The reference
ontology used is the SNOMED-CT resource of
the UMLS Metathesaurus (Campbell et al., 1998),
which contains 128,430 disorder concepts.

The NCBI disease corpus (Doğan et al., 2014)
contains 793 biomedical abstracts partitioned into
693 abstracts for training and development and
100 abstracts for testing. Similar to the ShARe
corpus, a disorder mention in each abstract is
manually annotated with the identifier of the con-
cept in the reference ontology to which it refers.
The reference ontology used is the MEDIC lex-
icon (Davis et al., 2012), which contains 11,915
disorder concepts. Unlike in the ShARe corpus,
in NCBI only those disorder mentions that can be
mapped to a concept in MEDIC are annotated. As
a result, all the annotated disorder mentions in the
NCBI corpus have a concept identifier. Unlike in
ShARe, in NCBI there exist composite disorder
mentions, each of which is composed of more than
one disorder mention. A composite disorder men-
tion is annotated with the set of the concept iden-
tifiers associated with its constituent mentions.

We note that each concept in the two ontolo-
gies (the UMLS Metathesaurus and MEDIC) is
not only identified by a concept ID, but also asso-
ciated with a number of attributes, such as the list
of terms commonly used to refer to the concept,
the preferred term used to refer to the concept, and
its definition. In our approach, we use only the list
of terms associated with each concept ID in the
normalization process. Figure 1 shows two exam-
ple concepts taken from these two ontologies.

3 A Multi-Pass Approach to
Normalization

Despite the simplicity and modularity of the multi-
pass sieve approach and its successful applica-
tion to coreference resolution (Raghunathan et al.,
2010), it has not been extensively applied to other
NLP tasks. In this section, we investigate its ap-
plication to normalization.

3.1 Overview of the Sieve Approach
A sieve is composed of one or more heuristic rules.
In the context of normalization, each rule normal-

izes (i.e., assigns a concept ID to) a disorder men-
tion in a document. Sieves are ordered by their
precision, with the most precise sieve appearing
first. To normalize a set of disorder mentions in
a document, the normalizer makes multiple passes
over them: in the i-th pass, it uses only the rules
in the i-th sieve to normalize a mention. If the i-th
sieve cannot normalize a mention unambiguously
(i.e., the sieve normalizes it to more than one con-
cept in the ontology), the sieve will leave it un-
normalized. When a mention is normalized, it is
added to the list of terms associated with the ontol-
ogy concept to which it is normalized. This way,
later sieves can exploit the normalization decisions
made in earlier sieves. Note that a normalization
decision made earlier cannot be overridden later.

3.2 Normalization Sieves

In this subsection, we describe the ten sieves we
designed for normalization. For convenience, we
use the word concept to refer to a concept in the
ontology, and we say that a disorder mention has
an exact match with a concept if it has an exact
match with one of the terms associated with it.
Sieve 1: Exact Match. This sieve normalizes a
disorder mention m to a concept c if m has an ex-
act match with c.

Sieve 2: Abbreviation Expansion. This sieve
first expands all abbreviated disorder mentions
using Schwartz and Hearst’s (2003) algorithm
and the Wikipedia list of disorder abbreviations.2

Then, it normalizes a disorder mentionm to a con-
cept c if the unabbreviated version of m has an ex-
act match with c.

For each unnormalized mention, we pass both
its original form and its new (i.e., unabbreviated)
form, if applicable, to the next sieve. As we will
see, we keep expanding the set of possible forms
of an unnormalized mention in each sieve. When-
ever a subsequent sieve processes an unnormalized
mention, we mean that it processes each form of
the mention created by the preceding sieves.

Sieve 3: Subject ⇔ Object Conversion. This

2http://en.wikipedia.org/wiki/List_of_
abbreviations_for_diseases_and_disorders
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sieve normalizes a mention to a concept c if any
of its new forms has an exact match with c. New
forms of a mention m are created from its origi-
nal and unabbreviated forms by: (1) replacing any
preposition(s) in m with other prepositions (e.g.,
“changes on ekg” converted to “changes in ekg”);
(2) dropping a preposition from m and swapping
the substrings surrounding it (e.g., “changes on
ekg” converted to “ekg changes”); (3) bringing the
last token to the front, inserting a preposition as
the second token, and shifting the remaining to-
kens to the right by two (e.g., “mental status alter-
ation” converted to “alteration in mental status”);
and (4) moving the first token to the end, inserting
a preposition as the second to last token, and shift-
ing the remaining tokens to the left by two (e.g.,
“leg cellulitis” converted to “cellulitis of leg”). As
in Sieve 2, for each unnormalized mention in this
and all subsequent sieves, both its original and new
forms are passed to the next sieve.

Sieve 4: Numbers Replacement. For a disorder
mention containing numbers between one to ten,
new forms are produced by replacing each num-
ber in the mention with other forms of the same
number. Specifically, we consider the numeral, ro-
man numeral, cardinal, and multiplicative forms
of a number for replacement. For example, three
new forms will be created for “three vessel dis-
ease”: {“3 vessel disease”, “iii vessel disease”,
and “triple vessel disease”}. This sieve normal-
izes a mention m to a concept c if one of the new
forms of m has an exact match with c.

Sieve 5: Hyphenation. A disorder mention un-
dergoes either hyphenation (if it is not already hy-
phenated) or dehyphenation (if it is currently hy-
phenated). Hyphenation proceeds as follows: the
consecutive tokens of a mention are hyphenated
one pair at a time to generate a list of hyphenated
forms (e.g., “ventilator associated pneumonia” be-
comes {“ventilator-associated pneumonia”, “ven-
tilator associated-pneumonia”}). Dehyphenation
proceeds as follows: the hyphens in a mention are
removed one at a time to generate a list of dehy-
phenated forms (e.g., “saethre-chotzen syndrome”
becomes “saethre chotzen syndrome”). This sieve
normalizes a mention m to a concept c if one of
the new forms of m has an exact match with c.

Sieve 6: Suffixation. Disorder mentions satisfy-
ing suffixation patterns manually observed in the
training data are suffixated. For example, “infec-
tious source” becomes “source of infectious” in

Sieve 3, which then becomes “source of infection”
in this sieve. This sieve normalizes a mention m
to a concept c if the suffixated form of m has an
exact match with c.

Sieve 7: Disorder Synonyms Replacement. For
mentions containing a disorder term, new forms
are created by replacing the disorder term with its
synonyms.3 For example, “presyncopal events”
becomes {“presyncopal disorders”, “presyncopal
episodes”, etc.}. In addition, one more form is cre-
ated by dropping the disorder modifier term (e.g.,
“iron-overload disease” becomes “iron overload
disease” in Sieve 5, which becomes “iron over-
load” in this sieve). For mentions that do not
contain a disorder term, new forms are created
by appending the disorder synonyms to the men-
tion. E.g., “crohns” becomes {“crohns disease”,
“crohns disorder”, etc.}. This sieve normalizes a
mention m to a concept c if any of the new forms
of m has an exact match with c.

Sieve 8: Stemming. Each disorder mention is
stemmed using the Porter (1980) stemmer, and the
stemmed form is checked for normalization by ex-
act match with the stemmed concept terms.

Sieve 9: Composite Disorder Mentions/Terms.
A disorder mention/concept term is composite if
it contains more than one concept term. Note
that composite concept terms only appear in the
UMLS ontology (i.e., the ontology for the ShARe
dataset), and composite disorder mentions only
appear in the NCBI corpus. Hence, different rules
are used to handle the two datasets in this sieve. In
the ShARe corpus, we first split each composite
term associated with each concept in the UMLS
ontology (e.g., “common eye and/or eyelid symp-
tom”) into separate phrases (e.g., {“common eye
symptom”, “common eyelid symptom”}), so each
concept may now be associated with additional
terms (i.e., the split terms). This sieve then nor-
malizes a mention to a concept c if it has an exact
match with c. In the NCBI corpus, we consider
each disorder mention containing “and”, “or”, or
“/” as composite, and split each such composite
mention into its constituent mentions (e.g., “pineal
and retinal tumors” is split into {“pineal tumors”,
“retinal tumors”}). This sieve then normalizes a
composite mention m to a concept c as follows.
First, it normalizes each of its split mentions to a
concept c if the split mention has an exact match

3A list of the disorder word synonyms is manually created
by inspection of the training data.
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with c. The normalized form of m will be the
union of the concepts to which each of its split
mentions is normalized.4

Sieve 10: Partial Match. Owing to the differ-
ences in the ontologies used for the two domains,
the partial match rules for the ShARe corpus are
different from those for the NCBI corpus. In
ShARe, a mention m is normalized to a concept
c if one of the following ordered set of rules is ap-
plicable: (1)m has more than three tokens and has
an exact match with c after dropping its first token
or its second to last token; (2) c has a term with ex-
actly three tokens and m has an exact match with
this term after dropping its first or middle token;
and (3) all of the tokens in m appear in one of the
terms in c and vice versa. In NCBI, a mention is
normalized to the concept with which it shares the
most tokens. In the case of ties, the concept with
the fewest tokens is preferred.

Finally, the disorder mentions not normalized in
any of the sieves are classified as “CUI-less”.

4 Related Work

In this section, we focus on discussing the two sys-
tems that have achieved the best results reported to
date on our two evaluation corpora. We also dis-
cuss a state-of-the-art open-domain entity-linking
system whose underlying approach is similar in
spirit to ours.

DNorm (Leaman et al., 2013), which adopts a
pairwise learning-to-rank approach, achieves the
best normalization result on NCBI. The inputs to
their system are linear vectors of paired query
mentions and candidate concept terms, where the
linear vectors are obtained from a tf-idf vector
space representation of all unique tokens from the
training disorder mentions and the candidate con-
cept terms. Among all the candidate concepts
that a given query disorder mention is paired with,
the system normalizes the query mention to the
highest ranked candidate. Similarity scores for
ranking the candidates are computed by multiply-
ing the linear tf-idf vectors of the paired query-
candidate mentions and a learned weight matrix.
The weight matrix represents all possible pairs of
the unique tokens used to create the tf-idf vec-
tor. At the beginning of the learning phase, the
weight matrix is initialized as an identity matrix.
The matrix weights are then iteratively adjusted

4Note that a composite mention in NCBI may be associ-
ated with multiple concepts in the ontology.

by stochastic gradient descent for all the concept
terms, their matched training data mentions, and
their mismatched training data mentions. After
convergence, the weight matrix is then employed
in the scoring function to normalize the test disor-
der mentions.

Ghiasvand and Kate’s (Ghiasvand and Kate,
2014) system has produced the best results to date
on ShARe. It first generates variations of a given
disorder word/phrase based on a set of learned edit
distance patterns for converting one word/phrase
to another, and then attempts to normalize these
query phrase variations by performing exact match
with a training disorder mention or a concept term.

Rao et al.’s (2013) open-domain entity-linking
system adopts an approach that is similar in spirit
to ours. It links organizations, geo-political en-
tities, and persons to the entities in a Wikipedia-
derived knowledge base, utilizing heuristics for
matching mention strings with candidate concept
phrases. While they adopt a learning-based ap-
proach where the outcomes of the heuristics are
encoded as features for training a ranker, their
heuristics, like ours, employ syntactic transforma-
tions of the mention strings.

5 Evaluation

In this section, we evaluate our multi-pass sieve
approach to normalization of disorder mentions.
Results on normalizing gold disorder mentions are
shown in Table 2, where performance is reported
in terms of accuracy (i.e., the percentage of gold
disorder mentions correctly normalized).

Row 1 shows the baseline results, which are the
best results reported to date on the ShARe and
NCBI datasets by Leaman et al. (2013) and Ghi-
asvand and Kate (2014), respectively. As we can
see, the baselines achieve accuracies of 89.5 and
82.2 on ShARe and NCBI, respectively.

The subsequent rows show the results of our ap-
proach when our ten sieves are added incremen-
tally. In other words, each row shows the re-
sults obtained after adding a sieve to the sieves in
the previous rows. Our best system results, high-
lighted in bold in Table 2, are obtained when all
our ten sieves are employed. These results are sig-
nificantly better than the baseline results (paired
t-tests, p < 0.05).

To better understand the usefulness of each
sieve, we apply paired t-tests on the results in ad-
jacent rows. We find that among the ten sieves,
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ShARe NCBI
BASELINE 89.5 82.2
OUR SYSTEM

Sieve 1 (Exact Match) 84.04 69.71
+ Sieve 2 (Abbrev.) 86.13 74.17
+ Sieve 3 (Subj/Obj) 86.40 74.27
+ Sieve 4 (Numbers) 86.45 75.00
+ Sieve 5 (Hyphen) 86.62 75.21
+ Sieve 6 (Affix) 88.11 75.62
+ Sieve 7 (Synonyms) 88.45 76.56
+ Sieve 8 (Stemming) 90.47 77.70
+ Sieve 9 (Composite) 90.53 78.00
+ Sieve 10 (Partial) 90.75 84.65

Table 2: Normalization accuracies on the test data
from the ShARe corpus and the NCBI corpus.

Sieve 2 improves the results on both datasets at the
lowest significance level (p < 0.02), while Sieves
6, 7, 8, and 10 improve results on both datasets
at a slightly higher significance level (p < 0.05).
Among the remaining four sieves (3, 4, 5, 9),
Sieve 3 improves results only on the clinical re-
ports (p < 0.04), Sieve 4 improves results only
on the biomedical abstracts dataset (p < 0.02),
and Sieves 5 and 9 do not have any significant im-
pact on either dataset (p > 0.05). The last finding
can be ascribed to the low proportions of hyphen-
ated (Sieve 5) and composite (Sieve 9) disorder
mentions found in the test datasets. After remov-
ing Sieves 5 and 9, accuracies drop insignificantly
(p > 0.05) by 0.3% and 1.14% on the clinical re-
ports and biomedical abstracts, respectively.

6 Error Analysis

In this section, we discuss the two major types of
error made by our system.
Failure to unambiguously resolve a mention.
Errors due to ambiguous normalizations where a
disorder mention is mapped to more than one con-
cept in the Partial Match sieve comprise 11–13%
of the errors made by our system. For example,
“aspiration” can be mapped to “pulmonary aspi-
ration” and “aspiration pneumonia”, and “growth
retardation” can be mapped to “fetal growth re-
tardation” and “mental and growth retardation
with amblyopia”. This ambiguity typically arises
when the disorder mention under consideration is
anaphoric, referring to a previously mentioned en-
tity in the associated text. In this case, context can
be used to disambiguate the mention. Specifically,
a coreference resolver can first be used to iden-

tify the coreference chain to which the ambiguous
mention belongs, and then the ambiguous mention
can be normalized by normalizing its coreferent
yet unambiguous counterparts instead.
Normalization beyond syntactic transforma-
tions. This type of error accounts for about 64–
71% of the errors made by our system. It oc-
curs when a disorder mention’s string is so lexi-
cally dissimilar with the concept terms that none
of our heuristics can syntactically transform it into
any of them. For example, using our heuristics,
“bleeding vessel” cannot be matched with any of
the terms representing its associated concept, such
as “vascular hemorrhage”, “rupture of blood ves-
sel”, and “hemorrhage of blood vessel”. Similarly,
“dominantly inherited neurodegeneration” cannot
be matched with any of the terms representing its
associated concept, such as “hereditary neurode-
generative disease”. In this case, additional infor-
mation beyond a disorder mention’s string and the
concept terms is needed to normalize the mention.
For example, one can exploit the contexts sur-
rounding the mentions in the training set. Specifi-
cally, given a test disorder mention, one may first
identify a disorder mention in the training set that
is “sufficiently” similar to it based on context, and
then normalize it to the concept that the training
disorder mention is normalized to. Another pos-
sibility is to exploit additional knowledge bases
such as Wikipedia. Specifically, one can query
Wikipedia for the test mention’s string, then em-
ploy the titles of the retrieved pages as alternate
mention names.

7 Conclusion

We have presented a multi-pass sieve approach
to the under-studied task of normalizing disorder
mentions in the biomedical domain. When nor-
malizing the gold disorder mentions in the ShARe
and NCBI corpora, our approach achieved accu-
racies of 90.75 and 84.65, respectively, which are
the best results reported to date on these corpora.
Above all, to facilitate comparison with future
work, we released the source code of our normal-
ization system.
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Rezarta Islamaj Doğan, Robert Leaman, and Zhiyong
Lu. 2014. NCBI disease corpus: A resource for dis-
ease name recognition and concept normalization.
Journal of Biomedical Informatics, 47:1–10.

Omid Ghiasvand and Rohit Kate. 2014. UWM: Disor-
der mention extraction from clinical text using CRFs
and normalization using learned edit distance pat-
terns. In Proceedings of the 8th International Work-
shop on Semantic Evaluation, pages 828–832.

Robert Leaman, Rezarta Islamaj Doğan, and Zhiy-
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Abstract

Semantic applications typically extract in-
formation from intermediate structures de-
rived from sentences, such as dependency
parse or semantic role labeling. In this pa-
per, we study Open Information Extrac-
tion’s (Open IE) output as an additional in-
termediate structure and find that for tasks
such as text comprehension, word similar-
ity and word analogy it can be very effec-
tive. Specifically, for word analogy, Open
IE-based embeddings surpass the state of
the art. We suggest that semantic applica-
tions will likely benefit from adding Open
IE format to their set of potential sentence-
level structures.

1 Introduction

Semantic applications, such as QA or summa-
rization, typically extract sentence features from
a derived intermediate structure. Common in-
termediate structures include: (1) Lexical repre-
sentations, in which features are extracted from
the original word sequence or the bag of words,
(2) Stanford dependency parse trees (De Marneffe
and Manning, 2008), which draw syntactic rela-
tions between words, and (3) Semantic role label-
ing (SRL), which extracts frames linking predi-
cates with their semantic arguments (Carreras and
Màrquez, 2005). For instance, a QA application
can evaluate a question and a candidate answer
by examining their lexical overlap (Pérez-Coutiño
et al., 2006), by using short dependency paths as
features to compare their syntactic relationships
(Liang et al., 2013), or by using SRL to compare
their predicate-argument structures (Shen and La-
pata, 2007).

In a seemingly independent research direction,
Open Information Extraction (Open IE) extracts
coherent propositions from a sentence, each com-
prising a relation phrase and two or more argument

phrases (Etzioni et al., 2008; Fader et al., 2011;
Mausam et al., 2012). We observe that while Open
IE is primarily used as an end goal in itself (e.g.,
(Fader et al., 2014)), it also makes certain struc-
tural design choices which differ from those made
by dependency or SRL. For example, Open IE
chooses different predicate and argument bound-
aries and assigns different relations between them.

Given the differences between Open IE and
other intermediate structures (see Section 2), a re-
search question arises: Can certain downstream
applications gain additional benefits from utiliz-
ing Open IE structures? To answer this question
we quantitatively evaluate the use of Open IE out-
put against other dominant structures (Sections 3
and 4). For each of text comprehension, word
similarity and word analogy tasks, we choose a
state-of-the-art algorithm in which we can easily
swap the intermediate structure while preserving
the algorithmic computations over the features ex-
tracted from it. We find that in several tasks Open
IE substantially outperforms other structures, sug-
gesting that it can provide an additional set of use-
ful sentence-level features.

2 Intermediate Structures

In this section we review how intermediate struc-
tures differ from each other, in terms of their im-
posed structure, predicate and argument bound-
aries, and the type of relations that they introduce.
We include Open IE in this analysis, along with
lexical, dependency and SRL representations, and
highlight its unique properties. As we show in
Section 4, these differences have an impact on the
overall performance of certain downstream appli-
cations.

Lexical representations introduce little or no
structure over the input text. Features for follow-
ing computations are extracted directly from the
original word sequence, e.g., word count statistics
or lexical overlap (see Figure 1a).
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Syntactic dependencies impose a tree structure
(see Figure 1b), and use words as atomic elements.
This structure implies that predicates are generally
composed of a single word and that arguments are
computed either as single words or as entire spans
of subtrees subordinate to the predicate word.

In SRL (see Figure 1c), several non-connected
frames are extracted from the sentence. The
atomic elements of each frame consist of a single-
word predicate (e.g., the different frames for visit
and refused), and a list of its semantic arguments,
without marking their internal structure. Each ar-
gument is listed along with its semantic relation
(e.g., agent, instrument, etc.) and usually spans
several words.

Open IE (see Figure 1d) also extracts non-
connected propositions, consisting of a predicate
and its arguments. In contrast to SRL, argument
relations are not analyzed, and predicates (as well
as arguments) may consist of several consecu-
tive words. Since Open IE focuses on human-
readability, infinitive constructions (e.g., refused
to visit), and multi-word predicates (e.g., took ad-
vantage) are grouped in a single predicate slot.
Additionally, arguments are truncated in cases
such as prepositional phrases and reduced rela-
tive clauses. The resulting structure can be under-
stood as an extension of shallow syntactic chunk-
ing (Abney, 1992), where chunks are labeled as
either predicates or arguments, and are then inter-
linked to form a complete proposition.

It is not clear apriory whether the differences
manifested in Open IE’s structure could be ben-
eficial as intermediate structures for downstream
applications. Although a few end tasks have made
use of Open IE’s output (Christensen et al., 2013;
Balasubramanian et al., 2013), there has been no
systematic comparison against other structures. In
the following sections, we quantitatively study and
analyze the value of Open IE structures against
the more common intermediate structures – lexi-
cal, dependency and SRL, for three downstream
NLP tasks.

3 Tasks and Algorithms

Comparing the effectiveness of intermediate struc-
tures in semantic applications is hard for several
reasons: (1) extracting the underlying structure de-
pends on the accuracy of the specific system used,
(2) the overall performance in the task depends
heavily on the computations carried on top of these

S: John refused to visit a Vegas casino
CA: John visited a Vegas casino

(a) Lexical matching of a 5 words window (marked with a box).
Current window yields a score of 4 - words contributing to the
score are marked in bold.

(b) Dependency matching yields a score of 3. Contributing
triplets are marked in bold.

S: refused0.1: A0: John A1: to visit a Vegas casino
visit0.1: A0: John A1: a Vegas casino

CA: visit0.1: A0: John A1: a Vegas casino

(c) SRL frames matching yields a score of 4, frame elements
contributing to the score marked in bold.

S: (John, refused to visit, a Vegas casino)
CA: (John, visited, a Vegas casino)

(d) Open IE matching yields a score of 2, contributing entries
marked in bold.

Figure 1: Different intermediate structures used to
compute the modified text comprehension match-
ing score (Section 3), when answering a question
”Where did John visit?”, given an input sentence
S: ”John refused to visit a Vegas casino”, and a
wrong candidate answer CA: ”John visited a Ve-
gas casino”.

structures, and (3) different structures may be suit-
able for different tasks. To mitigate these com-
plications, and comparatively evaluate the effec-
tiveness of different types of structures, we choose
three semantic tasks along with state-of-the-art al-
gorithms that make a clear separation between fea-
ture extraction and subsequent computation. We
then compare performance by using features from
four intermediate structures – lexical, dependency,
SRL and Open IE. Each of these is extracted using
state-of-the-art systems. Thus, while our compar-
isons are valid only for the tested tasks and sys-
tems, they do provide valuable evidence for the
general question of effective intermediate struc-
tures.

3.1 Text Comprehension Task

Text comprehension tasks extrinsically test natural
language understanding through question answer-
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Target Lexical Dependency SRL Open IE

refused

John nsubj John A0 John 0 John
to xcomp visit A1 to 1 to
visit A1 visit 1 visit
Vegas A1 Vegas 2 Vegas

Table 1: Some of the different contexts for the tar-
get word “refused” in the sentence ”John refused
to visit Vegas”. SRL and Open IE contexts are pre-
ceded by their element (predicate or argument) in-
dex. See figure 1 for the different representations
of this sentence.

ing. We use the MCTest corpus (Richardson et
al., 2013), which is composed of short stories fol-
lowed by multiple choice questions. The MCTest
task does not require extensive world knowledge,
which makes it ideal for testing underlying sen-
tence representations, as performance will mostly
depend on accuracy and informativeness of the ex-
tracted structures.

We adapt the unsupervised lexical matching
algorithm from the original MCTest paper. It
counts lexical matches between an assertion ob-
tained from a candidate answer (CA) and a sliding
window over the story. The selected answer is the
one for which the maximum number of matches
are found. Our adaptation changes the algorithm
to compute a modified matching score by counting
matches between structure units. The correspond-
ing units are either dependency edges, SRL frame
elements or Open IE tuple elements. Figure 1 il-
lustrates computations for a sentence - candidate
answer pair.

3.2 Similarity and Analogy Tasks

Word similarity tasks deal with assessing the de-
gree of ”similarity” between two input words. Tur-
ney (2012) classifies two types of similarity: (1)
domain similarity, e.g., carpenter is similar to
wood, hammer, and nail, (2) functional similarity,
in which carpenter will be similar to other profes-
sions, e.g., shoemaker, brewer, miner etc. Several
evaluation test sets exist for this task, each target-
ing a slightly different aspect of similarity. While
Bruni (2012), Luong (2013), Radinsky (2011),
and ws353 (Finkelstein et al., 2001) can be largely
categorized as targeting domain similarity, sim-
lex999 (Hill et al., 2014) specifically targets func-
tional aspects of similarity (e.g., coast will be sim-
ilar to shore, while closet will not be similar to
clothes). A related task is word analogy, in which

systems take three input words (A:A∗, B:?) and
output a word B∗, such that the relation between
B and B∗ is closest to the relation between A and
A∗. For instance, queen is the desired answer for
the triple (man:king, woman:?).

Some recent state-of-the-art approaches to these
two tasks derive a similarity score via arithmetic
computations on word embeddings (Mikolov et
al., 2013b). While original training of word em-
beddings used lexical contexts (n-grams), recently
Levy and Goldberg (2014) generalized this to ar-
bitrary contexts, such as dependency paths. We
use their software1 and recompute the word em-
beddings using contexts from our four structures:
lexical context, dependency paths, SRL’s seman-
tic relations, and Open IE’s surrounding tuple ele-
ments. Table 1 shows the different contexts for a
sample word.

4 Evaluation

In our experiments we use MaltParser (Nivre et
al., 2007) for dependency parsing, and ClearNLP
(Choi and Palmer, 2011) for SRL.

To obtain Open-IE structures, we use the re-
cent Open IE-4 system2 which produces n-ary ex-
tractions of both verb-based relation phrases using
SRLIE (an improvement over (Christensen et al.,
2011)) and nominal relations using regular expres-
sions. SRLIE first processes sentences using SRL
and then uses hand-coded rules to convert SRL
frames and associated dependency parses to open
extractions.

We choose these tools as they are on par with
state-of-the-art in their respective fields, and there-
fore represent the current available off-the-shelf
intermediate structures for semantic applications.
Furthermore, Open IE-4 is based on ClearNLP’s
SRL, allowing for a direct comparison. For SRL
systems, we take argument boundaries as their
complete parse subtrees.3

Results on Text Comprehension Task We re-
port results (in percentage of correct answers) on
the whole of MC500 dataset (ignoring train-dev-
test split) since all our methods are unsupervised.
Figure 2 shows the accuracies obtained on the
multiple-choice questions, categorized by single
(the question can be answered based on a sin-

1https://bitbucket.org/yoavgo/word2vecf
2http://knowitall.github.io/openie/
3We tried an alternative approach which takes only the

heads as arguments, but that performed much worse.
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Open IE Lexical Deps SRL
bruni .757 .735 .618 .491
luong .288 .229 .197 .171
radinsky .681 .674 .592 .433
simlex .39 .365 .447 .306
ws353-rel .647 .64 .492 .551
ws353-sym .77 .763 .759 .439
ws353-full .711 .703 .629 .693

Table 2: Performance in word similarity tasks
(Spearman’s ρ)

Google MSR
Add Mul Add Mul

Open IE .714 .719 .529 .55
Lexical .651 .656 .438 .455
Deps .34 .367 .4 .434
SRL .352 .362 .389 .406

Table 3: Performance in word analogy tasks (per-
centage of correct answers)

gle story sentence) , multiple (multiple sentences
needed) and all (single + multiple).4

In this task, we find that Open IE and depen-
dency edges substantially outperform lexical and
SRL. We conjecture that SRL’s weak performance
is due to its treatment of infinitives and multi-word
predicates as different propositions (see Section
2). This adds noise by wrongly counting partial
matching between predications, as exemplified in
Figure 1c. The gain over the lexical approach
can be explained by the ability to capture longer
range relations than the fixed size window.5 In
our results Open IE slightly improves over depen-
dency. This can be traced back to the different
structural choices depicted in Section 2 – Open
IE counts matches at the proposition level while
the dependency variant may count path matches
over unrelated sentence parts. The differences be-
tween the performance of Open IE and all other
systems were found to be statistically significant
(p < 0.01).

Results on Similarity and Analogy Tasks For
these tasks, we train the various word embeddings

4As expected, all sentence-level intermediate structures
perform best on the single partition, yet results show that
some of the questions from the multiple partition may also be
answered correctly using information from a single sentence.

5We experimented with various window sizes and found
that window size of the length of the current candidate-
answer performed best.

on a Wikipedia dump (August 2013 dump), con-
taining 77.5M sentences and 1.5B tokens. We
used the default hyperparameters from Levy and
Goldberg (2014): 300 dimensions, skip gram with
negative sampling of size 5. Lexical embeddings
were trained with 5-gram contexts. Performance
is measured using Spearman’s ρ, in order to assess
the correlation of the predictions to the gold anno-
tations, rather than comparing their values directly.
Table 2 compares the results on the word similar-
ity task using cosine similarity between embed-
dings as the similarity predictor. For the ws353
test set we report results on the whole corpus (full)
as well as on the partition suggested by (Agirre
et al., 2009) into relatedness (mainly meronym-
holonym) and similarity (synonyms, antonyms, or
hyponym-hypernym).

We find that Open IE-based embeddings consis-
tently do well; performing best across all test sets,
except for simlex999. Analysis reveals that Open
IE’s ability to represent multi-word predicates and
arguments allows it to naturally incorporate both
notions of similarity. Context words originating
from the same Open IE slot (either predicate or ar-
gument) are lexically close and indicate domain-
similarity, whereas context words from other ele-
ments in the tuple express semantic relationships,
and target functional similarity.

Thus, Open IE performs better on word-pairs
which exhibit both topical and functional similar-
ity, such as (latinist, classicist), or (provincialism,
narrow-mindedness), which were taken from the
Luong test set. Table 4 further illustrates this dual
capturing of both types of similarity in Open IE
space.

Our results also reiterate previous findings –
lexical contexts do well on domain-similarity test
sets (Mikolov et al., 2013b). The results on the
simlex999 test set can be explained by its focus
on functional similarity, previously identified as
better captured by dependency contexts (Levy and
Goldberg, 2014).

For the Word analogy task we use the Google
(Mikolov et al., 2013a) and the Microsoft cor-
pora (Mikolov et al., 2013b), which are composed
of ∼ 195K and 8K instances respectively. We
obtain the analogy vectors using both the addi-
tive and multiplicative measures (Mikolov et al.,
2013b; Levy and Goldberg, 2014). Table 3 shows
the results – Open IE obtains the best accuracies
by vast margins (p < 0.01), for reasons simi-
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Figure 2: Performance in MCTest (percentage of
correct answers).

lar to the word similarity tasks. To our knowl-
edge, Open IE results on both analogy datasets
surpass the state of the art. An example (from
the Microsoft test set) which supports the observa-
tion regarding Open IE embeddings space is (gen-
tlest:gentler, loudest:?), for which only Open IE
answers correctly as louder, while lexical respond
with higher-pitched (domain similar to loudest),
and dependency with thinnest (functionally sim-
ilar to loudest). Our Open-IE embeddings are
freely available6 and we note that these can serve
as plug-in features for other NLP applications, as
demonstrated in (Turian et al., 2010).

5 Conclusions

We studied Open IE’s output compared with other
dominant structures, highlighting their main dif-
ferences. We then conduct experiments and anal-
ysis suggesting that these structural differences
prove beneficial for certain downstream semantic
applications. A key strength is Open IE’s ability to
balance lexical proximity with long range depen-
dencies in a single representation. Specifically, for
the word analogy task, Open IE-based embeddings

6http://www.cs.bgu.ac.il/˜gabriels

Target Word Lexical Dependency Open IE

canine

dog feline dog
incisor bovine carnassial
dentition equine feline
parvovirus porcine fang-like
dysplasia murine bovine

Table 4: Closest words to canine in various word
embeddings. Illustrating domain similarity (Lex-
ical), functional similarity (Dependency), and a
mixture of both (Open IE).

surpass all prior results. We conclude that an NLP
practitioner will likely benefit from adding Open
IE to their toolkit of potential sentence representa-
tions.
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relio López-López, and Luis Villaseñor-Pineda.
2006. The role of lexical features in Question An-
swering for Spanish. Springer.

Kira Radinsky, Eugene Agichtein, Evgeniy
Gabrilovich, and Shaul Markovitch. 2011. A
word at a time: computing word relatedness using
temporal semantic analysis. In Proceedings of the
20th international conference on World wide web,
pages 337–346. ACM.

Matthew Richardson, Christopher JC Burges, and Erin
Renshaw. 2013. Mctest: A challenge dataset for
the open-domain machine comprehension of text. In
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 193–203.

Dan Shen and Mirella Lapata. 2007. Using semantic
roles to improve question answering. In EMNLP-
CoNLL 2007, Proceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning, June 28-30, 2007, Prague, Czech Repub-
lic, pages 12–21.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semi-supervised learning. In Proceedings of the
48th annual meeting of the association for compu-
tational linguistics, pages 384–394. Association for
Computational Linguistics.

Peter D Turney. 2012. Domain and function: A dual-
space model of semantic relations and compositions.
Journal of Artificial Intelligence Research, 44:533–
585.

308



Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Short Papers), pages 309–313,

Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Recovering dropped pronouns from Chinese text messages

Yaqin Yang
Paypal Inc.

yaqin276@gmail.com

Yalin Liu
Brandeis University

yalin@brandeis.edu

Nianwen Xu
Brandeis University

xuen@brandeis.edu

Abstract

Pronouns are frequently dropped in Chi-
nese sentences, especially in informal data
such as text messages. In this work we
propose a solution to recover dropped pro-
nouns in SMS data. We manually annotate
dropped pronouns in 684 SMS files and
apply machine learning algorithms to re-
cover them, leveraging lexical, contextual
and syntactic information as features. We
believe this is the first work on recover-
ing dropped pronouns in Chinese text mes-
sages.

1 Introduction

Text messages generated by users via SMS or Chat
have distinct linguistic characteristics that pose
unique challenges for existing natural language
processing techniques. Since such text messages
are often generated via mobile devices in infor-
mal settings and are limited in length, abbrevia-
tions and omissions are commonplace. In this pa-
per, we report work on detecting one particular
type of omission in Chinese text messages, namely
dropped pronouns.

It is well-known that Chinese is a pro-drop lan-
guage, meaning pronouns can be dropped from
a sentence without causing the sentence to be-
come ungrammatical or incomprehensible when
the identity of the pronoun can be inferred from
the context. Pronouns can be dropped even in
formal text genres like newswire, but the extent
to which this happens and the types of pronouns
that are dropped in text messages and formal gen-
res like newswire are very different. For exam-
ple, the most frequently dropped pronouns in Chi-
nese newswire is the third person singular它(“it”)
(Baran et al. 2012 ), and one reason is that first
and second person pronouns are rarely used in
newswire in the first place. In contrast, in text

messages, the first person singular 我 and the
second person singular 你 are commonly found
in text messages due to their conversational style,
and they are often dropped as well when their ref-
erent is understood in the context. This is illus-
trated in (1), where there are instances of dropped
first person singular, second person singular and
third person singular pronouns. There is also an
instance where the dropped pronoun in Chinese
does not have any actual referent, translating to the
English pleonastic “it”. Dropped pronouns are in
parentheses:

(1) A 你们
your

那
area
下雪
snow

了
ASP

,
,
你
you
怎么
how
去
go
上班
work

“It snowed in your area. How do you go
to work?”

B (我)
(I)
步行
walk

或
or
坐车
take the bus

“(I) walk or take the bus.”

A (pleonastic)
(it)

看来
look like

交通业
transportation

还是

比较
relatively

发达
developed

的.

“(It) looks like you have a relatively de-
veloped transportation system.”

B (pleonastic)
(it)

下雪
snow

(我)
(I)
就
then
不
not
能
can

上班
go to work

了
ASP

“When (it) snows, (I) cannot go to work.”

B (它)
(it)
还可以
OK

“(It) is OK.”

Detecting dropped pronouns involves first of all
determining where in the sentence pronouns are
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dropped and then determining what the dropped
pronoun is, i.e., whether the dropped pronoun
should be 我, 你, 他, etc. The dropped pronoun
could either correspond to one of possible pro-
nouns in Chinese, or it can be an abstract pronoun
that does not correspond to any of the Chinese
pronouns. For example, Chinese does not have
a pronoun that is the equivalent of the pleonastic
“it” in English, but there are sentences in which a
dropped pronoun occurs in a context that is sim-
ilar to where “it” occurs. In this case we label
the dropped pronoun as a type of abstract pronoun.
Note that we do not attempt to resolve these pro-
nouns to an antecedent in this work. We think
there is value in just detecting these pronouns. For
example, if we translate Chinese sentences with
dropped pronouns into English, they may have to
be made explicit.

We approach this as a supervised learning prob-
lem, so first we need a corpus annotated with the
location and type of dropped pronouns to train
machine learning models. We annotated 292,455
words of Chinese SMS/Chat data with dropped
pronouns and we describe our annotation in more
detail in Section 2. We then present our machine
learning approach in Section 3. Experimental re-
sults are presented in Section 4, and related work
is described in Section 5. Finally we conclude in
Section 6.

2 Dropped pronoun annotation

We annotated 684 Chinese SMS/Chat files follow-
ing the dropped pronoun annotation guidelines de-
scribed in (Baran et al. 2012 ). The original guide-
lines are mainly designed for annotating dropped
pronouns in newswire text, and we had to extend
the guidelines to accommodate SMS/Chat data.
For example, (Baran et al. 2012 ) identify 14 types
of pronouns, which include four abstract pronouns
which do not correspond to any actual pronouns
in Chinese. To accommodate SMS/Chat data, we
add one more type of abstract pronoun that refers
to the previous utterance. The full list of pronouns
that we use are listed below:

1. 我(I): first person singular
2. 我们(we): first person plural
3. 你(you): second person singular
4. 你们(you): second person plural
5. 他(he): third person masculine singular
6. 他们(they): third person masculine plural

7. 她(she): third person feminine singular
8. 她们(they): third person feminine plural
9. 它(it): third person inanimate singular

10. 它们(they): third person inanimate plural
11. Event: abstract pronoun that refers to an

event
12. Existential: abstract pronoun that refers to

existential subject
13. Pleonastic: abstract pronoun that refers to

pleonastic subject
14. generic: abstract pronoun that

refers to something generic or unspecific
15. Previous Utterance: abstract pronoun that

refers to previous utterance
16. Other: cases where it is unclear what the cor-

rect pronoun should be

3 Learning

We have formulated dropped pronoun recovery as
a sequential tagging problem, following (Yang and
Xue. 2010 ). We check each word token in a
sentence and decide if there is a pronoun dropped
before this word. If there is one, then we further
identify what type of pronoun it should be. Instead
of doing this in two separate steps, we trained a 17-
class Maximum Entropy classifier with the Mallet
(McCallum et al. 2002) machine learning pack-
age to tag each word token with one of the pro-
nouns or None in one run. None indicates that
there is no dropped pronoun before this word.

We leveraged a set of lexical features from pre-
vious work (Yang and Xue. 2010 ). To our knowl-
edge, the work we report here represents the first
effort on dropped pronoun recovery on Chinese
SMS/Chat data. As described in Section 2, SMS
data is different from newswire data which is com-
monly used in previous work (Converse. 2006;
Zhao and Ng. 2007; Peng and Araki. 2007; Kong
and Zhou. 2010; Chung and Gildea 2010; Cai et
al. 2011; Xiang et al. 2013) in many aspects.
The frequency of pronoun being dropped is much
higher in SMS/Chat data compared to newswire
data. The distribution of dropped pronoun types
in SMS data is also very different from that of
newswire data. In SMS/Chat data, the identities
of the participants who send the messages are crit-
ical in identifying the dropped pronoun type, while
there is no participant information in newswire
data. Thus, we also design a new set of context
based features to capture the stylistic properties of
text messages.
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Lexical Features: Information embedded in
the target and surrounding words provide clues for
identifying dropped pronouns, e.g.,

(2) (它)
(it)
坏
broken

了
ASP

.

.

“(It) is broken.”

In (2), a pronoun is dropped at the beginning of
the sentence. The follwing words “坏了” means
“is broken”, and it indicates that the subject refers
to a thing, not a person. Part-of-speech tags are
also crucial in finding the location of a dropped
pronoun. Just like pronouns are usually located
before verbs, it is more likely to have a pronoun
dropped before an verb than a noun. We imple-
mented a set of lexical features along with part-of-
speech tags within a sliding window of five words
to capture such information. The contextual fea-
tures are listed below:

• unigrams within current window;
• previous and following (including current

word) bigrams;
• POS tags of unigrams within current window;
• POS tags of the previous and following (in-

cluding current word) bigrams;
• POS tags of the following (including current

word) trigram;
• combination previous word and POS tag of

current word;
• combination of POS tag of previous word and

current word;
• POS tag sequence from the previous word to

the beginning of a sentence or a punctuation
mark.

Context-based Features: It is hard to recover
dropped pronouns without understanding the con-
text. In SMS data, one sometimes needs to trace
back a few sentences to figure out what a dropped
pronoun refers to.

(3) a. 我
I
想
want

买
buy
个
CL
单反
SLR camera

.

.

“I want to buy a SLR camera.”

b. (我)
(I)
国庆节
Independent Day

出去
go out

玩
travel

啊.
.

“(I) will travel on Independent Day.”

In (3), the two sentences are attributed to the
same person, and a pronoun is dropped at the be-
ginning of the second sentence. While we could

easily understand the dropped pronoun refers to
“我(I)” from the previous sentence, it is difficult
to make this determination by just looking at the
second sentence independently. Thus, we propose
a list of novel context-based features tailored to-
wards SMS/Chat data to capture such information:

• previous pronoun used by the same partici-
pant;
• previous pronoun used by the other partici-

pant;
• all previous pronouns till the beginning of a

sentence or a punctuation mark used;
• next punctuation mark;
• if it is a question;
• if the POS tag of the last word is SP;
• for the first word in a sentence, use first two

nouns/pronouns from the previous sentence.

Syntactic Features: Syntactic features have
been shown to be useful in previous work (?). We
also implemented the following syntactic features:

• if it is the left frontier of the lowest IP an-
tecedent;
• if current word is “有”, then find it’s subject;
• path from current word to the root node.

4 Experiments and discussion

4.1 Data split
Table 1 presents the data split used in our experi-
ments.

data set # of words # of files
Train 235,184 487
Dev 24,769 98
Test 32,502 99

Table 1: Training, development and test data on
SMS data set.

4.2 Results
As mentioned in Section 3, we extract lexical,
context and syntactic features from SMS data and
train a 17-class classifier to automatically recover
dropped pronouns. To obtain syntactic features,
we divided 684 SMS files into 10 portions, and
parsed each portion with a model trained on other
portions, using the Berkeley parser (Petrov and
Klein 2007). The parsing accuracy stands at
82.11% (F-score), with a precision of 82.57% and
a recall of 81.65%. The results of our experiments
are presented in Table 2.
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tag pre.(%) rec.(%) f. count
NE 99.1 95.7 97.3 28963
我 48 53.1 50.4 1155
你 34.4 48.1 40.1 787
它 12.1 54.6 19.8 488
prev utterance 87.6 65.3 74.8 314
pleonastic 7 10.2 8.3 172
她 4.3 27.8 7.4 117
他 11 22.2 14.7 109
我们 24 41 30.3 104
generic 6.6 17.1 9.5 91
他们 2.7 11.1 4.4 73
event 4.3 25 7.3 47
它们 4.7 100 8.9 43
other 0 0 0 16
你们 0 0 0 13
existential 12.5 2 3.4 8
她们 0 0 0 2

Table 2: precision, recall and f-score for differ-
ent dropped pronoun categories on test set. The
combination of “我(I)”, “你(singular you)” and
“utterance” accounts for 63.7% of the overall
dropped pronoun population. The overall accu-
racy is 92.1%. “NE” stands for None, meaning
there is no dropped pronoun.

4.3 Error Analysis
From Table 3, which is a confusion matrix gen-
erated from results on the test set, showing the
classification errors among different types, we can
see that the classifier did a better job of recover-
ing “我(I)”, “你(singular you)” and “previous ut-
terance”, the combination of which accounts for
63.7% of the total dropped pronoun instances.
However, it is hard for the classifier to recover
“它(it)”, e.g.,

“*pro*这种？(*pro* that kind?)”

SMS sentences are usually short. To understand
what the dropped pronoun stands for, one needs to
look at its previous context. But it is hard for ma-
chine to capture such long distance information.

5 Related Work

One line of work that is closely related to ours is
zero pronoun resolution. In zero pronoun reso-
lution (Converse. 2006; Zhao and Ng. 2007;
Peng and Araki. 2007; Kong and Zhou. 2010),
pronouns are typically resolved in three steps:
zero pronoun detection, anaphoricity determina-
tion, and antecedent resolution. In the work we

NE 我 你 它 ut pl 她 他 我们 ge 他
们

ev 它们 ot 你们 ex 她们

NE 28695 130 77 9 8 7 2 10 9 8 1 . . . 1 6 .
我 433 554 101 11 5 13 2 5 10 4 1 1 . . 1 14 .
你 327 135 271 6 3 16 1 6 6 9 1 1 . . . 5 .
它 199 85 49 59 23 42 1 10 1 3 5 1 . . 1 9 .

utterance 23 7 1 4 275 4 . . . . . . . . . . .
pleonastic 36 17 5 5 88 12 1 1 1 . 1 . . . . 5 .
她 47 21 21 5 1 6 5 5 1 . 3 1 . . . 1 .
他 46 23 10 2 6 5 1 12 . 1 . . . . . 3 .
我们 47 17 5 2 . . 2 2 25 . 1 1 . . . 2 .

generic 52 20 5 . . . . 2 2 6 . . . . . 4 .
他们 38 15 7 2 . 3 2 . 1 2 2 1 . . . . .
event 16 4 3 2 11 6 1 1 . . 1 2 . . . . .
它们 14 11 4 . 1 3 . . 3 2 2 . 2 . . 1 .
other 15 . . . . 1 . . . . . . . . . . .
你们 6 2 4 1 . . . . . . . . . . . . .

existential 4 2 . . . . . . 1 . . . . . . 1 .
她们 1 . . . . . . . 1 . . . . . . . .

Table 3: Confusion matrix for each annotation cat-
egory. Columns correspond to Maxent predicted
values and rows refer to annotated values.

report here, we are more interested in detecting
dropped pronouns and determining what types of
pronoun they are.

Dropped pronoun detection is also related to
Empty Category (EC) detection and resolution
(Chung and Gildea 2010; Cai et al. 2011; Xi-
ang et al. 2013), the aim of which is to recover
long-distance dependencies, discontinuous con-
stituents, and certain dropped elements in phrase
structure treebanks (Marcus et al. 1993; Xue et
al. 2005). In previous work on EC detection
(Chung and Gildea 2010; Cai et al. 2011; Xiang
et al. 2013), ECs are recovered from newswire
data by leveraging lexical and syntactic informa-
tion from each sentence. Context information be-
yond the current sentence is typically not used.
When recovering dropped pronouns in SMS/Chat
messages, it is crucially important to make use of
information beyond the current sentence.

6 Conclusion and Future Work

In this paper we report work on recovering
dropped pronouns in Chinese SMS/Chat mes-
sages. Based on the properties of SMS data, we
designed a set of lexical, contextual and syntac-
tic features, and trained a Maxent classifier to
recover dropped pronouns in Chinese SMS/Chat
messages. We believe this is the first work on re-
covering dropped pronouns in Chinese text mes-
sages. This proves to be a very challenging task,
and much remains to be done. In future work, we
plan to experiment with applying more expressive
machine learning techniques to this task.
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Abstract

We give an algorithm for disambiguating
generic versus referential uses of second-
person pronouns in restaurant reviews in
Chinese. Reviews in this domain use the
‘you’ pronoun 你 either generically or to
refer to shopkeepers, readers, or for self-
reference in reported conversation. We
first show that linguistic features of the lo-
cal context (drawn from prior literature)
help in disambigation. We then show
that document-level features (n-grams and
document-level embeddings)— not previ-
ously used in the referentiality literature—
actually give the largest gain in perfor-
mance, and suggest this is because pro-
nouns in this domain exhibit ‘one-sense-
per-discourse’. Our work highlights an
important case of discourse effects on pro-
noun use, and may suggest practical impli-
cations for audience extraction and other
sentiment tasks in online reviews.

1 Introduction and Task Description

Detecting whether a given entity is referential is
an important question in computational discourse
processing. Linguistic features in the local con-
text of a given mention have been successfully
used for determining whether a second-person
pronoun (you) in dialogue is referential (Gupta et
al., 2007b; Frampton et al., 2009; Purver et al.,
2009). The related task of anaphoricity detection
is an important subtask of coreference resolution
(Ng and Cardie, 2002; Ng, 2004; Luo, 2007; Zhou
and Kong, 2009; Recasens et al., 2013).

In this paper we consider the task of audience
identification in review texts, using restaurant re-
views written in Chinese. Our task is to disam-
biguate a mention of the Chinese second-person
pronoun你 (ni, “you”) into the following four la-
bels that we found to occur commonly in reviews:

Generic
饮品只有雪碧和可乐，而且要点才拿给你
For drinks they only have Sprite and Coke,
and you have to order before they’ll give
them to you.

Referential - Shop
这么好的服务下次还来你家哦
With such good service, I’ll definitely come
back to your shop next time!

Referential - Reader
不信你们去试你们会终身遗憾！
Go and try it if you don’t believe me - your
whole body will feel regret!

Referential - Writer / Self
店员说“你们就只要钵钵鸡？”
The shop employee said, “You only want the
stone-bowl chicken?”

We aim to gain insight into the linguistics of
narrative by distinguishing the types of discourse
contexts in which different referential senses are
found. Restaurant reviews provide an important
new test case, and resolving who a reviewer wants
to address could have important implications for
coreference resolution or sentiment analysis of re-
views, as well as downstream tasks like informa-
tion extraction.

2 Related Work

A number of closely related earlier papers have fo-
cused on disambiguating ‘you’ in English. Gupta
et al. (2007b) annotated the Switchboard cor-
pus of telephone dialogue, showing that features
based on specific lexical patterns, adjacent parts-
of-speech, punctuation, and dialog acts are suf-
ficient to achieve performance of 84.39% at the
binary generic/referential prediction task. Gupta
et al. (2007a) show that similar features gener-
alize to addressee prediction for multi-party in-
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teractions significantly better than a simple base-
line. Frampton et al. (2009) combine discourse
features with acoustic and visual information for
four-way interactions to resolve participant refer-
ence, and in the same setting Purver et al. (2009)
employ cascaded classifiers that first establish ref-
erentiality and then attempt to resolve the refer-
ent. They show that utterance-level lexical fea-
tures help, suggesting that different uses of ‘you’
are associated with distinct vocabularies.

Reiter and Frank (2010) investigate the more
general question of identifying genericity for noun
phrases, showing the usefuleness of linguistic fea-
tures such as syntactic dependency relations. Sim-
ilar local structural cues like phrase-structure po-
sitioning, head word identity, and distance to sur-
rounding clauses have been used as features in ma-
chine learning approaches for anaphoricity detec-
tion as one stage in a coreference resolution (Kong
and Zhou, 2010; Zhou and Kong, 2011; Kong and
Ng, 2013).

Prior work has also shown improvements in per-
formance in the dialogue domain from incorporat-
ing features having to do with acoustic prosody,
gaze, and head movements (Jovanović et al., 2006;
Takemae and Ozawa, 2006; Gupta et al., 2007b;
Frampton et al., 2009). Of course in the review
domain we have no access to such information; as
we’ll see, however, we can exploit other unique
properties of reviews to make up for this lack.

3 Data

We scrape reviews from dianping.com, a Chinese-
language restaurant review site, from the ten cities
with the most reviews. We randomly sample 750
restaurants within each city and randomly sample
reviews of those restaurants.

We scraped 346,381 reviews, including all as-
sociated metadata (city, restaurant category, and
cost) for each restaurant, as well as the provided
ratings (service, taste, ambience, and overall stars)
for each review. Of these reviews only 6,704
(less than 2%) have the second-person pronominal
character ni, highlighting another particular inter-
est of this task: explicit second-person pronomi-
nals are quite rare in Chinese, at least in this genre,
making the reviews in which they appear linguis-
tically marked.

Summary statistics for this dataset are given in
Table 1. We release all our data and annotations at
nlp.stanford.edu/robvoigt/nis.

3.1 Preprocessing

We apply the Stanford CRF Word Segmenter
(Tseng et al., 2005) to segment the text of each re-
view into words, and use simple heuristics based
on whitespace and punctuation to extract sen-
tences or sentence fragments. The Stanford Parser
(Klein and Manning, 2003; Levy and Manning,
2003) is then run on each extracted sentence or
fragment containing a ni to produce a dependency
graph and set of part-of-speech (POS) tags for
later use in feature extraction.

3.2 Annotation

We hand-annotated 701 examples of ni tokens (in-
cluding both singular and plural cases), placing
them into one of seven categories: generic, writer-
referential, reader-referential, shop-referential, id-
iomatic, non-“you”, and other. The idiomatic and
non-“you” cases are commonly comprised of set
phrases such as 你好 (nihao, “hello”) or 迷你
(mini, “mini”) and are therefore relatively trivial to
filter; and the “other” class is both rare and varied,
including cases such as direct reference to prior
review-writers.

We therefore only consider the generic and
large-class referential cases, leaving us with 636
examples for our task; the distribution of anno-
tated nis is shown in Table 2.

The approximately half-and-half split between
generic and referential tokens is surprisingly sim-
ilar to that found by studies on English dialogue
like Gupta et al. (2007b), in spite of the large di-
vergence in language and genre.

We also found an unexpected word-sense prop-
erty of second-person pronouns in this genre: of
the 122 annotated reviews which contain more
than one ni, 83.6% use ni with the same sense
in each occurrence in the review, recalling the
one-sense-per-discourse hypothesis of Gale et al.
(1992). Finding that this discourse property—
normally predicated of word-sense in common
nouns—occurs in pronouns suggests the use of
features of the entire discourse in this task.

4 Features

We consider two primary types of features: “lo-
cal” and “discourse”.

4.1 Local Features

“Local” features model textual and linguistic
properties of the immediate context of a given ni
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SUBSET small REVIEWS CHARACTERS WORDS CHARS / REVIEW WORDS / REVIEW

Total 346,381 15,010,375 10,112,722 43.33 29.20
Containing ni 6,704 1,099,597 748,683 164.02 111.68

Table 1: Summary statistics for the dataset collected for this paper; 701 cases of ni in 472 documents were annotated.

TYPE ADDRESSEE COUNT

Generic - 296
Referential Shop 256
Referential Reader 48
Referential Writer 36
Idiomatic - 25

Non-“you” - 26
Other - 14

Table 2: Distribution of relevant types of 你 (ni, “you”) in
our annotated data.

mention, and were drawn from the large litera-
ture on referentiality, anaphoricity, and singleton-
detection:

Word Identity This feature simply encodes the
word-segmented identity of the word in which the
current ni token is found, capturing cases such as
the second-person plural你们 (nimen, “you [plu-
ral]”).

Adjacent POS Tags Following Gupta et al.
(2007b), we include POS tag features for the sin-
gle words immediately following and preceeding
the ni token.

Dependencies We include binary features for
the presence or absence of lexicalized dependency
relations in which the given ni participates. As an
example, for the phrase你要推销菜 (“if you want
to sell dishes”), we extract a feature for NSUBJ(推
销,你) – you is the subject of the verb sell.

Lexical Context This feature set fires binary
features for the presence or absence of words in
the vocabulary within a three-word window on ei-
ther side of the given ni token.

4.2 Discourse Features

The “discourse” category considers features that
characterize the entire review, capturing the intu-
ition that the classic one-sense-per-discourse prop-
erty is likely to hold for a given review, so we ex-
pect that features on the entire text of the review
will be relevant for prediction.

This is a novel contribution of this work: we
propose that in certain contexts (such as reviews),

referentiality resolution can be interpreted in part
as a text classification task.

Review N-grams These are binary features for
the presence or absence of n-grams in the entire
text of the review. We found that using a larger n
than 1 caused overfitting on our relatively small
dataset and reduced performance; therefore, re-
sults are reported using unigram features.

Review Vector Embedding To see if we can
induce higher-level representations of the review
text than simply binary n-gram features, we also
train a document-level distributed vector represen-
tation (Le and Mikolov, 2014) on the entire corpus
of reviews using the “doc2vec” implementation in
GENSIM (Řehůřek and Sojka, 2010), and include
200 vector features per review: a 100-dimensional
embedding learned on the entire document, as well
as a 100-dimensional average embedding calcu-
lated by averaging the vectors for each word in the
document. In experiments we found using both
the document and the average vectors combined
resulted in higher performance than either alone,
so we report results in this setting.

Metadata In addition to discourse features, we
also included features that encode the category,
city, and estimated cost for each restaurant, as well
as the service, taste, environment, and overall star
rank ratings associated with a given review on a
5-point scale.

5 Experiments

We tested the effectiveness of these features at
predicting genericity and reference for each ni to-
ken with multinomial logistic regression, as imple-
mented in SCIKIT-LEARN (Pedregosa et al., 2011).
We used two classification settings: a binary pre-
diction of whether a given ni is referential or not,
and a four-way prediction including distinctions
between the three annotated referential targets.
The results for each task are shown in Table 3.

In each case, we compare the performance of
all local and discourse features, as well as several
relevant subsets. One question we aim to address
is whether our discourse-level n-gram and embed-
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FEATURES BINARY FOUR-WAY

Baseline 53.44% 46.56%
L

O
C

A
L

Word ID 67.19% 62.19%
+ POS 74.84% 64.38%
+ Deps 75.00% 69.38%
+ Context 78.44% 72.19%

D
IS

C
O

U
R

S
E N-grams 81.72% 77.03%

Vectors 74.84% 66.56%
N-grams + Vectors 81.25% 76.72%

M
IX

E
D

Local + N-grams 84.38% 79.84%
Local + Vectors 86.56% 78.91%
Local + Discourse 85.78% 80.63%

A
L

L Local + Discourse
+ Meta 88.21% 81.45%

Table 3: Average ten-fold cross-validation classification ac-
curacy for different feature sets on two tasks. “Local” refers
to all feature sets described in Section 4.1. BINARY distin-
guishes generic and referential ni, FOUR-WAY distinguishes
between generic and three referential senses.

ding features contribute similar information, so we
test them both separately and together. We com-
pare our results to a baseline of choosing the most
common class for either task.

We train and test models with ten-fold cross-
validation. In each fold, we use 80% of the data
for training, 10% for development, and 10% for
testing. For each feature set, we set the l2 regu-
larization strength as a hyperparameter based on
average cross-validation accuracy on the develop-
ment data in each fold. All reported results are
average cross-validation accuracy at that regular-
ization strength on the test set in each fold.

5.1 Meta-analysis

To better understand the effectiveness of each fea-
ture set for this task, we perform a full ablation
study by training a classifier on all 127 (27−1, ig-
noring the empty set) possible combinations of our
7 feature sets, and run a linear regression predict-
ing the classification score from the feature sets
used. This allows us to obtain estimates of the ef-
fect size and statistical significance for each set of
features with reference to all the others. These re-
sults are shown in Table 4.

6 Discussion

These results show that on the task of detecting
genericity and reference for second-person pro-
nouns in our annotated set of Chinese-language
restaurant reviews, both discourse-level features as
well as local, contextual features significantly im-

FEATURE BINARY FOUR-WAY

estimate p estimate p
ID 2.5% *** 1.9% ***
POS 1.0% . 1.0% .
Deps 0.2% 0.6%
Context 4.2% *** 4.2% ***
N-grams 6.6% *** 7.8% ***
Vectors 3.8% *** 3.8% ***
Metadata 2.7% *** 2.6% ***

Table 4: Meta-analysis results for both tasks: effect size es-
timates from linear regressions (n = 127) predicting cross-
validation scores from feature set. the p column denotes sta-
tistical significance; . is p < 0.1 and *** is p < 0.001.

pact classification performance.
Simple word identity features alone already

provide surprising performance: the classifier
learns that the singular ni is more likely to be
generic while the plural你们 often refers to peo-
ple affiliated with the shop.

While local features alone achieve respectable
performance (78.44% for binary genericity detec-
tion and 72.19% for four-way classification), we
show that in the review context significant gains
can be made from using a combination of local
and discourse-level features, exploiting discourse-
level indicators of referentiality and the fact that a
one-sense-per-discourse assumption tends to hold
with regards to the use of ni.

Analysis of learned feature weights in our
highest-performing model also provides some in-
teresting social insights. Reviews with a high
overall star rank were more likely to use generic
ni, and reviewers who thought highly of the restau-
rant’s service as indicated by their quality-of-
service rating were more likely to use reader-
directed referential ni.

Reviews with shop-directed referential ni were
likely to use emotive sentence-final particles like
啊 (a), exclamation points, and question marks,
just as question marks were among the strongest
indicators of referential uses in the English “you”s
in Gupta et al. (2007b). We also found that other
pronouns like 我 (wo, “I”) and 我们 (women,
“we”), as well as words of temporal sequencing第
一 (diyi, “the first”),又 (you, “again”), and次 (ci,
“[one] time”) receive high weights for referential
classes.

Combined with the observation that reviews
containing ni simply tend to be much longer than
those without (see Table 1), these results suggest a
link to the narrative work of Jurafsky et al. (2014),
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who characterize negative reviews as narrative ex-
positions of an individual bad experience.

For example, consider the following review
containing a referential ni:

菜品，份量都不错。环境更没得说。但我
们中午去的晚，没想到人家先关灯，后又
关空调。想问下你们省电了，是想证明我
们吃饭可以不用给钱吗？
The food and quantity was fine. The ambi-
ence need not be mentioned. But in spite of
having been a bit late for lunch, we wouldn’t
have imagined you’d first turn off the lights,
and then turn off the air conditioner. I’d like
to ask: saving money on electricity like this,
do you mean to imply that there’s no need for
us to pay for our meal?

While the immediate context suggests a refer-
ential interpretation (想问下你们省电了, literally
“want to ask you [plural], saving electricity”), it is
only when this mention is connected to elements
of the entire discourse (the sequence of events, the
first-person pronouns) that it becomes completely
clear first that the mention is referential and sec-
ond that it refers to the shop owner.

Furthermore, we found that when combined
with local features, features derived from dis-
tributed representations of each document per-
form at least as well for this task as document-
level n-grams, but at a much lower dimensional-
ity. This suggests that these embeddings do suc-
cessfully encode the information necessary to re-
produce document-level distinctions in discourse
types, such as between the personal narratives that
often surround referential uses of ni and the ab-
stract descriptions of generic uses.

Our meta-analysis shows that more linguisti-
cally motivated local features such as POS tags
and dependency relations are substantially over-
shadowed in effectiveness by lexical and discourse
features, although this may be due in part to re-
duced performance of these automatic taggers on
the more colloquial language in online reviews.

Finally, this work challenges prior claims that
spoken language is “more complex” than other
genres with regards to referentiality. On the con-
trary: whereas in a spoken discourse the poten-
tial addressees are by default the participants, web
texts such as the reviews studied here have no such
default, and may include complex, creative, and
domain-specific deictic reference that can be im-
portant for computational systems to address.

References
Matthew Frampton, Raquel Fernández, Patrick Ehlen,

Mario Christoudias, Trevor Darrell, and Stanley Pe-
ters. 2009. Who is you?: combining linguistic and
gaze features to resolve second-person references in
dialogue. In Proceedings of the 12th Conference of
the European Chapter of the Association for Com-
putational Linguistics, pages 273–281. Association
for Computational Linguistics.

William A Gale, Kenneth W Church, and David
Yarowsky. 1992. One sense per discourse. In Pro-
ceedings of the workshop on Speech and Natural
Language, pages 233–237. Association for Compu-
tational Linguistics.

Surabhi Gupta, John Niekrasz, Matthew Purver, and
Daniel Jurafsky. 2007a. Resolving “you” in mul-
tiparty dialog. In Proceedings of the 8th SIGdial
Workshop on Discourse and Dialogue, pages 227–
30.

Surabhi Gupta, Matthew Purver, and Dan Jurafsky.
2007b. Disambiguating between generic and refer-
ential you in dialog. In Proceedings of the 45th An-
nual Meeting of the ACL on Interactive Poster and
Demonstration Sessions, pages 105–108. Associa-
tion for Computational Linguistics.
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Abstract

We propose an unsupervised probabilistic
model for zero pronoun resolution. To our
knowledge, this is the first such model that
(1) is trained on zero pronouns in an unsu-
pervised manner; (2) jointly identifies and
resolves anaphoric zero pronouns; and (3)
exploits discourse information provided by
a salience model. Experiments demon-
strate that our unsupervised model signif-
icantly outperforms its state-of-the-art un-
supervised counterpart when resolving the
Chinese zero pronouns in the OntoNotes
corpus.

1 Introduction

A zero pronoun (ZP) is a gap in a sentence that
is found when a phonetically null form is used to
refer to a real-world entity. An anaphoric zero pro-
noun (AZP) is a ZP that corefers with one or more
preceding mentions in the associated text. Below
is an example taken from the Chinese TreeBank
(CTB), where the ZP (denoted as *pro*) refers to
俄罗斯 (Russia).

[俄罗斯] 作为米洛舍夫维奇一贯的支持者，
*pro*曾经提出调停这场政治危机。
([Russia] is a consistent supporter of Milošević,
*pro* has proposed to mediate the political crisis.)

As we can see, ZPs lack grammatical attributes
that are useful for overt pronoun resolution such as
number and gender. This makes ZP resolution
more challenging than overt pronoun resolution.
Automatic ZP resolution is typically composed

of two steps. The first step, AZP identification, in-
volves extracting ZPs that are anaphoric. The sec-
ond step, AZP resolution, aims to identify an an-
tecedent of an AZP. State-of-the-art ZP resolvers
have tackled both of these steps in a supervised
manner, training one classifier for AZP identifica-

tion and another for AZP resolution (e.g., Zhao and
Ng (2007), Kong and Zhou (2010)).
More recently, we have proposed an unsuper-

vised AZP resolution model (henceforth the CN14
model) that rivals its supervised counterparts in
performance (Chen and Ng, 2014). The idea is to
resolve AZPs by using a probabilistic pronoun res-
olution model trained on overt pronouns in an un-
supervisedmanner. This is an appealing approach,
as its language-independent generative process en-
ables it to be applied to languages where data an-
notated with ZP links are not available.
In light of the advantages of unsupervised mod-

els, we examine in this paper the possibility of ad-
vancing the state of the art in unsupervised AZP
resolution. The design of our unsupervised model
is motivated by a key question: can we resolve
AZPs by using a probabilistic model trained on
zero pronouns in an unsupervised manner? As
mentioned above, the CN14 model was trained on
overt pronouns, but it is not clear how much this
helped its resolution performance. In particular,
the contexts in which overt and zero pronouns oc-
cur may not statistically resemble each other. For
example, a ZP is likely to be closer to its antecedent
than its overt counterpart. As another example,
the verbs governing a ZP and its antecedent are
more likely to be identical than the verbs govern-
ing an overt pronoun and its antecedent. Given
such differences, it is not clear whether the knowl-
edge learned from overt pronouns is always appli-
cable to the resolution of AZPs. For this reason,
we propose to train an unsupervised AZP resolu-
tion model directly on zero pronouns. Moreover,
while we previously employed a pipeline architec-
ture where we (1) used a set of heuristic rules for
AZP identification, and then (2) applied their prob-
abilistic model to all and only those ZPs that were
determined to be anaphoric (Chen and Ng, 2014),
in this work we identify and resolve AZPs in a
joint fashion. To our knowledge, the model we are
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proposing here is the first unsupervised model for
joint AZP identification and resolution.1
In addition, motivated bywork on overt pronoun

resolution, we hypothesize that AZP resolution can
be improved by exploiting discourse information.
Specifically, we design a model of salience and in-
corporate salience information into our model as a
feature. Inspired by traditional work on discourse-
based anaphora resolution (e.g., Lappin and Leass
(1994)), we compute salience based on the corefer-
ence clusters constructed so far using a rule-based
coreference resolver. While ZPs have been ex-
ploited to improve coreference resolution (Kong
and Ng, 2013), we are the first to improve AZP
resolution using coreference information.
When evaluated on the Chinese portion of the

OntoNotes corpus, our AZP resolver outperforms
the CN14model, achieving state-of-the-art results.

2 Related Work

Early approaches to AZP resolution employed
heuristic rules to resolve AZPs in Chinese (e.g.,
Converse (2006), Yeh and Chen (2007)) and Span-
ish (e.g., Ferrández and Peral (2000)). More re-
cently, supervised approaches have been exten-
sively employed to resolve AZPs in Chinese (e.g.,
Zhao and Ng (2007), Kong and Zhou (2010),
Chen and Ng (2013)), Korean (e.g., Han (2006)),
Japanese (e.g., Seki et al. (2002), Isozaki and Hi-
rao (2003), Iida et al. (2003; 2006; 2007), Ima-
mura et al. (2009), Iida and Poesio (2011), Sasano
and Kurohashi (2011)), and Italian (e.g., Iida and
Poesio (2011)). As mentioned before, in order
to reduce reliance on annotated data, we recently
proposed an unsupervised probabilistic model for
Chinese AZP resolution that rivaled its supervised
counterparts in performance (Chen and Ng, 2014).

3 The Generative Model

Next, we present our model for jointly identifying
and resolving AZPs in an unsupervised manner.

3.1 Notation
Let z be a ZP. C, the set of candidate antecedents
of z, contains (1) the maximal or modifier NPs that
precede z in the associated text that are at most
two sentences away from it; and (2) a dummy can-
didate antecedent d (to which z will be resolved

1Note that Iida and Poesio (2011) perform joint infer-
ence over an AZP identification model and an AZP resolution
model trained separately, not joint learning of the two tasks.

if it is non-anaphoric). k is the context surround-
ing z as well as every candidate antecedent c in
C; kc is the context surrounding z and candidate
antecedent c; and l is a binary variable indicating
whether c is the correct antecedent of z.

3.2 Training

Our model estimates P (z, k, c, l), the probability
of seeing (1) the ZP z; (2) the context k surround-
ing z and its candidate antecedents; (3) a candidate
antecedent c of z; and (4) whether c is the correct
antecedent of z. Since we estimate this probability
from a raw, unannotated corpus, we are treating z,
k, and c as observed data2 and l as hidden data.
Motivated in part by previous work on En-

glish overt pronoun resolution (e.g., Cherry and
Bergsma (2005) and Charniak and Elsner (2009)),
we estimate the model parameters using the
Expectation-Maximization algorithm (Dempster
et al., 1977). Specifically, we use EM to iteratively
(1) estimate the model parameters from data in
which each ZP is labeled with the probability that
it corefers with each of its candidate antecedents,
and (2) apply the resulting model to re-label each
ZP with the probability that it corefers with each of
its candidate antecedents. Below we describe the
details of the E-step and the M-step.

3.2.1 E-Step
The goal of the E-step is to compute
P (l=1|z, k, c), the probability that a candi-
date antecedent c is the correct antecedent of
z given context k. Applying the definition of
conditional probability and the Theorem of Total
Probability, we can rewrite P (l=1|z, k, c) as
follows:

P (l=1|z, k, c) =
P (z, k, c, l=1)

P (z, k, c, l=1) + P (z, k, c, l=0)
(1)

Assuming that exactly one of z's candidate an-
tecedents is its correct antecedent, we can rewrite
P (z, k, c, l=0) as follows:

P (z, k, c, l=0) =
∑

c′∈C,c′ ̸=c

P (z, k, c′, l=1) (2)

Given Equation (2), we can rewrite

2Here, we treat z as observed data because we assume that
the set of ZPs has been identified by a separate process. We
adopt the heuristics for ZP identification that we introduced
in Chen and Ng (2014).
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P (l=1|z, k, c) as follows:

P (l=1|z, k, c) =
P (z, k, c, l=1)∑

c′∈C P (z, k, c′, l=1)
(3)

Applying the Chain Rule, we can rewrite
P (z, k, c, l=1) as follows:

P (z, k, c, l=1) = P (z|k, c, l=1) ∗ P (l=1|k, c)
∗ P (c|k) ∗ P (k)

(4)
Next, since z is a phonetically null form (and

therefore is not represented by any linguistic at-
tributes), we assume that each of its candidate an-
tecedents and the associated context has the same
probability of generating it. So we can rewrite
P (z|k, c, l=1) as follows:

P (z|k, c, l=1) = P (z|k, c′, l=1) ∀ c, c′ ∈ C
(5)

Moreover, we assume that (1) given z and c's
context, the probability of c being the antecedent
of z is not affected by the context of the other can-
didate antecedents; and (2) kc is sufficient for de-
termining whether c is the antecedent of z. So,

P (l=1|k, c) ≈ P (l=1|kc, c) ≈ P (l=1|kc) (6)

Next, applying Bayes Rule to P (l=1|kc), we
get:

P (kc|l=1)P (l=1)
P (kc|l=1)P (l=1) + P (kc|l=0)P (l=0)

(7)

Representing kc as a set of n features f1
c , . . . fn

c

and assuming that each f i
c is conditionally inde-

pendent given l, we can approximate Expression
(7) as: ∏

i P (f i
c|l=1)P (l=1)∏

i P (f i
c|l=1)P (l=1) +

∏
i P (f i

c|l=0)P (l=0)
(8)

Furthermore, we assume that given context k,
each candidate antecedent of z is generated with
equal probability. In other words,

P (c|k) = P (c′|k) ∀ c, c′ ∈ C (9)

Given Equations (4), (5), (8) and (9), we can
rewrite P (l=1|z, k, c) as:

P (l=1|z, k, c) =
P (z, k, c, l=1)∑

c′∈C P (z, k, c′, l=1)

=
P (z|k, c, l=1)∗P (l=1|k, c)∗P (c|k)∑

c′∈C P (z|k, c′, l=1)∗P (l=1|k, c′)∗P (c′|k)

≈ P (l=1|kc)∑
c′∈C P (l=1|kc′)

≈
∏

i P (f i
c|l=1)

Zc∑
c′∈C

∏
i P (f i

c′ |l=1)

Zc′
(10)

where

Zx=
∏

i

P (f i
x|l=1)P (l=1)+

∏
i

P (f i
x|l=0)P (l=0)

(11)
As we can see from Equation (10), our model

has one group of parameters, namely P (f i
c|l=1).

Using Equation (10) and the current parameter es-
timates, we can compute P (l=1|z, k, c).
A point deserves mention before we describe

the M-step. By including d as a dummy candidate
antecedent for each z, we effectively model AZP
identification and resolution in a joint fashion. If
the model resolves z to d, it means that the model
posits z as non-anaphoric; on the other hand, if
the model resolves z to a non-dummy candidate
antecedent c, it means that the model posits z as
anaphoric and c as z's correct antecedent.

3.2.2 M-Step
Given P (l=1|z, k, c), the goal of the M-step is to
(re)estimate the model parameters, P (l=1|kc), us-
ing maximum likelihood estimation. Specifically,
P (l=1|kc) is estimated as follows:

P (l=1|kc) =
Count(kc, l=1) + θ

Count(kc) + θ ∗ 2
(12)

where Count(kc) is the number of times kc ap-
pears in the training data, Count(kc, l=1) is the
expected number of times kc is the context sur-
rounding an AZP and its antecedent c, and θ is the
Laplace smoothing parameter, which we set to 1.
Given context k′

c, we compute Count(k′
c, l=1) as

follows:

Count(k′
c, l=1) =

∑
k:kc=k′

c

P (l=1|z, k, c) (13)

To start the induction process, we initialize all
parameters with uniform values. Specifically,
P (l=1|kc) is set to 0.5. Then we iteratively run
the E-step and the M-step until convergence.
There is an important question we have not ad-

dressed: what features should we use to represent
context kc, which we need to estimate P (l=1|kc)?
We answer this question in Section 4.

3.3 Inference

After training, we can apply the resulting model to
resolve ZPs. Given a test document, we process its
ZPs in a left-to-right manner. For each ZP z enoun-
tered, we determine its antecedent as follows:
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ĉ = argmax
c∈C

P (l=1|z, k, c) (14)

whereC is the set of candidate antecedents of z. If
we resolve a ZP to a preceding NP c, we fill its gap
with c. Hence, when we process a ZP z, all of its
preceding AZPs in the associated text have already
been resolved, having had their gaps filled with
their associated NPs. To resolve z, we create test
instances between z and its candidate antecedents
in the samewaywe described before. The only dif-
ference is that z's candidate antecedents may now
include the NPs to which previous AZPs were re-
solved. In other words, this incremental resolution
procedure may increase the number of candidate
antecedents of each ZP z. Some of these addi-
tional candidate antecedents are closer to z than
were their parent NPs, thus facilitating the resolu-
tion of z to the NPs in the following way: If the
model resolves z to the additional candidate an-
tecedent that fills the gap left behind by, say, AZP
z′, we postprocess the output by resolving z to the
NP that z′ is resolved to.3

4 Context Features

To fully specify our model, we need to describe
how to represent kc, which is needed to compute
P (l=1|kc). Recall that kc encodes the context sur-
rounding candidate antecedent c and the associated
ZP z. As described below, we represent kc using
eight features. Note that (1) all but feature 1 are
computed based on syntactic parse trees, and (2)
features 2, 3, and 6 are ternary-valued features.

1. the sentence distance between c and z;
2. whether the node spanning c has an ancestor

NP node; if so, whether this NP node is a de-
scendant of c's lowest ancestor IP node;

3. whether the node spanning c has an ancestor
VP node; if so, whether this VP node is a de-
scendant of c's lowest ancestor IP node;

4. whether vp has an ancestor NP node, where
vp is the VP node spanning the VP that fol-
lows z;

5. whether vp has an ancestor VP node;
6. whether z is the first word of a sentence; if

not, whether z is the first word of an IP clause;
7. whether c is a subject whose governing verb

is lexically identical to the verb governing z;
3This postprocessing step is needed because the additional

candidate antecedents are only gap fillers.

Training Test
Documents 1,391 172
Sentences 36,487 6,083
Words 756,063 110,034
AZPs − 1,713

Table 1: Statistics on the training and test sets.

8. c's salience rank (see Section 5).

Note that features 1, 2, 3 and 7 are not directly
applicable to the dummy candidate. To compute
the feature values of the dummy candidate, we first
find the highest ranking non-dummy entity E in
the salience list, and then set the values of these
four features of the dummy candidate to the corre-
sponding feature values of the rightmost mention
of E. The motivation is that we want the dummy
candidate to compete with the most salient non-
dummy candidate.

5 Adding Salience

Recall from Section 4 that feature 8 requires the
computation of salience. Intuitively, salient enti-
ties are more likely to contain the antecedent of an
AZP.
We model salience as follows. For each ZP z,

we compute the salience score for each (partial)
entity preceding z.4 To reduce the size of the list
of preceding entities, we only consider a partial
entity active if one of its mentions appears within
two sentences of the active ZP z. We compute the
salience score of each active entity w.r.t. z using
the following equation:∑

m∈E

g(m) ∗ decay(m) (15)

where m is a mention belonging to active entity
E, g(m) is a grammatical score which is set to
4, 2, or 1 depending on whether m's grammati-
cal role is Subject, Object, or Other, respec-
tively, and decay(m) is decay factor that is set to
0.5dis (where dis is the sentence distance between
m and z). After computing the scores, we first sort
the list of the active entities in descending order of
salience. Then, within each active entity, we sort
the mentions in increasing order of distance from
z. Finally, we set the salience rank of eachmention
m to its position in the sorted list, but cap the rank

4We compute the list of preceding entities automatically
using SinoCoreferencer, a publicly available Chinese en-
tity coreference resolver. See http://www.hlt.utdallas.
edu/~yzcchen/coreference/.
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Setting 1: Gold Parses, Gold AZPs Setting 2: Gold Parses, System AZPs Setting 3: System Parses, System AZPs
Baseline Our Model Baseline Our Model Baseline Our Model

Source R P F R P F R P F R P F R P F R P F
Overall 47.5 47.9 47.7 50.0 50.4 50.2 35.4 21.0 26.4 35.7 26.2 30.3 19.9 12.9 15.7 19.6 15.5 17.3
NW 41.7 41.7 41.7 46.4 46.4 46.4 29.8 24.8 27.0 32.1 28.1 30.0 11.9 13.0 12.4 11.9 14.3 13.0
MZ 34.0 34.2 34.1 38.9 39.1 39.0 24.1 14.5 18.1 29.6 19.6 23.6 6.2 5.2 5.7 4.9 4.7 4.8
WB 47.9 47.9 47.9 51.8 51.8 51.8 37.3 18.7 24.9 39.1 22.9 28.9 19.0 11.3 14.2 20.1 14.3 16.7
BN 52.8 52.8 52.8 53.8 53.8 53.8 31.5 28.1 29.7 30.8 30.7 30.7 18.2 19.5 18.8 18.2 22.3 20.0
BC 49.8 50.3 50.0 49.2 49.6 49.4 38.0 21.0 27.0 35.9 26.6 30.6 20.6 12.4 15.5 19.4 14.6 16.7
TC 45.2 46.7 46.0 51.9 53.5 52.7 42.4 20.3 27.4 43.5 28.7 34.6 32.2 13.3 18.8 31.8 17.0 22.2

Table 2: AZP resolution results of the baseline and our model on the test set.

at 5 in order to reduce sparseness during parameter
estimation.
Note that the above list contains only non-

dummy entities. We model the salience of a
dummy entity D, which contains only the dummy
candidate for z, as follows. Intuitively, if z is non-
anaphoric, D should be the most salient entity.
Hence, we put D at the top of the list if z satisfies
any of the following three conditions, all of which
are strong indicators of non-anaphoricity: (1) z ap-
pears at the beginning of a document; (2) the verb
following z is 有 (there is) or 没有 (there is not)
with part of speech VE; or (3) the VP node in the
syntactic parse tree following z does not span any
verb. If none of these conditions is satisfied, we
put D at the bottom of the list.

6 Evaluation

6.1 Experimental Setup

Datasets. We employ the Chinese portion of the
OntoNotes 5.0 corpus that was used in the official
CoNLL-2012 shared task (Pradhan et al., 2012).
In the CoNLL-2012 data, the training set and de-
velopment set contain ZP coreference annotations,
but the test set does not. Therefore, we train our
models on the training set and perform evaluation
on the development set. Statistics on the datasets
are shown in Table 1. The documents in these
datasets come from six sources, namely Broadcast
News (BN), Newswires (NW), Broadcast Conver-
sations (BC), Telephone Conversations (TC), Web
Blogs (WB), and Magazines (MZ).

Evaluation measures. We express results in
terms of recall (R), precision (P), and F-score (F)
on resolvingAZPs, considering anAZP z correctly
resolved if it is resolved to any NP in the same
coreference chain as z.

Evaluation settings. Following Chen and Ng
(2014), we evaluate our model in three settings. In
Setting 1, we assume the availability of gold syn-

tactic parse trees and gold AZPs.5 In Setting 2, we
employ gold syntactic parse trees and system (i.e.,
automatically identified) AZPs. Finally, in Set-
ting 3 (the end-to-end setting), we employ system
syntactic parse trees and system AZPs. The gold
and system syntactic parse trees, as well as the gold
AZPs, are obtained from the CoNLL-2012 shared
task dataset, while the system AZPs are identified
by our generative model.

6.2 Results
As our baseline, we employ the CN14 system,
which has achieved the best result to date on our
test set. Table 2 shows results obtained using both
the baseline system and our model on the entire
test set as well as on each of the six sources. As
we can see, our model significantly6 outperforms
the baseline under all three settings by 2.5%, 3.9%
and 1.6% respectively in terms of overall F-score.

7 Conclusion

We proposed a novel unsupervised model for Chi-
nese zero pronoun resolution by (1) training on
zero pronouns; (2) jointly identifying and resolv-
ing anaphoric zero pronouns; and (3) exploit-
ing salience information. Experiments on the
OntoNotes 5.0 corpus showed that our unsuper-
vised model achieved state-of-the-art results.
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Abstract

Co-Simrank is a useful Simrank-like mea-

sure of similarity based on graph structure.

The existing method iteratively computes

each pair of Co-Simrank score from a dot

product of two Pagerank vectors, entailing

O(log(1/ǫ)n3) time to compute all pairs

of Co-Simranks in a graph with n nodes,

to attain a desired accuracy ǫ. In this study,

we devise a model, Co-Simmate, to speed

up the retrieval of all pairs of Co-Simranks

to O(log2(log(1/ǫ))n3) time. Moreover,

we show the optimality of Co-Simmate

among other hop-(uk) variations, and inte-

grate it with a matrix decomposition based

method on singular graphs to attain higher

efficiency. The viable experiments verify

the superiority of Co-Simmate to others.

1 Introduction

Many NLP applications require a pairwise graph-

based similarity measure. Examples are bilingual

lexicon extraction (Laws et al., 2010), sentiment

analysis (Scheible and Schütze, 2013), synonym

extraction (Minkov and Cohen, 2014), named en-

tity disambiguation (Alhelbawy and Gaizauskas,

2014), acronym expansion (Zhang et al., 2011).

Recently, Co-Simrank (Rothe and Schütze, 2014)

becomes an appealing graph-theoretical similarity

measure that integrates both features of Simrank

(Jeh and Widom, 2002) and Pagerank (Berkhin,

2005). Co-Simrank works by weighing all the

number of connections between two nodes to eval-

uate how similar two nodes are. The intuition be-

hind Co-Simrank is that “more similar nodes are

likely to be pointed to by other similar nodes”.

Co-Simrank is defined in a recursive style:

S = cATSA + I, (1)

where S is the exact Co-Simrank matrix, A is the

column-normalised adjacency matrix of the graph,

c is a decay factor, and I is an identity matrix.

The best-known method by (Rothe and Schütze,

2014) computes a single element of S iteratively

from a dot product 〈∗, ∗〉 of two Pagerank vectors:

Sk(a, b) = ck〈pk(a),pk(b)〉 + Sk−1(a, b) (2)

where pk(a) is a Pagerank vector, defined as

pk(a) = ATpk−1(a) with p0(a) = I(∗, a) (3)

This method is highly efficient when only a small

fraction of pairs of Co-Simranks need computing

because there is no need to access the entire graph

for computing only a single pair score. However,

partial pairs retrieval is insufficient for many real-

world applications (Zhou et al., 2009; Yu et al.,

2012a; Zwick, 2002; Leicht et al., 2006) which re-

quire all-pairs scores. Let us look at two examples.

a) Co-Citation Analysis. In a co-citation network,

one wants to retrieve the relevance between any

two given documents at any moment based on

their references. To answer such an ad-hoc query,

quantifying scores of all document-pairs provides

a comprehensive way to show where low and high

relevance of pairwise documents may exist (Li et

al., 2010; Yu et al., 2014; Haveliwala, 2002).

b) Water Burst Localization. In a water network,

nodes denote deployed pressure sensor locations,

and edges are pipe sections that connect the nodes.

To determine the burst location, one needs to eval-

uate “proximities” of all pairs of sensor nodes first,

and then compare all these “proximities” with the

difference in the arrival times of the burst transient

at sensor locations, to find the sensor node nearest

to the burst event. (Srirangarajan and Pesch, 2013;

Srirangarajan et al., 2013; Stoianov et al., 2007)

Hence, the retrieval of all pairwise Co-Simranks

is very useful in many applications. Unfortunately,

when it comes to all pairs computation of S(∗, ∗),
the way of (2) has no advantage over the naive way

Sk = cATSk−1A + I with S0 = I (4)
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as both entail O(log(1/ǫ)n3) time to compute all

pairs of Co-Simranks to attain desired accuracy ǫ.

The complexity O(log(1/ǫ)n3) has two parts:

The first part O(n3) is for matrix multiplications

(ATSk−1A) at each step. A careful implementa-

tion, e.g., partial sums memoisation (Lizorkin et

al., 2010) or fast matrix multiplications (Yu et al.,

2012b),1 can optimise this part further to O(dn2)
or O(nlog2 7), with d the average graph degree.

The second part O(log(1/ǫ)) is the total number

of steps required to guarantee a given accuracy ǫ,

because, as implied by (Rothe and Schütze, 2014),

|Sk(a, b) − S(a, b)| ≤ ck+1. ∀a, b, ∀k (5)

To the best of our knowledge, there is a paucity of

work on optimising the second part O(log(1/ǫ)).
Yu et al. (2012b) used a successive over-relaxation

(SOR) method to reduce the number of steps for

Simrank, which is also applicable to Co-Simrank.

However, this method requires a judicious choice

of an internal parameter (i.e., relaxation factor ω),

which is hard to determine a-priori. Most recently,

Yu et al. (2015) propose an exponential model to

speed up the convergence of Simrank:

S̄0 = exp(−c) · I, dS̄t/dt = AT · S ·A.

However, S̄ and S do not produce the same results.

Thus, this exponential model, if used to compute

Co-Simrank, will lose some ranking accuracy.

Contributions. In this paper, we propose an effi-

cient method, Co-Simmate, that computes all pairs

of Co-Simranks in just O(log2(log(1/ǫ))n3) time,

without any compromise in accuracy. In addition,

Co-Simmate is parameter-free, and easy to imple-

ment. It can also integrate the best-of-breed matrix

decomposition based method by Yu and McCann

(2014) to achieve even higher efficiency.

2 Co-Simmate Model

First, we provide the main idea of Co-Simmate.

We notice that Co-Simrank solution S in (1) is

expressible as a matrix series:

S = I + cATA + c2(AT )
2
A2

+ c3(AT )
3
A3 + c4(AT )

4
A4 + · · ·

(6)

The existing iterative method (4) essentially uses

the following association to compute (6):

S =
(

cAT

=S2︷ ︸︸ ︷(
cAT

(
cATA + I

)︸ ︷︷ ︸
=S1

A + I
)
A + I

)
+ · · · (7)

1These Simranks methods also suit Co-Simranks.

The downside of this association is that the result-

ing Sk−1 of the last step can be reused only once

to compute Sk. Thus, after k iterations, Sk in (4)

grasps only the first k-th partial sums of S in (6).

To speed up the computation, we observe that

(6) can be reorganised as follows:

S =

(

I + cAT A

)

+

(

c2(AT )
2
A2 + c3(AT )

3
A3

)

+

+

(

c4(AT )
4
A4 + · · ·+ c7(AT )

7
A7

)

+ · · ·

=

(

I + cAT A

)

+

(

c2(AT )
2
(I + cAT A)A2

)

+

+

(

c4(AT )
4
(

I + cAT A + · · ·+ c3(AT )
3
A3

)

A4

)

+ · · ·

Thereby, we can derive the following novel associ-

ation, referred to as Co-Simmate, to compute (6):

S =
( =R1︷ ︸︸ ︷
(I + cAT A) + (cAT )

2

=R1︷ ︸︸ ︷
(I + cATA)A2

)
︸ ︷︷ ︸

=R2

+ (8)

(
cAT

)4
((

I + cAT A
)

+
(
cAT

)2(
I + cAT A

)
A2

)
︸ ︷︷ ︸

=R2

A4 + · · ·

There are two advantages of our association: one

is that the resulting Rk−1 from the last step can

be reused twice to compute Rk . Hence, Rk can

grasp the first (2k −1)-th partial sums2 of S in (6).

Another merit is that A2k
can be obtained from

the result of squaring A2k−1
, e.g., A4 = (A2)2.

With these advantages, Co-Simmate can compute

all pairs of scores much faster.

Next, let us formally introduce Co-Simmate:

Definition 1. We call Rk a Co-Simmate matrix at

k-th step if it is iterated as
R0 = I, A0 = A

Rk+1 = Rk + c2k
(Ak

TRkAk)

Ak+1 = Ak
2

(9)

By successive substitution in (9), one can verify

that limk→∞Rk is the exact solution of S in (6).

More precisely, the following theorem shows that,

at step k, how many first terms of S in (6) can be

grasped by Rk, showing the fast speedup of (9).

Theorem 1. Let Rk be the Co-Simmate matrix in

(9), and Sk the Co-Simrank matrix in (4). Then,

Rk = S2k−1 ∀k = 0, 1, 2, · · · (10)

2This amount of the first partial sums will be proved later.
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Figure 1: Co-Simmate speeds up Co-Simrank by aggregating more first terms of S in (6) at each step

Proof. Successive substitution in (4) produces

Sk =
∑k

i=0 ci(Ai)TAi (11)

Thus, proving (10) is equivalent to showing that

Rk =
∑2k−1

i=0 ci(Ai)TAi (12)

To show (12), we will use induction on k.

1. For k = 0, we have R0 = I = c0(A0)TA0.

2. When k > 0, we assume that (12) holds for k,

and want to prove that (12) holds for k + 1.

From Ak+1 = Ak
2 and A0 = A follows that

Ak = Ak−1
2 = Ak−2

22
= · · · = A2k

(13)

Plugging Rk (12) and Ak (13) into (9) yields

Rk+1 = {using (12) and (13)}
= Rk + c2k(

A2k)T (∑2k−1

i=0
ci(Ai)TAi

)
A2k

= Rk +
∑2k−1

i=0
ci+2k

(Ai+2k
)
T
Ai+2k

= Rk +
∑2k−1+2k

j=2k
cj(Aj)T

Aj

=
∑2k+1−1

j=0
cj(Aj)TAj

Lastly, coupling (11) and (12) concludes (10).

Theorem 1 implies that, at each step k, Rk in (9)

can grasp the first (2k − 1)-th terms of S, whereas

Sk in (4) can grasp only the first k-th terms of S.

Thus, given the number of steps K , Co-Simmate

is always more accurate than Co-Simrank because

RK is exponentially closer to S than SK to S.

Convergence Rate. We next provide a quantita-

tive result on how closer Rk is to S than Sk to S.

Theorem 2. For any given step k, the difference

between Rk and S can be bounded by

|Rk(a, b) − S(a, b)| ≤ c2k
, ∀a, b (14)

Proof. The Co-Simrank result in (5) implies that

|S2k−1(a, b) − S(a, b)| ≤ c2k
, ∀a, b

Plugging (10) into this inequality yields (14).

Theorem 2 implies that, to attain a desired accu-

racy ǫ, Co-Simmate (9) takes exponentially fewer

steps than Co-Simrank (4) since the total number

of steps required for RK , as implied by (14), is

K = max{0, ⌈log2 logc ǫ⌉ + 1},

in contrast to the ⌈logc ǫ⌉ steps required for SK .

Total Computational Cost. Though Co-Simmate

takes fewer steps than Co-Simrank for a desired ǫ,

in each step Co-Simmate (9) performs one more

matrix multiplication than Co-Simrank (4). Next,

we compare their total computational time.

Theorem 3. To guarantee a desired accuracy ǫ,

the total time of Co-Simmate (9) is exponentially

faster than that of Co-Simrank (4).

Proof. For k = 1, both Co-Simmate (9) and Co-

Simrank (4) take 2 matrix multiplications.

For k > 1, Co-Simmate (9) takes 3 matrix mul-

tiplications (2 for AT
k RkAk and 1 for A2

k), whilst

Co-Simrank (4) takes 2 (only for AT
k SkAk).

Let |M| be the number of operations for one

matrix multiplication. Then, for Co-Simmate (9),

(total # of operations for Rk) = 3k|M|,

whereas for Co-Simrank (4), by Theorem 1,

(total # of operations for Sk) = 2(2k − 1)|M|.

Since 3k|M| ≤ 2(2k − 1)|M|, ∀k = 2, 3, · · · , we

can conclude that the total time of Co-Simmate is

exponentially faster than that of Co-Simrank.

Example. Figure 1 pictorially visualises how Co-

Simmate accelerates Co-Simrank computation by

aggregating more first terms of S in (6) each step.
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Algorithm 1: Co-Simmate on Singular Graphs

Input : A – column-normalised adjacency matrix,
c – decay factor, ǫ – desired accuracy.

1 Decompose A s.t. [Vr,H
T
r ]← Gram-Schmidt(A).

2 Compute P← HT
r Vr.

3 Initialise K ← max{0, ⌈log2 logc ǫ⌉ + 1}.
4 Initialise S0 ← Ir, P0 ← P.
5 for k ← 0, 1, · · · , K − 1 do

6 Compute Sk+1 ← c2k

(Pk)T Sk(Pk) + Sk .

7 Compute Pk+1 ← (Pk)2.

8 return S← cHrSKHT
r + I.

At k-th step, Co-Simrank Sk connects only two

new hop-1 paths with the old retrieved paths Sk−1,

whereas Co-Simmate Rk connects two new hop-

(2k) paths (by squaring the old hop-(2k−1) paths)

with the old retrieved paths Rk−1. Consequently,

in each step of Co-Simrank, Co-Simmate is expo-

nential steps faster than Co-Simrank. Moreover,

the speedup is more obvious as k grows.

Optimality of Co-Simmate. To compute S in (6),

besides the prior association methods (7) and (8),

the following association can also be adopted:

S =

=T1︷ ︸︸ ︷(
I + cATA + c2

(
AT

)2
A2

)
+ (15)

c3
(
AT

)3
(
I + cAT A + c2

(
AT

)2
A2

)
︸ ︷︷ ︸

=T1

A3 + · · ·

More generally, we can write the following model

that covers (8) and (15) as special cases:

R(u)
0 = I, A0 = A

R(u)
k+1 = R(u)

k + cuk · AT
k ·R(u)

k ·Ak

+ c2·uk · (Ak
2)T ·R(u)

k ·Ak
2 + · · ·+

+ c(u−1)·uk · (Ak
u−1)T · R(u)

k ·Ak
u−1

Ak+1 = Ak
u (u = 2, 3, · · · )

R(u)
k is a hop-(uk) Co-Simmate matrix at step k.

R(u)
k becomes Co-Simmate Rk in (8) when u = 2;

and reduces to Tk in (15) when u = 3. For all u,

it is easy to verify that limk→∞R(u)
k = S. Below,

we show that Co-Simmate (8) (u = 2) is optimal.

Theorem 4. To attain a desired accuracy ǫ, the to-

tal time of Co-Simmate (8) is minimum among all

hop-(uk) Co-Simmate models R(u)
k (u = 2, 3, · · · ).

Proof. Similar to Theorem 1, we can show that

|R(u)
k (a, b) − S(a, b)| ≤ cuk

, ∀a, b, ∀u (16)

Thus, given ǫ, the total number of steps for R(u)
K is

K = max{0, ⌈logu logc ǫ⌉ + 1}.

For each step k, for hop-(uk) Co-Simmate R(u)
k ,

(# of operations) = ((u − 1) +
∑u−2

i=0 i)|M| = (u−1)u
2 |M|.

Therefore, the total time of computing R(u)
k is

O(max{0, ⌈logu logc ǫ⌉ + 1}(u − 1)u|M|).

This complexity is increasing with u = 2, 3, · · · .

Thus, Co-Simmate (8) (u = 2) is minimum.

Incorporate Co-Simmate into Singular Graphs.

Co-Simmate (9) can also be combined with other

factorisation methods, e.g., Sig-SR, a Co-Simrank

algorithm proposed by (Yu and McCann, 2014),

to speed up all pairs of Co-Simrank computation

from O(rn2 +Kr3) to O(rn2 +(log2K)r3) time

further on a singular graph with rank r for K steps.

The enhanced Sig-SR is shown in Algorithm 1.

3 Experiments

3.1 Experimental Settings

Datasets. We use both real and synthetic datasets.

Three real graphs (Twitter, Email, Facebook) are

taken from SNAP (Leskovec and Sosič, 2014).

1) Twitter is a who-follows-whom social graph

crawled from the entire Twitter site. Each node is

a user, and each edge represents a social relation.

2) Email is an Email communication network

from Enron. If an address i sent at least one email

to address j, there is a link from i to j.

3) FB contains ‘circles’ (or ‘friends lists’) from

Facebook. This dataset is collected from the sur-

vey participants using the Facebook app, including

node features (profiles), circles, and ego networks.

The statistics of these datasets are as follows:

Datasets # edges # nodes ave degree

Twitter 1,768,149 81,306 21.70

Email 183,831 36,692 5.01

FB 88,234 4,039 21.84

To build synthetic data, we use Boost toolkit

(Lee et al., 2001).We control the number of nodes

n and edges m to follow densification power laws

(Leskovec et al., 2005; Faloutsos et al., 1999).

Baselines. We compare our Co-Simmate with 1)

Ite-Mat (Rothe and Schütze, 2014), a Co-Simrank

method using the dot product of Pagerank vectors.

2) K-Sim (Kusumoto et al., 2014), a linearized

method modified to Co-Simrank. 3) Sig-SR (Yu

and McCann, 2014), a SVD Co-Simrank method.

All experiments are on 64bit Ubuntu 14.04 with

Intel Xeon E2650 2.0GHz CPU and 16GB RAM.
330



10
−2

10
−1

10
0

0

5

10

15

20

accuracy (ǫ)

#
of

st
ep

s
(k
)

 

 

Simmate

Simrank

(a) Rate of Convergence
(on FB dataset, c = 0.8)

Twitter Email FB

10
2

10
4

10
6

T
im

e
(s
ec
)

 

 

Simmate

Sig−SR

Ite−Mat

K−Sim

(b) Total Computational Time
(on three real datasets, c = 0.8)

ǫ
c = 0.6 c = 0.7 c = 0.8

SM SR SM SR SM SR

0.1 3 4 3 6 4 10

0.01 4 9 4 12 5 20

0.001 4 13 5 19 5 30

0.0001 5 18 5 25 6 41

0.00001 5 22 6 32 6 51

(c) Effect of Damping Factor c on Iterations k (on FB)

4K 5K 6K 7K 8K 9K 10K
0

500

1000

1500

2000

2500

n

T
im

e
(s
ec
)

 

 

Simmate

Simrank (Ite−Mat)

(d) Scalability w.r.t. # nodes
(on 7 synthetic datasets)

2 3 4 5 6
0

50

100

150

200

u

T
im

e
(s
ec
)

 

 

hop-(uk) Simmate

3

3

6

4
3

k

(e) Effect of Hop-(uk)
(on FB dataset, c = 0.8)

Figure 2: Compare Co-Simmate with Baselines

3.2 Experimental Results

Exp-I. Convergence Rate. We compare the num-

ber of steps k needed for Co-Simmate and Co-

Simrank (Ite-Mat) to attain a desired accuracy ǫ on

Twitter, Email, FB. The results on all the datasets

are similar. Due to space limits, Figure 2(a) only

reports the result on FB. We can discern that, when

ǫ varies from 0.01 to 1, k increases from 1 to 5

for Co-Simmate, but from 1 to 20 for Co-Simrank.

The fast convergence rate of Co-Simmate is due to

our model that twice reuses Rk−1 of the last step.

Exp-II. Total Computational Time. Figure 2(b)

compares the total computational time of Co-

Simmate with 3 best-known methods on real data.

The result shows Co-Simmate runs 10x, 5.6x, 4.3x

faster than K-Sim, Ite-Mat, Sig-SR, respectively.

This is because 1) K-Sim is efficient only when a

fraction pair of scores are computed, whereas Co-

Simmate can efficiently handle all pairs scores, by

twice sharing Rk−1 and repeated squaring A2k−1
.

2) Co-Simmate grasps exponential new terms of S
per step, but Ite-Mat grasps just 1 new term of S.

3) Sig-SR does not adopt association tricks in the

subspace, unlike our methods that integrate (9).

Exp-III. Effect of Damping Factor c. Using real

datasets (Twitter, Email, FB), we next evaluate the

effect of damping factor c on the number of itera-

tions k to guarantee a given accuracy ǫ. We vary ǫ
from 0.1 to 0.00001 and c from 0.6 to 0.8, the re-

sults of k on all the datasets are similar. For the in-

terests of space, Figure 2(c) tabularises only the re-

sults on FB, where ‘SM’ columns list the number

of iterations required for Co-Simmate, and ‘SR’

columns lists that for Co-Simrank. From the re-

sults, we can see that, for any given ǫ and c, the

number of iterations for Co-Simmate is consis-

tently smaller than that for Co-Simrank. Their gap

is more pronounced when ǫ becomes smaller or

c is increased. This is because, at each iteration,

Co-Simmate can grasp far more first terms of S
than Co-Simrank. Thus, for a fixed accuracy, Co-

Simmate requires less iterations than Co-Simrank.

This is consistent with our analysis in Theorem 2.

Exp-IV. Scalability. By using synthetic datasets,

we fix ǫ = 0.0001 and vary n from 4,000 to

10,000. Figure 2(d) depicts the total time of Co-

Simmate and Ite-Mat. We can notice that, as n
grows, the time of Co-Simmate does not increase

so fast as Co-Simrank. The reason is that the num-

ber of steps of Co-Simmate is greatly cut down by

twice Rk−1 sharing and A2k−1
memoisation.

Exp-V. Effect of Hop-uk. Finally, we test the im-

pact of u on the total time of our hop-(uk) Co-

Simmate variations on real datasets. Due to sim-

ilar results, Figure 2(e) merely reports the results

on FB. It can be observed that, as u grows from

2 to 6, the total number of steps for hop-(uk) Co-

Simmate decreases, but their total time still grows.

This is because, in each step, the cost of hop-(uk)
Co-Simmate is increasing with u. Thus, the lowest

cost is Co-Simmate when u = 2.

4 Conclusions

We propose an efficient algorithm, Co-Simmate,

to speed up all pairs Co-Simranks retrieval from

O(log(1/ǫ)n3) to O(log2(log(1/ǫ))n3) time, to

attain a desired accuracy ǫ. Besides, we integrate

Co-Simmate with Sig-SR on singular graphs to

attain higher efficacy. The experiments show that

Co-Simmate can be 10.2x faster than the state-of-

the-art competitors. As future work, we will incor-

porate our partial-pairs Simrank (Yu and McCann,

2015) into partial-pairs Co-Simmate search.
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Abstract

In this paper, we present a test col-
lection for mathematical information re-
trieval composed of real-life, research-
level mathematical information needs.
Topics and relevance judgements have
been procured from the on-line collabo-
ration website MathOverflow by delegat-
ing domain-specific decisions to experts
on-line. With our test collection, we con-
struct a baseline using Lucene’s vector-
space model implementation and conduct
an experiment to investigate how prior ex-
traction of technical terms from mathe-
matical text can affect retrieval efficiency.
We show that by boosting the impor-
tance of technical terms, statistically sig-
nificant improvements in retrieval perfor-
mance can be obtained over the baseline.

1 Introduction

Since their introduction through the Cranfield ex-
periments (Cleverdon, 1960; Cleverdon, 1962;
Cleverdon et al., 1966a; Cleverdon et al., 1966b),
test collections have become the foundation of in-
formation retrieval (IR) evaluation.

Recent interest in Mathematical information re-
trieval (MIR) has prompted the construction of
the NTCIR Math IR test collection (Aizawa et
al., 2013). Like many general-purpose, domain-
specific IR test collections, the NTCIR collection
is composed of broad queries intended to test sys-
tems over a wide spectrum of query complexity.

In this paper we present a test collection
composed of real-life, research-level mathemat-
ical topics and associated relevance judgements
procured from the online collaboration web-site
MathOverflow1. The resulting test collection con-

1http://mathoverflow.net/

tains 160 atomic questions - material derived from
120 MathOverflow discussion threads.

Topics in our test collection capture specialised
information needs that are complex to resolve and
often demand collective effort from multiple do-
main experts. For example2:

The ”most symmetric” Mukai-Umemura 3-fold

with automorphism group PGL(2, C) admits

a Kaehler-Einstein metric according to Donald-

son’s result. On the contrary, there are some arbi-

trarily small complex deformations of the above

3-fold which do not admit Kaehler-Einstein met-

rics, as shown by Tian. All examples considered

by Tian seem to have no symmetries at all. Is it

possible to find similarly arbitrarily small com-

plex deformations with C*-action and which do

not admit any Kaehler-Einstein metric?

Due to their specialised nature, our topics have
a relatively small number of relevant documents.
Fortunately, there is precedent of this from IR
tasks such as QA (Ishikawa et al., 2010) and
known-item search (Craswell et al., 2003).

With our test collection, we construct a baseline
using Lucene’s default implementation of the vec-
tor space model (VSM). Additionally, we conduct
an experiment designed to investigate the hypoth-
esis that technical terms in mathematics have ele-
vated retrieval significance.

Information in mathematics is communicated
by defining, manipulating and otherwise operat-
ing on mathematical structures and objects which
can be instantiated in the mathematical discourse.
In this sense, technical terminology in mathemat-
ics has an elevated role. This hypothesis stems
from the observation that the mathematical dis-
course is dense with named mathematical objects,
structures, properties and results.

2Adapted from MathOverflow post 68096, http://
mathoverflow.net/questions/68096/
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In the next section, we present our test collec-
tion and discuss the procedure for its construction
from crowd-sourced expertise on MathOverflow.
In section 3, we discuss related material in the lit-
erature and compare it to our work. Our experi-
mental setup and results are discussed in section
4, with a brief summary of our work presented in
section 5.

2 The Test Collection

The main motivation behind this work comes
from our long-term goal to develop and evalu-
ate MIR models intended to satisfy research-level
mathematical information needs. Evaluation is an
important final step in the development of IR mod-
els and is preconditioned on the availability of a
test collection.

A test collection is a resource composed of (1)
a document collection (or corpus) with uniquely
identifiable documents (e.g., scientific papers,
news articles), (2) a set of topics from which
search queries can be produced and (3) a set of
relevance judgements: pairs connecting individual
topics to documents (in the corpus) known to sat-
isfy the corresponding information need.

General-purpose MIR test collections, such as
the one produced for NTCIR-10 (Aizawa et al.,
2013), are expected to contain both broad and nar-
row topics capturing a wide range of retrieval com-
plexity. In contrast, we require a collection of
topics characterised by a higher lower bound on
topic complexity with individual topics capturing
highly-specialised, real-world information needs.

Unfortunately, research-level mathematical in-
formation needs are hard to source from docu-
ments in a way that would not render them arti-
ficial. Furthermore, manual construction of topics
and relevance judgements is unrealistic due to the
large number of experts required to cover the var-
ious specialised sub-fields of mathematics. This,
coupled with limited access to numerous MIR sys-
tems, makes TREC-like pooling (Harman, 1993;
Voorhees and Harman, 2005) impractical.

We propose that topics and relevance judge-
ments be procured from the on-line collaboration
website MathOverflow (MO), an online QA site
for research mathematicians. A user (informa-
tion seeker) can post a question on the site, usu-
ally relating to a small niche field in mathemat-
ics. Colleagues can either post a candidate answer,
comment on the question, comment on and/or up-

Prelude 1) Apparently, physicist can calculate the GW
invariants of quintic CY 3-fold up to genus 51.
2) For each genus g, there is a lower
bound d(g) such that for every d < d(g),
all genus g degree d
invariants of quintic are zero.

MT-1 I am looking for a reference that has a table
of these number for some low degrees
(say up to degree 5) and low genera
(at least until g = 3).

MT-2 Where can I found this lower bound?

Table 1: MO post 14655, prelude and micro-topics

vote existing answers. Ultimately, the information
seeker decides which answer satisfies the underly-
ing information need by marking it as “accepted”.

Material on MO is closely aligned with our re-
quirements. Specifically, Tausczik et al. (2014)
and Martin and Pease (2013) agree that MO ques-
tions (information needs) arise from doing mathe-
matics research and are novel to the mathemati-
cian involved. The authors conclude that, hav-
ing been produced by experts, MO answers are
authoritative and partially credit the website’s re-
ward system for their strong reliability.

MO questions often have multiple sub-parts,
which we refer to as micro-topics since they en-
code atomic information needs. Furthermore, in-
formation in MO questions is carried by two types
of sentences: prelude sentences, which are used to
set the mathematical context (introduce mathemat-
ical constructs and results) and query sentences,
which transcribe the information need itself and
are semantically bound to the accompanying pre-
lude.

As the underlying document collection, we have
used the Mathematical Retrieval Corpus (MREC)3

(Lı́ška et al., 2011), which contains more than
439,000 mathematical publications, complete with
mathematical formulae converted to machine-
readable MathML. Similarly, we have made math-
ematical expressions in our topics accessible to
MIR systems by converting all LATEX embedded in
MO questions into MathML using the LaTeXML
tool-kit.

For the purpose of constructing our test collec-
tion we have adopted a multi-step process. All
steps in the process are systematically applicable
regardless of the subject material of the topic be-
ing considered for inclusion. As such, our test
collection can be as diverse, in terms of mathe-
matical subject and sub-fields, as MathOverflow.

3version 2011.4.439
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Decisions relating to relevance of material to a
given topic (MO question) are delegated to experts
on the website. However, the information seeker
(MO user posting the question) remains the ulti-
mate judge of relevance. This authority is typi-
cally exercised by either accepting an answer di-
rectly or, by explicitly commenting on the rele-
vance of posted material.

In the first step, all MO discussion threads4 with
at least one citation to the MREC in their accepted
answer were collected. Each identified thread was
examined by one of the authors for conformance to
two ideal-standard criteria: (1) Useful MO ques-
tions should not be too broad or vague but rather
express an information need that is clear and can
be satisfied by describing objects or properties,
stating conditions and/or producing examples or
counter-examples. (2) MREC documents cited in
MO accepted answers should address all sub-parts
of the question in a manner that requires minimal
deduction and do not synthesise mathematical re-
sults from multiple resources.

Subsequently, relevance of documents for each
micro-topic is decided using two criteria: totality
and directness. A cited resource is total if it con-
tains all necessary information to derive the an-
swer for the micro-topic and partial if it only ad-
dresses a special case. A cited resource is also said
to be direct, if the answer can be derived with lit-
tle intellectual effort from its text, or indirect if
the same information requires considerable effort
(such as mathematical deduction or reasoning) for
the information seeker to reproduce.

Making these determinations involves matching
the language of arguments and the symbolic con-
text of the answer to the cited resource. As part
of this step, we also examine the post-answer (PA)
comments for expressions of confirmation of the
usefulness of a cited resource from the informa-
tion seeker.

The completed test collection contains 160
micro-topics with 184 associated relevance judge-
ments (involving 224 unique MREC documents)
organised in 120 topics. Topic text in our test
collection is sentence tokenised, with relevance
judgements being represented conceptually as tu-
ples of the form:

( Topic ID , sen t e nce ID , Micro−t o p i c ID ,
r e l e v a n t MREC document ID )

From Table 2 we observe that the vast majority of
4from MathOverflow data-dump of 20/01/2014

Micro-topics 1 2 3 ≥ 4
Instances (topics) 88 24 8 0

Percentage 73.33% 20.00 % 6.67% 0%

Table 2: Topic/Micro-topic break-down

topics (93.33%) have either 1 or 2 micro-topics,
with the average being close to 1 (1.33). The ma-
jority of topics (97,80.83%) have only one rele-
vant document while a further 21 (17.5%) have
two relevant documents. Two topics have more
than 2 relevant documents: one with 3 and an-
other with 4. In terms of micro-topics, this cor-
responds to 140 micro-topics (87.50%) with 1 rel-
evant document, 17 (10.625%) with 2, 2 micro-
topics (1.25%) with 3 and just one (0.625%) with
4 relevant documents.

3 Related Work

Test collections over scientific publications
were first introduced for the Cranfield experiments
(Cleverdon, 1960; Cleverdon, 1962; Cleverdon et
al., 1966a; Cleverdon et al., 1966b). Despite crit-
icism for sourcing queries from collection docu-
ments, the Cranfield experiments highlighted the
importance of jointly reporting recall and preci-
sion, pioneered the practice of using authors and
citations for augmenting relevance judgements
and established the test collection paradigm.

Expert citations have already been exploited for
procuring relevance judgements. For example,
Ritchie et al. (2006) elicited relevance judgements
for citations in papers accepted in a scientific con-
ference from their authors and used these judge-
ments as part of their test collection of scientific
publications.

In terms of domain, our work is related to the
NTCIR-10 Math IR test collection (Aizawa et al.,
2013). Furthermore, the topics in our collec-
tion are analogous to those in the NTCIR full-text
search, in the sense that they take the form of co-
herent text interspersed with mathematical expres-
sions. Rather than being focused on accommodat-
ing information needs of varying complexity, how-
ever, our test collection has been designed to facil-
itate retrieval of highly specialised, mathematical
information needs of uniformly high complexity.

Similar use of crowd-sourced expertise has been
proposed in the context of QA. For example, Gy-
ongyi et al. (2008), examined 10 months-worth of
“Yahoo! Answers” material as part of an investi-
gation of QA data, which was later used for the
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NTCIR-8 Community QA pilot task (Ishikawa et
al., 2010; Sakai et al., 2011). Characterisation of
crowd-sourced answers in terms of totality (sec-
tion 2) has also been considered in the context of
QA. In particular, Sakai et al. (2011) describe a
relevance grading scheme of crowd-sourced an-
swers based on the total/partial/irrelevant scale,
but highlight that answers on “Yahoo! Answers”
vary in quality (e.g., due to instances of bias or
obscenity).

Finally, the idea of sourcing relevance judge-
ments from expert citations is an established prac-
tice in IR. In the context of patent search, for ex-
ample, Graf and Azzopardi (2008) utilised cita-
tions in patent office expert reports as relevance
judgements, while Fujii et al. (2006) automatically
extracted patent office expert citations used to re-
ject patent applications.

4 Experiments

In this section we conduct an experiment to
demonstrate the usefulness of our test collection
by investigating the impact of terminology boost-
ing on MIR effectiveness. An important assump-
tion of this experiment is that the retrieval of each
micro-topic is dependent only on the attached pre-
lude.

4.1 Experimental Setup

We first produced a Lucene index over all docu-
ments in the MREC. In order to normalise process-
ing of XHTML+MathML, topics and MREC doc-
uments were passed through the Tika framework5.
Lucene’s StandardAnalyzer was modified to
preserve stop-words since frequent words such as
the preposition “of” can be important parts of
technical terms (e.g., “set of vectors”). The ana-
lyzer was also modified to preserve dashes, which
are common in technical terms (e.g., “Calabi-Yau
manifold”). This analyzer is used during both in-
dexing and query processing for consistency.

4.2 Building Queries

For each micro-topic in a given topic, we emit a
query string by concatenating all sentences in the
prelude with sentences associated with the micro-
topic. For example, query string for micro-topic
MT-1 in Table 1 is generated by concatenating its
text with that of the prelude. Using this strat-
egy, consistency with the assumption outlined at

5https://tika.apache.org/

the beginning of the section is achieved since no
overlap beyond the prelude is introduced between
queries generated for micro-topics attached to a
given topic.

4.3 Systems

Using Lucene as the indexing and searching back-
end, we compare the performance of two retrieval
methods. Underpinning both methods is Lucene’s
default similarity (project, 2013), which is based
on cosine similarity:

sim(q, d) =
V (q).V (d)
|V (q)||V (d)|

where V (q) and V (d) are weighted vectors for the
query and candidate document respectively. As a
performance measure, we use mean average pre-
cision (MAP):

MAP (Q) =
1
|Q|

|Q|∑
j=1

1
mj

mj∑
k=1

Precision(Rjk)

4.3.1 Baseline
Lucene’s VSM implementation with default TF-
IDF weighting and scoring is used as the baseline.
This is intended to emulate a general-purpose in-
formation retrieval scenario, which is the motiva-
tion behind the design of Lucene’s default config-
uration.

4.3.2 Boosted Technical Terms
The alternative model is designed to give more
weight to technical terminology common to both
documents and queries. In order to construct this
model, all technical terms are extracted from the
document collection using an implementation of
the C-Value multi-word technical term extraction
method (Frantzi et al., 1996; Frantzi et al., 1998).
Given an input corpus, the C-Value method ex-
tracts multi-word terms by making use of a lin-
guistic and a statistical component.

The linguistic component is responsible for
eliminating multi-term strings that are unlikely to
be technical terms through the use of a stop-list
(composed of high-frequency corpus terms) and
linguistic filters (regular expressions) applied on
sequences of part-of-speech tags. The statistical
component assigns a “termhood” score to a candi-
date term sequence based on corpus-wide statisti-
cal characteristics of the sequence itself and those
of term sequences that contain it. The output of
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class/Form 1 Form 2 ... Form 8 C-Value
riemannian Riemannian RIEMANNIAN 13236.6
manifold manifold MANIFOLDS

Table 3: C-Value technical-term list entry

Original Text
a Riemannian manifold is a smooth manifold

Original Term vector
(a,2), (Riemannian,1),(manifold,2),(is,1),(smooth,1)

Technical terms
Riemannian manifold, smooth manifold

Re-Attributed Term Vector
(a,2), (Riemannian manifold,1),(is,1),(smooth manifold,1)

Re-generated delta index text
a a a a Riemannian manifold Riemannian manifold

is is smooth manifold smooth manifold

Table 4: Example of re-attribution and delta index

the algorithm is a list of candidate technical terms
in the corpus, ordered by their C-Value termhood
score.

As shown in Table 3, each entry in the resulting
list represents a single technical term (the class)
and enumerates all forms of the candidate term
as observed in the input corpus. In total, 3 mil-
lion classes of technical terms have been detected
in the MREC. Using Lucene’s positional index-
ing mechanism, we retrieved the position of each
technical term (all forms), recorded its term fre-
quency (TF) and produced a new technical term
index. This technical term index contains 426 mil-
lion tuple entries of the form

<c l a s s , form , MREC docid , TF , p o s i t i o n
−of−o c c u r r e n c e l i s t >

The same re-indexing process is repeated for the
queries and the result is stored in a separate query
table (10,433 entries).

Subsequently, the indexed document and query
term vectors were modified by (1) adding new to-
kens to represent technical term phrases and (2) re-
attributing the TF of component terms to the term
vector of the phrase.

Finally, the text for each MREC document and
query is re-generated from the term vectors and
stored in a “delta index”. At this stage, the num-
ber of technical term instances emitted is twice
that recorded by the original term vector. This has
the effect of boosting the significance of technical
terms and phrases. An example of the application
of this process, from original text to delta index
generation is presented in Table 4. Rankings for
the alternative model can be obtained by search-
ing the delta index using the re-generated query.

Baseline Tech-Term boosting Difference
MAP 0.0602 0.0732 0.013* (17.7%)

Table 5: Difference in MAP performance between
models (* statistically significant at α = 0.05)

Although the choice of boosting factor 2 is arbi-
trary, our intention is to demonstrate the presence
of a difference in retrieval efficiency, rather than
optimising the effect of boosting.

4.4 Results
The MAP scores obtained for the models are pre-
sented in Table 5. We observe that the difference
in MAP is in favour of the alternative model. This
difference is statistically significant at α = 0.05
using the Wilcoxon signed-rank test (p < 0.05).
Therefore, we have sufficient evidence to conclude
that, in the context of the VSM, boosting techni-
cal terms improves retrieval efficiency of research
mathematics.

When compared to MAP scores produced by
the same systems in more traditional IR tasks, the
scores in Table 5 may seem poor. We attribute this
phenomenon to the fact that sense in written math-
ematics is communicated via a complex interac-
tion of text and mathematical expressions and is
thus hard to extract using shallow methods.

5 Conclusions and Further Work

We have constructed a Math IR test collection for
real-life, research-level mathematical information
needs. As part of the work of constructing our test
collection, we have developed a methodology for
compiling domain-specific test collections that re-
quires minimal expertise in the domain itself.

Using 160 micro-topics in our test collection,
we have shown experimentally that the perfor-
mance of VSM-based retrieval models with re-
search mathematics can be improved by boosting
the importance of technical terminology. Further-
more, our experimental work suggests that our test
collection can be used to identify statistically sig-
nificant differences between MIR systems. It is
our intention to make our collection available to
the IR community.

As part of on-going and future work, we will be
incorporating additional retrieval models, such as
the Okapi BM25, in our evaluation framework. In
addition, we are looking into investigating the sta-
tistical properties of our test collection along the
lines of Harman (2011) and Soboroff et al. (2001).
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Abstract 

Many queries in web search are ambiguous or 

multifaceted. Identifying the major senses or 
facets of queries is very important for web 

search. In this paper, we represent the major 

senses or facets of queries as subtopics and re-

fer to indentifying senses or facets of queries 

as query subtopic mining, where query subtop-

ic are represented as a number of clusters of 

queries. Then the challenges of query subtopic 

mining are how to measure the similarity be-

tween queries and group them semantically. 

This paper proposes an approach for mining 

subtopics from query log, which jointly learns 

a similarity measure and groups queries by 
explicitly modeling the structure among them. 

Compared with previous approaches using 

manually defined similarity measures, our ap-

proach produces more desirable query subtop-

ics by learning a similarity measure. Experi-

mental results on real queries collected from a 

search engine log confirm the effectiveness of 

the proposed approach in mining query sub-

topics. 

1 Introduction 

Understanding the search intents of queries is 

essential for satisfying users’ information needs 

and is very important for many search tasks such 

as personalized search, query suggestion, and 
search result presentation. However, it is not a 

trivial task because the underlying intents of the 

same query may be different for different users. 
Two well-known types of such queries are am-

biguous queries and multifaceted queries. For 

example, the ambiguous query ‘michael jordon’ 

may refer to a basketball player or a professor of 
statistics in Berkeley. The multifaceted query 

‘harry potter’ may refer to different search in-

tents such as films, books, or games and so on. 
Many approaches have been proposed to identi-

fy the search intents of a query which are repre-

sented by search goals, topics, or subtopics. For 
example, Broder (2002) classified query intents 

into three search goals: informational, naviga-

tional, and transactional. Broder et al. (2007) and 

Li et al. (2005) represented query intents by top-

ics. Clarke et al. (2009) represented query intents 

by subtopics which denote different senses or 
multiple facets of queries. 

Previous work on query subtopic mining is 

mostly based on clustering framework by manu-
ally defining a similarity measure with few fac-

tors. Hu et al. (2012) employed an agglomerative 

clustering algorithm with a similarity measure 

combining string similarities, click similarities, 
and keyword similarities linearly. Wang et al. 

(2013) applied affinity propagation algorithm 

(Frey and Dueck, 2009) with a sense-based simi-
larity. Tsukuda et al. (2013) used a hierarchical 

clustering algorithm with the similarity measure 

based on search results. 
In this paper, we argue that the similarity be-

tween queries is affected by many different fac-

tors and it could produce more desirable query 

subtopics by learning a similarity measure. To 
learn a similarity measure for query subtopic 

mining, a natural approach is to use a binary 

classifier, that is, the classifier targets pairs of 
queries and makes predictions about whether 

they belong to the same subtopic. However, be-

cause such pairwise classifiers assume that pairs 
are independent, they might make inconsistent 

predictions: e.g., predicting queries qi and qj, qj 

and qk to belong to the same subtopic, but qi and 

qk to belong to different subtopics. For example, 
given three queries, ‘luxury car’, ‘sport car’ and 

‘XJ sport’, for the query ‘jaguar’, a lexicon-

similarity-based classifier is easy to learn that 
‘luxury car’ and ‘sport car’, and ‘sport car’ and 

‘XJ sport’ belong to the same subtopic; but diffi-

cult to learn that ‘luxury car’ and ‘XJ sport’ be-

long to the same subtopic. From this example, 
we can see that a learner should exploit these 

transitive dependencies among queries to learn a 

more effective similarity measure. Hence, in this 
paper, our first contribution is that we learn a 

similarity measure by explicitly modeling the 

dependencies among queries in the same subtop-
ic. The second contribution is that we analyze the 

performance of the proposed approach with dif-

ferent dependencies among queries. The third 

contribution is that we conduct experiments on 
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real-world data and the experimental results con-

firm the effectiveness of the proposed approach 

in mining query subtopics. 

2 Learning to Mine Query Subtopics 

In this section, we present our approach in details. 

First, we collect queries as subtopic candidates 
from query log using a heuristic method. Then, 

we learn a similarity measure to mine query sub-

topics from these candidates. 

2.1 Collecting Subtopic Candidates from 

Query Log 

In web search, users usually add additional 

words to clarify the underlying intents of a query 

(Hu et al., 2012). For example, if the ambiguous 
query ‘jaguar’ does not satisfy a user’s infor-

mation need, he/she may submit ‘jaguar sport 

car’ as an expanded query to specify the subtopic. 

Therefore, for a given query q, we collect its re-
formulations with additional words from query 

log as query subtopic candidates, e.g., we collect 

{‘jaguar sports car’, ‘jaguar XJ sport’, ‘jaguar 
diet’, …} for query ‘jaguar’. We say query q’ is a 

subtopic candidate of q if (1) q’
 is superset of q 

(e.g. q’
= ’jaguar sports car’ and q = ’jaguar’), and 

(2) q’ occurred at least five times in query log. In 

this way, we collect a series of subtopic candi-

dates for each query. Many subtopic candidates, 

however, belong to the same subtopic, e.g., ‘jag-
uar sports car’ and ‘jaguar XJ sport’. Thus, to 

obtain the subtopics of a query, we need to group 

its subtopic candidates into clusters, each of 
which corresponds to an individual subtopic. 

2.2 Mining Query Subtopics 

As we described above, we need to group the 

subtopic candidates of a query into clusters to 

obtain its subtopics. The key to producing desir-
able subtopics is how to measure the similarity 

between subtopic candidates. In this paper, we 

learn a similarity measure by exploiting the de-
pendencies among subtopic candidates in the 

same subtopic. 

We represent each pair of subtopic candidates 

qi and qj as a feature vector ϕ(qi, qj), each dimen-

sion of which describes a factor. The similarity 

measure Simw parameterized by w is defined as 

Simw(qi, qj) = wT∙ϕ(qi, qj), which maps pairs of 
subtopic candidates to a real number indicating 

how similar the pair is: positive for similar and 

negative for dissimilar. As argued in the intro-
duction, the dependencies among subtopic can-

didates within the same subtopic are useful for 

learning an effective similarity measure. We de-

note the dependencies among subtopic candi-

dates as a graph h, whose vertices are subtopic 

candidates and edges connect two vertices be-
longing to the same subtopic. In this paper, we 

employ two different graphs. The first one is the 

all-connection structure, where all subtopic can-
didates belonging to the same subtopic associate 

with each other. Figure 1 gives an example of the 

all-connection structure. The second one is the 
strong-connection structure, where each subtopic 

candidate only associates with its ‘most similar’ 

subtopic candidate within the same subtopic. 

Figure 2 gives an example. 
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Figure 1. An example of the all-connection struc-
ture. The dashed circles denote the subtopics. 

The subtopic candidates (small solid circles) in 

the same dashed circle belong to the same sub-

topic. The weights indicate how similar the pair 
of two vertices is. 
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Figure 2. An example of the strong-connection 

structure. 

Formally, we denote the set of subtopic candi-

dates for a given query q as S = {q1, q2, …, qN}. 
The label y is a partition of the N subtopic candi-

dates into subtopic clusters. h is the correspond-

ing graph that is consistent with y. h is consistent 
with a clustering y if every cluster in y is a con-

nected component in h, and there are no edges in 

h that connect two distinct clusters in y. Given S, 

our approach makes predictions by maximizing 
the sum of similarities for subtopic candidate 

pairs that are adjacent in h, that is, 

T

w i j i j
( , ) ( , )(i, j) (i,j)

arg max ( , ) arg max w ( , )
y h Y H y h Y Hh h

Sim q q q q
    

  

 
where Y and H are the sets of possible y and h 

respectively. (i, j) ∈h denotes qi and qj are di-

rectly connected in h. 

(1) 
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To predict a partition y with the all-connection 

structure, we use the algorithm in (Bansal et al., 

2002) with the objective function Eq (1). To pre-

dict a partition y with the strong-connection 
structure, we run Kruskal’s algorithm on h and 

each tree corresponds to a subtopic, as shown in 

Algorithm 1. 

Algorithm 1: Mining Query Subtopic with Strong-

connection Structure 

Input: the set of query subtopic candidates S = {q1, 
q2, …, qN}, feature vectors ϕ(qi, qj) (1≤i, j≤N,                  
i≠j) and the weight w 
Output: the partition y 

//search for the strong-connection structure h, MST-
KRUSKAL(G) denotes the Minimum Spanning Tree 
algorithm- Kruskal’s algorithm 

for i = 1…N-1 do 
      for j = i+1…N do 
            sim = wT∙ ϕ(qi, qj); 
            G(i, j)=−sim;  
      end 
end 
h’= MST-KRUSKAL(G); 
for i = 1…N-1 do 
      for j = i+1…N do 
            if h’(i, j)<0 then 
               h(i, j) = 1; 
            end 
      end 
end 

// construct the partition y 
t = 0; 
y(1)=0; 
for i = 2…N do 
       j = 1; 
      while j ≤ i-1 do 
            if h(j, i) = 1 then 
               y(i)= y(j); 
               break; 
            end 
            j = j+1; 
      end 
      if j ≥ i then 
         t = t + 1; 
         y(i) = t; 
      end 
end 
return y 

2.3 Solving the Proposed Approach 

For a given set of subtopic candidates with anno-
tated subtopics, {(Sn, yn)} (1≤n≤N), we need to 

estimate the optimal weight w. Empirically, the 

optimal weight w should minimize the error be-
tween the predicted partition y’ and the true parti-

tion y, and it should also have a good generaliza-

tion capability. Therefore, it is learnt by solving 

the following optimization problem (Yu and Joa-
chims, 2009): 

' '
'

N
2

n
w,

n 1

T

i j

(i,j)

T ' '

i j
( , )

(i,j)

1
min || w ||

2

s.t. , max ( , )

max [ ( , ) ( , , )]

h H
h

n n
y h Y H

h

C

n w q q

w q q y y h







 


 

   

    





  

where ∆(yn, y
’, h’) indicates a loss between a true 

partition yn and the predicted partition y’ speci-

fied by h’, ξn (1≤n≤N) is a set of slack variables 

to allow errors in the training data, and C con-

trols the trade-off between empirical loss and 
model complexity.  

Intuitively, the loss function ∆(yn, y
’, h’) should 

satisfy that ∆(yn, y
’, h’) = 0 if yn = y’, and rises as 

yn and y’ become more dissimilar. Because the 

all-connection structure is observable in the 

training data while the strong-connection struc-

ture is hidden, we define different loss functions 
for them. For the all-connection structure, we 

define the loss function as, 

 ' '

n( , , ) 10
D

y y h
T

   

where T is the total number of pairs of subtopic 

candidates in the set partitioned by yn and y’, and 

D is the total number of pairs where yn and y’ 

disagree about their cluster membership. 
Since the strong-connection structure hn for yn 

is hidden in the training data, we cannot measure 

the loss between (yn, hn) and (y’, h’). According to 
(Yu and Joachims, 2009), we define the loss 

function based on the inferred structure h’ as, 

'

' '

n n n n

(i, j)

( , , ) ( ) ( ) ( , (i, j))
h

y y h n y k y l y


    
 

where n(yn) and k(yn) are the number of subtopic 

candidates and the number of clusters in the cor-

rect clustering yn. l(yn, (i, j) ) = 1 if qi and qj are in 
the same cluster in yn, otherwise  l(yn, (i, j) ) = −1. 

Then the optimization problem introduced in Eq. 

(2) can be solved by the Concave-Convex Proce-

dure (CCCP) (Yuille and Rangarajan, 2003). 

2.4 Pairwise Similarity Features 

The proposed approach requires a set of features 

to measure the similarity between two subtopic 

candidates. Table 1 lists the features employed in 
our approach. These features are categorized into 

two types: lexicon-based similarity and URL-

based similarity. The lexicon-based similarity 
features are employed to measure the string simi-

larity between two subtopic candidates. And the 

URL-based similarity features are used to meas-

ure the semantic similarity between two subtopic 
candidates. The basic idea is that if two queries 

share many clicked URLs, they have similar 

search intent to each other (Li et al., 2008). To 

(2) 

(3) 

(4) 
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make the features comparable with each other, 

we normalize them into range of [0, 1] accord-

ingly. 

Feature Description 

COS cosine similarity between qi and qj 

EUC Euclidean distance between qi and qj 

JAC Jaccard coeff between qi and qj 

EDIT norm edit distance between qi and qj 
LEN |length(qi)-length(qj)|  

SUBSET whether one is a subset of the other 

UCOS cosine similarity between the clicked 

URL sets of qi and qj 

UJAC Jaccard coeff between the clicked URL 

sets of qi and qj 

Table 1: pairwise similarity features employed in 

our approach 

3 Experiments 

3.1 Data Set 

To illustrate the effectiveness of our approach, 

we use 100 ambiguous/multifaceted queries pro-
vided by the NTCIR-9 intent task as original 

queries and collect their subtopic candidates 

from SogouQ dataset (http://www.sogou.com) 
using the method mentioned in section 2.1. For 

the 100 queries, we totally collect 2,280 query 

subtopic candidates. Three annotators manually 
label these candidates with their subtopics ac-

cording to the content words of these candidates 

and their clicked web pages (if there are clicked 

URLs for the candidate in query log). A candi-
date belongs to a specific subtopic if at least two 

annotators agree with it. At last we obtain 1,086 

subtopics. We randomly split the original queries 
into two parts: half used for training and the rest 

for testing. 

3.2 Evaluation Metrics and Baselines 

To evaluate the performance of our approach, we 

employ the measures in (Luo, 2005), which are 
computed as follows, 

' ' ' '

' '

( , ( )) ( , ( ))
,

( , ))( , )

i i i ii i

j ji i ji

R g R R g R
p r

R RR R

 
 



 


 

where R’ is the predicted partition and R is the 

ground-truth partition; π(A, B) is a similarity 

measure between set A and B, which is Jaccard 
coefficient in this paper; and g(.) is the optimal 

mapping between R’ and R. Based on p and r, f-

measure can be calculated as, 

2 p r
f measure

p r

 
 


 

The higher the f-measure score is, the better per-
formance an approach achieves. 

We used the following approaches as baselines: 

 K-means: we perform the standard k-means 

clustering algorithm with different manually 

defined similarity measures to mine query sub-

topics. COS, JAC, EUC, EDIT refer to cosine 
similarity, Jaccard similarity, Euclidean dis-

tance, and edit distance, respectively. 

 Binary Classification Cluster with the all-

connection structure (BCC-AC): BCC-AC uses 
a SVM classifier to learn the weight w and 

clusters with correlation clustering method. 

 Binary Classification Cluster with the strong-

connection structure (BCC-SC): BCC-SC uses 
a SVM classifier to learn the weight w and 

clusters with the method presented in Algo-

rithm 1. 

For the proposed methods, we denote the 
method with the all-connection structure as AC 

and the method with the strong-connection struc-

ture as SC. The parameter C in Eq. (2) is picked 
from10-2 to 104 using a 10-fold cross validation 

procedure. 

3.3 Experimental Results 

Methods p r f-measure 

K-Means-COS 0.6885 0.6589 0.6734 

K-Means-JAC 0.6872 0.6616 0.6742 

K-Means-EUC 0.6899 0.6652 0.6774 

K-Means-EDIT 0.6325 0.6275 0.6300 

BCC-AC 0.7347 0.7263 0.7305 

BCC-SC 0.7406 0.7258 0.7331 

AC 0.8027 0.7911 0.7968 

SC 0.8213* 0.8187* 0.8200* 

Table2: the performance of all methods. “*” in-

dicates significant difference at 0.05 level using a 
paired t-test. 

Table 2 presents the experimental results. Com-

pared with K-Means methods with different 
manually defined similarity measures, SC 

achieves at least 13.14% precision improvement, 

15.35% recall improvement, and 14.26% F-
Measure improvement. And AC achieves at least 

11.28% precision improvement, 12.59% recall 

improvement, and 11.94% F-Measure improve-

ment. These results confirm that the similarity 
between two subtopic candidates is affected by 

many factors and our methods can achieve more 

desirable query subtopics by learning a similarity 
measure. 

Compared with BCC-AC and BCC-SC, SC 

achieves at least 8.07% precision improvement, 

9.29% recall improvement, and 8.69% F-
Measure improvement. And AC achieves at least 

6.21% precision improvement, 6.53% recall im-
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provement, and 6.37% F-Measure improvement. 

These results confirm that the dependencies 

among the subtopic candidates within the same 

subtopic are useful for learning a similarity 
measure for query subtopic mining.  

Compared with AC, SC achieves 1.86% preci-

sion improvement, 2.76% recall improvement, 
and 2.32% F-Measure improvement. These re-

sults confirm that a subtopic candidate belonging 

to a given query subtopic does not need to simi-
lar with all subtopic candidates within the given 

subtopic.  

In order to understand which pairwise similari-

ty feature is important for the problem of query 
subtopic mining, we list the features and their 

weights learned by SC, AC, and BCC (Binary 

Classification Cluster) in Table 3. 

 
SC AC BCC 

COS 0.08 0.04 0.19 

EUC −1.74 −1.07 −0.73 

JAC 4.44 4.73 4.90 

EDIT −1.60 −1.01 −0.48 

LEN −1.34 −0.91 −1.07 

SUBSET 0.21 0.11 −0.05 

UCOS 0.01 0.01 0.04 

UJAC 0.06 0.07 0.09 

Table 3: the features and their weights learned by 

the different methods. 

As can be seen in Table 3, JAC has the largest 

importance weight for mining query subtopics in 

the three methods. The URL-based features 
(UCOS and UJAC) have small importance 

weight. The reason is that clicked URLs are 

sparse in our query log and many long-tail sub-
topic candidates in the same subtopic do not 

share any common URLs. 

4 Conclusions 

In this paper, we propose an approach for mining 

query subtopics from query log. Compared with 

previous approaches, our approach learns a simi-
larity measure by explicitly modeling the de-

pendencies among subtopic candidates within the 

same subtopic. Experimental results on real que-

ries collected from a search engine log confirm 
our approach produces more desirable query sub-

topics by using the learned similarity measure. 
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Abstract

Existing studies have utilized Wikipedia
for various knowledge acquisition tasks.
However, no attempts have been made to
explore multi-level topic knowledge con-
tained in Wikipedia articles’ Contents ta-
bles. The articles with similar subjects
are grouped together into Wikipedia cat-
egories. In this work, we propose novel
methods to automatically construct com-
prehensive topic hierarchies for given cat-
egories based on the structured Contents
tables as well as corresponding unstruc-
tured text descriptions. Such a hierarchy is
important for information browsing, doc-
ument organization and topic prediction.
Experimental results show our proposed
approach, incorporating both the structural
and textual information, achieves high
quality category topic hierarchies.

1 Introduction

As a free-access online encyclopedia, written
collaboratively by people all over the world,
Wikipedia (abbr. to Wiki) offers a surplus of rich
information. Millions of articles cover various
concepts and instances 1. Wiki has been wide-
ly used for various knowledge discovery tasks.
Some good examples include knowledge mining
from Wiki infoboxes (Lin et al., 2011; Wang et al.,
2013), and taxonomy deriving from Wiki category
system (Zesch and Gurevych, 2007).

We observe that, in addition to Wiki’s infobox-
es and category system, Wiki articles’ Contents
tables (CT for short) also provide valuable struc-
tured topic knowledge with different levels of
granularity. For example, in the article “2010
Haiti Earthquake”, shown in Fig.1, the left Con-
tents zone is a CT formed in a topic hierarchy for-

1http://en.wikipedia.org/wiki/Encyclopedia

Figure 1: The Wiki article “2010 Haiti Earth-
quake” with structured Contents table and corre-
sponding unstructured text descriptions.

mat. If we view “2010 Haiti earthquake” as the
root topic, the first-level “Geology” and “Dam-
age to infrastructure” tags can be viewed as it-
s subtopics, and the second-level “Tsunami” and
“Aftershocks” tags underneath “Geology” are the
subtopics of “Geology”. Clicking any of the tags
in Contents, we can jump to the corresponding text
description. Wiki articles contain a wealth of this
kind of structured and unstructured information.
However, to our best knowledge, little work has
been done to leverage the knowledge in CT.

In Wiki, similar articles (each with their own
CT) belonging to the same subject are grouped
together into a Wiki category. We aim to inte-
grate multiple topic hierarchies represented by C-
T (from the articles under the same Wiki catego-
ry) into a comprehensive category topic hierar-
chy (CTH). While there also exist manually built
CTH represented by CT in corresponding Wik-
i articles, they are still too high-level and incom-
plete. Take the “Earthquake” category as an exam-
ple, its corresponding Wiki article 2 only contains

2http://en.wikipedia.org/wiki/Earthquake
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some major and common topics. It does not in-
clude the subtopic “nuclear power plant”, which
is an important subtopic of the “2011 Japan earth-
quake”. A comprehensive CTH is believed to be
more useful for information browsing, document
organization and topic extraction in new text cor-
pus (Veeramachaneni et al., 2005). Thus, we pro-
pose to investigate the Wiki articles of the same
category to automatically build a comprehensive
CTH to enhance the manually built CTH.

Clearly, it is very challenging to learn a CTH
from multiple topic hierarchies in different articles
due to the following 3 reasons: 1) A topic can be
denoted by a variety of tags in different articles
(e.g., “foreign aids” and “aids from other coun-
tries”); 2) Structural/hierarchical information can
be inconsistent (or even opposite) across differen-
t articles (e.g., “response subtopicOf aftermath”
and “aftermath subtopicOf response” in different
earthquake event articles); 3) Intuitively, text de-
scriptions of the topics in Wiki articles are sup-
posed to be able to help determine subtopic rela-
tions between topics. However, how can we model
the textual correlation?

In this study, we propose a novel approach to
build a high-quality CTH for any given Wiki cate-
gory. We use a Bayesian network to model a CTH,
and map the CTH learning problem as a structure
learning problem. We leverage both structural and
textual information of topics in the articles to in-
duce the optimal tree structure. Experiments on 3
category data demonstrate the effectiveness of our
approach for CTH learning.

2 Preliminaries

Our problem is to learn a CTH for a Wiki catego-
ry from multiple topic hierarchies represented by
CT in the Wiki articles of the category. For ex-
ample, consider the category “earthquake”. There
are a lot of Wikipedia articles about earthquake
events which are manually created by human ex-
perts. In these articles, the CTs imply hierarchi-
cal topic knowledge in the events. However, due
to crowdsourcing nature, these knowledge is het-
erogeneous across different articles. We want to
integrate these knowledge represented by CTs in
different earthquake event articles to form a com-
prehensive understanding of the category “earth-
quake” (CTH).

Specifically, our input consists of a set of Wiki
articles Ac = {a}, belonging to a Wiki category

c. As shown in Fig.1, each article a ∈ Ac con-
tains a CT (topic tree hierarchy) Ha = {Ta, Ra},
where Ta is a set of topics, each denoted by a tag
g and associated with a text description dg, and
Ra = {(gi, gj)}, gi, gj ∈ Ta is a set of subtopic
relations (gj is a subtopic of gi). The output is
an integrated comprehensive CTH Hc = {Tc, Rc}
where Tc = {t} is a set of topics, each denot-
ed by a set of tags t = {g} and associated by
a text description dt aggregated by {dg}g∈t, and
Rc = {(ti, tj)}, ti, tj ∈ Tc is a set of subtopic
relations (tj is a subtopic of ti).

We map the problem of learning the output Hc

from the input {Ha}, a ∈ Ac, as a structure learn-
ing problem. We first find clusters of similar tags
Tc (each cluster represents a topic) and then derive
hierarchical relations Rc among these clusters.

Particularly, given a category c, we first col-
lect relevant Wiki articles Ac = {a}. This can
be done automatically since each Wiki article has
links to its categories. We can also manually find
the Wikipage which summarizes the links of Ac

(e.g., http://en.wikipedia.org/wiki/
Lists_of_earthquakes) and then collec-
t Ac according to the links.

Then we can get a global tag set G = {g} con-
taining all the tags including titles in the articles
Ac. We cluster the same or similar tags from dif-
ferent articles using single-pass incremental clus-
tering (Hammouda and Kamel, 2003) to construct
the topic set Tc, with cosine similarity computed
based on the names of tags g and their text de-
scriptions dg. Note that titles of all the articles be-
longing to the same cluster corresponds to a root
topic.

Next, the issue is how to induce a CTH Hc =
{Tc, Rc} from a set of topics Tc.

3 Topic Hierarchy Construction

We first present a basic method to learn Hc and
then describe a principled probabilistic model in-
corporating both structural and textual information
for CTH learning.

3.1 Basic Method

After replacing the tags in a CT (see Fig.1) with
the topics they belong to, we can then get a top-
ic hierarchy Ha = {Ta, Ra} for each article
a. For each subtopic relation (ti, tj) ∈ Ra, we
can calculate a count/weight n(ti, tj), represent-
ing the number of articles in Ac containing the
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relation. We then construct a directed complete
graph with a weight w(ti, tj) = n(ti, tj) on each
edge (ti, tj). Finally, we apply the widely used
Chu-Liu/Edmonds algorithm (Chu and Liu, 1965;
Edmonds, 1967) to find an optimal tree with the
largest sum of weights from our constructed graph,
meaning that the overall subtopic relations in the
tree is best supported by all the CT/articles. The
Chu-Liu/Edmonds algorithm works as follows.
First, it selects, for each node, the maximum-
weight incoming edge. Next, it recursively breaks
cycles with the following idea: nodes in a cycle are
collapsed into a pseudo-node and the maximum-
weight edge entering the pseudo-node is selected
to replace the other incoming edge in the cycle.
During backtracking, pseudo-nodes are expanded
into an acyclic directed graph, i.e., our final cate-
gory topic hierarchy Hc.

However, the basic method has a problem.
Consider if n(“earthquake”, “damages to hos-
pitals”)=10 and n(“earthquake”) =100, while
n(“damages”, “damages to hospitals”)=5 and
n(“damages”)=5. We would prefer “damages” to
be the parent topic of “damages to hospitals” with
a higher confidence level (5/5=1 vs 10/100=0.1).
However, the above basic method will choose
“earthquake” which maximizes the weight sum.
An intuitive solution is to normalize the weights.
In Subsection 3.2, we present our proposed princi-
pled probabilistic model which can derive normal-
ized structure based weights. In addition, it can
be easily used to incorporate and combine textual
information of topics into CTH learning.

3.2 Probabilistic Model for CTH Learning

We first describe the principled probabilistic mod-
el for a CTH. Then we present how to encode
structural dependency and textual correlation be-
tween topics. Last, we present our final approach
combining both structural dependency and textual
correlation for CTH construction.

3.2.1 Modeling a Category Topic Hierarchy

In a topic hierarchy, each node represents a top-
ic. We consider each node as a variable and the
topic hierarchy as a Bayesian network. Then the
joint probability distribution of nodes N given a
particular tree H is

P (N |H) = P (root)
∏

n∈N\root

P (n|parH(n)) ,

where P (n|parH(n)) is the conditional probabili-
ty of node n given its parent node parH(n) in H .
Given the nodes, this is actually the likelihood of
H . Maximizing the likelihood with respect to the
tree structure gives the optimal tree:

H∗ = argmaxHP (N |H)

= argmaxHP (root)
∏

n∈N\root

P (n|parH(n))

= argmaxH

∑
n∈N

logP (n|parH(n))

(1)
Encoding Structural Dependency. Consider-

ing tj is a subtopic of ti, we define the structural
conditional probability:

Pstruc(tj |ti) =
n(ti, tj) + α

n(ti) + α · |Tc − 1| , (2)

where n(ti, tj) is the count of articles containing
relation (ti, tj) and n(ti) is the count of articles
containing topic ti. The parameter α = 1.0 is the
Laplace smoothing factor, and |Tc − 1| is the to-
tal number of possible relations taking ti as their
parent topic.

Encoding Textual Correlation. Considering
a topic text description dt as a bag of words,
we use the normalized word frequencies ϕt =
{ϕt,w}w∈V s.t.

∑
w∈V ϕt,w = 1 to represent a top-

ic t. To capture the subtopic relationship (ti, tj),
we prefer a model where the expectation of the
distribution for the child is exactly same with the
distribution for its parent, i.e., E(ϕtj ) = ϕti .
This naturally leads to the hierarchical Dirichlet
model (Wang et al., 2014; Veeramachaneni et al.,
2005), formally, ϕtj |ϕti ∼ Dir(βϕti) in which β
3 is the concentration parameter which determines
how concentrated the probability density is likely
to be. Thus we have:

Ptext(tj |ti) =
1
Z

∏
w∈V

ϕ
βϕti,w−1
tj ,v , (3)

where Z =
∏

w∈V Γ(αϕti,w)

Γ(
∑

w∈V αϕti,w) is a normalization fac-
tor and Γ(·) is the standard Gamma distribution.
We note that for the root node we have the uniform
prior instead of the prior coming from the parent.

3.2.2 Combining Structural and Textual
Information

Substituting Eq.2 into Eq.1, we can solve
the optimal tree structure by applying Chu-

3Experimental results are insensitive to β, we set β=5
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Liu/Edmonds algorithm to the directed com-
plete graph with structure based weights
wstruc=log(Pstruc(tj |ti) = log

n(ti,tj)+α
n(ti)+α·|Tc−1|

on the edges (ti, tj). While this solves the
problem of the basic method, it only considers
structural dependency and does not consider
textual correlation which is supposed to be useful.

Therefore, we calculate text based weights
wtext=log(Ptext(tj |ti) =

∑
w∈V logϕ

αϕti,w−1
tj ,v −

logZ similarly. Then we combine structural in-
formation and textual information by defining
the weights w(ti, tj) of the edges (ti, tj) as a
simple weighted average of wstruc(ti, tj) and
wtext(ti, tj). Specifically, we define:

w(ti, tj) = λwtext(ti, tj) + (1− λ)wstruc(ti, tj) ,

where λ controls the impacts of text correla-
tion and structure dependency in optimal structure
learning. Note that wtext and wstruc should be s-
caled 4 first before applying Chu-Liu/Edmonds al-
gorithm to find an optimal topic hierarchy.

4 Experiments

We evaluate the CTH automatically generated by
our proposed methods via comparing it with a
manually constructed ground-truth CTH.

4.1 Data and Evaluation Metric

Data. We evaluate our methods on 3 categories,
i.e., English “earthquake” and “election” cate-
gories containing 293 and 60 articles, and Chi-
nese “earthquake” category containing 48 articles
5. After removing noisy tags such as “references”
and “see also”, they contain 463, 79 and 426 u-
nique tags respectively. After tag clustering 6, we
can get 176, 57 and 112 topics for each category.

Evaluation Metric. We employ the precision
measure to evaluate the performance of our meth-
ods. Let R and Rs be subtopic relation sets of
our generated result and ground-truth result re-
spectively, then precison=|R ∩ Rs|/|R|. Due to
the number of relations |R|=|Rs| = |Tc − 1|, we
have precison=recall=F1=|R ∩ Rs|/|R|.

We compare three methods, including our basic
method (Basic) which uses only non-normalized
structural information, our proposed probabilis-
tic method considering only structural information

4We use min-max normalization x∗ = x−min
max−min

5We filter articles with little information in Contents.
6We use an incremental clustering algorithm

(λ = 0) (Pro+S), and considering both structural
and textual information (0 < λ < 1) (Pro+ST).

4.2 Results and Analysis
Quantitative Analysis. From Table 1, we observe
that our approach Pro+ST (with best λ values as
shown in Fig.2) significantly outperforms Basic
and Pro+S which only utilize the structural infor-
mation (+24.3% and +5.1% on average, p <0.025
with t-test). Pro+S which normalizes structural in-
formation also achieves significant higher preci-
sion than Basic (+19.2% on average, p <0.025).

Earth.(En) Elect.(En) Earth.(Ch)
Basic 0.5965 0.7719 0.7143
Pro+S 0.8971 0.8596 0.9017

Pro+ST 0.9543 0.9298 0.9286

Table 1: Precision of different methods on 3 cate-
gories

Figure 2: The precision of CTH with different λ
values

To examine the influence of λ, we show the
performance of our approach Pro+ST with dif-
ferent λ values on 3 categories in Fig.2. All the
curves grow up first and then decrease dramatical-
ly as we emphasize more on textual information.
They can always get consistent better results when
0.2≤ λ ≤0.3. When λ approaches 1, the precision
declines fast to near 0. The reason is that the top-
ics with short (or null) text descriptions are likely
to be a parent node of all other nodes and influ-
ence the results dramatically, but if we rely mostly
on structural information and use the textual infor-
mation as auxiliary for correcting minor errors in
some ambiguous cases, we can improve the preci-
sion of the resultant topic hierarchy.

Qualitative Analysis. Due to space limitation,
we only show the topic hierarchy for “Election”
with smaller topic size in Fig.3. As we can see,
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Figure 3: The category topic hierarchy for presi-
dential elections. Topics are labeled by tags sepa-
rated by “#”.

the root topic “presidential elections” includes
subtopics “results”, “vote”, “official candidates”,
etc. Furthermore, ‘official candidates” contain-
s subtopics “debates, “rejected candidates”, “un-
successful candidates”, etc. The above mentioned
examples are shown with red edges. However,
there are also a few (7%) mistaken relations (black
edges) such as “comparison” (should be “official
candidates” instead) → “official candidate web-
sites”. Overall, the above hierarchy aligns well
with human knowledge.

5 Related Work

To our best knowledge, our overall problem set-
ting is novel and there is no previous work using
Wiki articles’ contents tables to learn topic hier-
archies for categories. Existing work mainly fo-
cused on learning topic hierarchies from texts only
and used traditional hierarchical clustering meth-
ods (Chuang and Chien, 2004) or topic models
such as HLDA (Griffiths and Tenenbaum, 2004),
HPAM (Mimno et al., 2007), hHDP (Zavitsanos
et al., 2011), and HETM (Hu et al., 2015). Differ-
ently, we focus on structured contents tables with
corresponding text descriptions.

Our work is also different from ontology (tax-
onomy) construction (Li et al., 2007; Tang et al.,
2009; Zhu et al., 2013; Navigli et al., 2011; Wu
et al., 2012) as their focus is concept hierarchies
(e.g. isA relation) rather than thematic topic hier-
archies. For example, given the “animals” cate-
gory, they may derive “cats” and “dogs”, etc. as
subcategories, while our work aims to derive the-
matic topics “animal protection” and “animal ex-
tinction”, etc. as subtopics. Our work enables a

fresher to quickly familiarize himself/herself with
any new category, and is very useful for informa-
tion browsing, organization and topic extraction.

6 Conclusion

In this paper, we propose an innovative problem,
i.e., to construct high quality comprehensive top-
ic hierarchies for different Wiki categories using
their associated Wiki articles. Our novel approach
is able to model a topic hierarchy and to incorpo-
rate both structural dependencies and text correla-
tions into the optimal tree learning. Experimental
results demonstrate the effectiveness of our pro-
posed approach. In future work, we will inves-
tigate how to update the category topic hierarchy
incrementally with the creation of new related ar-
ticles.
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Abstract

Short texts usually encounter data sparsi-
ty and ambiguity problems in representa-
tions for their lack of context. In this pa-
per, we propose a novel method to mod-
el short texts based on semantic clustering
and convolutional neural network. Partic-
ularly, we first discover semantic cliques
in embedding spaces by a fast clustering
algorithm. Then, multi-scale semantic u-
nits are detected under the supervision of
semantic cliques, which introduce useful
external knowledge for short texts. These
meaningful semantic units are combined
and fed into convolutional layer, followed
by max-pooling operation. Experimental
results on two open benchmarks validate
the effectiveness of the proposed method.

1 Introduction

Conventional texts mining methods based on bag-
of-words (BoW) easily encounter data sparsi-
ty and ambiguity problems in short text model-
ing (Chen et al., 2011), which ignore semantic re-
lations between words (Sriram et al., 2010). How
to acquire effective representation for short tex-
t has been an active research issue (Chen et al.,
2011; Phan et al., 2008).

In order to overcome the weakness of BoW, re-
searchers have proposed to expand the represen-
tation of short text using latent semantics, where
the words are mapped to distributional representa-
tions by Latent Dirichlet Allocation (LDA) (Blei
et al., 2003) and its extensions. Phan et al. (2008)
presented a general framework to expand the short
and sparse text by appending topic names discov-
ered using LDA. Yan et al. (2013) presented a vari-
ant of LDA, dubbed Biterm Topic Model (BTM),
especially for short text modeling to alleviate the
problem of sparsity. However, the methods dis-
cussed above still view a piece of text as BoW.

Therefore, they are not effective in capturing fine-
grained semantic information for short texts mod-
eling.

Recently, neural network related methods have
received much attention, including learning word
embeddings (Bengio et al., 2003; Mikolov et al.,
2013a) and performing semantic composition to
obtain phrase or sentence level representation-
s (Collobert et al., 2011; Le and Mikolov, 2014).
For learning word embedding, the training objec-
tive of continuous Skip-gram model (Mikolov et
al., 2013b) is to predict its context. Thus, the co-
occurrence information can be effectively used to
describe a word, and each component of word em-
bedding might have a semantic or grammatical in-
terpretation.

In embedding spaces, semantically close word-
s are likely to cluster together and form semantic
cliques (or word embedding cliques). Moreover,
the embedding spaces exhibit linear structure that
the word vectors can be meaningfully combined
using simple additive operation (Mikolov et al.,
2013b), for example:

vec (Germany) +vec (Capital)≈vec (Berlin) (1)

vec(Athlete)+vec (Football)≈vec (Football P layer)
(2)

The above examples indicate that the additive
composition can often produce meaningful result-
s. In Equation (1), the token ′Berlin′ can be viewed
that it has an embedding offset vec (Capital) to the
token ′Germany′ in embedding spaces. Further-
more, the embedding offsets represent the syntac-
tical and semantic relations among words.

In this paper, we propose a method to mod-
el short texts using semantic clustering and con-
volutional neural network (CNN). Firstly, the fast
clustering algorithm (Rodriguez and Laio, 2014),
based on searching density peaks, is utilized to
cluster word embeddings and discover semantic
cliques, as shown in Figure 1. Then semantic com-
position is performed over n-gram embeddings to
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Figure 1: Fast clustering based on density peaks of embeddings

detect candidate Semantic Units1(abbr. to SUs)
appearing in short texts. The part of candidate
SUs meeting the preset threshold are chosen to
constitute semantic matrices, which are used as in-
put for the CNN, otherwise dropout. In this stage,
semantic cliques are used as supervision informa-
tion, which guarantee meaningful SUs can be ex-
tracted.

The motivation of our work is to introduce extra
knowledge by pre-trained word embeddings and
fully exploit the contextual information of short
texts to improve their representations. The main
contributions include: (1) semantic cliques are
discovered using fast clustering method based on
searching density peaks; (2) for fine-tuning multi-
scale SUs, the semantic cliques are used to super-
vise the selection stage.

The remainder of this paper is organized as fol-
lows. The related works are briefly reviewed in
Section 2. Section 3 introduces the semantic clus-
tering based on fast searching density peaks. Sec-
tion 4 describes the architecture of the proposed
method. Section 5 demonstrates the effectiveness
of our method with experiments. Finally, conclud-
ing remarks are offered in Section 6.

2 Related Works

Traditional statistics-based methods usually fail to
achieve satisfactory performance for short texts
classification due to their sparsity of representa-
tions (Sriram et al., 2010). Based on external
Wikipedia corpus, Phan et al. (2008) proposed a
method to discover hidden topics using LDA and

1Semantic units are defined as n-grams which have domi-
nant meaning of text. With n varying, multi-scale contextual
information can be exploited.

expand short texts. Chen et al. (2011) proved that
leveraging topics at multiple granularity can mod-
el short texts more precisely.

Neural networks have been used to model lan-
guages, and the word embeddings can be learned
simultaneously (Mnih and Teh, 2012). Mikolov et
al. (2013b) introduced the continuous Skip-gram
model that is an efficient method for learning high
quality word embeddings from large-scale un-
structured text data. Recently, various pre-trained
word embeddings are publicly available, and many
composition-based methods are proposed to in-
duce the semantic representation of texts. Le and
Mikolov (2014) presented the Paragraph Vector al-
gorithm to learn a fixed-size feature representation
for documents.

Kalchbrenner et al. (2014) introduced the Dy-
namic Convolutional Neural Network (DCNN) for
modeling sentences. Their work is closely relat-
ed to our study in that k-max pooling is utilized
to capture global feature vector and do not rely
on parse tree. Kim (2014) proposed a simple im-
provement to the convolutional architecture that t-
wo input channels are used to allow the employ-
ment of task-specific and static word embeddings
simultaneously.

Zeng et al. (2014) developed a deep convo-
lutional neural network (DNN) to extract lexical
and sentence level features, which are concate-
nated and fed into the softmax classifier. Socher
et al. (2013) proposed the Recursive Neural Net-
work (RNN) that has been proven to be efficient
in terms of constructing sentences representation-
s. In order to reduce the overfitting of neural net-
work especially trained on small data set, Hin-
ton et al. (2012) used random dropout to prevent
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complex co-adaptations. To exploit more struc-
ture information of text, based on CNN and direc-
t embedding of small text regions, an alternative
mechanism for effective use of word order for text
categorization was proposed (Johnson and Zhang,
2014).

Although the popular methods can capture
high-order information and word relations to pro-
duce complex features, they cannot guarantee the
classification performance for very short texts. In
this paper, we design a method to exploit more
contextual information for short text classification
using semantic clustering and CNN.

3 Semantic Clustering

Since the neighbors of each word are semanti-
cally related in embedding space (Mikolov et al.,
2013b), clustering methods (Rodriguez and Laio,
2014) can be used to discover semantic cliques.
For implementation, two quantities of data point i
are computed, include: local density ρi, defined as
follows,

ρi =
∑
j

χ(dij − dc) (3)

where dij is the distance between data points, dc

is a cutoff distance. Furthermore, distance δi from
points of higher density is measured by,

δi =


min

j:ρj>ρi

(dij) , if ρi < ρmax

max
j

(dij) , otherwise
(4)

An example of semantic clustering is illustrat-
ed in Figure 1. The decision graph shows the two
quantities ρ and δ of each word embedding. Ac-
cording to the definitions above, these word em-
beddings with large ρ and δ simultaneously are
chosen as cluster centers, which are labeled using
the corresponding words.

4 Proposed Architecture

As shown in Figure 2, the proposed architecture
use well pre-trained word embeddings to initialize
the lookup table, and higher levels extract more
complexity features.

For short text S = {w1, w2, · · · , wN}, its project-
ed matrix PM ∈ Rd×N is obtained by table look-
ing up in the first layer, where d is the dimension
of word embedding. The second layer is used to
obtain multi-scale SUs to constitute the semantic

... ...

Projected

Sentence

Matrix

Convolution

Multi-scale

Semantic

Units

K-Max Pooling

Softmax Decision

The cat sat on the red mat

Figure 2: Architecture for short text modeling

matrices, which are combined and fed into convo-
lutional layer, followed by k-max pooling opera-
tion. Finally, a softmax function is employed as
classifier.

4.1 Detection for Multi-scale SUs
Methods for modeling short text S mainly have
problem that its semantic meaning is determined
by a few of key-phrases, however, these meaning-
ful phrases may appear at any position of S. Thus,
simply combining all words of S may introduce
unnecessary divergence and hurt the overall se-
mantic representation. Therefore, the detection for
SUs are useful, which capture salient local infor-
mation, as shown in Figure 2.

In particular, to obtain the representations of
candidate SUs, multiple windows with variable
width over word embeddings are used to perfor-
m element-wise additive composition, as follows:

[SU1,SU2, · · · ,SUN−m+1] = PM⊗Ewin (5)

where, Ewin ∈ Rd×m is a window matrix with all
weights equal to one, and

SUi=

|PMwin,i|∑
j=1

PMwin,i
j (6)

PMwin,i
j is the jth column from the sub-matrix

PMwin,i, which is windowed on projected matrix
PM by Ewin with the ith times sliding. m is the
width of the window matrix Ewin. With m vary-
ing, multi-scale contextual information can be ex-
ploited, which is helpful to reduce the impact of
ambiguous words.
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The meaningful SUs are assumed that they have
one close neighbor at least in embedding space.
Thus, we compute Euclidean distance between
candidate SUs and semantic cliques. If the dis-
tance between candidate SUs and nearest word
embeddings are smaller than the preset threshold,
the candidate SUs are selected to constitute the se-
mantic matrices, otherwise dropout.

4.2 Convolution Layer

In our network, the convolutional layer is used to
extract local features. Kernel matrices k with cer-
tain width n are utilized to calculate convolution
with the input matrices M, as Equation (7).

C = [c1, c2, · · · , cd/2]
T = KT ⊗ M (7)

where,
K = [k1,k2, · · · ,kd/2] (8)

M = [Mwin
1 ,Mwin

2 , · · · ,Mwin
d/2 ] (9)

cj
i = ki · (Mwin,j

i )T (10)

The cj
i is generated from the jth n-gram in M.

Equation (7) produce the feature maps of convolu-
tional layer.

4.3 K-Max Pooling

This operator is a non-linear sub-sampling func-
tion that returns the sub-sequence of K maximum
values (LeCun et al., 1998), which is used to cap-
ture the most relevant global features with fixed-
length. Then, tangent transformation over the re-
sults of K-max pooling is performed, the output
of which is concatenated to used as representation
for the input short texts.

4.4 Network Training

The last layer is fully connected, where a soft-
max classifier is applied to predict the proba-
bility distribution over categories. The network
is trained with the objective that minimizes the
cross-entropy of the predicted distributions and the
actual distributions (Turian et al., 2010),

J(θ) = −1
t

∑t

i=1
log p(c†|xi, θ) + α∥θ∥2 (11)

where t is number of training examples x, and θ is
the parameters set which comprises the kernels of
weights used in convolutional layer and the con-
nective weights from the fully connected layer.

Embedding Senna2 GloVe3 Word2Vec4

Corpus Wikipedia Wikipedia Google News
Dimension 50 50 300
|V ocab.| 130,000 400,000 3,000,000

Table 1: Details of word embeddings

Methods
Google

TRECSnippets

Semantic-CNN
Senna 83.6 96.4
GloVe 84.4 97.2

Word2Vec 85.1 95.6
DCNN – 93(Kalchbrenner et al,2014)
SVMS – 95(Silva et al., 2011)

CNN-TwoChannel – 93.6(Kim, 2014)
LDA+MaxEnt 82.7 –(Phan et al., 2008)

Multi-Topics+MaxEnt 84.17 –(Chen et al., 2011)

Table 2: The classification accuracy of proposed
method against other models

5 Experiments

5.1 Datasets
Experiments are conducted on two benchmarks:
Google Snippets (Phan et al., 2008) and TREC (Li
and Roth, 2002).

Google Snippets This dataset consists of
10,060 training snippets and 2,280 test snippets
from 8 categories. On average, each snippet has
18.07 words.

TREC The TREC questions dataset contains 6
different question types. The training dataset con-
sists of 5,452 labeled questions whereas the test
dataset consists of 500 questions.

5.2 Experimental Setup
Three pre-trained word embeddings for initializ-
ing the lookup table are summarized in Table 1.
To discover semantic cliques, we take ρmin = 16
and δmin = 1.54. Through our experiments, 6 k-
ernel matrices in convolutional layer, K = 3 for
max pooling, and mini-batch size of 100 are used.

5.3 Results and Discussions
5.3.1 Comparison with state-of-the-art

methods
As shown in Table 2, we introduce 5 popular meth-
ods as baselines, and the details are described:

DCNN Kalchbrenner et al. (2014) proposed D-
CNN for sentence modeling with dynamic k-max
pooling.
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Figure 3: Number of windows for multi-scale SUs
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Figure 4: Influence of threshold in SUs detection

SVMs Parser, wh word, head word, POS, hy-
pernyms, and 60 hand-coded rules were used as
features to train SVMs (Silva et al., 2011).

CNN-TwoChannel An improved CNN that al-
lows task-specific and static word embeddings are
used simultaneously (Kim, 2014).

LDA+MaxEnt LDA was used to discover hid-
den topics for expanding short texts (Phan et al.,
2008).

Multi-topics+MaxEnt Multiple granularity
topics from LDA were utilized to model short
texts (Chen et al., 2011).

For valid comparisons, we respectively initial-
ize the lookup table with the word embeddings in
Table 1, and three experiments are conducted for
each benchmark. As a whole, our method achieves
the best performance, especially for TREC with
97.2% when the GloVe word embedding is em-
ployed. For Google snippets, our method achieves
the highest result of 85.1% corresponding to the
word embedding induced by Word2Vec.

5.3.2 Effect of Hyper-parameters
In Figure 2, for obtaining SUs with multi-scale,
multiple window matrices with increasing width
m are used. With respect to the variable m, the re-

2http://ml.nec-labs.com/senna/
3http://nlp.stanford.edu/projects/glove/
4https://code.google.com/p/word2vec/

sults are shown in Figure 3. We find small size of
window may result in loss of critical information,
however, the window with large size may intro-
duce noise.

Figure 4 demonstrate how preset threshold d
impact our method over benchmark Goggle snip-
pets. We can draw a conclusion that when d is too
small, only a few of SUs can be detected, where-
as meaningless features are enrolled. The optimal
threshold d can be chosen by cross-validation.

The impacts of other hyper-parameters like the
number and size of the feature detectors in convo-
lutional layer, and the variable k in k-max pooling
layer are beyond the scope of this paper.

6 Conclusion

This paper proposes a novel semantic hierarchical
model for short text classification. The model us-
es pre-trained word embeddings to introduce extra
knowledge, and multi-scale SUs in short texts are
detected.
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Abstract

This paper investigates the contribution
of document level processing of time-
anchors for TimeLine event extraction.
We developed and tested two different sys-
tems. The first one is a baseline system
that captures explicit time-anchors. The
second one extends the baseline system
by also capturing implicit time relations.
We have evaluated both approaches in the
SemEval 2015 task 4 TimeLine: Cross-
Document Event Ordering. We empiri-
cally demonstrate that the document-based
approach obtains a much more complete
time anchoring. Moreover, this approach
almost doubles the performance of the sys-
tems that participated in the task.

1 Introduction

Temporal relation extraction has been the topic of
different SemEval tasks (Verhagen et al., 2007;
Verhagen et al., 2010; UzZaman et al., 2013;
Llorens et al., 2015) and other challenges as the
6th i2b2 NLP Challenge (Sun et al., 2013). These
tasks focused mainly on the temporal relations of
the events with respect to other events or time ex-
pressions, and their goals are to discover which of
them occur before, after or simultaneously to oth-
ers. Recently, SemEval 2015 included a novel task
regarding temporal information extraction (Mi-
nard et al., 2015). The aim of SemEval 2015 task
4 is to order in a TimeLine the events in which a
target entity is involved and presents some signifi-
cant differences with respect to previous exercises.
First, the temporal information must be recovered
from different sources in a cross-document way.
Second, the TimeLines are focused on the events
involving just a given entity. Finally, unlike pre-
vious challenges, SemEval 2015 task 4 requires a
quite complete time anchoring. This work focuses

mainly on this latter point. We show that the tem-
poral relations that explicitly connect events and
time expressions are not enough to obtain a full
time-anchor annotation and, consequently, pro-
duce incomplete TimeLines. We propose that for
a complete time-anchoring the temporal analysis
must be performed at a document level in order to
discover implicit temporal relations. We present a
preliminary approach that obtains, by far, the best
results on the main track of SemEval 2015 task 4.

2 Related work

The present work is closely related to previous ap-
proaches involved in TempEval campaigns (Ver-
hagen et al., 2007; Verhagen et al., 2010; Uz-
Zaman et al., 2013; Llorens et al., 2015). In
these works, the problem can be seen as a clas-
sification task for deciding the type of the tempo-
ral link that connects two different events or an
event and a temporal expression. For that reason,
the task has been mainly addresed using super-
vised techniques. For example, (Mani et al., 2006;
Mani et al., 2007) trained a MaxEnt classifier us-
ing training data which were bootstrapped by ap-
plying temporal closure. (Chambers et al., 2007)
focused on event-event relations using previously
learned event attributes. More recently, (DŚouza
and Ng, 2013) combined hand-coded rules with
some semantic and discourse features. (Laokulrat
et al., 2013) obtained the best results on TempE-
val 2013 annotating sentences with predicate-role
structures, while (Mirza and Tonelli, 2014) affirm
that using a simple feature set results in better per-
formances.

However, recent works like (Chambers et al.,
2014) have pointed out that these tasks cover
just a part of all the temporal relations that can
be inferred from the documents. Furthermore,
time-anchoring is just a part of the works pre-
sented above. Our approach aims to extend these
strategies and it is based on other research lines

358



involving the extraction of implicit information
(Palmer et al., 1986; Whittemore et al., 1991;
Tetreault, 2002). Particularly, we are inspired by
recent works on Implicit Semantic Role Labelling
(ISRL) (Gerber and Chai, 2012) and very specially
on the work by (Blanco and Moldovan, 2014) who
adapted the ideas about ISRL to focus on modi-
fiers, including arguments of time, instead of core
arguments or roles. As the SemEval 2015 task 4
does not include any training data we decided to
develop a deterministic algorithm of the type of
(Laparra and Rigau, 2013) for ISRL.

3 TimeLine: Cross-Document Event
Ordering

In the SemEval task 4 TimeLine: Cross-Document
Event Ordering (Minard et al., 2015), given a set
of documents and a target entity, the aim is to build
a TimeLine by detecting the events in which the
entity is involved and anchoring these events to
normalized times. Thus, a TimeLine is a collec-
tion of ordered events in time relevant for a partic-
ular entity. TimeLines contain relevant events in
which the target entity participates as ARG0 (i.e
agent) or ARG1 (i.e. patient) as defined in Prop-
Bank (Palmer et al., 2005).1 The target entities can
be people, organization, product or financial enti-
ties and the annotation of time anchors is based on
TimeML.

For example, given the entity Steve Jobs, a
TimeLine contains the events with the associated
ordering in the TimeLine and the time anchor:

1 2004 18135-7-fighting
2 2005-06-05 1664-2-keynote
...
4 2011-08-24 18315-2-step down

The dataset used for the task is composed of ar-
ticles from Wikinews. The trial data consists of 30
documents about “Apple Inc.” and gold standard
TimeLines for six target entities. The test corpus
consists of 3 sets of 30 documents around three
topics and 38 target entities. The topics are “Air-
bus and Boeing”, “General Motors, Chrysler and
Ford” and “Stock Market”.

The evaluation used in the task is based on the
metric previously introduced in TempEval-3 (Uz-
Zaman et al., 2013). The metric captures the tem-

1For more information consult http://tinyurl.
com/owyuybb

poral awareness of an annotation (UzZaman and
Allen, 2011) based on temporal closure graphs.
In order to calculate the precision, recall and F1
score, the TimeLines are first transformed into a
graph representation. For that, the time anchors
are represented as TIMEX3 and the events are re-
lated to the corresponding TIMEX3 by means of
the SIMULTANEOUS relation type. In addition,
BEFORE relation types are created to represent
that one event happens before another one and SI-
MULTANEOUS relation types to refer to events
happening at the same time. The official scores
are based on the micro-average of F1 scores.

The main track of the task (Track A) consists
of building TimeLines providing only the raw text
sources. Two systems participated in the task. The
organisers also defined a Track B where gold event
mentions were given. In this case, two different
systems sent results. For both tracks, a sub-track
in which the events are not associated to a time
anchor was also presented.

In this work, we focus on the main track of the
task. We believe the main track is the most chal-
lenging one as no annotated data is provided. In-
deed, WHUNLP 1 was the best run and achieved
an F1 of 7.28%.

Three runs were submitted. The WHUNLP
team used the Stanford CoreNLP and they applied
a rule-based approach to extract the entities and
their predicates. They also performed temporal
reasoning.2 The remaining two runs were submit-
ted using the SPINOZA VU system (Caselli et al.,
2015). They performed entity resolution, event de-
tection, event-participant linking, coreference res-
olution, factuality profiling and temporal process-
ing at document and cross-document level. Then,
the TimeLine extractor built a global timeline be-
tween all events and temporal expressions regard-
less of the target entities and then it extracted the
target entities for the TimeLines. The participants
also presented an out of the competition system
which anchors events to temporal expressions ap-
pearing not only in the same sentence but also in
the previous and following sentences.

4 Baseline TimeLine extraction

In this section we present a system that builds
TimeLines which contain events with explicit
time-anchors. We have defined a three step pro-

2Unfortunately, the task participants did not submit a pa-
per with the description of the system.
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cess to build TimeLines. Given a set of documents
and a target entity, the system first obtains the
events in which the entity is involved. Second, it
obtains the time-anchors for each of these events.
Finally, it sorts the events according to their time-
anchors. For steps 1 and 2 we apply a pipeline of
tools (cf. section 4.1) that provides annotations at
different levels.

4.1 NLP processing

Detecting mentions of events, entities and time ex-
pressions in text requires the combination of vari-
ous Natural Language Processing (NLP) modules.
We apply a generic pipeline of linguistic tools that
includes Named-Entity Recognition (NER) and
Disambiguation (NED), Co-reference Resolution
(CR), Semantic Role Labelling (SRL), Time Ex-
pressions Identification (TEI) and Normalization
(TEN), and Temporal Relation Extraction (TRE).
The NLP processing is based on the NewsReader
pipeline (Agerri et al., 2014a), version 2.1. Next,
we present the different tools in our pipeline.

Named-Entity Recognition (NER) and Dis-
ambiguation (NED): We perform NER using the
ixa-pipe-nerc that is part of IXA pipes (Agerri et
al., 2014b). The module provides very fast models
with high performances, obtaining 84.53 in F1 on
CoNLL tasks. Our NED module is based on DB-
pedia Spotlight (Daiber et al., 2013). We have cre-
ated a NED client to query the DBpedia Spotlight
server for the Named entities detected by the ixa-
pipe-nerc module. Using the best parameter com-
bination, the best results obtained by this module
on the TAC 2011 dataset were 79.77 in precision
and 60.67 in recall. The best performance on the
AIDA dataset is 79.67 in precision and 76.94 in
recall.

Coreference Resolution (CR): In this case, we
use a coreference module that is loosely based on
the Stanford Multi Sieve Pass sytem (Lee et al.,
2011). The system consists of a number of rule-
based sieves that are applied in a deterministic
manner. The system scores 56.4 F1 on CoNLL
2011 task, around 3 points worse than the system
by (Lee et al., 2011).

Semantic Role Labelling (SRL): SRL is per-
formed using the system included in the MATE-
tools (Björkelund et al., 2009). This system re-
ported on the CoNLL 2009 Shared Task a labelled
semantic F1 of 85.63 for English.

Time Expression Identification (TEI) and

Normalization (TEN): We use the time module
from TextPro suite (Pianta et al., 2008) to capture
the tokens corresponding to temporal expressions
and to normalize them following TIDES specifica-
tion. This module is trained on TempEval3 data.
The average results for English is: 83.81% preci-
sion, 75.94% recall and 79.61% F1 values.

Time Relation Extraction (TRE): We ap-
ply the temporal relation extractor module from
TextPro to extract and classify temporal relations
between an event and a time expression. This
module is trained using yamcha tool on the Tem-
pEval3 data. The result for relation classification
on the corpus of TempEval3 is: 58.8% precision,
58.2% recall and 58.5% F1.

4.2 TimeLine extraction

Our TimeLine extraction system uses the linguis-
tic information provided by the pipeline. The pro-
cess to extract the target entities, the events and
time-anchors can be described as follows:

(1) Target entity identification: The target en-
tities are identified by the NED module. As they
can be expressed in several forms, we use the
redirect links contained in DBpedia to extend the
search of the events involving those target enti-
ties. For example, if the target entity is Toyota
the system would also include events involving the
entities Toyota Motor Company or Toyota Motor
Corp. In addition, as the NED does not always
provide a link to DBpedia, we also consider the
matching of the wordform of the head of the argu-
ment with the head of the target entity.

(2) Event selection: We use the output of the
SRL module to extract the events that occur in a
document. Given a target entity, we combine the
output of the NER, NED, CR and SRL to obtain
those events that have the target entity as filler of
their ARG0 or ARG1. We also set some con-
straints to select certain events according to the
specification of the SemEval task. That is, we only
return those events that are not negated and are not
accompanied by modal verbs except will.

(3) Time-anchoring: We extract the time-
anchors from the output of the TRE and SRL.
From the TRE, we extract as time-anchors those
relations between events and time-expressions
identified as SIMULTANEOUS. From the SRL,
we extract as time-anchors those ARG-TMP re-
lated to time expressions. In both cases we use the
time-expression returned by the TEI module. The
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tests performed on the trial data show that the best
choice for time-anchoring is combining both op-
tions. For each time anchor we normalize the time
expression using the output of the TEN module.

The TimeLine extraction process described fol-
lowing this approach builds TimeLines for events
with explicit time-anchors. We call this system
BTE and it can be seen as a baseline since we be-
lieve that the temporal analysis should be carried
out at document level. Section 5 presents our strat-
egy for improving the time-anchoring carried out
by our baseline system.

5 Document level time-anchoring

The explicit time anchors provided by the NLP
tools presented in Section 4.1 do not cover the full
set of events involving a particular entity. That is,
most of the events do not have an explicit time an-
chor and therefore are not captured as part of the
TimeLine of that entity. Thus, we need to recover
the time-anchors that appear implicitly in the text.
In this preliminary work, we propose a simple
strategy that tries to capture implicit time-anchors
while maintaining the coherence of the temporal
information in the document. As said in Section
2, this strategy follows previous works on Implicit
Semantic Role Labelling.

The rationale behind the algorithm 1 is that by
default the events of an entity that appear in a doc-
ument tend to occur at the same time as previous
events involving the same entity, except stated ex-
plicitly. For example, in Figure 1 all the events
involving Steve Jobs, like gave and announced,
are anchored to the same time-expression Mon-
day although this only happens explicitly for the
first event gave. The example also shows how for
other events that occur in different times the time-
anchor is also mentioned explicitly, like for those
events that involve the entities Tiger and Mac OS
X Leopard.

Algorithm 1 starts from the annotation obtained
by the tools described in Section 4.1. For a par-
ticular entity a list of events (eventList) is cre-
ated sorted by its occurrence in the text. Then,
for each event in this list the system checks if that
event has already a time-anchor (eAnchor). If
this is the case, the time-anchor is included in the
list of default time-anchors (defaultAnchor) for
the following events of the entity with the same
verb tense (eTense). If the event does not have
an explicit time-anchor but the system has found

a time-anchor for a previous event belonging to
the same tense (defaultAnchor[eTense]), this
time-anchor is also assigned to the current event
(eAnchor). If none of the previous conditions sat-
isfy, the algorithm anchors the event to the Docu-
ment Creation Time (DCT) and sets this time-
expression as the default time-anchor for the fol-
lowing events with the same tense.

Algorithm 1 Implicit Time-anchoring
1: eventList = sorted list of events of an entity
2: for event in eventList do
3: eAnchor = time anchor of event
4: eTense = verb tense of event
5: if eAnchor not NULL then
6: defaultAnchor[eTense] = eAnchor
7: else if defaultAnchor[eTense] not

NULL then
8: eAnchor = defaultAnchor[eTense]
9: else

10: eAnchor = DCT
11: defaultAnchor[eTense] = DCT
12: end if
13: end for

Note that the algorithm 1 strongly depends on
the tense of the events. As this information can be
only recovered from verbal predicates, this strat-
egy cannot be applied to events described by nom-
inal predicates. For these cases just explicit time-
anchors are taken into account.

The TimeLine is built ordering the events ac-
cording to the time-anchors obtained both explic-
itly and implicitly. We call this system DLT.

6 Experiments

We have evaluated our two TimeLine extractors on
the main track of the SemEval 2015 task 4. Two
systems participated in this track, WHUNLP and
SPINOZAVU, with three runs in total. Their per-
formances in terms of Precision (P), Recall (R)
and F1-score (F1) are presented in Table 6. We
also present in italics additional results of both
systems. On the one hand, the results of a cor-
rected run of the WHUNLP system provided by
the SemEval organizers. On the other hand, the
results of an out of the competition version of
the SPINOZAVU team explained in (Caselli et al.,
2015). The best run is obtained by the corrected
version of WHUNLP 1 with an F1 of 7.85%. The
low figures obtained show the intrinsic difficulty
of the task, specially in terms of Recall.
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Figure 1: Example of document-level time-anchoring.

Table 6 also contains the results obtained by our
systems. We present two different runs. On the
one hand, we present the results obtained using
just the explicit time-anchors provided by BTE.
As it can be seen, the results obtained by this
run are similar to those obtained by WHUNLP 1.
On the other hand, the results of the implicit
time-anchoring approach (DLT) outperforms by
far our baseline and all previous systems applied
to the task. To check that these results are not
biased by the time-relation extractor we use in
our pipeline (TimePro), we reproduce the perfor-
mances of BTE and DLT using another system to
obtain the time-relations. For this purpose we have
used CAEVO by (Chambers et al., 2014). The re-
sults obtained in this case show that the improve-
ment obtained by our proposal is quite similar, re-
gardless of the time-relation extractor chosen.

System P R F1
SPINOZAVU-RUN-1 7.95 1.96 3.15
SPINOZAVU-RUN-2 8.16 0.56 1.05
WHUNLP 1 14.10 4.90 7.28
OC SPINOZA VU - - 7.12
WHUNLP 1 14.59 5.37 7.85
BTE 26.42 4.44 7.60
DLT 20.67 10.95 14.31
BTE caevo 17.56 4.86 7.61
DLT caevo 17.02 12.09 14.13

Table 1: Results on the SemEval-2015 task

The figures in Table 6 seem to prove our hy-
pothesis. In order to obtain a full time-anchoring
annotation, the temporal analysis must be carried
out at a document level. The TimeLine extractor
almost doubles the performance by just including
a straightforward strategy as the one described in
Section 5. As expected, Table 6 shows that this

improvement is much more significant in terms of
Recall.

7 Conclusion and future-work

In this work we have shown that explicit tempo-
ral relations are not enough to obtain a full time-
anchor annotation of events. We have proved the
need of a temporal analysis at document level.
For that, we have proposed a simple strategy that
acquires implicit relations and it obtains a more
complete time-anchoring.3 The approach has been
evaluated on the TimeLine extraction task and the
results show that the performance can be doubled
when using implicit relations. As future work, we
plan to explore in more detail this research line
by applying more sophisticated approaches in the
temporal analysis at document level.

However, this is not the only research line that
we want to go in depth. The errors that the tools
of the pipeline are producing have a direct impact
on the final result of our TimeLine extractors. In
a preliminary analysis, we have noticed that this is
specially critical when detecting the events given
a target entity. Our pipeline does not detect all
mentions of the target entities. That is why we are
planning an in-depth error analysis of the pipeline
in order to find the best strategy to improve on the
linguist analyses and the TimeLine extraction.
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Abstract

We study the event detection problem us-
ing convolutional neural networks (CNNs)
that overcome the two fundamental limi-
tations of the traditional feature-based ap-
proaches to this task: complicated feature
engineering for rich feature sets and er-
ror propagation from the preceding stages
which generate these features. The experi-
mental results show that the CNNs outper-
form the best reported feature-based sys-
tems in the general setting as well as the
domain adaptation setting without resort-
ing to extensive external resources.

1 Introduction

We address the problem of event detection (ED):
identifying instances of specified types of events
in text. Associated with each event mention is a
phrase, the event trigger (most often a single verb
or nominalization), which evokes that event. Our
task, more precisely stated, involves identifying
event triggers and classifying them into specific
types. For instance, according to the ACE 2005
annotation guideline1, in the sentence “A police
officer was killed in New Jersey today”, an event
detection system should be able to recognize the
word “killed” as a trigger for the event “Die”. This
task is quite challenging, as the same event might
appear in the form of various trigger expressions
and an expression might represent different events
in different contexts. ED is a crucial component
in the overall task of event extraction, which also
involves event argument discovery.

Recent systems for event extraction have em-
ployed either a pipeline architecture with separate
classifiers for trigger and argument labeling (Ji and
Grishman, 2008; Gupta and Ji, 2009; Patwardhan

1
https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/

english-events-guidelines-v5.4.3.pdf

and Rilof, 2009; Liao and Grishman, 2011; Mc-
Closky et al., 2011; Huang and Riloff, 2012; Li
et al., 2013a) or a joint inference architecture that
performs the two subtasks at the same time to ben-
efit from their inter-dependencies (Riedel and Mc-
Callum, 2011a; Riedel and McCallum, 2011b; Li
et al., 2013b; Venugopal et al., 2014). Both ap-
proaches have coped with the ED task by elabo-
rately hand-designing a large set of features (fea-
ture engineering) and utilizing the existing super-
vised natural language processing (NLP) toolkits
and resources (i.e name tagger, parsers, gazetteers
etc) to extract these features to be fed into sta-
tistical classifiers. Although this approach has
achieved the top performance (Hong et al., 2011;
Li et al., 2013b), it suffers from at least two issues:

(i) The choice of features is a manual process
and requires linguistic intuition as well as domain
expertise, implying additional studies for new ap-
plication domains and limiting the capacity to
quickly adapt to these new domains.

(ii) The supervised NLP toolkits and resources
for feature extraction might involve errors (either
due to the imperfect nature or the performance
loss of the toolkits on new domains (Blitzer et al.,
2006; Daumé III, 2007; McClosky et al., 2010)),
probably propagated to the final event detector.

This paper presents a convolutional neural net-
work (LeCun et al., 1988; Kalchbrenner et al.,
2014) for the ED task that automatically learns
features from sentences, and minimizes the depen-
dence on supervised toolkits and resources for fea-
tures, thus alleviating the error propagation and
improving the performance for this task. Due
to the emerging interest of the NLP community
in deep learning recently, CNNs have been stud-
ied extensively and applied effectively in vari-
ous tasks: semantic parsing (Yih et al., 2014),
search query retrieval (Shen et al., 2014), seman-
tic matching (Hu et al., 2014), sentence modeling
and classification (Kalchbrenner et al., 2014; Kim,
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Figure 1: Convolutional Neural Network for Event Detection.

2014), name tagging and semantic role labeling
(Collobert et al., 2011), relation classification and
extraction (Zeng et al., 2014; Nguyen and Grish-
man, 2015). However, to the best of our knowl-
edge, this is the first work on event detection via
CNNs so far.

First, we evaluate CNNs for ED in the general
setting and show that CNNs, though not requir-
ing complicated feature engineering, can still out-
perform the state-of-the-art feature-based meth-
ods extensively relying on the other supervised
modules and manual resources for features. Sec-
ond, we investigate CNNs in a domain adaptation
(DA) setting for ED. We demonstrate that CNNs
significantly outperform the traditional feature-
based methods with respect to generalization per-
formance across domains due to: (i) their capac-
ity to mitigate the error propagation from the pre-
processing modules for features, and (ii) the use
of word embeddings to induce a more general rep-
resentation for trigger candidates. We believe that
this is also the first research on domain adaptation
using CNNs.

2 Model

We formalize the event detection problem as a
multi-class classification problem. Given a sen-
tence, for every token in that sentence, we want to
predict if the current token is an event trigger: i.e,
does it express some event in the pre-defined event
set or not (Li et al., 2013b)? The current token

along with its context in the sentence constitute
an event trigger candidate or an example in multi-
class classification terms. In order to prepare for
the CNNs, we limit the context to a fixed window
size by trimming longer sentences and padding
shorter sentences with a special token when nec-
essary. Let 2w + 1 be the fixed window size,
and x = [x−w, x−w+1, . . . , x0, . . . , xw−1, xw] be
some trigger candidate where the current token is
positioned in the middle of the window (token x0).
Before entering the CNNs, each token xi is trans-
formed into a real-valued vector by looking up the
following embedding tables to capture different
characteristics of the token:

- Word Embedding Table (initialized by some
pre-trained word embeddings): to capture the hid-
den semantic and syntactic properties of the tokens
(Collobert and Weston, 2008; Turian et al., 2010).

- Position Embedding Table: to embed the rel-
ative distance i of the token xi to the current token
x0. In practice, we initialize this table randomly.

- Entity Type Embedding Table: If we further
know the entity mentions and their entity types2

in the sentence, we can also capture this informa-
tion for each token by looking up the entity type
embedding table (initialized randomly) using the
entity type associated with each token. We em-
ploy the BIO annotation scheme to assign entity
type labels to each token in the trigger candidate

2For convenience, when mentioning entities in this paper,
we always include ACE timex and values.
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using the heads of the entity mentions.
For each token xi, the vectors obtained from the

three look-ups above are concatenated into a sin-
gle vector xi to represent the token. As a result,
the original event trigger x is transformed into a
matrix x = [x−w,x−w+1, . . . ,x0, . . . ,xw−1,xw]
of size mt× (2w+1) (mt is the dimensionality of
the concatenated vectors of the tokens).

The matrix representation x is then passed
through a convolution layer, a max pooling layer
and a softmax at the end to perform classifica-
tion (like (Kim, 2014; Kalchbrenner et al., 2014)).
In the convolution layer, we have a set of feature
maps (filters) {f1, f2, . . . , fn} for the convolution
operation. Each feature map fi corresponds to
some window size k and can be essentially seen
as a weight matrix of size mt × k. Figure 1 illus-
trates the proposed CNN.

The gradients are computed using back-
propagation; regularization is implemented by a
dropout (Kim, 2014; Hinton et al., 2012), and
training is done via stochastic gradient descent
with shuffled mini-batches and the AdaDelta up-
date rule (Zeiler, 2012; Kim, 2014). During the
training, we also optimize the weights of the three
embedding tables at the same time to reach an ef-
fective state (Kim, 2014).

3 Experiments

3.1 Dataset, Hyperparameters and Resources

As the benefit of multiple window sizes in the con-
volution layer has been demonstrated in the previ-
ous work on sentence modeling (Kalchbrenner et
al., 2014; Kim, 2014), in the experiments below,
we use window sizes in the set {2, 3, 4, 5} to gen-
erate feature maps. We utilize 150 feature maps
for each window size in this set. The window size
for triggers is set to 31 while the dimensionality of
the position embeddings and entity type embed-
dings is 503.We inherit the values for the other pa-
rameters from Kim (2014), i.e, the dropout rate
ρ = 0.5, the mini-batch size = 50, the hyperpa-
rameter for the l2 norms = 3. Finally, we em-
ploy the pre-trained word embeddings word2vec
with 300 dimensions from Mikolov et al. (2013)
for initialization.

We evaluate the presented CNN over the ACE
2005 corpus. For comparison purposes, we uti-
lize the same test set with 40 newswire articles

3These values are chosen for their best performance on
the development data.

(672 sentences), the same development set with
30 other documents (836 sentences) and the same
training set with the remaning 529 documents
(14,849 sentences) as the previous studies on this
dataset (Ji and Grishman, 2008; Liao and Grish-
man, 2010; Li et al., 2013b). The ACE 2005 cor-
pus has 33 event subtypes that, along with one
class “None” for the non-trigger tokens, consti-
tutes a 34-class classification problem.

In order to evaluate the effectiveness of the posi-
tion embeddings and the entity type embeddings,
Table 1 reports the performance of the proposed
CNN on the development set when these embed-
dings are either included or excluded from the sys-
tems. With the large margins of performance, it is
very clear from the table that the position embed-
dings are crucial while the entity embeddings are
also very useful for CNNs on ED.

Systems P R F
-Entity Types -Position 16.8 12.0 14.0

+Position 75.0 63.0 68.5
+Entity Types -Position 17.0 15.0 15.9

+Position 75.6 66.4 70.7

Table 1: Performance on the Development Set.

For the experiments below, we examine the
CNNs in two scenarios: excluding the entity type
embeddings (CNN1) and including the entity type
embeddings (CNN2). We always use position em-
beddings in these two scenarios.

3.2 Performance Comparison

The state-of-the-art systems for event detection on
the ACE 2005 dataset have followed the traditional
feature-based approach with rich hand-designed
feature sets, and statistical classifiers such as Max-
Ent and perceptron for structured prediction in a
joint architecture (Hong et al., 2011; Li et al.,
2013b). In this section, we compare the proposed
CNNs with these state-of-the-art systems on the
blind test set. Table 2 presents the overall per-
formance of the systems with gold-standard entity
mention and type information4.

As we can see from the table, considering the
systems that only use sentence level information,
CNN1 significantly outperforms the MaxEnt clas-
sifier as well as the joint beam search with local
features from Li et al. (2013b) (an improvement
of 1.6% in F1 score), and performs comparably

4Entity mentions and types are used to introduce more
features into the systems.
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Methods P R F
Sentence-level in Hong et al
(2011) 67.6 53.5 59.7

MaxEnt with local features in
Li et al. (2013b) 74.5 59.1 65.9

Joint beam search with local
features in Li et al. (2013b) 73.7 59.3 65.7

Joint beam search with local
and global features in Li et al.
(2013b)

73.7 62.3 67.5

Cross-entity in Hong et al.
(2011) † 72.9 64.3 68.3

CNN1: CNN without any
external features 71.9 63.8 67.6

CNN2: CNN augmented with
entity types 71.8 66.4 69.0

Table 2: Performance with Gold-Standard Entity Mentions
and Types. † beyond sentence level.

with the joint beam search approach using both lo-
cal and global features (Li et al., 2013b). This is
remarkable since CNN1 does not require any ex-
ternal features5, in contrast to the other feature-
based systems that extensively rely on such exter-
nal features to perform well. More interestingly,
when the entity type information is incorporated
into CNN1, we obtain CNN2 that still only needs
sentence level information but achieves the state-
of-the-art performance for this task (an improve-
ment of 1.5% over the best system with only sen-
tence level information (Li et al., 2013b)).

Except for CNN1, all the systems reported in
Table 2 employ the gold-standard (perfect) entities
mentions and types from manual annotation which
might not be available in reality. Table 3 compares
the performance of CNN1 and the feature-based
systems in a more realistic setting, where entity
mentions and types are acquired from an auto-
matic high-performing name tagger and informa-
tion extraction system (Li et al., 2013b). Note that
CNN1 is eligible for this comparison as it does not
utilize any external features, thus avoiding usage
of the name tagger and the information extraction
system to identify entity mentions and types.

3.3 Domain Adaptation Experiment
In this section, we aim to further compare the pro-
posed CNNs with the feature-based systems under
the domain adaptation setting for event detection.

The ultimate goal of domain adaptation re-
search is to develop techniques taking training

5External features are the features generated from the su-
pervised NLP modules and manual resources such as parsers,
name tagger, entity mention extractors (either automatic or
manual), gazetteers etc.

Methods F
Sentence level in Ji and Grishman (2008) 59.7
MaxEnt with local features in Li et al. (2013b) 64.7
Joint beam search with local features in Li et
al. (2013b) 63.7

Joint beam search with local and global
features in Li et al. (2013b) 65.6

CNN1: CNN without any external features 67.6

Table 3: Performance with Predicted Entity Mentions and
Types.

data in some source domain and learning models
that can work well on target domains. The target
domains are supposed to be so dissimilar from the
source domain that the learning techniques would
suffer from a significant performance loss when
trained on the source domain and applied to the
target domains. To make it clear, we address the
unsupervised DA problem in this section, i.e no
training data in the target domains (Blitzer et al.,
2006; Plank and Moschitti, 2013). The fundamen-
tal reason for the performance loss of the feature-
based systems on the target domains is twofold:

(i) The behavioral changes of features across
domains: As domains differ, some features might
be informative in the source domain but become
less relevant in the target domains and vice versa.

(ii) The propagated errors of the pre-processing
toolkits for lower-level tasks (POS tagging, name
tagging, parsing etc) to extract features: These
pre-processing toolkits are also known to degrade
when shifted to target domains (Blitzer et al.,
2006; Daumé III, 2007; McClosky et al., 2010),
introducing noisy features into the systems for
higher-level tasks in the target domains and even-
tually impairing the performance of these higher-
level systems on the target domains.

For ED, we postulate that CNNs are more use-
ful than the feature-based approach for DA for two
reasons. First, rather than relying on the symbolic
and concrete forms (i.e words, types etc) to con-
struct features as the traditional feature-based sys-
tems (Ji and Grishman, 2008; Li et al., 2013b)
do, CNNs automatically induce their features from
word embeddings, the general distributed repre-
sentation of words that is shared across domains.
This helps CNNs mitigate the lexical sparsity,
learn more general and effective feature represen-
tation for trigger candidates, and thus bridge the
gap between domains. Second, as CNNs mini-
mize the reliance on the supervised pre-processing
toolkits for features, they can alleviate the error
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System In-domain(bn+nw) bc cts wl
P R F P R F P R F P R F

MaxEnt 74.5 59.4 66.0 70.1 54.5 61.3 66.4 49.9 56.9 59.4 34.9 43.9
Joint beam search in Li et al. (2013b)
Joint+Local 73.5 62.7 67.7 70.3 57.2 63.1 64.9 50.8 57.0 59.5 38.4 46.7
Joint+Local+Global 72.9 63.2 67.7 68.8 57.5 62.6 64.5 52.3 57.7 56.4 38.5 45.7
CNN1 70.9 64.0 67.3 71.0 61.9 66.1† 64.0 55.0 59.1 53.2 38.4 44.6
CNN2 69.2 67.0 68.0 70.2 65.2 67.6† 68.3 58.2 62.8† 54.8 42.0 47.5

Table 4: In-domain (first column) and Out-of-domain Performance (columns two to four). Cells marked with †designate
CNN models that significantly outperform (p < 0.05) all the reported feature-based methods on the specified domain.

propagation and be more robust to domain shifts.

3.3.1 Dataset
We also do the experiments in this part over the
ACE 2005 dataset but focus more on the difference
between domains. The ACE 2005 corpus comes
with 6 different domains: broadcast conversation
(bc), broadcast news (bn), telephone conversation
(cts), newswire (nw), usenet (un) and webblogs
(wl). Following the common practice of domain
adaptation research on this dataset (Plank and
Moschitti, 2013; Nguyen and Grishman, 2014),
we use news (the union of bn and nw) as the
source domain and bc, cts, wl as three different
target domains. We take half of bc as the devel-
opment set and use the remaining data for testing.
We note that the distribution of event subtypes and
the vocabularies of the source and target domains
are quite different (Plank and Moschitti, 2013).

3.3.2 Domain Adaptation Results
Table 4 presents the performance of five systems:
the MaxEnt classifier with the local features from
Li et al. (2013b) (called MaxEnt); the state-of-the-
art joint beam search systems with: (i) only local
features (called Joint+Local); and (ii) both local
and global features (called Joint+Local+Global)
in Li et al. (2013b) (the baseline systems); CNN1
and CNN2 via 5-fold cross validation. For each
system, we train a model on the training set of the
source domain and report the performance of this
model on the test set of the source domain (in-
domain performance) as well as the performance
of the model on the three target domains bc, cts
and wl (out-of-domain performance)6.

The main conclusions from the table include:
(i) The baseline systems MaxEnt, Joint+Local,
Joint+Local+Global achieve high performance on
the source domain, but degrade dramatically on

6The performance of the feature-based systems MaxEnt,
Joint+Local and Joint+Local+Global are obtained from the
actual systems in Li et al. (2013b).

the target domains due to the domain shifts. (ii)
Comparing CNN1 and the baseline systems, we
see that CNN1 performs comparably with the
baseline systems on the source domain (in-domain
performance) (as expected), substantially outper-
form the baseline systems on two of the three tar-
get domains (i.e, bc and cts), and is only less ef-
fective than the joint beam search approach on
the wl domain; (iii) Finally and most importantly,
we consistently achieve the best adaptation perfor-
mance across all the target domains with CNN2
by only introducing entity type information into
CNN1. In fact, CNN2 significantly outperforms
the feature-based systems with p < 0.05 and large
margins of about 5.0% on the domains bc and cts,
clearly confirming our argument in Section 3.3 and
testifying to the benefits of CNNs on DA for ED.

4 Conclusion

We present a CNN for event detection that auto-
matically learns effective feature representations
from pre-trained word embeddings, position em-
beddings as well as entity type embeddings and
reduces the error propagation. We conducted ex-
periments to compare the proposed CNN with the
state-of-the-art feature-based systems in both the
general setting and the domain adaptation setting.
The experimental results demonstrate the effec-
tiveness as well as the robustness across domains
of the CNN. In the future, our plans include: (i)
to explore the joint approaches for event extrac-
tion with CNNs; (ii) and to investigate other neural
network architectures for information extraction.

Acknowledgments

We would like to thank Qi Li for providing the per-
formance of the feature-based systems on the do-
main adaptation experiments. Thank you to Yifan
He, Kai Cao, and Xiang Li for useful discussions
on the task as well as the anonymous reviewers for
their valuable feedback.

369



References
John Blitzer, Ryan McDonald, and Fernando Pereira.

2006. Domain Adaptation with Structural Corre-
spondence Learning. In Proceedings of EMNLP.

Ronan Collobert and Jason Weston. 2008. A Uni-
fied Architecture for Natural Language Processing:
Deep Neural Networks with Multitask Learning. In
Proceedings of ICML.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu and Pavel Kuksa.
2011. Natural Language Processing (Almost) from
Scratch. Journal of Machine Learning Research
12:24932537.
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Abstract

The task of event trigger labeling is typi-
cally addressed in the standard supervised
setting: triggers for each target event type
are annotated as training data, based on
annotation guidelines. We propose an al-
ternative approach, which takes the exam-
ple trigger terms mentioned in the guide-
lines as seeds, and then applies an event-
independent similarity-based classifier for
trigger labeling. This way we can skip
manual annotation for new event types,
while requiring only minimal annotated
training data for few example events at
system setup. Our method is evaluated on
the ACE-2005 dataset, achieving 5.7% F1

improvement over a state-of-the-art super-
vised system which uses the full training
data.

1 Introduction

Event trigger labeling is the task of identifying the
main word tokens that express mentions of pre-
specified event types in running text. For example,
in “20 people were wounded in Tuesday’s airport
blast”, “wounded” is a trigger of an Injure event
and “blast” is a trigger of an Attack. The task
both detects trigger tokens and classifies them to
appropriate event types. While this task is often
a component within the broader event extraction
task, labeling both triggers and arguments, this pa-
per focuses on trigger labeling.

Most state-of-the-art event trigger labeling ap-
proaches (Ji and Grishman, 2008; Liao and Grish-
man, 2010b; Hong et al., 2011; Li et al., 2013)
follow the standard supervised learning paradigm.
For each event type, experts first write annotation
guidelines. Then, annotators follow them to label
event triggers in a large dataset. Finally, a classi-
fier is trained over the annotated triggers to label
the target events.

The supervised paradigm requires major human
efforts both in producing high-quality guidelines
and in dataset annotation for each new event type.
Given the rich information embedded in the guide-
lines, we raise in this paper the following research
question: how well can we perform by leverag-
ing only the lexical knowledge already available
in quality guidelines for new event types, without
requiring annotated training data for them?

To address this question, we propose a seed-
based approach for the trigger labeling task (Sec-
tion 2). Given the description for a new event type,
which contains some examples of triggers, we first
collect these triggers into a list of seeds. Then,
at the labeling phase, we consider each text token
as a candidate for a trigger and assess its similar-
ity to the seed list. In the above example, given
seeds such as “explosion” and “fire” for the Attack
event type, we identify that the candidate token
“blast” is a hyponym of “explosion” and synonym
of “fire” and infer that “blast” is a likely Attack
trigger.

In our method, such similarity indicators are en-
coded as a small set of event-independent clas-
sification features, based on lexical matches and
external resources like WordNet. Using event-
independent features allows us to train the system
only once, at system setup phase, requiring anno-
tated triggers in a training set for just a few pre-
selected event types. Then, whenever a new event
type is introduced for labeling, we only need to
collect a seed list for it from its description, and
provide it as input to the system.

We developed a seed-based system (Section 3),
based on a state-of-the-art fully-supervised event
extraction system (Li et al., 2013). When evalu-
ated on the ACE-2005 dataset,1 our system outper-
forms the fully-supervised one (Section 4), even
though we don’t utilize any annotated triggers of
the test events during the labeling phase, and only

1http://projects.ldc.upenn.edu/ace
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Figure 1: Flow of the seed-based approach

use the seed triggers appearing in the ACE anno-
tation guidelines. This result contributes to the
broader line of research on avoiding or reducing
annotation cost in information extraction (Section
5). In particular, it suggests the potential utility of
the seed-based approach in scenarios where man-
ual annotation per each new event is too costly.

2 Seed-Based Problem Setup

This section describes our setup, as graphically il-
lustrated in Figure 1.

Similarly to the supervised setting, our ap-
proach assumes that whenever a new event type is
defined as target, an informative event description
should be written for it. As a prominent example,
we consider Section 5 of the ACE-2005 event an-
notation guidelines,2 which provides a description
for each event type. The description includes a
short verbal specification plus several illustrating
example sentences with marked triggers, spanning
on average less than a page per event type.

As event descriptions specify the intended event
scope, they inherently include representative ex-
amples for event triggers. For instance, the ACE-
2005 guidelines include: “MEET Events include
talks, summits, conferences, meetings, visits,. . . ”,
followed by an example: “Bush and Putin met this
week. . . ”. We thus collect triggers mentioned in
each event description into a seed list for the event
type, which is provided as input to our trigger la-
beling method. Triggers from the above quoted
sentences are hence included in the Meet seed list,
shown in Figure 1.

As mentioned in the Introduction, our method
(Section 3) is based on event-independent features

2https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/
files/english-events-guidelines-v5.4.3.pdf

that identify similarities between a candidate trig-
ger and a given seed list. To train such generic fea-
tures, our training requires several arbitrary train-
ing event types, with a small amount of annotated
triggers, from which it learns weights for the fea-
tures. In our evaluation (Section 4) we use 5 train-
ing event types, with a total of 30 annotated trig-
ger mentions (compared to roughly 5000 used by
the baseline fully-supervised system). In this set-
ting, the training phase is required only once dur-
ing system setup, while no further training is re-
quired for each new target event type.

In summary, our setup requires: (1) a seed list
per target event type; (2) a small number of anno-
tated triggers for few training event types, along
with their seed lists (at system setup).

3 Method

This section describes the method we designed
to implement the seed-based approach. To as-
sess our approach, we compare it (Section 4) with
the common fully-supervised approach, which re-
quires annotated triggers for each target event
type. Therefore, we implemented our system by
adapting the state-of-the-art fully-supervised event
extraction system of Li et al. (2013), modifying
mechanisms relevant for features and for trigger
labels, as described below. Hence the systems are
comparable with respect to using the same pre-
processing and machine learning infrastructure.

3.1 The Fully-Supervised System

The event extraction system of Li et al. (2013) la-
bels triggers and their arguments for a set of target
event types L, for which annotated training docu-
ments are provided. The system utilizes a struc-
tured perceptron with beam search (Collins and
Roark, 2004; Huang et al., 2012). To label trig-
gers, the system scans each sentence x, and cre-
ates candidate assignments y, that for each token
xi assign each possible label yi ∈ L ∪ {⊥} (⊥
meaning xi is not a trigger at all). The score of an
assignment (xi, yi) is calculated as w · f , where f
is the binary feature vector calculated for (xi, yi),
and w is the learned feature weight vector.

The classifier’s features capture various proper-
ties of xi and its context, such as its unigram and
its containing bigrams. These features are highly
lexicalized, resulting in a very large feature space.
Additionally, each feature is replicated and paired
with each label yi, allowing the system to learn
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Feature Description
Same
Lemma

Do the candidate token and a seed share the
same lemma?

Synonym Is a seed a WN synonym of the candidate token?
Hypernym Is a seed a WN hypernym or instance-hypernym

of the candidate token?
Similarity
Relations

Does one of these WN relations hold between a
seed and a candidate token? Synonym, Hyper-
nym, Instance Hypernym, Part Holonym, Mem-
ber Holonym, Substance Meronym, Entailment

Table 1: Similarity features using WordNet (WN).
For the last two features we allow up to 2 levels
of transitivity (e.g. hypernym of hypernym), and
consider also derivations of candidate tokens.

different weights for different labels, e.g., feature
(Unigram:“visited”, Meet) will have a different
weight than (Unigram:“visited”, Attack).

3.2 The Seed-Based System

To implement the seed-based approach for trigger
labeling, we adapt only the trigger classification
part in the Li et al. (2013) fully-supervised sys-
tem, ignoring arguments. Given a set of new target
event types T we classify every test sentence once
for each event type t ∈ T . Hence, when classi-
fying a sentence for t, the labeling of each token
xi is binary, where yi ∈ {>,⊥} marks whether
xi is a trigger of type t (>) or not (⊥). For in-
stance xi=“visited” labeled as > when classifying
for t=Meet, means xi is labeled as a Meet trigger.
To score the binary label assignment (xi, yi), we
use a small set of features that assess the similar-
ity between xi and t’s given seed list.

We implement our approach with a basic set
of binary features (Table 1), which are turned on
if similarity is found for at least one seed in the
list. We use a single knowledge resource (Word-
Net (Fellbaum, 1998)) for expansion.3 As in the
fully-supervised system, each feature is replicated
for each label in {>,⊥}, learning separately how
well a feature can predict a trigger (>) and a
non-trigger (⊥). As labels are event-independent,
features are event-independent as well, and their
weights can be learned generically (Figure 1).

Since we label each token independently for
each event type t, multiple labels may be assigned
to the same token. If a single-label setting is re-
quired, standard techniques can be applied, such
as choosing a single random label, or the highest
scoring one.

3This could be potentially extended, e.g. with paraphrase
databases, like (Ganitkevitch et al., 2013).

4 Evaluation

4.1 Setting
We evaluate our seed-based approach (Section 2)
in comparison to the fully-supervised approach
implemented by Li et al. (2013) (Section 3). To
maintain comparability, we use the ACE-2005
documents with the same split as in (Ji and Grish-
man, 2008; Liao and Grishman, 2010b; Li et al.,
2013) to 40 test documents and 559 training doc-
uments. However, some evaluation settings dif-
fer: Li et al. (2013) train a multi-class model for
all 33 ACE-2005 event types, and classify all to-
kens in the test documents into these event types.
Our approach, on the other hand, trains an event-
independent binary classifier, while testing on new
event types that are different from those utilized
for training. We next describe how this setup is
addressed in our evaluation.

Per-Event Classification To label the test doc-
uments to all 33 event types, we classify each to-
ken in the test documents once for each test event
type.4

Training Event Types When we label for a test
event type t, we use a model that was trained on
different pre-selected training event types. Since
we need to label for all event types, we cannot use
the same model for testing them all, since then the
event types used to train this model could not be
tested. Thus, for each t we use a model trained
on 5 randomly chosen training event types, differ-
ent than t.5 Additionally, to avoid a bias caused
by a particular random choice, we build 10 differ-
ent models, each time choosing a different set of 5
training event types. Then, we label the test docu-
ments for t 10 times, once by each model. When
measuring performance we compute the average
of these 10 runs for each t, as well as the variance
within these runs.

Annotated Triggers Training event types re-
quire annotated triggers from the training docu-
ments. To maintain consistency between differ-
ent sets of training event types, we use a fixed to-
tal of 30 annotated trigger tokens for each set of

4To maintain comparability with the single-label classifi-
cation results of Li et al. (2013), we randomly choose a sin-
gle label for our classification in the few (7) cases where it
yielded two labels for the same token.

5Li et al. (2013) internally split the training documents to
“train” and “dev”. Accordingly, our training event types are
split to 3 “train” events and 2 “dev” events (with annotations
taken from the “train” and “dev” documents respectively).
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Micro-Avg. (%) Var
Prec Rec F1 Avg

Seed-Based 80.6 67.1 73.2 0.04
Li et al. (2013) 73.7 62.3 67.5 -

Ji and Grishman (2008) 67.6 53.5 59.7 -

Table 2: Seed-based performance compared to
fully-supervised systems, plus average F1 vari-
ance (%) over the 10 test runs per test event type.

training event types. The amounts of 5 training
event types and 30 annotated triggers were chosen
to demonstrate that such small amounts, requiring
little manual effort at system setup, yield high per-
formance (larger training didn’t improve results,
possibly due to the small number of features).

Seed Lists To build the seed lists for all event
types, we manually extracted all triggers men-
tioned in Section 5 of the ACE-2005 guidelines,
as described in Section 2.6 This resulted in lists of
4.2 seeds per event type on average, which is fairly
small. For comparison, each event type has an av-
erage of 46 distinct trigger terms in the training
corpus used by the fully-supervised method.

4.2 Results

Table 2 shows our system’s precision, recall and
F1,7 and the average variance of F1 within the 10
runs of each test event type. The very low variance
indicates that the system’s performance does not
depend much on the choice of training event types.

We compare our system’s performance to the
published trigger classification results of the base-
line system of (Li et al., 2013) (its globally op-
timized run, when labeling both triggers and ar-
guments). We also compare to the sentence-level
system in (Ji and Grishman, 2008) which uses the
same dataset split. Our system outperforms the
fully-supervised baseline by 5.7% F1, which is
statistically significant (two-tailed Wilcoxon test,
p < 0.05). This shows that there is no per-
formance hit for the seed-based method on this
dataset, even though it does not require any anno-
tated data for new tested events, thus saving costly
annotation efforts.

6Our seed lists are publicly available for download at:
https://goo.gl/sErDW9

7We report micro-average as typical for this task. Macro-
average results are a few points lower for our system and for
the system of Li et al. (2013), maintaining similar relative
difference.

5 Related Work

Our work contributes to the broader research di-
rection of reducing annotation for information ex-
traction. One such IE paradigm, including Pre-
emptive IE (Shinyama and Sekine, 2006), On-
demand IE (Sekine, 2006; Sekine and Oda, 2007)
and Open IE (Etzioni et al., 2005; Banko et
al., 2007; Banko et al., 2008), focuses on un-
supervised relation and event discovery. We, on
the other hand, follow the same goal as fully-
supervised systems in targeting pre-specified event
types, but aim at minimal annotation cost.

Bootstrapping methods (such as (Yangarber et
al., 2000; Agichtein and Gravano, 2000; Riloff,
1996; Greenwood and Stevenson, 2006; Liao
and Grishman, 2010a; Stevenson and Greenwood,
2005; Huang and Riloff, 2012)) have been widely
applied in IE. Most work started from a small
set of seed patterns, and repeatedly expanded
them from unlabeled corpora. Relying on unla-
beled data, bootstrapping methods are scalable but
tend to produce worse results (Liao and Grish-
man, 2010a) than supervised models due to se-
mantic drift (Curran et al., 2007). Our method can
be seen complementary to bootstrapping frame-
works, since we exploit manually crafted linguis-
tic resources which are more accurate but may not
cover all domains and languages.

Our approach is perhaps closest to (Roth et al.,
2009). They addressed a different IE task – re-
lation extraction, by recognizing entailment be-
tween candidate relation mentions and seed pat-
terns. While they exploited a supervised recogniz-
ing textual entailment (RTE) system, we show that
using only simple WordNet-based similarity fea-
tures and minimal training yields relatively high
performance in event trigger labeling.

6 Conclusions and Future Work

In this paper we show that by utilizing the in-
formation embedded in annotation guidelines and
lexical resources, we can skip manual annotation
for new event types. As we match performance of
a state-of-the-art fully-supervised system over the
ACE-2005 benchmark (and even surpass it), we
offer our approach as an appealing way of reduc-
ing annotation effort while preserving result qual-
ity. Future research may explore additional fea-
tures and knowledge resources, investigate alter-
native approaches for creating effective seed lists,
and extend our approach to argument labeling.
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Abstract

Methods for name matching, an important
component to support downstream tasks
such as entity linking and entity clustering,
have focused on alphabetic languages, pri-
marily English. In contrast, logogram lan-
guages such as Chinese remain untested.
We evaluate methods for name matching
in Chinese, including both string match-
ing and learning approaches. Our ap-
proach, based on new representations for
Chinese, improves both name matching
and a downstream entity clustering task.

1 Introduction

A key technique in entity disambiguation is name
matching: determining if two mention strings
could refer to the same entity. The challenge
of name matching lies in name variation, which
can be attributed to many factors: nicknames,
aliases, acronyms, and differences in translitera-
tion, among others. In light of these issues, exact
string match can lead to poor results. Numerous
downstream tasks benefit from improved name
matching: entity coreference (Strube et al., 2002),
name transliteration (Knight and Graehl, 1998),
identifying names for mining paraphrases (Barzi-
lay and Lee, 2003), entity linking (Rao et al.,
2013) and entity clustering (Green et al., 2012).

As a result, there have been numerous proposed
name matching methods (Cohen et al., 2003), with
a focus on person names. Despite extensive explo-
ration of this task, most work has focused on Indo-
European languages in general and English in par-
ticular. These languages use alphabets as repre-
sentations of written language. In contrast, other
languages use logograms, which represent a word

or morpheme, the most popular being Chinese
which uses hanzi (汉字). This presents challenges
for name matching: a small number of hanzi repre-
sent an entire name and there are tens of thousands
of hanzi in use. Current methods remain largely
untested in this setting, despite downstream tasks
in Chinese that rely on name matching (Chen et
al., 2010; Cassidy et al., 2011). Martschat et al.
(2012) point out errors in coreference resolution
due to Chinese name matching errors, which sug-
gests that downstream tasks can benefit from im-
provements in Chinese name matching techniques.

This paper presents an analysis of new and ex-
isting approaches to name matching in Chinese.
The goal is to determine whether two Chinese
strings can refer to the same entity (person, orga-
nization, location) based on the strings alone. The
more general task of entity coreference (Soon et
al., 2001), or entity clustering, includes the con-
text of the mentions in determining coreference. In
contrast, standalone name matching modules are
context independent (Andrews et al., 2012; Green
et al., 2012). In addition to showing name match-
ing improvements on newly developed datasets of
matched Chinese name pairs, we show improve-
ments in a downstream Chinese entity clustering
task by using our improved name matching sys-
tem. We call our name matching tool Mingpipe, a
Python package that can be used as a standalone
tool or integrated within a larger system. We re-
lease Mingpipe as well as several datasets to sup-
port further work on this task.1

2 Name Matching Methods

Name matching originated as part of research into
record linkage in databases. Initial work focused

1The code and data for this paper are available at:
https://github.com/hltcoe/mingpipe
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on string matching techniques. This work can
be organized into three major categories: 1) Pho-
netic matching methods, e.g. Soundex (Holmes
and McCabe, 2002), double Metaphone (Philips,
2000) etc.; 2) Edit-distance based measures, e.g.
Levenshtein distance (Levenshtein, 1966), Jaro-
Winkler (Porter et al., 1997; Winkler, 1999),
and 3) Token-based similarity, e.g. soft TF-IDF
(Bilenko et al., 2003). Analyses comparing these
approaches have not found consistent improve-
ments of one method over another (Cohen et al.,
2003; Christen, 2006). More recent work has
focused on learning a string matching model on
name pairs, such as probabilistic noisy channel
models (Sukharev et al., 2014; Bilenko et al.,
2003). The advantage of trained models is that,
with sufficient training data, they can be tuned for
specific tasks.

While many NLP tasks rely on name matching,
research on name matching techniques themselves
has not been a major focus within the NLP com-
munity. Most downstream NLP systems have sim-
ply employed a static edit distance module to de-
cide whether two names can be matched (Chen et
al., 2010; Cassidy et al., 2011; Martschat et al.,
2012). An exception is work on training finite
state transducers for edit distance metrics (Ristad
and Yianilos, 1998; Bouchard-Côté et al., 2008;
Dreyer et al., 2008; Cotterell et al., 2014). More
recently, Andrews et al. (2012) presented a phylo-
genetic model of string variation using transducers
that applies to pairs of names string (supervised)
and unpaired collections (unsupervised).

Beyond name matching in a single language,
several papers have considered cross lingual name
matching, where name strings are drawn from
two different languages, such as matching Arabic
names (El-Shishtawy, 2013) with English (Free-
man et al., 2006; Green et al., 2012). Addition-
ally, name matching has been used as a component
in cross language entity linking (McNamee et al.,
2011a; McNamee et al., 2011b) and cross lingual
entity clustering (Green et al., 2012). However,
little work has focused on logograms, with the ex-
ception of Cheng et al. (2011). As we will demon-
strate in § 3, there are special challenges caused by
the logogram nature of Chinese. We believe this is
the first evaluation of Chinese name matching.

3 Challenges
Numerous factors cause name variations, includ-
ing abbreviations, morphological derivations, his-

Examples Notes
许历农 v.s. 許歷農 simplified v.s. traditional
東盟 v.s. Abbreviation and traditional
东南亚国家联盟 v.s. simplified
亚的斯亚贝巴 v.s. Transliteration of Addis Ababa
阿迪斯阿貝巴 in Mainland and Taiwan. Dif-
/ i2·ti·s1·i2·bei·b2 / ferent hanzi, similar pronuncia-
v.s. / 2·ti·s1·2·bei·b2 / tions.
佛罗伦萨 v.s. 翡冷翠 Transliteration of Florence in
/ fo·luo·lu@n·s2 / Mainland and Hong Kong. Dif-
v.s. / fei·lEN·tsh8Y / ferent writing and dialects.
鲁弗斯·汉弗莱 v.s. 韓魯弗 Transliteration of Humphrey
/ lu·fu·sW·xan·fu·laI / Rufus in Mainland and Hong
v.s. / xan·lu·fu / Kong. The first uses a literal

transliteration, while the second
does not. Both reverse the name
order (consistent with Chinese
names) and change the surname
to sound Chinese.

Table 1: Challenges in Chinese name matching.

torical sound or spelling change, loanword for-
mation, translation, transliteration, or transcription
error (Andrews et al., 2012). In addition to all the
above factors, Chinese name matching presents
unique challenges (Table 1):

• There are more than 50k Chinese characters.
This can create a large number of parameters
in character edit models, which can compli-
cate parameter estimation.

• Chinese characters represent morphemes, not
sounds. Many characters can share a sin-
gle pronunciation2, and many characters have
similar sounds3. This causes typos (mistak-
ing characters with the same pronunciation)
and introduces variability in transliteration
(different characters chosen to represent the
same sound).

• Chinese has two writing systems (simplified,
traditional) and two major dialects (Man-
darin, Cantonese), with different pairings in
different regions (see Table 2 for the three
dominant regional combinations.) This has a
significant impact on loanwords and translit-
erations.

2486 characters are pronounced / tCi / (regardless of tone).
3e.g. 庄 and 张 (different orthography) are pronounced

similar (/tùuAN/ and /tùAN /).
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Region Writing System Dialect
Hong Kong Traditional Cantonese
Mainland Simplified Mandarin
Taiwan Traditional Mandarin

Table 2: Regional variations for Chinese writing
and dialect.

4 Methods

We evaluate several name matching methods,
representative of the major approaches to name
matching described above.

String Matching We consider two common
string matching algorithms: Levenshtein and Jaro-
Winkler. However, because of the issues men-
tioned above we expect these to perform poorly
when applied to Chinese strings. We consider sev-
eral transformations to improve these methods.

First, we map all strings to a single writing sys-
tem: simplified. This is straightforward since tra-
ditional Chinese characters have a many-to-one
mapping to simplified characters. Second, we con-
sider a pronunciation based representation. We
convert characters to pinyin4, the official pho-
netic system (and ISO standard) for transcribing
Mandarin pronunciations into the Latin alphabet.
While pinyin is a common representation used in
Chinese entity disambiguation work (Feng et al.,
2004; Jiang et al., 2007), the pinyin for an en-
tire entity is typically concatenated and treated
as a single string (“string-pinyin”). However, the
pinyin string itself has internal structure that may
be useful for name matching. We consider two
new pinyin representations. Since each Chinese
character corresponds to a pinyin, we take each
pinyin as a token corresponding to the Chinese
character. We call this “character-pinyin”. Addi-
tionally, every Mandarin syllable (represented by
a pinyin) can be spelled with a combination of an
initial and a final segment. Therefore, we split
each pinyin token further into the initial and final
segment. We call this “segmented-pinyin”5.

Transducers We next consider methods that can
be trained on available Chinese name pairs. Trans-
ducers are common choices for learning edit dis-

4Hong Kong has a romanization scheme more suitable for
Cantonese, but we found no improvements over using pinyin.
Therefore, for simplicity we use pinyin throughout.

5For example, the pinyin for 张 is segmented into / zh /
and / ang /.

tance metrics for strings, and they perform bet-
ter than string similarity (Ristad and Yianilos,
1998; Andrews et al., 2012; Cotterell et al., 2014).
We use the probabilistic transducer of Cotterell
et al. (2014) to learn a stochastic edit distance.
The model represent the conditional probability
p(y|x; θ), where y is a generated string based on
editing x according to parameters θ. At each
position xi, one of four actions (copy, substi-
tute, insert, delete) are taken to generate charac-
ter yj . The probability of each action depends
on the string to the left of xi (x(i−N1):i), the
string to the right of xi (xi:(i+N2)), and gener-
ated string to the left of yj (y(j−N3):j). The vari-
ables N1, N2, N3 are the context size. Note that
characters to the right of yj are excluded as they
are not yet generated. Training maximizes the
observed data log-likelihood and EM is used to
marginalize over the latent edit actions. Since the
large number of Chinese characters make param-
eter estimation prohibitive, we only train trans-
ducers on the three pinyin representations: string-
pinyin (28 characters), character-pinyin (384 char-
acters), segmented-pinyin (59 characters).

Name Matching as Classification An alternate
learning formulation considers name matching as
a classification task (Mayfield et al., 2009; Zhang
et al., 2010; Green et al., 2012). Each string pair
is an instance: a positive classification means that
two strings can refer to the same name. This al-
lows for arbitrary and global features of the two
strings. We use an SVM with a linear kernel.

To learn possible edit rules for Chinese names
we add features for pairs of n-grams. For each
string, we extract all n-grams (n=1,2,3) and align
n-grams between strings using the Hungarian al-
gorithm.6 Features correspond to the aligned n-
gram pairs, as well as the unaligned n-grams.
To reduce the number of parameters, we only
include features which appear in positive train-
ing examples. These features are generated for
two string representations: the simplified Chinese
string (simplified n-grams) and a pinyin repre-
sentation (pinyin n-grams), so that we can in-
corporate both orthographic features and phonetic
features. We separately select the best perform-
ing pinyin representation (string-pinyin, character-
pinyin, segmented-pinyin) on development data

6We found this performed much better than directly align-
ing characters or tokens. We also tried n-gram TF-IDF cosine
similarity, but it degraded results (Cohen et al., 2003).
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Feature Type Number of Features
Simplified n-grams ~10k

Pinyin n-grams ~9k
Jaccard similarity 6 × 10
TF-IDF similarity 2 × 10

Levenshtein distance 2 × 10
Other 7

Table 3: Features for SVM learning.

for each dataset.
We measure Jaccard similarity between the

two strings separately for 1,2,3-grams for each
string representation. An additional feature in-
dicates no n-gram overlap. The best performing
Levenshtein distance metric is included as a fea-
ture. Finally, we include other features for several
name properties: the difference in character length
and two indicators as to whether the first character
of the two strings match and if its a common Chi-
nese last name. Real valued features are binarized.

Table 3 lists the feature templates we used in
our SVM model and the corresponding number of
features.

5 Experiments

5.1 Dataset

We constructed two datasets from Wikipedia.
REDIRECT: We extracted webpage redirects

from Chinese Wikipedia pages that correspond to
entities (person, organization, location); the page
type is indicated in the page’s metadata. Redi-
rect links indicate queries that all lead to the
same page, such as “Barack Hussein Obama” and
“Barack Obama”. To remove redirects that are not
entities (e.g. “44th president”) we removed entries
that contain numerals and Latin characters, as well
as names that contain certain keywords.7 The fi-
nal dataset contains 13,730 pairs of person names,
10,686 organizations and 5,152 locations, divided
into 3

5 train, 1
5 development and 1

5 test.
NAME GROUPS: Chinese Wikipedia contains a

handcrafted mapping between the entity name and
various transliterations,8 including for Mainland,
Hong Kong and Taiwan. We created two datasets:
Mainland-Hong Kong (1288 people pairs, 357 lo-
cations, 177 organizations), and Mainland-Taiwan
(1500 people, 439 locations, 112 organizations).
Data proportions are split as in REDIRECT.

7Entries that contain列表(list),代表(representative) ,运
动 (movement),问题 (issue) and维基 (wikipedia).

8http://zh.wikipedia.org/wiki/Template:CGroup

Method Character prec@1 prec@3 MRR

Levenshtein
original 0.773 0.838 0.821

simplified 0.816 0.872 0.856
string-pinyin 0.743 0.844 0.811

character-pinyin 0.824 0.885 0.866
segment-pinyin 0.797 0.877 0.849

Jaro-Winkler
original 0.690 0.792 0.767

simplified 0.741 0.821 0.803
string-pinyin 0.741 0.818 0.800

character-pinyin 0.751 0.831 0.813
segment-pinyin 0.753 0.821 0.808

Table 4: String matching on development data.

5.2 Evaluation

We evaluated performance on a ranking task (the
setting of Andrews et al. (2012)). In each instance,
the algorithm was given a query and a set of 11
names from which to select the best match. The
11 names included a matching name as well as 10
other names with some character overlap with the
query that are randomly chose from the same data
split. We evaluate using precision@1,3 and mean
reciprocal rank (MRR). Classifiers were trained
on the true pairs (positive) and negative examples
constructed by pairing a name with 10 other names
that have some character overlap with it. The two
SVM parameters (the regularizer co-efficient C
and the instance weight w for positive examples),
as well as the best pinyin representation, were se-
lected using grid search on dev data.

Results For string matching methods, simplified
characters improve over the original characters for
both Levenshtein and Jaro-Winkler (Table 4). Sur-
prisingly, pinyin does not help over the simpli-
fied characters. Segmented pinyin improved over
pinyin but did not do as well as the simplified char-
acters. Our method of character pinyin performed
the best overall, because it utilizes the phonetic
information the pinyin encodes: all the different
characters that have the same pronunciation are
reduced to the same pinyin representation. Over
all the representations, Levenshtein outperformed
Jaro-Winkler, consistent with previous work (Co-
hen et al., 2003).

Compared to the best string matching method
(Levenshtein over pinyin characters), the trans-
ducer improves for the two name group datasets
but does worse on REDIRECT (Table 5). The
heterogeneous nature of REDIRECT, including
variation from aliases, nicknames, and long-
distance re-ordering, may confuse the trans-
ducer. The SVM does best overall, improv-
ing for all datasets over string matching and
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Method Dataset prec@1 prec@3 MRR

Levenshtein
REDIRECT 0.820 0.868 0.859

Mainland-Taiwan 0.867 0.903 0.897
Mainland-Hong Kong 0.873 0.937 0.911

Transducer
REDIRECT 0.767 0.873 0.833

Mainland-Taiwan 0.889 0.938 0.921
Mainland-Hong Kong 0.925(∗) 0.989(∗) 0.954(∗)

SVM
REDIRECT 0.888(∗∗) 0.948(∗∗) 0.924(∗∗)

Mainland-Taiwan 0.926 0.966(∗∗) 0.951(∗)

Mainland-Hong Kongs 0.882 0.972 0.928

Table 5: Results on test data. * better than
Levenshtein; ** better than all other methods

(p = 0.05)
Features Datasets

REDIRECT Name Groups
ALL 0.921 0.966

- Jaccard similariy 0.908 0.929
- Levenshtein 0.919 0.956

- Simplified pairs 0.918 0.965
- Pinyin pairs 0.920 0.960

- Others 0.921 0.962

Table 6: Ablation experiments on SVM features

tying or beating the transducer. Different
pinyin representations (combined with the sim-
plified representation) worked best on differ-
ent datasets: character-pinyin for REDIRECT,
segmented-pinyin for Mainland-Hongkong and
string-pinyin for Mainland-Taiwan. To understand
how the features for SVM affect the final results,
we conduct ablation tests for different group of
features when trained on person names (only) for
each dataset (Table 6). Overall, Jaccard features
are the most effective.

Error Analysis We annotated 100 randomly
sampled REDIRECT development pairs incorrectly
classified by the SVM. We found three major types
of errors. 1) Matches requiring external knowl-
edge (43% of errors), where there were nicknames
or aliases. In these cases, the given name strings
are insufficient for determining the correct an-
swer. These types of errors are typically han-
dled using alias lists. 2) Transliteration confusions
(13%) resulting from different dialects, transliter-
ation versus translation, or only part of a name be-
ing transliterated. 3) Noisy data (19%): Wikipedia
redirects include names in other languages (e.g.
Japanese, Korean) or orthographically identical
strings for different entities. Finally, 25% of the
time the system simply got the wrong answer,
Many of these cases are acronyms.

5.3 Entity Clustering
We evaluate the impact of our improved name
matching on a downstream task: entity clustering

Method Dev Test
Precision Recall F1 Precision Recall F1

Exact match 84.55 57.46 68.42 63.95 65.44 64.69
Jaro-winkler 84.87 58.35 69.15 70.79 66.21 68.42
Levenshtein 83.16 61.13 70.46 69.56 67.27 68.40
Transducer 90.33 74.92 81.90 73.59 63.70 68.29

SVM 90.05 63.90 74.75 74.33 67.60 70.81

Table 7: Results on Chinese entity clustering.

(cross document coreference resolution), where
the goal is identify co-referent named mentions
across documents. Only a few studies have con-
sidered Chinese entity clustering (Chen and Mar-
tin, 2007), including the TAC KBP shared task,
which has included clustering Chinese NIL men-
tions (Ji et al., 2011). We construct an entity clus-
tering dataset from the TAC KBP entity linking
data. All of the 2012 Chinese data is used as de-
velopment, and the 2013 data as test. We use the
system of Green et al. (2012), which allows for
the inclusion of arbitrary name matching metrics.
We follow their setup for training and evaluation
(B3) and use TF-IDF context features. We tune
the clustering cutoff for their hierarchical model,
as well as the name matching threshold on the de-
velopment data. For the trainable name matching
methods (transducer, SVM) we train the methods
on the development data using cross-validation, as
well as tuning the representations and model pa-
rameters. We include an exact match baseline.

Table 7 shows that on test data, our best method
(SVM) improves over all previous methods by
over 2 points. The transducer makes strong gains
on dev but not test, suggesting that parameter tun-
ing overfit. These results demonstrate the down-
stream benefits of improved name matching.

6 Conclusion

Our results suggest several research directions.
The remaining errors could be addressed with ad-
ditional resources. Alias lists could be learned
from data or derived from existing resources.
Since the best pinyin representation varies by
dataset, work could automatically determine the
most effective representation, which may include
determining the type of variation present in the
proposed pair, as well as the associated dialect.

Our name matching tool, Mingpipe, is imple-
mented as a Python library. We make Mingpipe
and our datasets available to aid future research on
this topic.9

9https://github.com/hltcoe/mingpipe
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Mújdricza-Maydt, and Michael Strube. 2012. A
multigraph model for coreference resolution. In
Empirical Methods in Natural Language Processing
(EMNLP) and the Conference on Natural Language
Learning (CONLL), pages 100–106.

James Mayfield, David Alexander, Bonnie J Dorr, Ja-
son Eisner, Tamer Elsayed, Tim Finin, Clayton Fink,
Marjorie Freedman, Nikesh Garera, Paul McNamee,
et al. 2009. Cross-document coreference resolu-
tion: A key technology for learning by reading. In
AAAI Spring Symposium: Learning by Reading and
Learning to Read, pages 65–70.

Paul McNamee, James Mayfield, Dawn Lawrie, Dou-
glas W Oard, and David S Doermann. 2011a.
Cross-language entity linking. In International Joint
Conference on Natural Language Processing (IJC-
NLP), pages 255–263.

382



Paul McNamee, James Mayfield, Douglas W Oard,
Tan Xu, Ke Wu, Veselin Stoyanov, and David Do-
ermann. 2011b. Cross-language entity linking in
maryland during a hurricane. In Empirical Methods
in Natural Language Processing (EMNLP).

L Philips. 2000. The double metaphone search algo-
rithm. C/C++ Users Journal, 18(6).

Edward H Porter, William E Winkler, et al. 1997. Ap-
proximate string comparison and its effect on an ad-
vanced record linkage system. In Advanced record
linkage system. US Bureau of the Census, Research
Report.

Delip Rao, Paul McNamee, and Mark Dredze. 2013.
Entity linking: Finding extracted entities in a knowl-
edge base. In Multi-source, Multilingual Informa-
tion Extraction and Summarization, pages 93–115.
Springer.

Eric Sven Ristad and Peter N Yianilos. 1998. Learning
string-edit distance. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(5):522–532.

Wee Meng Soon, Hwee Tou Ng, and Daniel
Chung Yong Lim. 2001. A machine learning ap-
proach to coreference resolution of noun phrases.
Computational linguistics, 27(4):521–544.

Michael Strube, Stefan Rapp, and Christoph Müller.
2002. The influence of minimum edit distance on
reference resolution. In Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 312–319.

Jeffrey Sukharev, Leonid Zhukov, and Alexandrin
Popescul. 2014. Learning alternative name
spellings. arXiv preprint arXiv:1405.2048.

William E Winkler. 1999. The state of record link-
age and current research problems. In Statistical Re-
search Division, US Census Bureau.

Wei Zhang, Jian Su, Chew Lim Tan, and Wen Ting
Wang. 2010. Entity linking leveraging: Automat-
ically generated annotation. In International Con-
ference on Computational Linguistics (COLING),
pages 1290–1298.

383



Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Short Papers), pages 384–389,

Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Language Identification and Modeling in Specialized Hardware

Kenneth Heafield∗,† Rohan Kshirsagar∗ Santiago Barona∗
∗ Bloomberg L.P.

731 Lexington Ave.
New York, NY 10022 USA

† University of Edinburgh
10 Crichton Street

Edinburgh EH8 9AB, UK
{kheafield,rkshirsagar2,sbarona}@bloomberg.net

Abstract

We repurpose network security hardware
to perform language identification and lan-
guage modeling tasks. The hardware is
a deterministic pushdown transducer since
it executes regular expressions and has a
stack. One core is 2.4 times as fast at lan-
guage identification and 1.8 to 6 times as
fast at part-of-speech language modeling.

1 Introduction

Larger data sizes and more detailed models have
led to adoption of specialized hardware for natural
language processing. Graphics processing units
(GPUs) are the most common, with applications
to neural networks (Oh and Jung, 2004) and pars-
ing (Johnson, 2011). Field-programmable gate ar-
rays (FPGAs) are faster and more customizable,
so grammars can be encoded in gates (Ciressan
et al., 2000). In this work, we go further down
the hardware hierarchy by performing language
identification and language modeling tasks on an
application-specific integrated circuit designed for
network monitoring.

The hardware is programmable with regular ex-
pressions and access to a stack. It is therefore a de-
terministic pushdown transducer. Prior work used
the hardware mostly as intended, by scanning hard
drive contents against a small set of patterns for
digital forensics purposes (Lee et al., 2008). The
purposes of this paper are to introduce the natural
language processing community to the hardware
and evaluate performance.

We chose the related tasks of language identi-
fication and language modeling because they do
not easily map to regular expressions. Fast lan-
guage classification is essential to using the web
as a corpus (Smith et al., 2013) and packages com-
pete on speed (Lui and Baldwin, 2012). Exten-
sive literature on fast language models comprises

a strong baseline (Stolcke, 2002; Federico et al.,
2008; Heafield, 2011; Yasuhara et al., 2013). In
both cases, matches are frequent, which differs
from network security and forensics applications
where matches are rare.

2 Related Work

Automata have been emulated on CPUs with
AT&T FSM (Mohri et al., 2000) and OpenFST
(Allauzen et al., 2007), on GPUs (Rudomı́n et al.,
2005; He et al., 2015), and on FPGAs (Sidhu and
Prasanna, 2001; Lin et al., 2006; Korenek, 2010).
These are candidates for the ASIC we use. In par-
ticular, gappy pattern matching (He et al., 2015)
maps directly to regular expressions.

GPUs have recently been applied to the re-
lated problem of parsing (Johnson, 2011; Yi et al.,
2011). These operate largely by turning a sparse
parsing problem into a highly-parallel dense prob-
lem (Canny et al., 2013) and by clustering similar
workloads (Hall et al., 2014). Since the hardware
used in this paper is a deterministic pushdown au-
tomaton, parsing ambiguous natural language is
theoretically impossible without using the CPU as
an oracle. Hall et al. (2014) rely on communi-
cation between the CPU and GPU, albeit for ef-
ficiency reasons rather than out of necessity.

Work on efficiently querying backoff language
models (Katz, 1987) has diverged from a finite
state representation. DALM (Yasuhara et al.,
2013) is an efficient trie-based representation us-
ing double arrays while KenLM (Heafield, 2011)
has traditional tries and a linear probing hash ta-
ble. We use the fastest baselines from both.

3 Programming Model

The fundamental programming unit is a POSIX
regular expression including repetition, line
boundaries, and trailing context. For example,
a[bc] matches “ab” and “ac”.
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When an expression matches, the hardware can
output a constant to the CPU, output the span
matched, push a symbol onto the stack, pop from
the stack, or halt. There is little meaning to
the order in which the expressions appear in the
program. All expressions are able to match at
any time, but can condition on the top of the
stack. This is similar to the flex tool (Lesk and
Schmidt, 1975), which refers to stack symbols as
start conditions.

4 Language Identification

We exactly replicate the model of langid.py
(Lui and Baldwin, 2012) to identify 97 languages.
Their Naı̈ve Bayes model has 7,480 features fi,
each of which is a string of up to four bytes (Lui
and Baldwin, 2011). Inference amounts to collect-
ing the count ci of each feature and computing the
most likely language l given model p.

l∗ = argmax
l

p(l)
∏

i

p(fi|l)ci

We use the hardware to find all instances of fea-
tures in the input. Feature strings are converted
to literal regular expressions. When the hardware
matches the expression for feature fi, it outputs
the unique feature index i. Since the hardware
has no user-accessible arithmetic, the CPU accu-
mulates feature counts ci in an array and performs
subsequent modeling steps. The baseline emulates
automata on the CPU (Aho and Corasick, 1975).

Often the input is a collection of documents,
each of which should be classified independently.
To separate documents, we have the hardware
match document boundaries, such as newlines,
and output a special value. Since the hardware
natively reports matches in order by start position
(then by end position), the special value acts as
a delimiter between documents that the CPU can
detect. This removes the need to reconcile docu-
ment offsets on the CPU and saves bus bandwidth
since the hardware can be configured to not report
offsets.

5 Language Model Probability

The task is to compute the language model prob-
ability p of some text w. Backoff models (Katz,
1987) memorize probability for seen n–grams and
charge a backoff penalty b for unseen n–grams.

p(wn | wn−1
1 ) =

{
p(wn | wn−1

1 ) if wn
1 is seen

p(wn | wn−1
2 )b(wn−1

1 ) o.w.

5.1 Optimizing the Task
The backoff algorithm normally requires stor-
ing probability p and backoff b with each seen
n–gram. However, Heafield et al. (2012) used
telescoping series to prove that probability and
backoff can be collapsed into a single function q

q(wn|wn−1
1 ) = p(wn|wn−1

1 )
∏n

i=1 b(w
n
i )∏n−1

i=1 b(w
n−1
i )

This preserves sentence-level probabilities.1

Because the hardware lacks user-accessible
arithmetic, terms are sent to the CPU. Sending just
q for each token instead of p and various backoffs
b reduces communication and CPU workload. We
also benefit from a simplified query procedure: for
each word, match as much context as possible then
return the corresponding value q.

5.2 Greedy Matching
Language models are greedy in the sense that, for
every word, they match as much leading context
as possible. We map this onto greedy regular ex-
pressions, which match as much trailing context as
possible, by reversing the input and n–grams.2

Unlike language identification, we run the hard-
ware in a greedy mode that scans until a match
is found, reports the longest such match, and re-
sumes scanning afterwards. The trailing context
operator / allows fine-grained control over the off-
set where scanning resumes. Given two regular
expressions r and s, the trailing context expres-
sion r/s matches rs as if they were concatenated,
but scanning resumes after r. For example, if the
language model contains n–gram “This is a”, then
we create regular expression

" a"/" is This "

where the quotes ensure that spaces are interpreted
literally. Scanning resumes at the space before the
next word: “ is”. Because greedy mode suppresses
shorter matches, only the longest n–gram will be
reported. The CPU can then sum log q values asso-
ciated with each expression without regard to po-
sition.

Unknown words are detected by matching a
space: " ". Vocabulary words will greedily

1Technically, q is off by the constant b(<s>) due to con-
ditioning on <s>. We account for this at the end of sentence,
re-defining q(</s> | wn−1

1 ) ← q(</s> | wn−1
1 )b(<s>).

Doing so saves one output per sentence.
2For exposition, we show words in reverse order. The

implementation reverses bytes.
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Rule Value Purpose
" a"/" in " q(a | in) Normal query
" " q(<unk>) Unknown word
" in"/" \n" q(in | <s>) Sentence begin
" \n"/" " q(</s>) Sentence end
" \n"/" in " q(</s> | in) Sentence end

Table 1: Example regular expressions, including
the special rules for the unknown word and sen-
tence boundaries. We rely on the newline \n in
lieu of sentence boundary tokens <s> and </s>.

Model Platform 1 core 5 cores

langid

Hardware 160.34 608.41
C 64.57 279.18

Java 25.53 102.72
Python 2.90 12.63

CLD2 C++ 12.39 30.15

Table 2: Language identification speed in MB/s.

match their own regular expression, which begins
with a space. This space also prevents matching
inside an unknown word (e.g. “Ugrasena” should
not match “a”). The tokenizer is expected to re-
move duplicate spaces and add them at line bound-
aries. Table 1 shows key expressions.

Instead of strings, we can match vocabulary in-
dices. Spaces are unnecessary since indices have
fixed length and the unknown word has an index.

6 Experiments

We benchmarked a Tarari T2540 PCI express de-
vice from 2011 against several CPU baselines. It
has 2 GB of DDR2 RAM and 5 cores. A single-
threaded CPU program controls the device and
performs arithmetic. The program scaled linearly
to control four devices, so it is not a bottleneck.
Wall clock time, except loading, is the minimum
from three runs on an otherwise-idle machine.
Models and input were in RAM before each run.

6.1 Language Identification
The langid.py model is 88.6–99.2% accurate
(Lui and Baldwin, 2012). We tested the origi-
nal Python, a Java implementation that “should be
faster than anything else out there” (Weiss, 2013),
a C implementation (Lui, 2014), and our replica in
hardware. We also tested CLD2 (Sites, 2013) writ-
ten in C++, which has a different model that was
less accurate on 4 of 6 languages selected from
Europarl (Koehn, 2005). Time includes the costs

Lines Tokens Ken DA 1 core 5 cores
100 2.6 · 103 37.8 40.3 6.6 2.1

1000 2.2 · 104 42.4 43.6 16.2 10.7
10000 2.6 · 105 53.9 55.7 46.2 42.0

100000 2.8 · 106 78.6 85.3 91.3 93.6
305263 8.6 · 106 92.9 105.6 97.0 91.8

Table 3: Seconds to compute perplexity on strings.
The hardware was tested with 1 core and 5 cores.

of feature extraction and modeling.
Table 2 reports speed measured on a 9.6 GB text

file created by concatenating the 2013 News Crawl
corpora for English, French, German, Hindi,
Spanish, and Russian (Bojar et al., 2014). One
hardware core is 2.48 times as fast as the fastest
CPU program. Using five cores instead of one
yielded speed improvements of 3.8x on hardware
and 4.3x on a 16-core CPU. The hardware per-
forms decently on this task, likely because the 1
MB binary transition table mostly fits in cache.

6.2 Language Modeling
We benchmarked against the fastest reported lan-
guage models, DALM’s reverse trie (Yasuhara et
al., 2013) and KenLM’s linear probing (Heafield,
2011). Both use stateful queries. For sur-
face strings, time includes the cost of vocabulary
lookup. For vocabulary identifiers, we converted
words to bytes then timed custom query programs.

Unpruned models were trained on the En-
glish side of the French–English MultiUN corpus
(Eisele and Chen, 2010). Perplexity was computed
on 2.6 GB of tokenized text from the 2013 English
News Crawl (Bojar et al., 2014).

6.2.1 Surface Strings
We tested trigram language models trained on var-
ious amounts of data before reaching a software-
imposed limit of 4.2 million regular expressions.3

Figure 1 and Table 3 show total query time as a
function of training data size while Figure 2 shows
model size. DALM model size includes the entire
directory.

Cache effects are evident: the hardware binary
format is much larger because it stores a generic
table. Queries are fast for tiny models but become
slower than the CPU. Multiple cores do not help
for larger models because they share the cache and
memory bus. Since the hardware operates at the
byte level and there is an average of 5.34 bytes

3Intel is working to remove this restriction.
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Figure 2: Size of the models on strings.

per word, random memory accesses happen more
often than in CPU-based models that operate on
words. We then set out to determine if the hard-
ware runs faster when each word is a byte.

6.2.2 Vocabulary Indices
Class-based language models are often used
alongside lexical language models to form gener-
alizations. We tested a 5–gram language model
over CoNLL part-of-speech tags from MITIE
(King, 2014). There are fewer than 256 unique
tags, fitting into a byte per word. We also cre-
ated special KenLM and DALM query programs
that read byte-encoded input. Figure 3 and Ta-
ble 4 show total time while model sizes are shown
in Figure 4. Performance plateaus for very small
models, which is more clearly shown by plotting
speed in Figure 5.
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Lines Tokens Ken DA 1 core 5 cores
100 2.6 · 103 38.0 24.1 3.4 0.9

1000 2.3 · 104 46.1 27.5 7.5 5.0
10000 2.7 · 105 53.9 33.4 15.7 10.7

100000 2.9 · 106 57.5 34.2 21.1 19.3
1000000 2.9 · 107 65.2 35.4 22.1 20.7

13000000 3.7 · 108 73.0 42.9 23.3 22.0

Table 4: Seconds to compute perplexity on bytes.
The hardware was tested with 1 core and 5 cores.

The hardware is faster for all training data sizes
we tested. For tiny models, one core is initially 6
times as fast one CPU core while larger models are
1.8 times as fast as the CPU. For small models, the
hardware appears to hitting another limit, perhaps
the speed at which a core can output matches. This
is not a CPU or PCI bus limitation because five
cores are faster than one core, by a factor of 4.67.

Model growth is sublinear because novel POS
n–grams are limited. The hardware binary image
is 3.4 times as large as DALM, compared with
7.2 times as large for the lexical model. We at-
tribute this to denser transition tables that result
from model saturation.

Acknowledgements
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a regular expression processor, not a deterministic
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7 Conclusion

Language identification and language modeling
entail scanning that can be offloaded to regular ex-
pression hardware. The hardware works best for
small models, such as those used in language iden-
tification. Like CPUs, random memory accesses
are slow. We believe it will be useful for web-
scale extraction problems, where language identi-
fication and coarse language modeling are used to
filter large amounts of data. We plan to investigate
a new hardware version that Intel is preparing.
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Abstract

We propose an approach to cross-lingual
named entity recognition model transfer
without the use of parallel corpora. In ad-
dition to global de-lexicalized features, we
introduce multilingual gazetteers that are
generated using graph propagation, and
cross-lingual word representation map-
pings without the use of parallel data. We
target the e-commerce domain, which is
challenging due to its unstructured and
noisy nature. The experiments have shown
that our approaches beat the strong MT
baseline, where the English model is trans-
ferred to two languages: Spanish and Chi-
nese.

1 Introduction

Named Entity Recognition (NER) is usually
solved by a supervised learning approach, where
sequential labeling models are trained from a large
amount of manually annotated corpora. However,
such rich annotated data only exist for resource-
rich languages such as English, and building NER
systems for the majority of resource-poor lan-
guages, or specific domains in any languages, still
poses a great challenge.

Annotation projection through parallel text
(Yarowsky et al., 2001), (Das and Petrov, 2011),
(Wang and Manning, 2014) has been traditionally
used to overcome this issue, where the annotated
tags in the source (resource-rich) language are pro-
jected via word-aligned bilingual parallel text (bi-
text) and used to train sequential labeling mod-
els in the (resource-poor) target language. How-
ever, this could lead to two issues: firstly, word

∗This work has been performed while the authors were
at Rakuten Institute of Technology, New York. The authors
would like to thank Prof. Satoshi Sekine at New York Univer-
sity and other members of Rakuten Institute of Technology
for their support during the project.

alignment and projected tags are potentially noisy,
making the trained models sub-optimal. Instead of
projecting noisy labels explicitly, Wang and Man-
ning (2014) project posterior marginals expecta-
tions as soft constraints. Das and Petrov (2011)
projected POS tags from source language types
to target language trigarms using graph propaga-
tion and used the projected label distribution to
train robust POS taggers. Secondly, the availabil-
ity of such bitext is limited especially for resource-
poor languages and domains, where it is often the
case that available resources are moderately-sized
monolingual/comparable corpora and small bilin-
gual dictionaries.

Instead, we seek a direct transfer approach
(Figure 1) to cross-lingual NER (also classified
as transductive transfer learning (Pan and Yang,
2010) and closely related to domain adaptation).
Specifically, we only assume the availability of
comparable corpora and small-sized bilingual dic-
tionaries, and use the same sequential tagging
model trained on the source corpus for tagging
the target corpus. Direct transfer approaches are
extensively studied for cross-lingual dependency
parser transfer. For example, Zeman et al. (2008)
built a constituent parser using direct transfer be-
tween closely related languages, namely, Danish
and Swedish. McDonald et al. (2011) trained
de-lexicalized dependency parsers in English and
then “re-lexicalized” the parser. However, cross-
lingual transfer of named entity taggers have not
been studied enough, and this paper, to the best of
the authors’ knowledge, is the first to apply direct
transfer learning to NER.

Transfer of NER taggers poses a difficult chal-
lenge that is different from syntax transfer: most
of the past work deals with de-lexicalized parsers,
yet one of the most important clues for NER,
gazetteers, is inherently lexicalized. Also, various
features used for dependency parsing (Universal
POS tags, unsupervised clustering, etc.) are yet to
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Figure 1: System Framework

be proven useful for direct transfer of NER. There-
fore, the contributions of this paper is as follows:

1. We show that direct transfer approach for
multilingual NER actually works and per-
forms better than the strong MT baseline
(Shah et al., 2010), where the system’s out-
put in the source language is simply machine
translated into the target language.

2. We explore various non-lexical features,
namely, Universal POS tags and Brown clus-
ter mapping, which are deemed effective
for multilingual NER transfer. Although
brown cluster mapping (Täckström et al.,
2012), Universal POS Tagset (Petrov et al.,
2011), and re-lexicalization and self train-
ing (Täckström et al., 2013) are shown to
be effective for direct transfer of dependency
parsers, there have been no studies exploring
these features for NER transfer.

3. We show that gazetteers can actually be
generated only from the source language
gazetteers and a comparable corpus, through
a technique which we call gazetteer expan-
sion based on semi-supervised graph prop-
agation (Zhu et al., 2003). Gazetteer ex-
pansion has been used for various other pur-
poses, including POS tagging (Alexandrescu
and Kirchhoff, 2007) and dependency parsers
(Durrett et al., 2012).

2 Approach

In this paper we propose a direct transfer learning
approach to train NER taggers in a multilingual
setting. Our goal is to identify named entities in a

target language LT , given solely annotated data in
the source language LS . Previous approaches rely
on parallel data to transfer the knowledge from one
language to another. However, parallel data is very
expensive to construct and not available for all lan-
guage pairs in all domains. Thus, our approach
loosens the constraint and only requires in-domain
comparable corpora.

2.1 Monolingual NER in Source Language

Our framework is based on direct transfer ap-
proach, where we extract abstract, language-
independent and non lexical features FS and FT

in LS and LT . A subset of FT is generated us-
ing a mapping scheme discussed in Section 2.2,
then, directly apply LS NER model on LT using
FT . We adopt Conditional Random Field (CRF)
sequence labeling (Lafferty et al., 2001) to train
our system and generate the English model.

Monolingual Features 1) Token position: In-
stead of using token exact position, we use token
relative position in addition to position’s binary
features such as token is in: first, second, and last
third of the sentence. These features are based on
the observation that certain tokens, such as brand
names in title or description of a product, tend to
appear at the beginning of the sentence, while oth-
ers toward the end.

2) Word Shape: We use a list of binary fea-
tures: is-alphanumerical, is-number, is-alpha, is-
punctuation, the number length (if is-num is true),
pattern-based features (e.g. regular expressions to
capture certain patterns such as products model
numbers), latin-only features (first-is-capital, all-
capitals, all-small);
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3) In-Title: A binary feature that specifies
whether the token is in the product’s title or de-
scription. For instance, brand names mostly ap-
pear in the beginning of titles, while this does not
hold in descriptions;

4) Preceding/Proceeding keywords within win-
dow: some NEs are often preceded by certain
keywords. For instance, often a product size is
preceded by certain keywords such as dimension,
height or word“size.” In our work we use a manu-
ally created list of keywords for two classes Color
and Size. Although the keyword list is domain de-
pendent, it is often short and can be easily updated.

5) Universal Part of Speech Tags: Part of
Speech (POS) tags have been widely used in many
NER systems. However, each language has its
own POS tagset that often has limited overlap with
other POS languages’ tagsets. Thus, we use a
coarse-grained layer of POS tags called Universal
POS, as proposed in (Petrov et al., 2011).

6) Token is a unit: A binary feature that is set to
true if it matches an entry in the units dictionary
(e.g., “cm.”)

7) Gazetteers: Building dictionaries for every
LT of interest is expensive; thus, we propose
a method, described in Section 3, to generate
gazetteers in LT given ones in LS .

8) Brown Clustering (BC): Word representa-
tions, especially Brown Clustering (Brown et al.,
1992), are used in many NLP tasks and are proven
to improve NER performance (Turian et al., 2010).
In this work, we use cluster IDs of variable pre-
fix lengths in order to retrieve word similarities on
different granularity levels.

2.2 Multilingual NER in Target Language

Our goal is to transfer each feature from LS to LT

space. The main challenge resides in transferring
features 7 and 8 without the use of external re-
sources and parallel data for every target language.

2.2.1 Brown Clustering Mapping
Given i) Vocabulary in the source/target lan-
guages VS = {wS

1 , wS
2 , ..., wS

NS
} and VT =

{wT
1 , wT

2 , ..., vT
NT
}; ii) The output of brown clus-

tering on LS and LT : CS = {cS
1 , ..., cS

KS
} and

CT = {cT
1 , ..., cT

KL
}, we aim to find the best

mapping cS∗ that maximizes the cluster similarity
simC for each target cluster (Equation 1), and for
each metric discussed in the following. We cal-
culate the cluster similarity simC as the weighted

average of the word similarity simW of the mem-
bers of the two clusters (Equation 2).

cS∗ = arg max
cS∈CS

simC(cS , cT ) for each cT ∈ CT (1)

simC(ct, cs) =
1

|cS ||cT |
∑

wS∈cS ,wT∈cT

simW (wS , wT )

(2)

Clusters Similarity Metrics The similarity
metrics used can be summarized in:

a) String Similarity (external resources indepen-
dent): This metric works only on languages that
share the same alphabet, as it is based on the in-
tuition that most NEs conserve the name’s shape
or present minor changes that can be identified us-
ing edit distance in closely related languages (we
use Levenshtein distance (Levenshtein, 1966)).
The two variations of string similarity metrics
used are: i) Exact match: simW (wi, wj) =
1 if wi = wj ; ii) Edit distance: simW (wi, wj) =
1 if levenshtein-distance(wi, wj) < θ.

b) Dictionary-based similarity: We present two
similarity metrics using BabelNet synsets (Nav-
igli and Ponzetto, 2012): i) Binary co-occurence:
simbinary

W (wi, wj) = 1 if wj ∈ synset(wi),
where synset(wi) is the set of words in the
BabelNet synset of wi; ii) Frequency weighted:
Weighted version of the binary similarity that
is based on the observation that less frequent
words tend to be less reliable in brown clustering:
simweighted

W (wi, wj) = [log f(wi) + log f(wj)]×
simbinary

W (wi, wj) where f(w) is the frequency
of word w. Unlike String similarity metrics, this
metric is not limited to similar languages due to
the use of multilingual dictionaries i.e., BabelNet,
which covers 271 languages.

3 Gazetteer expansion

In our approach, we use graph-based semi-
supervised learning to expand the gazetteers in
the source language to the target. Figure 2 il-
lustrates the motivation of our approach. Sup-
pose we have “New York” in the GPE gazetteer
in LS (English in this case), and we would like
to bootstrap the corresponding GPE gazetteer in
LT (Spanish). Although there is no direct link
between “New York” and “Nueva York,” you can
infer that “Puerto Rico” (in English) is similar to
“New York” based on some intra-language seman-
tic similarity model, then “Puerto Rico” is actually
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Figure 2: Gazeteer expansion

identical in both languages, then finally “Nueva
York” is similar to “Puerto Rico” (in Spanish)
again based on the Spanish intra-language similar-
ity model. This indirect inference of beliefs from
the source gazetteers to the target can be modeled
by semi-supervised graph propagation (Zhu et al.
2003), where graph nodes are VS ∪ VT , positive
labels are entries in the LS gazetteer (e.g., GPE)
which we wish to expand to LT , and negative la-
bels are entries in other gazetteers (e.g., PERSON)
in LS . The edge weights between same-language
nodes wi and wj are given by exp(−σ||wi−wj ||)
where wi is the distributed vector representation
of word wi computed by word2vec (Mikolov et al.,
2013). The edge weights between node wi ∈ VS

and vj ∈ VT are defined 1 if the spelling of these
two words are identical and 0 otherwise. Note that
this spelling based similarity propagation is still
available for language pairs with different writing
systems such as English and Chinese, because ma-
jor NEs (e.g., brand names) are often written in
Roman alphabets even in Chinese products. Since
the analytical solution to this propagation involves
the computation of n×n (n is the number of unla-
beled nodes) matrix, we approximated it by run-
ning three propagation steps iteratively, namely,
LS → LS , LS → LT , and LT → LT . After
the propagation, we used all the nodes with their
propagated values f(wi) > θ as entities in the new
gazetteer.

4 Experiments

4.1 Datasets

The targeted dataset contains a list of products (ti-
tles and descriptions). The titles of products are
≈ 10 words long and poorly structured, adding
more difficulties to our task. On the other hand,

Color Brand Material Model Type Size
EN 358 814 733 203 1238 427
ES 207 425 301 172 606 126
ZH 416 60 381 24 690 306

Table 1: Language-Tags Numbers Stats

the length of product descriptions ranges from
12-130 words. The e-commerce genre poses the
need to introduce new NE tagset as opposed to
the conventional ones, thus we introduce 6 tag
types: 1) Color; 2) Brand names; 3) Size; 4) Type:
e.g. “camera,” “shirt”; 5) Material: e.g. “plas-
tic”, “cotton”; 6) Model: the model number of a
product: e.g., “A1533.”. For the rest of the ex-
periments, English (EN) is the source language,
whereas we experiment with Spanish (ES) and
Chinese (ZH) as target languages. The datasets
used are: i) Training data: 1800 annotated English
products from Rakuten.com shopping (Rakuten,
2013a); ii) Test data: 300 ES products from
Rakuten Spain (Rakuten, 2013b) and 500 prod-
ucts from Rakuten Taiwan (Rakuten, 2013c); iii)
Brown clustering: English: Rakuten shopping
2013 dump (19m unique products with 607m to-
kens); Spanish: Rakuten Spain 2013 dump (700K
unique products that contains 41m tokens) in addi-
tion to Spanish Wikipedia dump (Al-Rfou’, 2013);
Chinese: Wikipedia Chinese 2014 dump (147m
tokens) plus 16k products crawled from Rakuten
Taiwan. Table 1 shows the numbers of tags per
category for each language.

4.2 Baseline

To the best of our knowledge, there is no previ-
ous work that proposes transfer learning for NER
without the use of parallel data. Thus, we ought to
generate a strong baseline to compare our results
to. Given the language pair (LS , LT ), we use Mi-
crosoft Bing Translate API to generate LT → LS

translation. Then, we apply LS NER model on the
translated text and evaluate by mapping the tagged
tokens back to LT using the word alignments gen-
erated by Bing Translate. We choose Bing trans-
late as opposed to Google translate due to its free-
to-use API that provides word alignment informa-
tion on the character level.

4.3 Results & Discussion

For each studied language we use Stanford
CoreNLP (Manning et al., 2014) for EN and ZH,
and TreeTagger (Schmid, 1994) for ES to produce
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Color Brand Material Model Type Size Micro-Avg
EN-Mono 68.45 71.91 50.94 59.78 53.73 45.42 61.12
ES-Baseline 24.23 3.44 13.08 14.51 12.5 6.61 13.79
ES-TL 18.00 9.37 8.05 16.99 18.26 10.64 39.46
ES-GT 38.49 13.31 33.5 2.27 36.43 1.16 30.20
ZH-Baseline 19.16 2.79 11.96 None 9.35 6.34 12.58
ZH-TL 9.36 1.02 1.81 None 17.28 17.74 23.43

Table 2: F-score Results

the tokens and the POS tags. However, we ap-
ply extra processing steps to the tokenizer due to
the nature of the domain’s data (e.g., avoid tok-
enizing models instances), in addition to normaliz-
ing URLs, numbers, and elongation. We also map
POS tags for all the source and target languages to
the universal POS tagset as explained in 2.1.

Based on Table 2, we note that English mono-
lingual performance (80:20 train/test split and 5-
folds cross variation) is considerably lower than
state-of-the-art English NER systems, which is
due to the nature of our targeted domain, the newly
proposed NE tagset, and most importantly, the
considerably small training data (1280 products).
These factors also affects the baseline and our pro-
posed system performance.

Table 2 illustrates the results for the English
monolingual NER system (EN-Mono), baseline
for ES and ZH (ES-Baseline and ZH-Baseline,
respectively), our proposed transfer learning ap-
proach with the gazetteer expansion (ES-TL and
ZH-TL). Additionally, we added the results of our
proposed approach where the gazetteers used are
machine translated using Google translate from
the English gazetteers to Spanish (ES-MT), in or-
der to evaluate our gazetteer expansion approach
performance to the translated gazetteers.

We note that ES-Baseline and ZH-Baseline are
considerably low due to the poor word alignment
generated by Bing Translator, which results in in-
correct tag projection. The quality of mapping is
mainly due to the noisy nature of the domain’s
data, which can be very expensive to fix.

Although the performance of our proposed sys-
tem is low (39.46% for ES and 23.43% for ZH),
but it surpasses the baseline performance in most
of the tag classes and yields an overall improve-
ment on the micro-average F-score of ≈ 23% in
ES and 11% in ZH. We note that one of the rea-
sons behind ZH Brand low performance is that
universal-POS for brands in EN are mostly proper

noun as opposed to noun in ZH, additionally the
considerably low number of brands in ZH test
data (60). On the other hand, it is intuitive that
Model yields one of the best performance among
the tags, since it is the most language independent
tag (as depicted in ES-TL). However, this does not
hold true in ZH due to the very small number of
Model instances (24). Type produces the best per-
formance in ES and ZH, due to the high cover-
age of the new expanded gazetteer over Type in-
stances, in addition to the large number of train-
ing instances (1238), in comparison to the other
tags. After conducting leave-out experiments on
Brown clustering and gazetteers features in ES, we
note that both shows an improvement of≈ 4% and
≈ 8% respectively.

Our system surpasses the MT-based gazetter ex-
pansion by ≈ 9%, when comparing ES-TL to ES-
MT. However, as expected the main improvement
is in Model and Size tags as opposed to other tags
(e.g. Brand and Color) where MT provides more
accurate gazetteers. In our system output, colors
that are included in LT expanded gazetteers (e.g.
“azul” in ES) and have a high similarity score in
our proposed BC mapping, are correctly tagged.
On the other hand OOV Brand have a very large
prediction error rate due to the small training data.

5 Conclusion and Future Works

In this paper, we propose a cross-lingual NER
transfer learning approach which does not depend
on parallel corpora. Our experiments showed the
ability to transfer NER model to latin (ES) and
non latin (ZH) languages. For the future work, we
would like to investigate the generality of our ap-
proach in broader languages and domains.
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Abstract

In this paper, we propose an `1-norm
Symmetric Nonnegative Matrix Tri-
Factorization (`1 S-NMTF) framework
to cluster multi-type relational data by
utilizing their interrelatedness. Due to
introducing the `1-norm distances in our
new objective function, the proposed ap-
proach is robust against noise and outliers,
which are inherent in multi-relational data.
We also derive the solution algorithm and
rigorously analyze its correctness and
convergence. The promising experimental
results of the algorithm applied to text
clustering on IMDB dataset validate the
proposed approach.

1 Introduction

Traditional clustering aims to partition data points
into several groups, such that the data points in
the same group can share some commonalities
whilst those from different groups are dissimilar.
With the recent progresses of Internet and compu-
tational technologies, data have started to appear
in much richer structures. To be more specific, in
many real-world problems a pair of object can be
related in several different ways, which inevitably
complicates the problem and calls for new clus-
tering algorithms for better understanding to the
data. To address this new challenge, Wang et. al.
(Wang et al., 2011c; Wang et al., 2011d) proposed
nonnegative matrix factorization (NMF) (Lee and
Seung, 1999) based computational algorithms that
have successfully solved the problems.

Due to its mathematical elegance and its equiv-
alence to K-means clustering and spectral clus-
tering (Ding et al., 2005), NMF (Lee and Seung,
1999) has been broadly studied in recent years and
successfully solved a variety of practical problems
in data mining and machine learning, such as those

in computer vision (Wang et al., 2011b), bioinfor-
matics (Wang et al., 2013), natural language un-
derstanding (Wang et al., 2011a), to name a few.
Compared to many traditional clustering meth-
ods, such as K-means clustering, NMF has better
mathematical interpretation, which usually lead
to improved accuracy on clustering (Ding et al.,
2010). Traditional clustering algorithms concen-
trate on dealing with homogeneous data, in which
all the data belong to one single type (Wang et al.,
2011d). To deal with the richer data structures in
modern real-world applications, symmetric Non-
negative Matrix Tri-Factorization (NMTF)(Wang
et al., 2011c) have demonstrated its effectiveness
on simultaneous clustering of multi-type relational
data by utilizing the interrelatedness among differ-
ent data types.

Traditional NMF algorithms routinely use the
least square error functions, which are notably
known to be sensitive against outliers (Kong et al.,
2011). However, at the era of big data outliers are
inevitable due to the ever increasing data sizes. As
a result, developing a more robust NMF model for
multi-relational data clustering has become more
and more important. In this paper, we further de-
velop the symmetric NMF clustering model pro-
posed in (Wang et al., 2011c) by using the `1-norm
distances, such that our new clustering model is
more robust against outliers, which is of particular
importance in multi-relational data.

2 Robust Multi-Relational Clustering via
`1-Norm Symmetric NMTF (S-NMTF)

In this section, we first introduce the backgrounds
to use symmetric NMF to cluster multi-relational
data. Then we develop our new `1-norm symmet-
ric NMF model for better robustness against outly-
ing data. The solution algorithm to our new model
will be proposed and analyzed in the next section.

Notations. In this paper, we use upper case let-
ters to denote matrices. Given a matrix M , its en-
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try at the i-th row and j-th column is denoted as
M(ij). The Frobenius norm of a matrix M is de-

noted as ‖M‖F =
(∑

i

∑
j M

2
(ij)

)1/2
and its `1-

norm is denoted as ‖M‖1 =
∑

i

∑
j |M(ij)|.

2.1 Problem Formalization

K-type relational data set can be denoted
as χ = {χ1, χ2, . . . , χK} , where χk ={
xk

1, x
k
2, . . . , x

k
nk

}
represents the data set of k-th

type. Suppose we are given a set of relationship
matrices {Rkl ∈ <nk×nl}(1≤k≤K,1≤l≤K) between
different types of data objects, then we haveRkl =
RT

lk. Our goal is to simultaneously partition the
data objects in χ1, χ2, . . . , χK into c1, c2, . . . , cK
disjoint clusters respectively.

2.2 Our objective

To cluster multi-relation data, symmetric NMF has
been taken advantage that solves the following op-
timization problem (Wang et al., 2008):

min J =
∑

1≤k<l≤K

‖Rkl −GkSklG
T
l ‖2F ,

s.t. Gk ≥ 0, ∀ 1 ≤ k ≤ K .

(1)

It has also been shown that solving the above
equation is equivalent to solve (Long et al., 2006):

min J = ‖R−GSGT ‖2F , s.t. G ≥ 0, (2)

in which

R =


0n1×n1 Rn1×n2

12 · · · Rn1×nK
1K

Rn2×n1
21 0n2×n2 · · · Rn2×nK

2K

...
...

. . .
...

RnK×n1
K1 RnK×n2

K2 · · · 0nK×nK

 ,

G =


Gn1×c1

1 0n1×c2 · · · 0n1×cK

0n2×c1 Gn2×c2
2 · · · 0n2×cK

...
...

. . .
...

0nK×c1 0nK×c2 · · · GnK×cK
K

 ,

S =


0c1×c1 Sc1×c2

12 · · · Sc1×cK
1K

Sc2×c1
21 0c2×c2 · · · Sc2×cK

2K

...
...

. . .
...

ScK×c1
K1 ScK×c2

K2 · · · 0cK×cK

 ,
(3)

where Rji = RT
ij and Sij = ST

ji.

Despite its successfulness of the method pro-
posed in (Wang et al., 2011c) in multi-relational
data clustering, the objectives in Equations (1—2)
use the squared `2-norm distances to measure the
matrix approximation errors, which, though, are
prone to outliers. As a result, the clustering re-
sults could be heavily dominated by outlying data
points with large approximation errors (Kong et
al., 2011; Nie et al., 2011; Wang et al., 2014). To
improve the robustness of the clustering model,
following prior works (Kong et al., 2011; Nie et
al., 2011; Wang et al., 2014) we propose to use
the following `1-norm symmetric NMTF model
for multi-relational data clustering:

min J = ‖R−GSGT ‖1 s.t. G ≥ 0, (4)

In this new formulation, the approximation errors
are measured by the `1-norm distances, which are
expected to be more insensitive to outlying data
points. As shown in Figure 1, when there ex-
ist outliers in the input data, traditional squared
Frobenius-norm NMF are inclined to cluster in-
correctly, while the `1-norm NMF are more robust
and can cluster more accurately.

Algorithm 1: Algorithm to solve `1-norm S-
NMTF

Data: Relationship matrices: {Rij}1≤i<j≤K
Result: Factor matrices: {Gk}1≤k≤K

1. Construct R,G, S
2. Initialize G as in (Ding et al., 2006).
repeat

3. Construct diagonal matrix D, where
D(i, i) =

∑ |R−GSGT |i
‖R−GSGT ‖2i

.
4. Compute
S = (GTG)−1GTRG(GTG)−1.
5. Update

G(ij) ← G(ij)

[
(RDGS)(ij)

(GSGT DGS)(ij)

] 1
4 .

until Converges

3 Algorithm to Solve `1-Norm S-NMTF
and its analysis

The computational algorithm for the proposed `1-
norm S-NMTF approach is summarized in Algo-
rithm 1 (Due to space limit, the derivation of the
algorithm is skipped and will be provided in our
journal version of the paper). Upon solution, the
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Figure 1: Clustering data in two clusters with some outliers (represented as triangle). Left: Clustering
performance by using traditional squared Frobenius-norm NMF algorithm. Right: Clustering perfor-
mance by using the proposed `1-norm NMF algorithm.

final cluster labels are obtained from the resulted
Gk.

The following theorems guarantee the correct-
ness of Algorithm 1 (Due to space limit, the
derivation of the algorithm is skipped and will be
provided in our journal version of the paper).

Theorem 3.1 If the updating rules of G and S in
Algorithm 1 converges, the final solution satisfies
the KKT optimal condition.

This is the fixed point relationships that the so-
lution must satisfy.

The following lemmas and theorem guarantee
the convergence of Algorithm 1 (Due to space
limit, the derivation of the algorithm is skipped
and will be provided in our journal version of the
paper).

Lemma 3.2 (Lee and Seung, 1999) Z(h, h′) is
an auxiliary function of F (h) if the conditions
Z(h, h′) ≥ F (h) and Z(h, h′) = F (h) are sat-
isfied.

Lemma 3.3 (Lee and Seung, 1999) If Z is an aux-
iliary function for F , then F is non-increasing un-
der the update h(t+1) = arg minh Z(h, h′).

Theorem 3.4 Let

J(G) = tr(−2RDGSGT +GSGTDGSGT ),
(5)

then the following function

Z(G,G′) =

− 2
∑
ijkl

G′(ji)S(jk)G
′
(kl)D(ll)R(li)(1 + log

G(ji)G(kl)

G′(ij)G
′
(kl)

)

+
∑
ij

(G′SG′TDG′S)(ij)
G4

(ij)

G′3(ij)
(6)

is an auxiliary function of J(G). Furthermore, it
is a convex function in G and its global minimum
is

G(ik) = G(ik)

[
(RDGS)(ik)

(GSGTDGS)(ik)

] 1
4

(7)

Based on the property of auxiliary function and
convex function, by updating G, we can always
get the optimal solution to the object function, thus
determining the final cluster label.

4 Experiments Result

In this section, We test our proposed algorithm on
IMDB dataset by using its inter-type relationship
information.

4.1 Data set
We use the dataset from ACL-IMDB provided by
(Maas et al., 2011). In this dataset, there is a sub-
training set of 25000 highly polar movie reviews,
in which positive and negative comments come up
with one half(12500) each. The dataset also in-
cludes the following two important files: the con-
tent of each comment and the corresponding URL
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where each comment comes from. There are also
some other files but not related with the experi-
ment we conduct, thus we skip them.

4.2 Experiments settings
In our experiment, we set the multi-type data as
3 types: author, comment and word. As it is
discussed in the 3rd part, there are three rela-
tionships we need to find, which correspond to
three matrices we need to construct the multi-type
data matrix:comment-author, comment-word and
author-word. By making use of the URL of ev-
ery comment, we can find the author who posts
the corresponding comment, thus we can build the
author-comment matrix.Since each comment with
content is given by the dataset file, we could there-
fore construct the matrix of comment-word, and
the author-word matrix is the product of author-
comment matrix and comment-word matrix.

We could find the first 1500 authors who post
comments most, since the comments from the
same person are more likely to have some corre-
lations, such as similar sentence structures, same
words and etc. We also rule out the stop-words
since they may disturb the clustering and they are
meaningless to the property of comments. To
make our experiments to be more persuasive, we
also add some noise to the three relationship matri-
ces with a ratio of 25 percentage(1/5 in amplitude).
By randomly choosing 500 authors from 1500, we
could generate many sub-datasets to conduct our
experiments.

4.3 Experiments Results
We compare the performance of our proposed `1-
norm S-NMTF algorithm with other methods such
as P-NMF, Frobenius norm S-NMTF, traditional
NMF and K-means clustering. For simplicity, we
only compare the clustering accuracy of comment-
word matrix since its label (positive or negative)
is fixed(the grounding label), thus could be com-
pared with the clustering results by using the clus-
tering algorithms.

Table 1 shows that when the data is pure, in
many cases(more than the listed), `1-norm S-
NMTF approach has better performance than oth-
ers

Table 2 illustrates the situation when some noise
is added to the data, it is easy to find that `1-norm
S-NMTF algorithm is the best in terms of cluster-
ing accuracy. This meets our analysis in our Moti-
vation part.

Alg L11 L22 PMF NMF Kms
set 1 0.578 0.528 0.554 0.510 0.504
set 2 0.583 0.556 0.551 0.521 0.521
set 3 0.584 0.559 0.555 0.501 0.501
set 4 0.551 0.522 0.502 0.527 0.506
set 5 0.566 0.534 0.506 0.529 0.531
set 6 0.558 0.517 0.510 0.535 0.526

Table 1: Clustering Accuracy with Pure Data.

Alg L11 L22 PMF NMF Kms
sub 1 0.586 0.545 0.508 0.530 0.530
sub 2 0.575 0.535 0.540 0.518 0.532
sub 3 0.567 0.528 0.520 0.500 0.500
sub 4 0.574 0.533 0.525 0.500 0.500
sub 5 0.574 0.537 0.530 0.519 0.518
sub 6 0.556 0.525 0.524 0.504 0.505

Table 2: Clustering Accuracy with Noise.

Careful examination in Table 3 reveals the fact
that `1-norm S-NMTF algorithm performs more
robust than any other algorithm. Though the clus-
tering accuracy of `1-norm S-NMTF decreases
when noise exists, still it reduces the least among
the five algorithms. This result convincingly
demonstrates the robustness of our proposed `1-
norm S-NMTF method.

Alg L11 L22 PMF NMF Kms
s.1(P) 0.547 0.546 0.521 0.546 0.546
s.1(N) 0.546 0.525 0.516 0.540 0.545
s.2(P) 0.543 0.543 0.534 0.543 0.543
s.2(N) 0.543 0.539 0.531 0.513 0.531
s.3(P) 0.536 0.536 0.524 0.536 0.536
s.3(N) 0.536 0.534 0.522 0.517 0.508

Table 3: Clustering Accuracy Contrast.

5 Conclusion

In this paper, we presented an `1-norm Symmet-
ric Nonnegative Matrix Tri-Factorization Frame-
work to cluster multi-type relational data simulta-
neously. Our proposed approach clusters different
types of data, using its inter-type relationship by
transforming the original problem into a symmet-
ric NMTF problem. We also presented an auxil-
iary function and high order matrix inequality to
derive the solution algorithm. The proposed algo-
rithm not only makes use of the rich data struc-
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ture to improve the clustering accuracy, but also
remains robust when there is noise and outliers.
Experimental results demonstrate the potential us-
age and advantage of `1-norm S-NMTF in cluster-
ing especially when there are outliers, which is in
accordance with our theory analysis.
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Abstract
Labeled data is not readily available for
many natural language domains, and it
typically requires expensive human effort
with considerable domain knowledge to
produce a set of labeled data. In this paper,
we propose a simple unsupervised system
that helps us create a labeled resource for
categorical data (e.g., a document set) us-
ing only fifteen minutes of human input.
We utilize the labeled resources to dis-
cover important insights about the data.
The entire process is domain independent,
and demands no prior annotation samples,
or rules specific to an annotation.

1 Introduction

Consider the following two scenarios:
Scenario 1:We start processing a new language

and we want to get an initial idea of the language
before embarking on the expensive process of cre-
ating hand annotated resources. For instance, we
may want to know how people express opinion in
a language of interest, what characterizes the sub-
jective content of the language and how expres-
sions of opinion differ along opinion types. The
question is how to acquire such first-hand insights
of an unknown language in quick time and with
minimal human effort?

Scenario 2:We have a set of blog articles and
we are interested in learning how blogging differs
across gender. In particular, we seek to learn the
writing styles or other indicative patterns – topics
of interest, word choices etc. – that can potentially
distinguish writings across gender. A traditional
NLP approach would be to collect a set of articles
that are tagged with gender information, which we
can then input to a learning system to learn pat-

terns that can differentiate gender. What if no such
annotation is available, as the bloggers don’t re-
veal their gender information? Could we arrange
a human annotation task to annotate the articles
along gender? Often the articles contain explicit
patterns (e.g., “my boyfriend”, “as a woman” etc.)
which help the annotators to annotate the articles.
Often there are no indicative patterns in the writ-
ten text, and it becomes impossible to annotate the
articles reliably.

The above scenarios depict the cases when we
are resource constrained and creating a new re-
source is nontrivial and time consuming. Given
such difficulties, it would be helpful if we could
design a system that requires less human input to
create a labeled resource. In this paper, we present
a simple unsupervised system that helps us cre-
ate a labeled resource with minimal human effort.
The key to our method is that instead of label-
ing the entire set of unlabeled instances the sys-
tem labels a subset of data instances for which it
is confident to achieve high level of accuracy. We
experiment with several document labeling tasks
and show that a high-quality labeled resource can
be produced by a clustering-based labeling system
that requires a mere fifteen minutes of human in-
put. It achieves 85% and 78% accuracy for the task
of sentiment and gender classification, showing its
effectiveness on two nontrivial labeling tasks with
distinct characteristics (see Section 3).

We also utilize the labeled resources created by
our system to learn discriminative patterns that
help us gain insights into a dataset. For instance,
we learn how users generally express opinion in a
language of interest, and how writing varies across
gender. The next section describes the details of
our main algorithm. We present experimental re-
sults in Section 3 and 4.
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The sound from my system did seem to be alittle better
(the CD’s werenot skippingas much).

But the bottom line is itdidn’t fix the problem as
the CDs are stillskipping noticeably,

althoughnot as badas before. ..

Table 1: Snippet of an ambiguous CD Player re-
view.

2 Problem Formulation

We consider a general classification framework.
Let X = {x1, . . . , xn} represents a categorical
dataset withn data points wherexi ∈ ℜd. Let
cx ∈ {1,-1} is the true label ofx1. Our goal is
label a subset of the data,X ′ = {C1, C2} ⊆ X,
whereC1 andC2 comprise data points of positive
and negative class respectively. Note that,X ′ rep-
resents the subset of datapoints that are confidently
labeled by the system.

To illustrate, we show a snippet of a CD player
review taken from Amazon in Table 1. As you can
see this review is highly ambiguous, as it describes
both the positive and negative aspects of the prod-
uct: while the phrasesa little better, not skipping,
andnot as badconveys a positive sentiment, the
phrasesdidn’t fix andskipping noticeablyare neg-
ative sentiment-bearing. Any automated system
would find it hard to correctly label this review,
as the review is highly ambiguous. Our goal is to
remove such ambiguous data points from the data
space and label the remaining unambiguous data
points. The fact that unambiguous data instances
are easier to label allows us to use an automated
system to label them quickly with minimal human
effort (see the next section).

Now how could we set apart unambiguous data
points from the ambiguous ones from a set of unla-
beled data points? Note that we desire the system
to be unsupervised. We also desire the system to
be generic i.e., applicable to any application do-
main. Next we show how we extend spectral clus-
tering to achieve this goal.

2.1 Ambiguity Resolution with Iterative
Spectral Clustering

In spectral clustering, a set ofn data points is rep-
resented as an undirected graph, where each node
corresponds to a data point and the edge weight
between two nodes is their similarity as defined
by S. The goal is to induce a clustering, or equiv-
alently, apartitioning functionf , which is typi-
cally represented as a vector of lengthn such that

1We present our system for binary classification task. It
can be extended fairly easily to multi-way classification tasks.

f(i) ∈ {1,−1} indicates which of the two clusters
data pointi should be assigned to.

In spectral clustering, the normalized cut parti-
tion of a similarity graph, S is derived from the
solution of the following constrained optimization
problem: argminf∈ℜn

∑
i,j Si,j(

f(i)√
di
− f(j)√

dj
)2

subject tofTDf = 1 and Df ⊥ 1, where
D is a diagonal matrix withDi,i =

∑
j Si,j and

di = Di,i. The closed form solution to this opti-
mization problem is the eigenvector corresponding
to the second smallest eigenvalue of the Laplacian
matrix, L = D−1/2(D − S)D−1/2 (Shi and Ma-
lik (2000)). Clustering using the second eigenvec-
tor, is trivial: since we have a linearization of the
points, all we need to do is to determine a thresh-
old for partitioning the data points.

Second eigenvector reveals useful information
regarding the ambiguity of the individual data
points. In the computation of eigenvectors each
data point factors out orthogonal projections of
each of the neighboring data points. Ambigu-
ous data points factor out orthogonal projections
from both the positive and negative data instances,
and hence they have near zero values in the pivot
eigenvectors. We exploit this important informa-
tion. The basic idea is that the data points with
near zero values in the second eigenvector are
more ambiguous than those with large absolute
values. Hence, to cluster only the unambiguous
datapoints, we can therefore sort the data points
according to second eigenvector, and keep only the
top and bottomm(m < n) datapoints. Finally, in-
stead of removing(n−m) datapoints at once, we
remove them in iteration.

Here is our final algorithm:

1. Lets : X ×X → ℜ be a similarity function
defined over dataX. Construct a similarity
matrix S such thatSij = s(xi, xj).

2. Construct the Laplacian matrixL =
D−1/2(D − S)D−1/2, whereD is a diago-
nal matrix withDi,i =

∑
j Si,j.

3. Findeigenvectore2 corresponding to second
smallest eigenvalue ofL.

4. SortX according toe2 and removeα points
indexed from(|X|/2−α/2+1) to (|X|/2+
α/2).

5. If |X| = m, goto Step 6; else goto Step 1.

403



Dataset System m = 1
5
n m = 2

5
n m = 3

5
n m = 4

5
n m = n Fully Supervised

Gender Kmeans++ 52.3% 51.6% 52.3% 51.7% 51.2% -
TSVM 53.1% 53.6% 52.7% 52.6% 52.0% 80.4%
OUR 78.5% 73.7% 69.3% 66.8% 64.4% -

Spam Kmeans++ 67.6% 58.6% 54.9% 53.8% 52.4% -
TSVM 87.8% 85.0% 82.7% 80.7% 78.9% 96.9%
OUR 83.8% 82.9% 80.4% 79.8% 78.4% -

Sentiment Kmeans++ 64.5% 61.4% 60.5% 57.8% 56.5% -
TSVM 70.2% 65.1% 61.5% 61.8% 60.4% 86.4%
OUR 90.3% 85.4% 79.9% 74.9% 71.2% -

Table 2: Accuracy of automatically labeled data for each dataset. We also report 5-fold supervised
classification result for each dataset.

6. SortX according toe2 and put topm
2 data

points in clusterC1 and bottomm
2 data points

in clusterC2.

In the algorithm stated above, we start with an
initial clustering of all of the data points, and then
iteratively remove theα most ambiguous points
from the data space. We iterate the process of re-
moving ambiguous data points and re-clustering
until we havem data points remaining. It should
not be difficult to see the advantage of removing
the data points in an iterative fashion (as opposed
to removing them in a single iteration): the clus-
ters produced in a given iteration are supposed
to be better than those in the previous iterations,
as subsequent clusterings are generated from less
ambiguous points. In all our experiments, we set
α to 100. Finally, we label the clusters by inspect-
ing 10 randomly sampled points from each cluster.
We use the cluster labels to assign labels to them
unambiguous data points. Note that labeling the
clusters is the only form of human input we re-
quire in our system.

3 Experiments

We use three text classification tasks for evalua-
tion:

Gender Classification:Here we classify blog
articles according to whether an article is written
by a male or female. We employ the blog dataset
as introduced by Schler et al. (2006) for this task.
The dataset contains 19320 blog articles, out of
which we randomly selected 5000 blog articles as
our dataset.

Spam Classification:Here the goal is to deter-
mine whether an email is Spam or Ham (i.e., not
spam). We use the Enron spam dataset as intro-
duced by Metris et al. (Metsis et al. (2006)). We
join together the BG section of Spam emails and
kaminski section of Ham emails, and randomly se-
lected 5000 emails as our dataset.

Sentiment Classification:Here the goal is to
determine whether the sentiment expressed in a
product review is positive or negative. We use
Pang et al.’s movie review dataset for this task
(Pang et al. (2002)). The dataset contains 2000
reviews annotated with the positive and negative
sentiment label.

To preprocess a document, we first tokenize and
downcase it, remove stop words, and represent it
as a vector of unigrams, using frequency as pres-
ence. For spectral clustering, we use dot product
as a measure of similarity between two documents
vectors.

Dataset Data points Features Pos:Neg
Gender 5000 75188 2751:2249
Spam 5000 23760 2492:2508

Sentiment 2000 24531 1000:1000

Table 3: Description of the datasets.

3.1 Accuracy of Automatically Labeled Data

For each dataset, givenn unlabeled data points,
we apply our system to labelm(m <= n) least
ambiguous data points. We check the quality of
labeled data by comparing the assigned (cluster)
labels of m datapoints against their true labels,
and show the accuracy. Table 2 shows the accu-
racy of automatically labeled data for five different
values ofm for each dataset. For example, when
m = n/5, our system labels 1000 out of available
5000 data points with 78.5% accuracy for the gen-
der dataset. These 1000 data points are the most
unambiguous out of the 5000 data points, as se-
lected by the algorithm. Form = n the system
labels the entire dataset.

As you can see, for all three datasets, the ac-
curacy of labeling unambiguous data instances is
much higher than the accuracy of labeling the en-
tire dataset. For instance, the accuracy of topn/5
unambiguous labeled instances of the sentiment
dataset is 90.3%, whereas the accuracy of labeling
the entire dataset is 71.2%. The more unambigu-
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ous the data instances are the higher is the qual-
ity of labeled data (as shown by the fact that the
accuracy of labeled instances increases as we in-
creasem). Notice that our system labels 60% of
the data points of the spam dataset with 80.4% ac-
curacy; 40% of the data points of the sentiment
dataset with 85.4% accuracy; and 20% of the data
points of the gender dataset with 78.5% accuracy.

We also report 5-fold supervised classification
result for each dataset. We used linear SVM for
classification with all parameters set to their de-
fault values. As you can see, whenm = n/5 our
system achieves near supervised labeling perfor-
mance for the gender and sentiment dataset. One
of the reviewers asked how SVM performed when
trained with unambiguous data instances alone.
We refer to Dasgupta and Ng (2009) where the au-
thors report that training SVM with unambiguous
data alone produces rather inferior result. They,
however, work on a small data sample. It would
be interesting to know whether large number of
unambiguous (or, semi-ambiguous) data instances
could offset the need for ambiguous data in a gen-
eral classification setting. Given that unlabeled
data are abundantly available in many NLP tasks,
one can employ our method to create decent size
labeled data quickly from unlabeled data, and uti-
lize them later in the process to build an indepen-
dent classifier or augment the performance of an
existing classifier (Fuxman et al. (2009)).

We employed two baseline algorithms, i.e.,
kmeans++ and a semi-supervised learning system,
Transductive SVM. For kmeans++ we used the
following as a measure of ambiguity for each data

point: 1− (x−µi)
2

∑k
i (x−µi)2

, wherex is a data vector and

µi, i = 1 : k arek mean vectors. It ranges from
0 to 1. Ambiguity score near 0.5 suggests that
the data point is ambiguous. Following common
practice in document clustering, we reduced the
dimensions of the data to 100 using SVD before
we apply kmeans++. For transductive SVM, we
randomly selected 20 labeled data points as seeds.
Table 2 shows the result for each baseline.

Notice that our system beat the baselines (one
of them is a semisupervised system) by a big mar-
gin for the Gender and Sentiment dataset, whereas
Transductive SVM performs the best for the Spam
dataset. Interesting to point that our method of re-
moving ambiguous data instances to get a qualita-
tively stronger clustering contrasts with the max-
margin methods which use the ambiguous data

instances to acquire the margin. Also impor-
tant to mention that spectral clustering is a graph-
based clustering algorithm, where similarity mea-
sure employed to construct the graph plays a cru-
cial role in performance (Maier et al. (2013)). In
fact, “right” construction of the feature space and a
right similarity measure can considerably change
the performance of a graph-based clustering algo-
rithm. We have not tried different similarity mea-
sures in this initial study, but it provides us room
for improvement for a dataset like Spam.

Implementation Details:On a machine with
3GHz of Intel Quad Core Processor and 4GB of
RAM, the iterative spectral clustering algorithm
takes less than 2 minutes in Matlab for a dataset
comprising 5000 data points and 75188 features.
This along with the fact that human labelers take
on average 12 minutes to label the clusters sug-
gests that the entire labeling process requires less
than 15 minutes to complete.

4 Mining Patterns and Insights

In this section, we show that we can utilize the
labeled resources created by our system to learn
discriminative patterns that help us gain insights
into a dataset (Don et al. (2007), Larsen and Aone
(1999), Cheng et al. (2007), Maiya et al. (2013)).
We utilize the topn/5 unambiguous labeled in-
stances for this task, wheren is size of the dataset.
Note that the quality of unambiguous labeled in-
stances is much higher than the entire set of la-
beled instances (see Section 3.1), so the statis-
tics we collect from the unambiguous labeled in-
stances to identify discriminative patterns are sup-
posedly more reliable.

We learn our first category of discriminative
patterns the following way: for each cluster,
we rank all unigrams in the vocabulary by their
weighted log-likelihood ratio:

P (wt | cj) · log P (wt | cj)
P (wt | ¬cj)

wherewt andcj denote thet-th word in the vocab-
ulary and thej-th cluster, respectively, and each
conditional probability is add one smoothed. In-
formally, a unigramw will have a high rank with
respect to a clusterc if it appears frequently in
c and infrequently in¬c. The higher the score
the more discriminative the pattern is. We also
learn the discriminative bigrams similarly: for
each cluster, we rank all bigrams by their weighted
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Dataset Class Top Discriminative Unigrams
Gender Female haha, wanna, sooo, lol, ppl, omg, hahaha, ur, yay, soo, cuz, bye, soooo, hehe, ate, hurts, sucks.

Male provide, reported, policies, administration, companies,development, policy, services, nations.
Spam Spam vicodin, goodbye, utf, rolex, watches, loading, promotion, reproductions, nepel, fw, fwd, click.

Ham risk, securities, statements, exchange, terms, third, events, act, investing, objectives, assumptions.
Sentiment Positive relationship, husband, effective, mother, strong, perfect, tale, novel, fascinating, outstanding.

Negative stupid, worst, jokes, bunch, sequel, lame, guess, dumb, boring, maybe, guys, video, flick, oh.

Table 4: Top discriminative unigram patterns identified by our system.

Dataset Class Top Discriminative Bigrams
Gender Female wanna go, im so, im gonna, at like, don’t wanna, was sooo, was gonna, soo much, so yeah.

Male to provide, york times, the issue, understanding of, the political, bush admin, the democratic.
Spam Spam promotional material, adobe photoshop, name it, choose from, you name, stop getting, office xp.

Ham investment advice, this report, respect to, current price,risks and, information provided.
Sentiment Positive story of, her husband, relationship with, begins to, love and, life of, the central, the perfect.

Negative the worst, bad movie, bunch of, got to, too bad, action sequences, waste of, than this, the bad.

Table 5: Top discriminative bigram patterns identified by our system.

log-likelihood ratio score and select the top scor-
ing bigrams as the most discriminative bigrams.

Table 4 and 5 show the most discriminative un-
igrams and bigrams learned by our system. No-
tice that the learned patterns are quite informa-
tive. For instance, in the case of blog dataset we
learn that certain word usages (e.g., sooo, cuz etc.)
are more common in women’s writings, whereas
men’s writings often contain discussion of poli-
tics, news and technology. For sentiment data, the
patterns correspond well to the generic sentiment
lexicon manually created by the sentiment experts.
The ability of our system to learn top sentiment
features could be handy for a resource-scarce lan-
guage, which may not have a general purpose sen-
timent lexicon. Note that the system is not lim-
ited to unigram and bigram patterns only. The la-
beled instances can be utilized similarly to gather
statistics for other form of usage patterns includ-
ing syntactic and semantic patterns for document
collections.

5 Related Work

Automatic extraction of labeled data has gained
momentum in recent years (Durme and Pasca
(2008), Nakov and Hearst (2005), Fuxman et
al. (2009)). Traditionally, researchers use task-
specific heuristics to generate labeled data, e.g.,
searching for a specific pattern in the web to col-
lect data instances of a particular category (Hearst
(1992), Go et al. (2009), Hu et al. (2013)). An-
other line of research follows semi-supervised in-
formation extraction task, where given a list of
seed instances of a particular category, a bootstrap-
ping algorithm is applied to mine new instances
from large corpora (Riloff and Jones (1999), Et-

zioni et al. (2005), Durme and Pasca (2008)).
There has also been a surge of interests in unsu-

pervised approaches which primarily rely on clus-
tering to induce psuedo labels from large amount
of text (Clark (2000), Slonim and Tishby (2000),
Sahoo et al. (2006), Christodoulopoulos et al.
(2010)). We differ from existing unsupervised
clustering algorithms in a way that we uncompli-
cate spectral clustering by forcing it to cluster un-
ambiguous data points only, which ensures that the
system makes less mistakes during clustering and
the clustered data are qualitatively strong.

6 Conclusion

We have presented a system that helps us create
a labeled resource for a given dataset with mini-
mal human effort. We also utilize the labeled
resources to discover important insights about the
data. The ability of our system to learn and vi-
sualize top discriminative patterns facilitates ex-
ploratory data analysis for a dataset that might be
unknown to us. Even if we have some knowledge
of the data, the system may unveil additional char-
acterisitcs that are unknown to us. The top fea-
tures induced for each classification task can also
be interpreted as our system’s ability to discover
new feature spaces, which can be utilized inde-
pendently or along with a simpler feature space
(e.g.,bag of words) to learn a better classification
model. Additional research is needed to further
explore this idea.
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Abstract

We increase the lexical coverage of
FrameNet through automatic paraphras-
ing. We use crowdsourcing to manually
filter out bad paraphrases in order to en-
sure a high-precision resource. Our ex-
panded FrameNet contains an additional
22K lexical units, a 3-fold increase over
the current FrameNet, and achieves 40%
better coverage when evaluated in a prac-
tical setting on New York Times data.

1 Introduction

Frame semantics describes a word in relation to
real-world events, entities, and activities. Frame
semantic analysis can improve natural language
understanding (Fillmore and Baker, 2001), and
has been applied to tasks like question answering
(Shen and Lapata, 2007) and recognizing textual
entailment (Burchardt and Frank, 2006; Aharon
et al., 2010). FrameNet (Fillmore, 1982; Baker
et al., 1998) is a widely-used lexical-semantic re-
source embodying frame semantics. It contains
close to 1,000 manually defined frames, i.e. rep-
resentations of concepts and their semantic prop-
erties, covering a wide array of concepts from Ex-
pensiveness to Obviousness.

Frames in FrameNet are characterized by a set
of semantic roles and a set of lexical units (LUs),
which are word/POS pairs that “evoke” the frame.
For example, the following sentence contains a
mention (i.e. target) of the Obviousness frame: In
late July, it was barely visible to the unaided eye.
This particular target instantiates several semantic
roles of the Obviousness frame, including a Phe-
nomenon (it) and a Perceiver (the unaided eye).
Here, the LU visible.a evokes the frame. In
total, the Obviousness frame has 13 LUs including
clarity.n, obvious.a, and show.v.

1well received a rating of 3.67 as a paraphrase of clearly
in the context the intention to do so is clearly present.

accurate, ambiguous, apparent, apparently, audible,
axiomatic, blatant, blatantly, blurred, blurry, cer-
tainly, clarify, clarity, clear, clearly, confused, con-
fusing, conspicuous, crystal-clear, dark, definite,
definitely, demonstrably, discernible, distinct, evi-
dent, evidently, explicit, explicitly, flagrant, fuzzy,
glaring, imprecise, inaccurate, lucid, manifest, man-
ifestly, markedly, naturally, notable, noticeable,
obscure, observable, obvious, obviously, opaque,
openly, overt, patently, perceptible, plain, precise,
prominent, self-evident, show, show up, significantly,
soberly, specific, straightforward, strong, sure, tan-
gible, transparent, unambiguous, unambiguously,
uncertain, unclear, undoubtedly, unequivocal, un-
equivocally, unspecific, vague, viewable, visibility,
visible, visibly, visual, vividly, well,1 woolly

Table 1: 81 LUs invoking the Obviousness frame according
to the new FrameNet+. New LUs (bold) have been added us-
ing the method of paraphrasing and human-vetting described
in Section 4.

The semantic information in FrameNet (FN)
is broadly useful for problems such as entail-
ment (Ellsworth and Janin, 2007; Aharon et al.,
2010) and knowledge base population (Mohit and
Narayanan, 2003; Christensen et al., 2010; Gre-
gory et al., 2011), and is of general enough inter-
est to language understanding that substantial ef-
fort has focused on building parsers to map nat-
ural language onto FrameNet frames (Gildea and
Jurafsky, 2002; Das and Smith, 2012). In practice,
however, FrameNet’s usefulness is limited by its
size. FN was built entirely manually by linguistic
experts. As a result, despite many years of work,
most of the words that one confronts in naturally
occurring text do not appear at all in FN. For ex-
ample, the word blatant is likely to evoke the Ob-
viousness frame, but is not present in FN’s list of
LUs (Table 1). In fact, out of the targets we sample
in this work (described in Section 4), fewer than
50% could be mapped to a correct frame using the
LUs in FrameNet. This finding is consistent with
what has been reported by Palmer and Sporleder
(2010). Such low lexical coverage prevents FN
from applying to many real-world applications.
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Frame Original Paraphrase Frame-annotated sentence
Quantity amount figure It is not clear if this figure includes the munitions. . .
Expertise expertise specialization . . . the technology, specialization, and infrastructure. . .
Labeling called dubbed . . . eliminate who he dubbed Sheiks of sodomite. . .
Importance significant noteworthy . . . assistance provided since the 1990s is noteworthy. . .
Mental property crazy berserk You know it’s berserk.

Table 2: Examples paraphrases from FrameNet’s annotated fulltext. The bolded words are automatically proposed rewrites
from PPDB.

In this work, we triple the lexical coverage of
FrameNet quickly and with high precision. We
do this in two stages: 1) we use rules from the
Paraphrase Database (Ganitkevitch et al., 2013) to
automatically paraphrase FN sentences and 2) we
apply crowdsourcing to manually verify that the
automatic paraphrases are of high quality. While
prior efforts have entertained the idea of expand-
ing FN’s coverage (Ferrández et al., 2010; Das and
Smith, 2012; Fossati et al., 2013), none have re-
sulted in a publicly available resource that can be
easily used. As our main contribution, we release
FrameNet+, a huge, manually-vetted extension to
the current FrameNet. FrameNet+ provides over
22,000 new frame/LU mappings in a format that
can be readily incorporated into existing systems.
We demonstrate that the expanded resource pro-
vides a 40% improvement in lexical coverage in a
practical setting.

2 Expanding FrameNet Automatically

The Paraphrase Database (PPDB) (Ganitkevitch
et al., 2013) is an enormous collection of lexical,
phrasal, and syntactic paraphrases. The database
is released in six sizes (S to XXXL) ranging from
highest precision/lowest recall to lowest average
precision/highest recall. We focus on lexical (sin-
gle word) paraphrases from the XL distribution, of
which there are over 370K.

Our aim is to increase the type-level coverage
of FN. We use the rules in PPDB along with
a 5-gram Kneser-Ney smoothed language model
(Heafield et al., 2013) to paraphrase FN’s full
frame-annotated sentences (called fulltext). We ig-
nore paraphrase rules which are redundant with
LUs already covered by FN. This method for auto-
matic paraphrasing has been discussed previously
by Rastogi and Van Durme (2014). However,
whereas their work only discussed the idea as a
hypothetical way of augmenting FN, we apply the
method, vet the results, and release it as a public
resource.

In total, we generate 188,061 paraphrased sen-

tences, covering 686 frames. Table 2 shows some
of the paraphrases produced.

3 Manual Refining with Crowdsourcing

Our automatic process produces a large number of
good paraphrases, but does not address issues like
word sense, and many of the paraphrased LUs al-
ter the sentence so that it no longer evokes the in-
tended frame. For example, PPDB proposes free
as a paraphrase of open. This is a good paraphrase
in the Secrecy status frame but does not hold for
the Openness frame (Table 3).

X Secrecy status
The facilities are open to public scrutiny
The facilities are free to public scrutiny

X Openness
Museum (open Wednesday and Friday.)
Museum (free Wednesday and Friday.)

Table 3: Turkers approved free as a paraphrase of open for
the Secrecy status frame (rating of 4.3) but rejected it in the
Openness frame (rating of 1.6).

We therefore refine the automatic paraphrases
manually to remove paraphrased LUs which do
not evoke the same frame as the original LU. We
show each sentence to three unique workers on
Amazon Mechanical Turk (MTurk) and ask each
to judge how well the paraphrase retains the mean-
ing of the original phrase. We use the 5-point grad-
ing scale for paraphrase proposed by Callison-
Burch (2008).

To ensure that annotators perform our task con-
scientiously, we embed gold-standard control sen-
tences taken from WordNet synsets. Overall,
workers were 76% accurate on our controls and
showed good levels of agreement– the average
correlation between two annotators’ ratings was ρ
= 0.49.

Figure 1 shows the distribution of Turkers’ rat-
ings for the 188K automatically paraphrased tar-
gets. In 44% of cases, the new LU was judged
to retain the meaning of the original LU given the
frame-specific context. These 85K sentences con-
tain 22K unique frame/LU mappings which we are
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able to confidently add to FN, tripling the total
number in the resource. Figure 1 shows 69 new
LUs added to the Obviousness frame.

Figure 1: Distribution of MTurk ratings for paraphrased full-
text sentences. 44% received an average rating ≥ 3, indicat-
ing the paraphrased LU was a good fit for the frame-specific
context.

4 Evaluation

We aim to measure the type-level coverage im-
provements provided by our expanded FrameNet
in a practical setting. Ideally, one would like
to identify frames evoked by arbitrary sentences
from natural text. To emulate this setting, we
consider potentially frame-evoking LUs sampled
from the New York Times. The question we ask
is: does the resource contain an entry associating
this LU with the frame that is actually evoked by
this target?

FrameNet+ We refer to the expanded
FrameNet, which contains the current FN’s
LUs as well as the proposed paraphrased LUs,
as FrameNet+. The size and precision of
FrameNet+ can be tuned by setting a threshold t
and only including LU/frame mappings for which
the average MTurk rating was at least t. Setting
t = 0 includes all paraphrases, even those which
human’s judged to be incorrect, while setting
t > 5 includes no paraphrases, and is equal to the
current FN. Unless otherwise specified, we set
t = 3. This includes all paraphrases which were
judged minimally as “retaining the meaning of the
original.”

Sampling LUs We consider a word to be “po-
tentially frame-evoking” if FN+ (t = 0) contains
some entry for the word, i.e. the word is either an
LU in the current FN or appears in PPDB-XL as
a paraphrase of some LU in the current FN. We

sample 300 potentially frame-evoking word types
from the New York Times: 100 each nouns, verbs,
and adjectives. We take a stratified sample: within
each POS, types are divided into buckets based
on their frequency, and we sample uniformly from
each bucket.

Annotation For each of the potentially frame-
evoking words in our sample, we have expert (non-
MTurk) annotators determine the frame evoked.
The annotator is given the candidate LU in the
context of the NYT sentence in which it occurred,
and is shown the list of frames which are poten-
tially evoked by this LU according to FrameNet+.
The annotator then chooses which of the proposed
frames fits the target, or determines that none do.
We measure agreement by having two experts la-
bel each target. On average, agreement was good
(κ=0.56). In cases where they disagreed, the an-
notators discussed and came to a final consensus.

Results We compute the coverage of a resource
as the percent of targets for which the resource
contained a correct LU/frame mapping. Figure
2 shows the coverage computed for the current
FN compared to FN+. By including the human-
vetted paraphrases, FN+ is able to return a cor-
rect LU/frame mapping for 60% of the targets in
our sample, 40% more targets than were covered
by the current FN. Table 4 shows some sentences
covered by FN+ that are missed by the current FN.

Figure 2: Number of LUs covered by the current FrameNet
vs. two versions of FrameNet+: one including manually-
approved paraphrases (t = 3), and one including all para-
phrases (t = 0).

Figure 3 compares FN+’s coverage and number
of LUs per frame using different paraphrase qual-
ity thresholds t. FN+ provides an average of more
than 40 LUs per frame, compared to just over 10
LUs per frame in the current FN. Adding un-vetted
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LU Frame NYT Sentence
outsider Indigenous origin . . . I get more than my fair share because I ’m the ultimate outsider. . .
mini Size . . . a mini version of “The King and I ” . . .
prod Attempt suasion He gently prods his patient to step out of his private world. . .
precious Expensiveness Keeping precious artwork safe.
sudden Expectation . . . on the sudden passing of David .

Table 4: Example sentences from the New York Times. The frame-invoking LUs in these sentences are not currently covered
by FrameNet but are covered by the proposed FrameNet+.

LU paraphrases (setting t = 0) provides nearly 70
LUs per frame and offers 71% coverage.

Figure 3: Overall coverage and average number of LUs per
frame for varying values of t.

5 Data Release

The augmented FrameNet+ is available to
download at http://www.seas.upenn.
edu/˜nlp/resources/FN+.zip. The re-
source contains over 22K new manually-verified
LU/frame pairs, making it three times larger than
the currently available FrameNet. Table 5 shows
the distribution of FN+’s full set of LUs by part of
speech.

Noun 12,786 Prep. 455 Conj. 14
Verb 10,862 Number 163 Wh-adv. 12
Adj. 6,195 Article 43 Particle 6
Adv. 749 Modal 22 Other 19

Table 5: Part of speech distribution for 31K LUs in
FrameNet+.

The release also contains 85K human-approved
paraphrases of FN’s fulltext. This is a huge in-
crease over the 4K fulltext sentences currently in
FN, and the new data can be easily used to retrain
existing frame semantic parsers, improving their
coverage at application time.

6 Related Work

Several efforts have worked on expanding FN cov-
erage. Most approaches align FrameNet’s LUs to

WordNet or other lexical resources (Shi and Mi-
halcea, 2005; Johansson and Nugues, 2007; Pen-
nacchiotti et al., 2008; Ferrández et al., 2010).

Das and Smith (2011) and Das and Smith
(2012) used graph based semi-supervised meth-
ods to improve frame coverage and Hermann et al.
(2014) used word and frame embeddings to im-
prove generalization. All of these improvements
are restricted to their respective tool rather than
a general-use resource. In principle one of these
tools could be used to annotate a large corpus in
search of new LUs, but their precision on unseen
predicates/LUs (our focus here) is still below 50%,
considerably lower than this work.

Fossati et al. (2013) added new frames to FN by
collecting full frame annotations through crowd-
sourcing, a more complicated task that again did
not result in a useable resource. Buzek et al.
(2010) applied crowdsourced paraphrasing to ex-
pand training data for machine translation. Our
approach differs in that we expand the number of
LUs directly using automatic paraphrasing and use
crowdsourcing to verify that the new LUs are cor-
rect. We apply our method in full, resulting in a
large resource can be easily incorporated into ex-
isting systems.

7 Conclusion

We have applied automatic paraphrasing to
greatly increase the type-level lexical coverage of
FrameNet, a widely used resource embodying the
theory of frame semantics. We use crowdsourc-
ing to manually verify that the newly added lex-
ical units are correct, resulting in FrameNet+, a
high-precision resource that is three times as large
as the existing resource. We demonstrate that in a
practical setting, the expanded resource provides a
40% increase in the number of sentences for which
FN is able to identify the correct frame. The data
released will improve the applicability of FN to
end-use applications with diverse vocabularies.
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Abstract

Nowadays, there are a lot of natural lan-
guage processing pipelines that are based
on training data created by a few experts.
This paper examines how the prolifera-
tion of the internet and its collaborative
application possibilities can be practically
used for NLP. For that purpose, we ex-
amine how the German version of Wik-
tionary can be used for a lemmatization
task. We introduce IWNLP, an open-
source parser for Wiktionary, that reim-
plements several MediaWiki markup lan-
guage templates for conjugated verbs and
declined adjectives. The lemmatization
task is evaluated on three German corpora
on which we compare our results with ex-
isting software for lemmatization. With
Wiktionary as a resource, we obtain a high
accuracy for the lemmatization of nouns
and can even improve on the results of
existing software for the lemmatization of
nouns.

1 Introduction

Wiktionary is an internet-based dictionary and the-
saurus that lists words, inflected forms and rela-
tions (e.g. synonyms) between words. Just as
Wikipedia, Wiktionary uses MediaWiki as a plat-
form but focuses on word definitions and their
meaning, rather than explaining each word in de-
tail, as Wikipedia does. The dictionary contains
articles, which can each list multiple entries for
different languages and multiple parts of speech.
For instance, the English word home has entries as
a noun, verb, adjective and as an adverb.

Each article is rendered by the MediaWiki en-
gine from a text-based input, which uses the Me-
diaWiki syntax and relies heavily on the use of
templates. The articles are editable by everyone,

Table 1: Declension of the German noun Turm
(tower)

Case Singular Plural
Nominative der Turm die Türme
Genitive des Turmes der Türme

des Turms
Dative dem Turm den Türmen

dem Turme
Accusative den Turm die Türme

even by unregistered users. Although vandalism is
possible, most of the vandalized entries are iden-
tified by other users who watch a list of the lat-
est changes and subsequently revert these entries
to previously correct versions. All text content
is licensed under the Creative Commons License,
which makes it attractive for academic use.

There are currently 111 localized versions of
Wiktionary, which contain more than 1000 arti-
cles1. A localized version can establish own rules
via majority votes and public opinion. For exam-
ple, the German version of Wiktionary2 currently
enforces a 5-source-rule, which requires that each
entry that is not listed in a common dictionary is
documented by at least 5 different sources. The
German version of Wiktionary has grown over the
last years and currently contains almost 400000 ar-
ticles3. Each word is listed with its part-of-speech
tag, among other information. If a word is in-
flectable (nouns, verbs, adjectives, pronouns and
articles are inflectable in the German language),
all inflected forms are also enumerated. Table 1
shows the declension of the noun Turm (tower).
Wiktionary provides information that can be used
as a resource for Natural Language Processing
(NLP), for instance for part-of-speech tagging, for
lemmatization and as a thesaurus.

1https://meta.wikimedia.org/wiki/Wiktionary
2https://de.wiktionary.org
3https://de.wiktionary.org/wiki/Wiktionary:Meilensteine
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The rest of the paper is structured as follows:
Section 2 gives on overview of previous applica-
tions of Wiktionary for natural language process-
ing purposes. Section 3 outlines the basic steps of
parsing Wiktionary. The use of Wiktionary as a
lemmatizer is evaluated in section 4 and compared
with existing software for lemmatization. Finally,
we conclude in chapter 5 and outline future work.

2 Related Work

The closest work to ours is JWKTL (Zesch et al.,
2008). JWKTL is a Wiktionary parser that was
originally developed for the English and the Ger-
man version of Wiktionary, but it now also sup-
ports Russian. Our work differs from JWKTL, be-
cause we currently focus more on inflections in the
German version than JWKTL. Therefore, we have
a larger coverage of inflections, because we addi-
tionally reimplemented several templates from the
namespace Flexion. Also, we have an improved
handling of special syntactic cases, as compared
to JWKTL.

Wiktionary has previously been used for sev-
eral NLP tasks. The use of the German edition
as a thesaurus has been investigated by Meyer
and Gurevych (2010). The authors compared the
semantic relations in Wiktionary with GermaNet
(Hamp and Feldweg, 1997) and OpenThesaurus
(Naber, 2005).

Smedt et al. (2014) developed a part-of-speech
tagger based on entries in the Italian version of
Wiktionary. They achieved an accuracy of 85,5 %
with Wiktionary alone. By using morphological
and contextual rules, they improve their tagging
to an accuracy of 92,9 %. Li et al. (2012) also
used Wiktionary to create a part-of-speech tagger,
which is based on a hidden Markov model. Their
evaluation of 9 different languages shows an aver-
age accuracy of 84,5 %, with English having the
best result with an accuracy of 87,1 %.

3 Parsing Wiktionary

There are multiple ways to parse Wiktionary. It is
possible to crawl all existing articles from the on-
line servers. To reduce stress from the servers and
to easily reproduce our parsing results, we parse
the latest of the monthly XML dumps4 from Wik-
tionary. For this paper, we use the currently latest
dump 20150407.

4http://dumps.wikimedia.org/dewiktionary/

We iterate over every article in the XML dump
and parse articles which contain German word en-
tries. These articles can be separated into two
groups: the ones in the main namespace (with-
out any preceding namespace, like ‘namespace:’)
and the ones in the namespace Flexion. First, we
describe how we parse the articles in the main
namespace. An article can contain entries for mul-
tiple languages. Therefore, we divide its text con-
tent into language blocks (== heading ==) and skip
non-German language blocks. Afterward, we ex-
tract one or more entries (=== heading ===) from
each German language block. If an article lists
more than one entry with the same name, its word
forms will be different from each other. For in-
stance, the German word Mutter5, contains an en-
try for mother and for nut, which have different
plural forms. We parse the part-of-speech tag for
each entry. If a word is inflectable, we will also
parse its inflections, which are listed in a key-
value-pair template. Depending on the part-of-
speech tag, different templates are used in Wik-
tionary for which we use different parsers. We
provide parsers for nouns, verbs, adjective and
pronouns. The key-value-template for the adjec-
tive gelb (yellow) is displayed in Figure 1.

== gelb ({{Language|German}}) ==
=== {{POS|Adjective|German}} ===
{{German Adjective Overview
|Positive=gelb
|Comparative=gelber
|Superlative=am gelbsten
}}

Figure 1: Adjective template for the word gelb
(yellow), with keywords translated into English

At this point, we should point out that the inflec-
tions for verbs and adjectives in the main names-
pace are only a small portion of all possible inflec-
tions. For example, a verb in the main namespace
only lists one inflection for the past tense (first
person singular), while other possible past tense
forms are not listed.

Fortunately, it is possible that a verb or an ad-
jective has an additional article in the namespace
Flexion, where all inflections are listed. However,
the parsing of these inflections is more challeng-
ing, because the articles use complex templates.

5https://de.wiktionary.org/wiki/Mutter
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Although the parsing of the parameters for the
templates remains the same, it is more difficult
to retrieve the rendered output by the MediaWiki
engine (and thus the inflections) from these tem-
plates, because it is very rare that inflections are
listed as a key-value-pair. Instead, these templates
require principal parts, which are combined with
suffixes. The users of Wiktionary have created
templates, that take care of special cases, for in-
stance for a verb conjugation, where the suffix
’est’ is added to a verb stem instead of ’st’, if the
last character of a verb stem is a ’t’. Wiktionary
uses a MediaWiki extension called ParserFunc-
tions, which allows the use of control flows, like
if-statements and switch statements. Special cases
for the conjugation of verbs and the declension of
adjectives are covered by a nested control flow.
We have analyzed these templates and reimple-
mented the template of the adjectives and the most
frequently used templates for verbs into IWNLP
as C# code. In total, Wiktionary currently contains
3705 verb conjugations in the Flexion namespace,
which use several templates. We have limited our
implementation to the three most used verb con-
jugation templates (weak inseparable (51,4 %), ir-
regular (27,2 %), regular (12,4 %)).

Altogether, we have extracted 74254 different
words and 281457 different word forms. To re-
duce errors while parsing, we have written more
than 150 unit tests to ensure that our parser oper-
ates as accurate as possible on various notations
and special cases. During the development of
IWNLP, we have manually corrected more than
200 erroneous Wiktionary articles, which con-
tained wrong syntax or false content. To guarantee
that we didn’t worsen the quality of these articles,
we’ve consulted experienced Wiktionary users be-
fore performing these changes.

Our parser and its output will be made available
under an open-source license.6

4 Lemmatization

Wiktionary can be used as a resource for multi-
ple NLP tasks. Currently, we are interested in us-
ing Wiktionary as a resource for a lemmatization
task, where we want to determine a lemma for a
given inflected form. For each lemma, Wiktionary
lists multiple inflected forms. As outlined in sec-
tion 3, we have parsed the inflected forms for each
lemma. For our lemmatization task, we inverse

6http://www.iwnlp.com

this mapping to retrieve a list of possible lem-
mas for a given inflection, hence our project name
IWNLP. For example, we use the information pre-
sented in Table 1 to retrieve Türme 7→ Turm. For
each lemma l in Wiktionary, we have also added
a mapping l 7→ l. Our mapping will also be avail-
able via download.

It is possible, that an inflected form maps to
more than one lemma. For instance, the word
Kohle maps to Kohle (coal) and Kohl (cabbage).
In total, our mapping contains 2035 words, which
map to more than one lemma.

With this paper, we want to evaluate how good
Wiktionary performs in a lemmatization task. Ad-
ditionally, we want to validate our assumption,
that by first looking up word forms and their lem-
mas in Wiktionary, we should be able to improve
the performance of existing software for lemmati-
zation.

Therefore, we evaluate IWNLP and existing
software on three German corpora, which list
words and their lemmas: TIGER Corpus (Brants
et al., 2004), Hamburg Dependency Treebank
(HDT) (Foth et al., 2014) and TüBa-D/Z (Telljo-
hann et al., 2012) release 9.1. The TIGER Cor-
pus consists of 50472 sentences from the German
newspaper Frankfurter Rundschau. The Hamburg
Dependency Treebank (part A) contains 101981
sentences from the German IT news site Heise on-
line. The TüBa-D/Z corpus comprises of 85358
sentences from the newspaper die tageszeitung
(taz). Each word in these corpora is listed with its
part-of-speech tag from the STTS tagset (Schiller
et al., 1999). We evaluate the lemmatization for
nouns (POS tag NN), verbs (POS tags V*) and ad-
jectives (POS tags ADJA and ADJD). Due to the
low amount of different articles and pronouns in
the German language, we ignore them in our eval-
uation.

In our experiments, we look up the nouns, verbs
and adjectives from each corpus in IWNLP. If we
map a word form to more than one lemma in
IWNLP, we treat this case as if there would be no
entry for this particular word form in IWNLP. The
same policy is applied in all of our experiments.
We preserve case sensitivity, which worsens our
results slightly. In a modification, that we name
keep, we assume that a word w will be its own
lemma, if w does not have an entry in the map-
ping. IWNLP is compared with a mapping7 ex-

7http://www.danielnaber.de/morphologie/index en.html
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Method
TIGER Corpus TüBa-D/Z HDT

Noun Verb Adj Noun Verb Adj Noun Verb Adj
IWNLP 0,734 0,837 0,633 0,720 0,809 0,567 0,607 0,864 0,613
IWNLP + keep 0,894 0,854 0,692 0,897 0,827 0,650 0,647 0,882 0,699
Morphy 0,196 0,713 0,531 0,181 0,671 0,490 0,163 0,675 0,475
Morphy + keep 0,857 0,962 0,763 0,860 0,916 0,744 0,619 0,963 0,735
Mate Tools — — — 0,926 0,927 0,852 0,639 0,971 0,712
TreeTagger 0,860 0,974 0,867 0,848 0,930 0,832 0,611 0,977 0,687
IWNLP + Mate Tools — — — 0,943 0,929 0,841 0,653 0,976 0,751
Morphy + Mate Tools — — — 0,918 0,932 0,837 0,627 0,974 0,744
IWNLP + TreeTagger 0,888 0,969 0,869 0,879 0,927 0,795 0,641 0,973 0,724
Morphy + TreeTagger 0,859 0,970 0,810 0,843 0,926 0,787 0,602 0,968 0,713

Table 2: Lemmatization accuracy for nouns, verbs and adjectives in all three corpora

tracted from Morphy (Lezius et al., 1998), a tool
for morphological analysis.

For our comparison with existing software, that
can be used for lemmatization, we have chosen
Mate Tools (Björkelund et al., 2010) and Tree-
Tagger (Schmid, 1994), which both accept token-
based input.

The results of our experiments are shown in Ta-
ble 2. In a direct comparison between IWNLP and
Morphy, IWNLP outperforms Morphy in the ba-
sic variant in all POS tags across all corpora. With
the modification keep, the results of IWNLP and
Morphy improve. IWNLP + keep is still superior
for nouns, but Morphy + keep achieves better re-
sults for verbs and adjectives. The results from
Mate Tools on the TIGER Corpus are excluded
from Table 2 because Mate Tools was trained on
the TIGER Corpus and, therefore, cannot be eval-
uated on it. The direct comparison of Mate Tools
and TreeTagger shows that Mate Tools achieves
an accuracy that is at least 2 % better in four of the
six cases. In the other two cases, TreeTagger only
performs slightly better.

For the lemmatization of nouns, IWNLP is able
to improve on the results of Mate Tools and Tree-
Tagger across all three corpora. In total, IWNLP
enhances the results of Mate Tools in five of the
six test cases. Surprisingly, the additional lookup
of word forms in IWNLP and Morphy can impair
the accuracy for verbs and adjectives. In our future
work, we will systematically analyze which words
are responsible for worsening the results, correct
their Wiktionary articles and improve our lookup
in IWNLP.

The overall bad performance for the lemmatiza-
tion of nouns in the HDT corpus can be explained

by the gold lemmas for compound nouns, which
are often defined as the last word in the compound
noun. For instance, HDT defines that Freiheit
(freedom) is the gold lemma for Meinungsfreiheit
(freedom of speech).

5 Conclusion

We have presented IWNLP, a parser for the Ger-
man version of Wiktionary. The current focus of
the parser lies in the extraction of inflected forms.
They have been used to construct a mapping from
inflected forms to lemmas, which can be utilized
in a lemmatization task. We evaluated our IWNLP
lemmatizer on three German corpora. The results
for the lemmatization of nouns show that IWNLP
outperforms existing software on the TIGER Cor-
pus and can improve their results on the TüBa-D/Z
and the HDT corpora. However, we have also dis-
covered that we still need to improve IWNLP to
get better results for the lemmatization of verbs
and adjectives. We will try to resolve the correct
lemma for an inflected form if multiple lemmas
are possible.

Additionally, IWNLP will be extended to parse
hyponyms and hypernyms for nouns. We plan to
compare the use of Wiktionary as thesaurus with
GermaNet (Hamp and Feldweg, 1997).

We expect that the presented results for the
lemmatization task will improve with every new
monthly dump if Wiktionary continues to grow
and improve through a community effort.
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Abstract

Measuring word relatedness is an impor-
tant ingredient of many NLP applications.
Several datasets have been developed in
order to evaluate such measures. The main
drawback of existing datasets is the fo-
cus on single words, although natural lan-
guage contains a large proportion of multi-
word terms. We propose the new TR9856
dataset which focuses on multi-word terms
and is significantly larger than existing
datasets. The new dataset includes many
real world terms such as acronyms and
named entities, and further handles term
ambiguity by providing topical context
for all term pairs. We report baseline
results for common relatedness methods
over the new data, and exploit its magni-
tude to demonstrate that a combination of
these methods outperforms each individ-
ual method.

1 Introduction

Many NLP applications share the need to deter-
mine whether two terms are semantically related,
or to quantify their degree of “relatedness”. De-
veloping methods to automatically quantify term
relatedness naturally requires benchmark data of
term pairs with corresponding human relatedness
scores. Here, we propose a novel benchmark data
for term relatedness, that addresses several chal-
lenges which have not been addressed by previ-
ously available data. The new benchmark data
is the first to consider relatedness between multi–
word terms, allowing to gain better insights re-
garding the performance of relatedness assessment
methods when considering such terms. Second, in
contrast to most previous data, the new data pro-
vides a context for each pair of terms, allowing to
disambiguate terms as needed. Third, we use a

simple systematic process to ensure that the con-
structed data is enriched with “related” pairs, be-
yond what one would expect to obtain by random
sampling. In contrast to previous work, our en-
richment process does not rely on a particular re-
latedness algorithm or resource such as Wordnet
(Fellbaum, 1998), hence the constructed data is
less biased in favor of a specific method. Finally,
the new data triples the size of the largest previ-
ously available data, consisting of 9, 856 pairs of
terms. Correspondingly, it is denoted henceforth
as TR9856. Each term pair was annotated by 10
human annotators, answering a binary question –
related/unrelated. The relatedness score is given as
the mean answer of annotators where related = 1
and unrelated = 0.

We report various consistency measures that
indicate the validity of TR9856. In addition,
we report baseline results over TR9856 for sev-
eral methods, commonly used to assess term–
relatedness. Furthermore, we demonstrate how the
new data can be exploited to train an ensemble–
based method, that relies on these methods as un-
derlying features. We believe that the new TR9856
benchmark, which is freely available for research
purposes, 1 along with the reported results, will
contribute to the development of novel term relat-
edness methods.

2 Related work

Assessing the relatedness between single words
is a well known task which received substantial
attention from the scientific community. Corre-
spondingly, several benchmark datasets exist. Pre-
sumably the most popular among these is the
WordSimilarity-353 collection (Finkelstein et al.,
2002), covering 353 word pairs, each labeled by
13−16 human annotators, that selected a continu-
ous relatedness score in the range 0-10. These hu-

1https://www.research.ibm.com/haifa/
dept/vst/mlta_data.shtml
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man results were averaged, to obtain a relatedness
score for each pair. Other relatively small datasets
include (Radinsky et al., 2011; Halawi et al., 2012;
Hill et al., 2014).

A larger dataset is Stanford’s Contextual Word
Similarities dataset, denoted SCWS (Huang et al.,
2012) with 2,003 word pairs, where each word ap-
pears in the context of a specific sentence. The au-
thors rely on Wordnet (Fellbaum, 1998) for choos-
ing a diverse set of words as well as to enrich
the dataset with related pairs. A more recent
dataset, denoted MEN (Bruni et al., 2014) con-
sists of 3,000 word pairs, where a specific relat-
edness measure was used to enrich the data with
related pairs. Thus, these two larger datasets are
potentially biased in favor of the relatedness al-
gorithm or lexical resource used in their devel-
opment. TR9856 is much larger and potentially
less biased than all these previously available data.
Hence, it allows to draw more reliable conclu-
sions regarding the quality and characteristics of
examined methods. Moreover, it opens the door
for developing term relatedness methods within
the supervised machine learning paradigm as we
demonstrate in Section 5.2.

It is also worth mentioning the existence of re-
lated datasets, constructed with more specific NLP
tasks in mind. For examples, datasets constructed
to assess lexical entailment (Mirkin et al., 2009)
and lexical substitution (McCarthy and Navigli,
2009; Kremer et al., 2014; Biemann, 2013) meth-
ods. However, the focus of the current work is
on the more general notion of term–relatedness,
which seems to go beyond these more concrete re-
lations. For example, the words whale and ocean
are related, but are not similar, do not entail one
another, and can not properly substitute one an-
other in a given text.

3 Dataset generation methodology

In constructing the TR9856 data we aimed to ad-
dress the following issues: (i) include terms that
involve more than a single word; (ii) disambiguate
terms, as needed; (iii) have a relatively high frac-
tion of “related” term pairs; (iv) focus on terms
that are relatively common as opposed to eso-
teric terms; (v) generate a relatively large bench-
mark data. To achieve these goals we defined and
followed a systematic and reproducible protocol,
which is described next. The complete details are
included in the data release notes.

3.1 Defining topics and articles of interest

We start by observing that framing the related-
ness question within a pre-specified context may
simplify the task for humans and machines alike,
in particular since the correct sense of ambigu-
ous terms can be identified. Correspondingly,
we focus on 47 topics selected from Debatabase
2. For each topic, 5 human annotators searched
Wikipedia for relevant articles as done in (Aharoni
et al., 2014). All articles returned by the annota-
tors – an average of 21 articles per topic – were
considered in the following steps. The expectation
was that articles associated with a particular topic
will be enriched with terms related to that topic,
hence with terms related to one another.

3.2 Identifying dominant terms per topic

In order to create a set of terms related to a topic of
interest, we used the Hyper-geometric (HG) test.
Specifically, given the number of sentences in the
union of articles identified for all topics; the num-
ber of sentences in the articles identified for a spe-
cific topic, i.e., in the topic articles; the total num-
ber of sentences that include a particular term, t;
and the number of sentences within the topic ar-
ticles, that include t, denoted x; we use the HG
test to assess the probability p, to observe ≥ x
occurrences of t within sentences selected at ran-
dom out of the total population of sentences. The
smaller p is, the higher our confidence that t is re-
lated to the examined topic. Using this approach,
for each topic we identify all n–gram terms, with
n = 1, 2, 3 , with a p-value ≤ 0.05, after applying
Bonfferroni correction. We refer to this collection
of n–gram terms as the topic lexicon and refer to
n–gram terms as n–terms.

3.3 Selecting pairs for annotation

For each topic, we define Sdef as the set of manu-
ally identified terms mentioned in the topic def-
inition. E.g., for the topic “The use of per-
formance enhancing drugs in professional sports
should be permitted”, Sdef = {“performance en-
hancing drugs”,“professional sports”}. Given the
topic lexicon, we anticipate that terms with a small
p–value will be highly related to terms in Sdef .
Hence, we define Stop,n to include the top 10 n–
terms in the topic lexicon, and add to the dataset
all pairs in Sdef×Stop,n for n = 1, 2, 3. Similarly,
we define Smisc,n to include an additional set of 10

2http://idebate.org/debatabase
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n–terms, selected at random from the remaining
terms in the topic lexicon, and add to the dataset
all pairs in Sdef × Smisc,n. We expect that the av-
erage relatedness observed for these pairs will be
somewhat lower. Finally, we add to the dataset
60 · |Sdef | pairs – i.e., the same number of pairs
selected in the two previous steps – selected at ran-
dom from ∪n,mStop,n × Smisc,m. We expect that
the average relatedness observed for this last set of
pairs will be even lower.

3.4 Relatedness labeling guidelines

Each annotator was asked to mark a pair of terms
as “related”, if she/he believes there is an imme-
diate associative connection between them, and as
“unrelated” otherwise. Although “relatedness” is
clearly a vague notion, in accord with previous
work – e.g., (Finkelstein et al., 2002), we assumed
that human judgments relying on simple intuition
will nevertheless provide reliable and reproducible
estimates. As discussed in section 4, our results
confirm this assumption.

The annotators were further instructed to con-
sider antonyms as related, and to use resources
such as Wikipedia to confirm their understanding
regarding terms they are less familiar with. Fi-
nally, the annotators were asked to disambiguate
terms as needed, based on the pair’s associated
topic. The complete labeling guidelines are avail-
able as part of the data release.

We note that in previous work, given a pair of
words, the annotators were typically asked to de-
termine a relatedness score within the range of 0
to 10. Here, we took a simpler approach, asking
the annotators to answer a binary related/unrelated
question. To confirm that this approach yields sim-
ilar results to previous work we asked 10 annota-
tors to re-label the WS353 data using our guide-
lines – except for the context part. Comparing the
mean binary score obtained via this re-labeling to
the original scores provided for these data we ob-
serve a Spearman correlation of 0.87, suggesting
that both approaches yield fairly similar results.

4 The TR9856 data – details and
validation

The procedure described above led to a collec-
tion of 9, 856 pairs of terms, each associated with
one out of the 47 examined topics. Out of these
pairs, 1, 489 were comprised of single word terms
(SWT) and 8, 367 were comprised of at least one

multi-word term (MWT). Each pair was labeled
by 10 annotators that worked independently. The
binary answers of the annotators were averaged,
yielding a relatedness score between 0 to 1 – de-
noted henceforth as the data score.

Using the notations above, pairs from Sdef ×
Stop,n had an average data score of 0.66; pairs
from Sdef × Smisc,n had an average data score
of 0.51; and pairs from Stop,n × Smisc,m had an
average relatedness score of 0.41. These results
suggest that the intuition behind the pair selection
procedure described in Section 3.3 is correct. We
further notice that 31% of the labeled pairs had
a relatedness score ≥ 0.8, and 33% of the pairs
had a relatedness score ≤ 0.2, suggesting the con-
structed data indeed includes a relatively high frac-
tion of pairs with related terms, as planned.

To evaluate annotator agreement we followed
(Halawi et al., 2012; Snow et al., 2008) and di-
vided the annotators into two equally sized groups
and measured the correlation between the results
of each group. The largest subset of pairs for
which the same 10 annotators labeled all pairs
contained roughly 2,900 pairs. On this subset, we
considered all possible splits of the annotators to
groups of size 5, and for each split measured the
correlation of the relatedness scores obtained by
the two groups. The average Pearson correlation
was 0.80. These results indicate that in spite of the
admitted vagueness of the task, the average anno-
tation score obtained by different sets of annota-
tors is relatively stable and consistent.

Several examples of term pairs and their corre-
sponding dataset scores are given in Table 1. Note
that the first pair includes an acronym – wipo –
which the annotators are expected to resolve to
World Intellectual Property Organization.

4.1 Transitivity analysis

Another way to evaluate the quality and consis-
tency of a term relatedness dataset is by measur-
ing the transitivity of its relatedness scores. Given
a triplet of term pairs (a, b) , (b, c) and (a, c), the
transitivity rule implies that if a is related to b,
and b is related to c then a is related to c. Using
this rule, transitivity can be measured by comput-
ing the relative fraction of pair triplets fulfilling it.
Note that this analysis can be applied only if all
the three pairs exist in the data. Here, we used the
following intuitive transitivity measure: let (a, b),
(b, c), and (a, c), be a triplet of term pairs in the
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Term 1 Term 2 Score
copyright wipo 1.0
grand theft
auto

violent video
games

1.0

video games
sales

violent video
games

0.7

civil rights affirmative
action

0.6

rights public prop-
erty

0.5

nation of is-
lam

affirmative
action

0.1

racial sex discrimi-
nation

0.1

Table 1: Examples of pairs of terms and their as-
sociated dataset scores.

dataset, and let R1, R2, and R3 be their related-
ness scores, respectively. Then, for high values
of R2, R1 is expected to be close to R3. More
specifically, on average, |R3 − R1| is expected to
decrease with R2. Figure 1 shows that this behav-
ior indeed takes place in our dataset. The p-value
of the correlation between mean(|R3 − R1|) and
R2 is ≈ 1e − 10. Nevertheless, the curves of the
WS353 data (both with the original labeling and
with our labeling) do not show this behavior, prob-
ably due to the very few triplet term pairs existing
in these data, resulting with a very poor statistics.
Besides validating the transitivity behavior, these
results emphasize the advantage of the relatively
dense TR9856 data, in providing sufficient statis-
tics for performing this type of analysis.

Figure 1: mean(|R3 −R1|) vs. R2.

5 Results for existing techniques

To demonstrate the usability of the new TR9856
data, we present baseline results of commonly
used methods that can be exploited to predict
term relatedness, including ESA (Gabrilovich and
Markovitch, 2007), Word2Vec (W2V) (Mikolov
et al., 2013) and first–order positive PMI (PMI)
(Church and Hanks, 1990). To handle MWTs, we
used summation on the vector representations of
W2V and ESA. For PMI, we tokenized each MWT
and averaged the PMI of all possible single–word
pairs. For all these methods we used the March
2015 Wikipedia dump and a relatively standard
configuration of the relevant parameters. In ad-
dition, we report results for an ensemble of these
methods using 10-fold cross validation.

5.1 Evaluation measures

Previous experiments on WS353 and other
datasets reported Spearman Correlation (ρ) be-
tween the algorithm predicted scores and the
ground–truth relatedness scores. Here, we also
report Pearson Correlation (r) results and demon-
strate that the top performing algorithm becomes
the worst performing algorithm when switching
between these two correlation measures. In ad-
dition, we note that a correlation measure gives
equal weight to all pairs in the dataset. How-
ever, in some NLP applications it is more impor-
tant to properly distinguish related pairs from un-
related ones. Correspondingly, we also report re-
sults when considering the problem as a binary
classification problem, aiming to distinguish pairs
with a relatedness score ≥ 0.8 from pairs with a
relatedness score ≤ 0.2.

5.2 Correlation results

The results of the examined methods are summa-
rized in Table 2. Note that these methods are not
designed for multi-word terms, and further do not
exploit the topic associated with each pair for dis-
ambiguation. The results show that all methods
are comparable except for ESA in terms of Pear-
son correlation, which is much lower. This suggest
that ESA scores are not well scaled, a property that
might affect applications using ESA as a feature.

Next, we exploit the relatively large size of
TR9856 to demonstrate the potential for using su-
pervised machine learning methods. Specifically,
we trained a simple linear regression using the
baseline methods as features, along with a token

422



Method r ρ

ESA 0.43 0.59
W2V 0.57 0.56
PMI 0.55 0.58

Table 2: Baseline results for common methods.

length feature, that counts the combined number
of tokens per pair, in a 10-fold cross validation
setup. The resulting model outperforms all indi-
vidual methods, as depicted in Table 3.

Method r ρ

ESA 0.43 0.59
W2V 0.57 0.56
PMI 0.55 0.58

Lin. Reg. 0.62 0.63

Table 3: Mean results over 10-fold cross valida-
tion.

5.3 Single words vs. multi-words
To better understand the impact of MWTs, we di-
vided the data into two subsets. If both terms
are SWTs the pair was assigned to the SWP sub-
set; otherwise it was assigned to the MWP sub-
set. The SWP subset included 1, 489 pairs and the
MWP subset comprised of 8, 367 pairs. The ex-
periment in subsection 5.2 was repeated for each
subset. The results are summarized in Table 4. Ex-
cept for the Pearson correlation results of ESA, for
all methods we observe lower performance over
the MWP subset, suggesting that assessing term–
relatedness is indeed more difficult when MWTs
are involved.

Method r ρ
SWP MWP SWP MWP

ESA 0.41 0.43 0.63 0.58
W2V 0.62 0.55 0.58 0.55
PMI 0.63 0.55 0.63 0.59

Table 4: Baseline results for SWP vs. MWP.

5.4 Binary classification results
We turn the task into binary classification task
by considering the 3, 090 pairs with a data score
≥ 0.8 as positive examples, and the 3, 245 pairs
with a data score ≤ 0.2 as negative examples. We
use a 10-fold cross validation to choose an opti-
mal threshold for the baseline methods as well as

to learn a Logistic Regression (LR) classifier, that
further used the token length feature. Again, the
resulting model outperforms all individual meth-
ods, as indicated in Table 5.

Method Mean Error
ESA 0.19
W2V 0.22
PMI 0.21

Log. Reg. 0.18

Table 5: Binary classification results.

6 Discussion

The new TR9856 dataset has several important ad-
vantages compared to previous datasets. Most im-
portantly – it is the first dataset to consider the re-
latedness between multi–word terms; ambiguous
terms can be resolved using a pre–specified con-
text; and the data itself is much larger than previ-
ously available data, enabling to draw more reli-
able conclusions, and to develop supervised ma-
chine learning methods that exploit parts of the
data for training and tuning.

The baseline results reported here for com-
monly used techniques provide initial intrigu-
ing insights. Table 4 suggests that the perfor-
mance of specific methods may change substan-
tially when considering pairs composed of uni-
grams vs. pairs in which at least one term is a
MWT. Finally, our results demonstrate the poten-
tial of supervised–learning techniques to outper-
form individual methods, by using these methods
as underlying features.

In future work we intend to further investigate
the notion of term relatedness by manually label-
ing the type of the relation identified for highly re-
lated pairs. In addition, we intend to develop tech-
niques that aim to exploit the context provided for
each pair, and to consider the potential of more ad-
vanced – and in particular non–linear – supervised
learning methods.
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Abstract

We present a new release of the Para-
phrase Database. PPDB 2.0 includes
a discriminatively re-ranked set of para-
phrases that achieve a higher correlation
with human judgments than PPDB 1.0’s
heuristic rankings. Each paraphrase pair
in the database now also includes fine-
grained entailment relations, word embed-
ding similarities, and style annotations.

1 Introduction

The Paraphrase Database (PPDB) is a collec-
tion of over 100 million paraphrases that was
automatically constructed by Ganitkevitch et al.
(2013). Although it is relatively new, it has been
adopted by a large number of researchers, who
have demonstrated that it is useful for a variety
of natural language processing tasks. It has been
used for recognizing textual entailment (Beltagy
et al., 2014; Bjerva et al., 2014), measuring the
semantic similarity of texts (Han et al., 2013; Ji
and Eisenstein, 2013; Sultan et al., 2014b), mono-
lingual alignment (Yao et al., 2013; Sultan et
al., 2014a), natural language generation (Ganitke-
vitch et al., 2011), and improved lexical embed-
dings (Yu and Dredze, 2014; Rastogi et al., 2015;
Faruqui et al., 2015).

For any given input phrase to PPDB, there are
often dozens or hundreds of possible paraphrases.
There are several interesting research questions
that arise because of the number and variety of
paraphrases in PPDB. How can we distinguish be-
tween correct and incorrect paraphrases? Within
the paraphrase sets, are all of the paraphrases
truly substitutable or do they sometimes exhibit
other types of relationships (like directional en-
tailment)? When the paraphrases share the same
meaning, are there stylistic reasons why we should
choose one versus another (e.g., is one paraphrase
a less formal version of another)?

ranked paraphrases of berries
PPDB 1.0 PPDB 2.0

1. embayments 1. strawberries @
2. strawberries 2. raspberries @
3. racks 3. blueberries @
4. grains 4. blackberries @
5. raspberries 5. fruits A
6. blueberries 6. fruit A
7. fruits 7. beans #
8. fruit 8. grains ∼
9. blackberries 9. seeds #

10. beans 10. kernels #

Figure 1: PPDB 2.0 includes an improved scoring model
for ranking paraphrases. Shown are the top 10 ranked para-
phrases for the word berries according to PPDB 1.0 (left) and
PPDB 2.0 (right). PPDB 2.0 also contains an entailment re-
lation for every pair. These relations capture asymmetries in
the paraphrases, such as the fact that strawberries entails (@)
berries, while fruits is entailed by (A) berries.

In this paper we describe several improvements
to PPDB that address these questions. We release
PPDB version 2.0, incorporating the following im-
provements:

• A completely re-ranked set of paraphrases
that uses a regression model to fit the para-
phrase scores to human judgments of para-
phrase quality. Figure 1 shows the re-ranked
paraphrases for the word berries.

• Each paraphrase pair is automatically labeled
with an explicit entailment relationship. In-
stead of assuming all paraphrases are per-
fectly equivalent, we label some as one direc-
tional entailments (or other entailment types).

• Each paraphrase rule now has new features
that indicate when its application is expected
to result in a change in style.

• Each paraphrase entry in the database now
has an associated word embedding learned
using Multiview Latent Semantic Analysis.
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p(e2|e1) (ρ =0.4144) PPDB 1.0 (ρ =0.4074) W2V (ρ =0.4633) PPDB 2.0 (ρ =0.7130)

Figure 2: Scatterplots of automatic paraphrase scores (vertical axis) versus human scores (horizontal axis) for four ways of
automatically ranking the paraphrases: p(e2|e1) (far left), PPDB 1.0’s heuristic ranking method (middle left), word2vec sim-
ilarity (middle right), and our supervised model for PPDB 2.0 (far right). Our rankings achieve the highest correlation with
human judgements with a Spearman’s ρ of 0.71.

Upon publication of this paper, we will release
PPDB 2.0 along with a set of 26K phrase pairs
annotated with human similarity judgments.

2 Improved rankings of paraphrases

The notion of ranking paraphrases goes back to the
original method that PPDB is based on. Bannard
and Callison-Burch (2005) introduced the bilin-
gual pivoting method, which extracts incarcerated
as a potential paraphrase of put in prison since
they are both aligned to festgenommen in different
sentence pairs in an English-German bitext. Since
incarcerated aligns to many foreign words (in
many languages) the list of potential paraphrases
is long. Paraphrases vary in quality since the align-
ments are automatically produced and noisy. In or-
der to rank the paraphrases, Bannard and Callison-
Burch (2005) define a paraphrase probability in
terms of the translation model probabilities p(f |e)
and p(e|f):

p(e2|e1) ≈
∑

f

p(e2|f)p(f |e1). (1)

Heuristic scoring in PPDB 1.0 Instead of rank-
ing the paraphrases with a single score, Ganitke-
vitch et al. (2013) expanded the set of scores in
PPDB. Each paraphrase rule in PPDB consists of
four components: a phrase (e1), a paraphrase (e2),
a syntactic category (LHS1), and a feature vec-
tor. This feature vector contains 33 scores of para-
phrase quality, which are described in full in the
supplementary material to this paper. The rules in
PPDB 1.0 were scored using an ad-hoc weighting
of seven of these features, given by the following
equation:

1The name LHS is due to the fact that the syntactic cate-
gory comes from the lefthand side of the synchronous CFG
rule used to produce the paraphrase.

1.0 × −log p(e1|e2)
+ 1.0 × −log p(e2|e1)
+ 1.0 × −log p(e1|e2, LHS)
+ 1.0 × −log p(e2|e1, LHS)
+ 0.3 × −log p(LHS|e1)
+ 0.3 × −log p(LHS|e2)
+ 100 × RarityPenalty

where −log p(e2|e1) is the paraphrase proba-
bility computed according to Equation 1 and
RarityPenalty is a real-valued feature that indi-
cates how frequently the paraphrase was observed
in the training data.

This heuristic linear combination of scores was
used to divide PPDB into six increasingly large
sizes– S, M, L, XL, XXL, and XXXL. PPDB-
XXXL contains all of the paraphrase rules and
has the highest recall, but the lowest average pre-
cision. The smaller sizes contain better average
scores but offer lower coverage. Ganitkevitch et
al. (2013) performed a small-scale analysis of how
their heuristic score correlated with human judg-
ments by collecting <2,000 judgments for PPDB
paraphrases of verbs that occurred in Propbank.

Supervised scoring model For this paper, we
rank the paraphrases using a supervised scoring
model. To train the model, we collected human
judgements for 26,455 paraphrase pairs sampled
from PPDB. Each paraphrase pair was judged by 5
people who each assigned a score on a 5-point Lik-
ert scale, as described in Callison-Burch (2008).
These 5 scores were averaged.

We used these human judgments to fit a regres-
sion to the 33 features available in the PPDB 1.0
feature vector, plus an additional 176 new fea-
tures that we developed. Our features included
the cosine similarity of the word embeddings that
we generated for each PPDB phrase (described in
Section 3.3), as well as lexical overlap features,
features derived from WordNet, and distributional

426



similarity features. We weighted the contribution
of these features using ridge regression with its
regularization parameter tuned using cross valida-
tion on the training data.

See the supplemental materials for a complete
description of the features used in our model and
our data collection methodology including inter-
annotator agreement.

2.1 Evaluating the rankings
We evaluate the new rankings in two ways:

• We calculate the correlation of the differ-
ent ways of automatically ranking the para-
phrases against the 26k human judgments
that we collected.

• We compute the goodness (in terms of mean
reciprocal rank and averaged precision) of the
ranked paraphrase lists for 100 phrases drawn
randomly from Wikipedia.

Correlation Figure 2 plots the different auto-
matic paraphrase scores against the 5-point human
judgments for four different ways of ranking the
paraphrases: 1) the original paraphrase probabil-
ity defined by Bannard and Callison-Burch (2005),
2) the heuristic ranking that Ganitkevitch et al.
(2013) defined for PPDB 1.0, 3) the cosine sim-
ilarity of word2vec2 embeddings3, and 4) the new
score predicted by our discriminative model. The
paraphrase probability has a Spearman correlation
of 0.41. The heuristic PPDB 1.0 ranking has a sim-
ilar correlation of ρ = 0.41. The word2vec simi-
larity improves correlation slightly to 0.46. To test
our supervised method, we use cross validation:
in each fold, we hold out 200 phrases along with
all of their associated paraphrases for testing. Our
rankings for PPDB 2.0 dramatically improve cor-
relation with human judgments to ρ = 0.71.

Goodness of the top-ranked paraphrases In
addition to calculating the correlation over the
sample of paraphrases (where the human judg-
ments were taken evenly over the range of
p(e2|e1) values), we also evaluated the full list
of paraphrases as it is likely to be used by re-
searchers who use PPDB. We took a sample of 100
unique phrase types from Wikipedia (constraining
to types which appear in PPDB), and collected hu-
man judgments for their full list of paraphrases.

2https://code.google.com/p/word2vec/
3For phrases, we use the vector of the rarest word as an

approximation of the vector for the phrase.
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P@1 0.742 0.774 0.742 0.914

P@5 0.644 0.678 0.683 0.788

P@10 0.577 0.597 0.634 0.707

Figure 3: Averaged precision of paraphrases lists for 100
phrases randomly drawn from Wikipedia. Curves show pre-
cision @ k for varying values of k, up to 100. Here, “good”
paraphrases are defined as having received an average human
rating ≥ 3.

MRR AP
human rating ≥3 Random 0.56 0.46
(16% of judgments) p(e2|e1) 0.84 0.61

W2V 0.85 0.64
PPDB 1.0 0.86 0.64
PPDB 2.0 0.95 0.72

human rating ≥4 Random 0.34 0.27
(4% of judgments) p(e2|e1) 0.69 0.46

W2V 0.69 0.49
PPDB 1.0 0.70 0.50
PPDB 2.0 0.80 0.59

human rating ≥4.5 Random 0.25 0.20
(1% of judgments) p(e2|e1) 0.46 0.37

W2V 0.46 0.36
PPDB 1.0 0.53 0.42
PPDB 2.0 0.61 0.49

Table 1: Quality of rankings using for the improved PPDB
2.0 score versus the current heuristic score. Both metrics (AP
and MRR) range from 0 to 1 and higher is better. ≥t means
that the statistics are computed by considering a paraphrase
to be “good” if its human judgments averaged ≥t.

We compare the ranking produced by the pro-
posed PPDB 2.0 model against the heuristic PPDB
1.0 ranking in terms of each one’s ability to put
good paraphrases at the top of its list. Figure 3
shows precision curves for the ranked paraphrases
in PPDB 1.0 compared to PPDB 2.0. PPDB 2.0
achieves consistently higher precision, improving
P@1 by 17 points and P@5 by 9 points.

We also analyzed the different rankings when
we varied the criterion that we used for what con-
stitutes a good paraphrase. Table 1 shows how
the averaged precision (AP) and the mean recip-
rocal rank (MRR) change as we vary the human
score for good paraphrases from ≥3 to ≥4.5. De-
pending on the threshold, our PPDB 2.0 ranking
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achieves a 9-12 point improvement in MRR over
the PPDB 1.0 rankings. Similarly, it improves AP
by 7-9 points.

3 Other Additions

In addition to dramatically improving the rankings
of the paraphrases (novel to this publication), our
PPDB 2.0 release adds several automatic annota-
tions created in other research. Every paraphrase
pair now has an entailment relation from Pavlick
et al. (2015), style classifications from Pavlick and
Nenkova (2015), and associated vector embedding
from Rastogi et al. (2015). These are described
briefly below.

3.1 Entailment relations

Although we typically think of paraphrases as
equivalent or as bidirectionally entailing, a sub-
stantial fraction of the phrase pairs in PPDB
exhibit different entailment relations. Figure 1
gives an example of how these relations cap-
ture the range or entailment present in the para-
phrases of berries. We automatically annotate
each paraphrase rule in PPDB with an explicit en-
tailment relation based on natural logic (MacCart-
ney, 2009). These relations include forward entail-
ment/hyponym (@), reverse entailment/hypernym
(A), non-entailing topical relatedness (∼), unre-
latedness (#), and even exclusion/contradiction
(¬). For a complete evaluation of the entailment
classifications, and the prevalence of each type in
PPDB, see Pavlick et al. (2015).

3.2 Style scores

Some of the variation within paraphrase sets can
be attributed to stylistic variations of language.
We automatically induce style information on each
rule in PPDB for two dimensions– complexity and
formality. Table 2 shows some paraphrases of the
end, sorted from most complex to most simple us-
ing these scores. These classifications could be
useful for natural language generation tasks like
text simplification (Xu et al., 2015). A complete
evaluation of these scores is given in Pavlick and
Nenkova (2015).

3.3 Multiview LSA vector embeddings

Recently there has been tremendous interest
in representing words via vector embeddings
(Dhillon et al., 2011; Mikolov et al., 2013; Pen-
nington et al., 2014). Such representations can be

1. the finalization 6. the latter part 11. the final analysis
2. the expiration 7. termination 12. the last
3. the demise 8. goal 13. the finish
4. the completion 9. the close 14. the final part
5. the closing 10. late 15. the last part

Table 2: Some paraphrases of the end, ranked from most
complex to most simple according to the style scores included
in PPDB 2.0.

used to measure word and phrase similarity, pos-
sibly to improve paraphrasing. Multiview Latent
Semantic Analysis (MVLSA) is a state-of-the-art
method for modeling word similarities. MVLSA
can incorporate an arbitrary number of data views,
such as monolingual signals, bilingual signals, and
even signals from other embeddings. PPDB 2.0
contains new similarity features based on MVLSA
embeddings for all phrases. A complete discus-
sion is given in Rastogi et al. (2015).

4 Related Work

The most closely related work to our super-
vised re-ranking of PPDB is work by Zhao et
al. (2008) and Malakasiotis and Androutsopou-
los (2011). Zhao et al. (2008) improved Bannard
and Callison-Burch (2005)’s paraphrase probabil-
ity by converting it into log-linear model inspired
by machine translation, allowing them to incorpo-
rate a variety of features. Malakasiotis and An-
droutsopoulos (2011) developed a similar model
trained on human judgements. Both efforts ap-
ply their model to natural language generation by
paraphrasing full sentences. We apply our model
to the sub-sentential paraphrases directly, in order
to improve the quality of the Paraphrase Database.

Also related is work by Chan et al. (2011) which
reranked bilingually-extracted paraphrases using
monolingual distributional similarities, but did not
use a supervised model. Work that is relevant
to our classification of semantic entailment types
to each paraphrase, includes learning directional-
ity of inference rules (Bhagat et al., 2007; Berant
et al., 2011) and learning hypernyms rather than
paraphrases (Snow et al., 2004). Our style anno-
tations are related to Xu et al. (2012)’s efforts at
learning stylistic paraphrases. Our word embed-
dings additions to the paraphrase database are re-
lated to many current projects on that topic, in-
cluding projects that attempt to customize embed-
dings to lexical resources (Faruqui et al., 2015).
However, the Rastogi et al. (2015) embeddings in-
cluded here were shown to be state-of-the art in
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predicting human judgements.

5 Conclusion

We release PPDB 2.0 (http://paraphrase.
org/#/download). The resource includes
dramatically improved paraphrase rankings, ex-
plicit entailment relations, style information, and
state-of-the-art distributional similarity measures
for each paraphrase rule. The 2.0 release con-
tains 100m+ paraphrases, and 26k manually rated
phrase pairs, which will facilitate further research
in modeling semantic similarity.
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Abstract

Identifying the type of relationship be-
tween words provides a deeper insight into
the history of a language and allows a bet-
ter characterization of language related-
ness. In this paper, we propose a com-
putational approach for discriminating be-
tween cognates and borrowings. We show
that orthographic features have discrimi-
native power and we analyze the underly-
ing linguistic factors that prove relevant in
the classification task. To our knowledge,
this is the first attempt of this kind.

1 Introduction

Natural languages are living eco-systems. They
are subject to continuous change due, in part, to
the natural phenomena of language contact and
borrowing (Campbell, 1998). According to Hall
(1960), there is no such thing as a “pure language”
– a language “without any borrowing from a for-
eign language”. Although admittedly regarded
as relevant factors in the history of a language
(McMahon et al., 2005), borrowings bias the ge-
netic classification of the languages, characteriz-
ing them as being closer than they actually are
(Minett and Wang, 2003). Thus, the need for
discriminating between cognates and borrowings
emerges. Heggarty (2012) acknowledges the ne-
cessity and difficulty of the task, emphasizing the
role of the “computerized approaches”.

In this paper we address the task of automati-
cally distinguishing between borrowings and cog-
nates: given a pair of words, the task is to de-
termine whether one is a historical descendant of
the other, or whether they both share a common
ancestor. A borrowing (also called loanword), is
defined by Campbell (1998) as a “lexical item (a
word) which has been ‘borrowed’ from another
language, a word which originally was not part of

the vocabulary of the recipient language but was
adopted from some other language and made part
of the borrowing language’s vocabulary”. The no-
tion of cognate is much more relaxed, and vari-
ous NLP tasks and applications use different def-
initions of the cognate pairs. In some situations,
cognates and borrowings are considered together,
and are referred to as historically connected words
(Kessler, 2001) or denoted by the term correlates
(Heggarty, 2012; McMahon et al., 2005). In some
tasks, such as statistical machine translation (Kon-
drak et al., 2003) and sentence alignment, or when
studying the similarity or intelligibility of the lan-
guages, cognates are seen as words that have sim-
ilar spelling and meaning, their etymology being
completely disregarded. However, in problems
of language classification, distinguishing cognates
from borrowings is essential. Here, we account
for the etymology of the words, and we adopt the
following definition: two words form a cognate
pair if they share a common ancestor and have
the same meaning. In other words, they derive di-
rectly from the same word, have a similar meaning
and, due to various (possibly language-specific)
changes across time, their forms might differ.

2 Related Work

In a natural way, one of the most investigated
problems in historical linguistics is to determine
whether similar words are related or not (Kondrak,
2002). Investigating pairs of related words is very
useful not only in historical and comparative lin-
guistics, but also in the study of language relat-
edness (Ng et al., 2010), phylogenetic inference
(Atkinson et al., 2005) and in identifying how and
to what extent languages changed over time or in-
fluenced each other.

Most studies in this area focus on automatically
identifying pairs of cognates. For measuring the
orthographic or phonetic proximity of the cog-
nate candidates, string similarity metrics (Inkpen
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et al., 2005; Hall and Klein, 2010) and algo-
rithms for string alignment (Delmestri and Cris-
tianini, 2010) have been applied, both in cognate
detection (Koehn and Knight, 2000; Mulloni and
Pekar, 2006; Navlea and Todirascu, 2011) and in
cognate production (Beinborn et al., 2013; Mul-
loni, 2007). Minett and Wang (2003) focus on
identifying borrowings within a family of genet-
ically related languages and propose, to this end,
a distance-based and a character-based technique.
Minett and Wang (2005) address the problem of
identifying language contact, building on the idea
that borrowings bias the lexical similarities among
genetically related languages.

According to the regularity principle, the dis-
tinction between cognates and borrowings benefits
from the regular sound changes that generate reg-
ular phoneme correspondences in cognates (Kon-
drak, 2002). In turn, sound correspondences are
represented, to a certain extent, by alphabetic char-
acter correspondences (Delmestri and Cristianini,
2010).

3 Our Approach

In light of this, we investigate whether cognates
can be automatically distinguished from borrow-
ings based on their orthography. More specifically,
our task is as follows: given a pair of words in two
different languages (x, y), we want to determine
whether x and y are cognates or if y is borrowed
from x (in other words, x is the etymon of y).

Our starting point is a methodology that has
previously proven successful in discriminating be-
tween related and unrelated words (Ciobanu and
Dinu, 2014b). Briefly, the method comprises the
following steps:

1) Aligning the pairs of related words using a
string alignment algorithm;

2) Extracting orthographic features from the
aligned words;

3) Training a binary classifier to discriminate
between the two types of relationship.

To align the pairs of related words, we em-
ploy the Needleman-Wunsch global alignment al-
gorithm (Needleman and Wunsch, 1970), which is
equivalent to the weighted edit distance algorithm.
We consider words as input sequences and we use
a very simple substitution matrix1, which assigns

1In our future work, we intend to also experiment with
more informed language-specific substitution matrices.

Lang. Cognates Borrowings
len1 len2 edit len1 len2 edit

IT-RO 7.95 8.78 0.26 7.58 8.41 0.29
ES-RO 7.91 8.33 0.26 5.78 6.14 0.52
PT-RO 7.99 8.35 0.28 5.35 5.42 0.52
TR-RO 7.35 6.88 0.31 6.49 6.09 0.44

Table 2: Statistics for the dataset of related words.
Given a pair of languages (L1, L2), the len1 and
len2 columns represent the average word length of
the words in L1 and L2. The edit column rep-
resents the average normalized edit distance be-
tween the words. The values are computed only
on the training data, to keep the test data unseen.

equal scores to all substitutions, disregarding dia-
critics (e.g., we ensure that e and è are matched).
As features, we use characters n-grams extracted
from the alignment2. We mark word boundaries
with $ symbols. For example, the Romanian word
funcţie (meaning function) and its Spanish cognate
pair función are aligned as follows:

$ f u n c ţ i e - $
$ f u n c - i ó n $

The features for n = 2 are:

$f�$f, fu�fu, un�un, nc�nc, cţ�c-,
ţi�-i, ie�ió, e-�ón, -$�n$.

For the prediction task, we experiment with
two models, Naive Bayes and Support Vector Ma-
chines. We extend the method by introducing ad-
ditional linguistic features and we conduct an anal-
ysis on their predictive power.

4 Experiments and Results

In this section we present and analyze the experi-
ments we run for discriminating between cognates
and borrowings.

4.1 Data

Our experiments revolve around Romanian, a Ro-
mance language belonging to the Italic branch
of the Indo-European language family. It is sur-
rounded by Slavic languages and its relationship
with the big Romance kernel was difficult. Its ge-
ographic position, at the North of the Balkans, put

2While the original methodology proposed features ex-
tracted around mismatches in the alignment, we now compare
two approaches: 1) features extracted around mismatches,
and 2) features extracted from the entire alignment. The latter
approach leads to better results, as measured on the test set.
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Lang. Borrowings Cognates
IT-RO baletto → balet (ballet) vittoria - victorie (victory) ↑ victoria (LAT)
PT-RO selva → selvă(selva) instinto - instinct (instinct) ↑ instinctus (LAT)
ES-RO machete → macetă (machete) castillo - castel (castle) ↑ castellum (LAT)
TR-RO tütün → tutun (tobacco) aranjman - aranjament (arrangement) ↑ arrangement (FR)

Table 1: Examples of borrowings and cognates. For cognates we also report the common ancestor.

it in contact not only with the Balkan area, but also
with the vast majority of Slavic languages. Polit-
ical and administrative relationships with the Ot-
toman Empire, Greece (the Phanariot domination)
and the Habsburg Empire exposed Romanian to
a wide variety of linguistic influences. We apply
our method on four pairs of languages extracted
from the dataset proposed by Ciobanu and Dinu
(2014c):

• Italian - Romanian (IT-RO);

• Portuguese - Romanian (PT-RO);

• Spanish - Romanian (ES-RO);

• Turkish - Romanian (TR-RO).

For the first three pairs of languages, which
are formed of sister languages3, most cognate
pairs have a Latin common ancestor, while for the
fourth pair, formed of languages belonging to dif-
ferent families (Romance and Turkic), most of the
cognate pairs have a common French etymology,
and date back to the end of the 19th century, when
both Romanian and Turkish borrowed massively
from French. In Table 1 we provide examples of
borrowings and cognates.

The dataset contains borrowings4 and cognates
that share a common ancestor. The words (and in-
formation about their origins) were extracted from
electronic dictionaries and their relationships were
determined based on their etymology. We use a
stratified dataset of 2,600 pairs of related words
for each pair of languages. In Table 2 we provide
an initial analysis of our dataset. We report statis-
tics regarding the length of the words and the edit
distance between them. The difference in length
between the related words shows what operations
to expect when aligning the words. Romanian
words are almost in all situations shorter, in av-
erage, than their pairs. For TR-RO len1 is higher

3Sister languages are “languages which are related to one
another by virtue of having descended from the same com-
mon ancestor (proto-language)” (Campbell, 1998).

4Romanian is always the recipient language in our dataset
(i.e., the language that borrowed the words).

than len2, so we expect more deletions for this pair
of languages. The edit columns show how much
words vary from one language to another based on
their relationship (cognates or borrowings). For
IT-RO both distances are small (0.26 and 0.29), as
opposed to the other languages, where there is a
more significant difference between the two (e.g.,
0.26 and 0.52 for ES-RO). The small difference
for IT-RO might make the discrimination between
the two classes more difficult.

4.2 Baselines
Given the initial analysis presented above, we
hypothesize that the distance between the words
might be indicative of the type of relationship
between them. Previous studies (Inkpen et al.,
2005; Gomes and Lopes, 2011) show that related
and non-related words can be distinguished based
on the distance between them, but a finer-grained
task, such as determining the type of relationship
between the words, is probably more subtle. We
compare our method with two baselines:

• A baseline which assigns a label based on the
normalized edit distance between the words:
given a test instance pair word1 - word2, we
subtract the average normalized edit distance
between word1 and word2 from the aver-
age normalized edit distance of the cognate
pairs and from the average normalized edit
distance between the borrowings and their et-
ymons (computed on the training set; see Ta-
ble 2), and assign the label which yields a
smaller difference (in absolute value). In case
of equality, the label is chosen randomly.

• A decision tree classifier, following the strat-
egy proposed by Inkpen et al. (2005): we
use the normalized edit distance as single fea-
ture, and we fit a decision tree classifier with
the maximum tree depth set to 1. We per-
form 3-fold cross-validation in order to se-
lect the best threshold for discriminating be-
tween borrowings and cognates. Using the
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best threshold selected for each language, we
further assign one of the two classes to the
pairs of words in our test set.

4.3 Task Setup

We experiment with Naive Bayes and Support
Vector Machines (SVMs) to learn orthographic
changes. We put our system together using the
Weka5 workbench (Hall et al., 2009). For SVM,
we employ the radial basis function kernel (RBF)
and we use the wrapper provided by Weka for
LibSVM (Chang and Lin, 2011). For each lan-
guage pair, we split the dataset in two stratified
subsets, for training and testing, with a 3:1 ra-
tio. We experiment with different values for the
n-gram size (n ∈ {1, 2, 3}) and we perform grid
search and 3-fold cross validation over the train-
ing set in order to optimize hyperparameters c and
γ for SVM. We search over {1, 2, ..., 10} for c and
over {10−2, 10−1, 100, 101, 102} for γ.

4.4 Results Analysis

Table 3 and Table 4 show the results of our ex-
periment. The two baselines produce comparable
results. For all pairs of languages, our method sig-
nificantly improves over the baselines (99% con-
fidence level)6 with values between 7% and 29%
for the F1 score, suggesting that the n-grams ex-
tracted from the alignment of the words are bet-
ter indicators of the type of relationship than the
edit distance between them. The best results are
obtained for TR-RO, with an F1 score of 92.1,
followed closely by PT-RO with 90.1 and ES-RO

with 85.5. These results show that, for these pairs
of languages, the orthographic cues are different
with regard to the relationship between the words.
For IT-RO we obtain the lowest F1 score, 69.0.

In this experiment, we know beforehand that
there is a relationship between the words, and our
aim is to identify the type of relationship. How-
ever, in many situations this kind of a-priori in-
formation is not available. In a real scenario, we
would have either to add an intermediary clas-
sifier for discriminating between related and un-
related words, or to discriminate between three
classes: cognates, borrowings, and unrelated. We
augment our dataset with unrelated words (deter-
mined based on their etymology), building a strat-

5www.cs.waikato.ac.nz/ml/weka
6All the statistical significance tests reported in this paper

are performed on 1,000 iterations of paired bootstrap resam-
pling (Koehn, 2004).

Lang. Baseline #1 Baseline #2
P R F1 P R F1

IT-RO 50.7 50.7 50.7 64.4 54.5 45.0
PT-RO 79.3 79.0 79.2 80.1 80.0 80.0
ES-RO 78.6 78.4 78.5 78.6 78.5 78.4
TR-RO 61.1 61.0 61.1 62.5 59.8 57.6

Table 3: Weighted average precision (P ), recall
(R) and F1 score (F1) for automatic discrimina-
tion between cognates and borrowings.

ified dataset annotated with three classes, and we
repeat the previous experiment. The performance
decreases7, but the results are still significantly
better than chance (99% confidence level).

4.5 Linguistic Factors

To gain insight into the factors with high predictive
power, we perform several further experiments.

Part of speech. We investigate whether adding
knowledge about the part of speech of the
words leads to performance improvements.
Verbs, nouns, adverbs and adjectives have
language-specific endings, thus we assume that
part of speech might be useful when learning
orthographic patterns. We obtain POS tags from
the DexOnline8 machine-readable dictionary.
We employ the POS feature as an additional
categorical feature for the learning algorithm. It
turns out that, except for PT-RO (F1 score 92.3),
the additional POS feature does not improve the
performance of our method.

Syllabication. We analyze whether the system
benefits from using the syllabified form of the
words as input to the alignment algorithm. We
are interested to see if marking the boundaries be-
tween the syllables improves the alignment (and,
thus, the feature extraction). We obtain the syl-
labication for the words in our dataset from the
RoSyllabiDict dictionary (Barbu, 2008) for Roma-
nian words and several available Perl modules9 for
the other languages. For PT-RO and ES-RO the
F1 score increases by about 1%, reaching a value
of 93.4 for the former and 86.7 for the latter.

7Weighted average F1 score on the test set for SVM:
IT-RO 63.8, PT-RO 77.6, ES-RO 74.0, TR-RO 86.1.

8www.dexonline.ro
9Lingua::ID::Hyphenate modules where ID ∈ {IT, PT,

ES, TR}, available on the Comprehensive Perl Archive Net-
work: www.cpan.org.
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Lang.
Naive Bayes SVM

P R F1 n P R F1 n c γ

IT-RO 68.6 68.2 68.3 3 69.2 69.1 69.0 3 10 0.10

PT-RO 92.6 91.7 92.1 3 90.1 90.0 90.0 3 3 0.10

ES-RO 85.3 84.5 84.9 3 85.7 85.5 85.5 2 2 0.10

TR-RO 89.7 89.4 89.5 3 90.3 90.2 90.1 3 6 0.01

Table 4: Weighted average precision (P ), recall (R), F1 score (F1) and optimal n-gram size for automatic
discrimination between cognates and borrowings. For SVM we also report the optimal values for c and γ.

Consonants. We examine the performance of
our system when trained and tested only on the
aligned consonant skeletons of the words (i.e., a
version of the words where vowels are discarded).
According to Ashby and Maidment (2005), conso-
nants change at a slower pace than vowels across
time; while the former are regarded as reference
points, the latter are believed to carry less infor-
mation useful for identifying the words (Gooskens
et al., 2008). The performance of the system
decreases when vowels are removed (95% confi-
dence level). We also train and test the decision
tree classifier on this version of the dataset, and
its performance is lower in this case as well (95%
confidence level), indicating that, for our task, the
information carried by the vowels is helpful.

Stems. We repeat the first experiment using
stems as input, instead of lemmas. What we seek
to understand is whether the aligned affixes are in-
dicative of the type of relationship between the
words. We use the Snowball Stemmer10 and we
find that the performance decreases when stems
are used instead of lemmas. Performing a χ2 fea-
ture ranking on the features extracted from mis-
matches in the alignment of the related words re-
veals further insight into this matter: for all pairs
of languages, at least one feature containing the $
character (indicating the beginning or the end of a
word) is ranked among the 10 most relevant fea-
tures, and over 50 are ranked among the 500 most
relevant features. This suggests that prefixes and
suffixes (usually removed by the stemmer) vary
with the type of relationship between the words.

Diacritics. We explore whether removing dia-
critics influences the performance of the system.
Many words have undergone transformations by
the augmentation of language-specific diacritics

10http://snowball.tartarus.org

when entering a new language (Ciobanu and Dinu,
2014a). For this reason, we expect diacritics to
play a role in the classification task. We observe
that, when diacritics are removed, the F1 score
on the test set is lower in almost all situations.
Analyzing the ranking of the features extracted
from mismatches in the alignment provides even
stronger evidence in this direction: for all pairs of
languages, more than a fifth of the top 500 features
contain diacritics.

5 Conclusions

In this paper, we propose a computational method
for discriminating between cognates and borrow-
ings based on their orthography. Our results show
that it is possible to identify the type of rela-
tionship with fairly good performance (over 85.0
F1 score) for 3 out of the 4 pairs of languages we
investigate. Our predictive analysis shows that the
orthographic cues are different for cognates and
borrowings, and that underlying linguistic factors
captured by our model, such as affixes and diacrit-
ics, are indicative of the type of relationship be-
tween the words. Other insights, such as the syl-
labication or the part of speech of the words, are
shown to have little or no predictive power. We
intend to further account for finer-grained char-
acteristics of the words and to extend our exper-
iments to more languages. The method we pro-
pose is language-independent, but we believe that
incorporating language-specific knowledge might
improve the system’s performance.
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Abstract

We describe the first version of the Me-
dia Frames Corpus: several thousand news
articles on three policy issues, annotated
in terms of media framing. We motivate
framing as a phenomenon of study for
computational linguistics and describe our
annotation process.

1 Introduction

An important part of what determines how infor-
mation will be interpreted by an audience is how
that information is framed. Framing is a phe-
nomenon largely studied and debated in the social
sciences, where, for example, researchers explore
how news media shape debate around policy is-
sues by deciding what aspects of an issue to em-
phasize, and what to exclude. Theories of fram-
ing posit that these decisions give rise to thematic
sets of interrelated ideas, imagery, and arguments,
which tend to cohere and persist over time.

Past work on framing includes many examples
of issue-specific studies based on manual content
analysis (Baumgartner et al., 2008; Berinsky and
Kinder, 2006). While such studies reveal much
about the range of opinions on an issue, they do
not characterize framing at a level of abstraction
that allows comparison across social issues.

More recently, there have also been a handful of
papers on the computational analysis of framing
(Nguyen et al., 2015; Tsur et al., 2015; Baumer et
al., 2015). While these papers represent impres-
sive advances, they are still focused on the prob-
lem of automating the analysis of framing along a
single dimension, or within a particular domain.

We propose that framing can be understood as a
general aspect of linguistic communication about
facts and opinions on any issue. Empirical assess-
ment of this hypothesis requires analyzing framing

in real-world media coverage. To this end, we con-
tribute an initial dataset of annotated news articles,
the Media Frames Corpus (version 1). These an-
notations are based on 15 general-purpose meta-
frames (here called “framing dimensions”) out-
lined below, which are intended to subsume all
specific frames that might be encountered on any
issue of public concern.

Several features of this annotation project dis-
tinguish it from linguistic annotation projects fa-
miliar to computational linguists:

• A degree of subjectivity in framing analysis
is unavoidable. While some variation in an-
notations is due to mistakes and misunder-
standings by annotators (and is to be mini-
mized), much variation is due to valid differ-
ences in interpretation (and is therefore prop-
erly preserved in the coding process).
• Annotator skill appears to improve with prac-

tice; our confidence in the quality of the an-
notations has grown in later phases of the
project, and this attribute is not suppressed in
our data release.

All of the annotations and metadata in this cor-
pus are publicly available, along with tools to ac-
quire the original news articles usable by those
who have an appropriate license to the texts from
their source (Lexis-Nexis).1 This dataset and
planned future extensions will enable computa-
tional linguists and others to develop and empir-
ically test models of framing.

2 What is Framing?

Consider a politically contested issue such as
same-sex marriage. Conflicting perspectives on
this issue compete to attract our attention and in-
fluence our opinions; any communications about

1https://github.com/dallascard/media_
frames_corpus

438



the issue—whether emanating from political par-
ties, activist organizations, or media providers—
will be fraught with decisions about how the issue
should be defined and presented.

In a widely cited definition, Entman (1993) ar-
gues that “to frame is to select some aspects of a
perceived reality and make them more salient in a
communicating text, in such a way as to promote
problem definition, causal interpretation, moral
evaluation, and/or treatment recommendation for
the item described.” Further elaborations have em-
phasized how various elements of framing tend
to align and cohere, eventually being deployed
“packages” which can be evoked through particu-
lar phrases, images, or other synecdoches (Game-
son and Modigliani, 1989; Benford and Snow,
2000; Chong and Druckman, 2007). These may
take the form of simple slogans, such as the war
on terror, or more complex, perhaps unstated, as-
sumptions, such as the rights of individuals, or the
responsibilities of government. The patterns that
emerge from these decisions and assumptions are,
in essence, what we refer to as framing.2

Traditionally, in the social sciences, framing is
studied by developing an extensive codebook of
frames specific to an issue, reading large num-
bers of documents, and manually annotating them
for the presence of the frames in the codebook
(e.g., Baumgartner et al., 2008; Terkildsen and
Schnell, 1997). Computational linguists therefore
have much to offer in formalizing and automating
the analysis of framing, enabling greater scale and
breadth of application across issues.

3 Annotation Scheme

The goal of our annotation process was to pro-
duce a corpus of examples demonstrating how the
choice of language in a document relates to fram-
ing in a non-issue-specific way. To accomplish
this task, we annotated news articles with a set
of 15 cross-cutting framing dimensions, such as
economics, morality, and politics, developed by
Boydstun et al. (2014). These dimensions, sum-
marized in Figure 1, were informed by the fram-
ing literature and developed to be general enough
to be applied to any policy issue.

For each article, annotators were asked to iden-
tify any of the 15 framing dimensions present in

2A distinct though related usage, known as “equivalence
framing” in psychology, refers to different phrasings of se-
mantically equivalent expressions (e.g., is an 8-ounce glass
containing 4 ounces of water half empty or half full?).

Economic: costs, benefits, or other financial implications
Capacity and resources: availability of physical, human
or financial resources, and capacity of current systems
Morality: religious or ethical implications
Fairness and equality: balance or distribution of rights,
responsibilities, and resources
Legality, constitutionality and jurisprudence: rights,
freedoms, and authority of individuals, corporations, and
government
Policy prescription and evaluation: discussion of specific
policies aimed at addressing problems
Crime and punishment: effectiveness and implications of
laws and their enforcement
Security and defense: threats to welfare of the individual,
community, or nation
Health and safety: health care, sanitation, public safety
Quality of life: threats and opportunities for the individ-
ual’s wealth, happiness, and well-being
Cultural identity: traditions, customs, or values of a social
group in relation to a policy issue
Public opinion: attitudes and opinions of the general pub-
lic, including polling and demographics
Political: considerations related to politics and politicians,
including lobbying, elections, and attempts to sway voters
External regulation and reputation: international reputa-
tion or foreign policy of the U.S.
Other: any coherent group of frames not covered by the
above categories

Figure 1: Framing dimensions from Boydstun et al. (2014).

the article and to label spans of text which cued
them. Annotators also identified the dominant
framing of the article headline (if present), as well
as for the entire article, which we refer to as the
“primary frame.” Finally, newspaper corrections,
articles shorter than four lines of text, and articles
about foreign countries were marked as irrelevant.
There were no constraints on the length or com-
position of annotated text spans, and annotations
were allowed to overlap. The last framing dimen-
sion (“Other”) was used to categorize any articles
that didn’t conform to any of the other options
(used in < 10% of cases). An example of two in-
dependent annotations of the same article is shown
in Figure 2.

For the initial version of this corpus, three pol-
icy issues were chosen for their expected diver-
sity of framing and their contemporary political
relevance: immigration, smoking, and same-sex
marriage. Lexis-Nexis was used to obtain all arti-
cles matching a set of keywords published by a set
of 13 national U.S. newspapers between the years
1990 and 2012.3 Duplicate and near-duplicate ar-
ticles were removed and randomly selected arti-
cles were chosen for annotation for each issue (see
supplementary material for additional details).

3The immigration articles extend back to 1969, though
there are few before 1980.
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Annotation guidelines for the project are docu-
mented in a codebook, which was used for training
the annotators. The codebook for these issues was
refined in an ongoing manner to include examples
from each issue, and more carefully delineate the
boundaries between the framing dimensions.

4 Annotation Process

Our annotation process reflects the less-than-ideal
circumstances faced by academics requiring con-
tent analysis: relatively untrained annotators, high
turnover, and evolving guidelines. Our process is
delineated into three stages, summarized in Ta-
ble 1 and discussed in detail below. Each stage
involved 14–20-week-long rounds of coding; in
each round, annotators were given approximately
100 articles to annotate, and the combinations of
annotators assigned the same articles were rotated
between rounds. Our annotators were undergrad-
uates students at a U.S. research university, and
a total of 19 worked on this project, with 8 be-
ing involved in more than one stage. The aver-
age number of frames identified in an article varied
from 2.0 to 3.7 across annotators, whereas the av-
erage number of spans highlighted per article var-
ied from 3.4 to 10.0. Additional detail is given in
Table 1 in the supplementary material.

Stage Issue Articles Av. annotators
per article

1 Immigration 4,113 1.2
1 Smoking 4,077 1.2
2 Same-sex marriage 6,298 2.2
3 Immigration 5,549 2.2

Table 1: Summary of the number of articles annotated and
average number of annotators per article

4.1 Stage 1

During the first stage, approximately 4,000 arti-
cles on each of immigration and smoking were an-
notated, with approximately 500 articles in each
group annotated by multiple annotators to mea-
sure inter-annotator agreement. Our goals here
were high coverage and ensuring that the guide-
lines were not too narrowly adapted to any single
issue. Annotators received only minimal feedback
on their agreement levels during this stage.

4.2 Stage 2

In the second stage, annotations shifted to same-
sex marriage articles, again emphasizing general
fit across issues. Beginning in stage 2, each article

[WHERE THE JOBS ARE]Economic
[Critics of illegal immigration can make many
cogent arguments to support the position that
the U.S. Congress and the Colorado legisla-
ture must develop effective and well-enforced
immigration policies that will restrict the
number of people who migrate here legally
and illegally.]Policy prescription
[It’s true that all forms of [immigration ex-
ert influence over our economic and cultural
make-up.]Cultural identity In some ways, im-
migration improves our economy by adding
laborers, taxpayers and consumers, and in
other ways immigration detracts from our
economy by increasing the number of stu-
dents, health care recipients and other ben-
eficiaries of public services.]Economic
[Some economists say that immigrants, le-
gal and illegal, produce a net economic
gain, while others say that they create a net
loss]Economic. There are rational arguments to
support both sides of this debate, and it’s useful
and educational to hear the varying positions.

[WHERE THE JOBS ARE]Economic
[Critics of illegal immigration can make many
cogent arguments to support the position that
the U.S. Congress and the Colorado legisla-
ture must develop effective and well-enforced
immigration policies that will restrict the
number of people who migrate here legally
and illegally.]Public opinion
[It’s true that all forms of immigration ex-
ert influence over our economic and [cultural
make-up.]Cultural identity In some ways, im-
migration improves our economy by adding
laborers, taxpayers and consumers, and in
other ways [immigration detracts from our
economy by increasing the number of stu-
dents, health care recipients and other benefi-
ciaries of public services.]Capacity]Economic
[Some economists say that immigrants, le-
gal and illegal, produce a net economic
gain, while others say that they create a net
loss.]Economic There are rational arguments to
support both sides of this debate, and it’s useful
and educational to hear the varying positions.

Figure 2: Two independent annotations of a 2006 editorial in
the Denver Post. The annotators agree perfectly about which
parts of the article make use of economic framing, but dis-
agree about the first paragraph. Moreover, the second an-
notator identifies an additional dimension (capacity and re-
sources). Although they both identify a reference to cultural
identity, they annotated slightly different spans of text.
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was assigned to at least two annotators, in order
to track inter-annotator agreement more carefully,
and to better capture the subjectivity inherent in
this task. Since the guidelines had become more
stable by this stage, we also focused on identifying
good practices for annotator training. Annotators
were informed of their agreement levels with each
other, and pairs of framing dimensions on which
annotators frequently disagreed were emphasized.
This information was presented to annotators in
weekly meetings.

4.3 Stage 3

The third stage revisited the immigration articles
from stage 1 (plus an additional group of articles),
with the now well-developed annotation guide-
lines. As in the second stage, almost all articles
were annotated by two annotators, working inde-
pendently. More detailed feedback was provided,
including inter-annotator agreement for the use of
each framing dimension anywhere in articles.

During stage 3, for each article where two an-
notators independently disagreed on the primary
frame, the pair met to discuss the disagreement
and attempt to come to a consensus.4 Disagree-
ments continue to arise, however, reflecting the re-
ality that the same article can cue different frames
more strongly for different annotators. We view
these disagreements not as a weakness, but as a
source of useful information about the diversity of
ways in which the same text can be interpreted by
different audiences (Pan and Kosicki, 1993; Rees
et al., 2001).

The proportion of articles annotated with each
framing dimension (averaged across annotators) is
shown in Figure 3.

5 Inter-annotator Agreement

Because our annotation task is complex (select-
ing potentially overlapping text spans and label-
ing them), there is no single comprehensive mea-
sure of inter-annotator agreement. The simplest
aspect of the annotations to compare is the choice
of primary frame, which we measure using Krip-
pendorff’s α (Krippendorff, 2012).5

4A small secondary experiment, described in supplemen-
tary material, was used to test the reliability of this process.

5Krippendorff’s α is similar to Cohen’s κ, but calculates
expected agreement between annotators based on the com-
bined pool of labels provided by all annotators, rather than
considering each annotators’s frequency of use separately.
Moreover, it can be used for more than two annotators and

0.0 0.1 0.2 0.3 0.4 0.5
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Figure 3: Proportion of articles annotated with each of the
framing dimensions (averaging across annotators for each ar-
ticle).

Figure 4 shows the inter-annotator agreement
on the primary frame per round. We observe first
that difficulty varies by issue, with same-sex mar-
riage the most difficult. Annotators do appear to
improve with experience. Agreement on immi-
gration articles in stage 3 are significantly higher
(p < 0.05, permutation test) than agreement on
the same articles in stage 1, even though only one
annotator worked on both stages.6

These results demonstrate that consistent per-
formance can be obtained from different groups
of annotators, given sufficient training. Although
we never obtain perfect agreement, this is not sur-
prising, given that the same sentences can and do
cue multiple types of framing, as illustrated by the
example in Figure 2.

Inter-annotator agreement at the level of indi-
vidually selected spans of text can be assessed us-
ing an extension of Krippendorff’s α (αU ) which
measures disagreement between two spans as the
sum of the squares of the lengths of the parts which
do not overlap.7 As with the more common α
statistic, αU is a chance-corrected agreement met-
ric scaled such that 1 represents perfect agreement
and 0 represents the level of chance. This met-

accommodates missing values. See Passonneau and Carpen-
ter (2014) for additional details.

6Note that this is not a controlled experiment on annota-
tion procedures, but rather a difference observed between two
stages of an evolving process.

7For example, in the example shown in Figure 2, the
amount of disagreement on the two Cultural identity annota-
tions would be the square of the length (in characters) of the
non-overlapping part of the annotations (“immigration exert
influence over our economic and”) which is 502 = 2500.
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Figure 4: Chance-corrected inter-annotator agreement on the
primary frame. Marker size indicates the number of annota-
tions being compared; α = 1 indicates perfect agreement.

ric has been previously recommended for tasks
in computational linguistics that involve unitizing
(Artstein and Poesio, 2008). For a more complete
explanation, see Krippendorff (2004).

The pattern of αU values across rounds is very
similar to that shown in Figure 4, but not surpris-
ingly, average levels of agreement are much lower.
Arguably, this agreement statistic is overly harsh
for our purposes. We do not necessarily expect an-
notators to agree perfectly about where to start and
end each annotated span, or how many spans to
annotate per article, and our codebook and guide-
lines offer relatively little guidance on these low-
level decisions. Nevertheless, it is encouraging
that in all cases, average agreement is greater than
chance. The αU values for all annotated spans of
text (averaged across articles) are 0.16 for immi-
gration (stage 1), 0.23 for tobacco, 0.08 for same-
sex marriage, and 0.20 for immigration (stage 3).

6 Prior Work

Several previous papers in the computer science
literature deal with framing, though usually in a
more restricted sense. Perhaps the most com-
mon approach is to treat the computational anal-
ysis of framing as a variation on sentiment analy-
sis, though this often involves reducing framing to
a binary variable. Various models have been ap-
plied to news and social media datasets with the
goal of identifying political ideology, or “perspec-
tive” (typically on a liberal to conservative scale)
(Ahmed and Xing, 2010; Gentzkow and Shapiro,
2010; Lin et al., 2006; Hardisty et al., 2010; Kle-

banov et al., 2010; Sim et al., 2013; Iyyer et al.,
2014), or “stance” (position for or against an is-
sue) (Walker et al., 2012; Hasan and Ng, 2013).
A related line of work is the analysis of subjec-
tive language or “scientific” language, which has
also been posed in terms of framing (Wiebe et al.,
2004; Choi et al., 2012). While the study of ideol-
ogy, sentiment, and subjectivity are interesting in
their own right, we believe that they fail to cap-
ture the more nuanced nature of framing, which is
often more complex than positive or negative sen-
timent. In discussions of same-sex marriage, for
example, both advocates and opponents may at-
tempt to control whether the issue is perceived as
primarily about politics, legality, or ethics. More-
over, we emphasize that framing is an important
feature of even seemingly neutral or objective lan-
guage.

A different but equally relevant line of work has
focused on text re-use. Leskovec et al. (2009)
perform clustering of quotations and their vari-
ations, uncovering patterns in the temporal dy-
namics of how memes spread through the me-
dia. On a smaller scale, others have examined text
reuse in the development of legislation and the cul-
ture of reprinting in nineteenth-century newspa-
pers (Smith et al., 2013; Smith et al., 2014). While
not the same as framing, identifying this sort of
text reuse is an important step towards analyzing
the “media packages” that social scientists asso-
ciate with framing.

7 Conclusion

Framing is a complex and difficult aspect of lan-
guage to study, but as with so many aspects of
modern NLP, there is great potential for progress
through the use of statistical methods and public
datasets, both labelled and unlabeled. By releas-
ing the Media Frames Corpus, we seek to bring the
phenomenon to the attention of the computational
linguistics community, and provide a framework
that others can use to analyze framing for addi-
tional policy issues. As technology progresses to-
wards ever more nuanced understanding of natural
language, it is important to analyze not just what
is being said, but how, and with what effects. The
Media Frames Corpus enables the next step in that
direction.
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Abstract

We introduce Discriminative BLEU

(∆BLEU), a novel metric for intrinsic
evaluation of generated text in tasks that
admit a diverse range of possible outputs.
Reference strings are scored for quality
by human raters on a scale of [−1, +1]
to weight multi-reference BLEU. In tasks
involving generation of conversational
responses, ∆BLEU correlates reasonably
with human judgments and outperforms
sentence-level and IBM BLEU in terms of
both Spearman’s ρ and Kendall’s τ .

1 Introduction

Many natural language processing tasks involve
the generation of texts where a variety of outputs
are acceptable or even desirable. Tasks with intrin-
sically diverse targets range from machine transla-
tion, summarization, sentence compression, para-
phrase generation, and image-to-text to generation
of conversational interactions. A major hurdle for
these tasks is automation of evaluation, since the
space of plausible outputs can be enormous, and
it is it impractical to run a new human evaluation
every time a new model is built or parameters are
modified.

In Statistical Machine Translation (SMT), the
automation problem has to a large extent been ame-
liorated by metrics such as BLEU (Papineni et al.,
2002) and METEOR (Banerjee and Lavie, 2005)
Although BLEU is not immune from criticism (e.g.,
Callison-Burch et al. (2006)), its properties are well
understood, BLEU scores have been shown to cor-
relate well with human judgments (Doddington,

*The entirety of this work was conducted while at Mi-
crosoft Research.

†Corresponding author: mgalley@microsoft.com

2002; Coughlin, 2003; Graham and Baldwin, 2014;
Graham et al., 2015) in SMT, and it has allowed
the field to proceed.

BLEU has been less successfully applied to non-
SMT generation tasks owing to the larger space
of plausible outputs. As a result, attempts have
been made to adapt the metric. To foster diversity
in paraphrase generation, Sun and Zhou (2012)
propose a metric called iBLEU in which the BLEU

score is discounted by a BLEU score computed be-
tween the source and paraphrase. This solution,
in addition to being dependent on a tunable pa-
rameter, is specific only to paraphrase. In image
captioning tasks, Vendantam et al. (2015), employ
a variant of BLEU in which n-grams are weighted
by tf ·idf. This assumes the availability of a corpus
with which to compute tf ·idf. Both the above can
be seen as attempting to capture a notion of target
goodness that is not being captured in BLEU.

In this paper, we introduce Discriminative BLEU

(∆BLEU), a new metric that embeds human judg-
ments concerning the quality of reference sen-
tences directly into the computation of corpus-level
multiple-reference BLEU. In effect, we push part of
the burden of human evaluation into the automated
metric, where it can be repeatedly utilized.

Our testbed for this metric is data-driven con-
versation, a field that has begun to attract inter-
est (Ritter et al., 2011; Sordoni et al., 2015) as an
alternative to conventional rule-driven or scripted
dialog systems. Intrinsic evaluation in this field
is exceptionally challenging because the semantic
space of possible responses resists definition and is
only weakly constrained by conversational inputs.

Below, we describe ∆BLEU and investigate its
characteristics in comparison to standard BLEU in
the context of conversational response generation.
We demonstrate that ∆BLEU correlates well with
human evaluation scores in this task and thus can
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Figure 1: Example of consecutive utterances of a dialog.

provide a basis for automated training and evalua-
tion of data-driven conversation systems—and, we
ultimately believe, other text generation tasks with
inherently diverse targets.

2 Evaluating Conversational Responses

Given an input message m and a prior conversation
history c, the goal of a response generation
system is to produce a hypothesis h that is both
well-formed and a pertinent response to message
m (example in Fig. 1). We assume that a set of J
references {ri,j} is available for the context ci and
message mi, where i ∈ {1 . . . I} is an index over
the test set. In the case of BLEU,1 the automatic
score of the system output h1 . . . hI is defined as:

BLEU = BP · exp
(∑

n

log pn

)
(1)

with:

BP =

{
1 if η > ρ

e(1−ρ/η) otherwise
(2)

where ρ and η are respectively hypothesis and refer-
ence lengths.2 Then corpus-level n-gram precision
is defined as:

pn =

∑
i

∑
g ∈n-grams(hi)

maxj
{

#g(hi, ri,j)
}∑

i

∑
g ∈n-grams(hi)

#g(hi)

where #g(·) is the number of occurrences of
n-gram g in a given sentence, and #g(u, v) is a
shorthand for min

{
#g(u),#g(v)

}
.

It has been demonstrated that metrics such as
BLEU show increased correlation with human judg-
ment as the number of references increases (Przy-
bocki et al., 2008; Dreyer and Marcu, 2012). Unfor-
tunately, gathering multiple references is difficult
in the case of conversations. Data gathered from
naturally occurring conversations offer only one
response per message. One could search (c,m)
pairs that occur multiple times in conversational
data with the hope of finding distinct responses,
but this solution is not feasible. Indeed, the larger

1Unless mentioned otherwise, BLEU refers to the original
IBM BLEU as first described in (Papineni et al., 2002).

2In the case of multiple references, BLEU selects the refer-
ence whose length is closest to that of the hypothesis.

the context, the less likely we are to find pairs that
match exactly. Furthermore, while it is feasible to
have writers create additional references when the
downstream task is relatively unambiguous (e.g.,
MT), this approach is more questionable in the
case of more subjective tasks such as conversa-
tional response generation. Our solution is to mine
candidate responses from conversational data and
have judges rate the quality of these responses. Our
new metric thus naturally incorporates qualitative
weights associated with references.

3 Discriminative BLEU

Discriminative BLEU, or ∆BLEU, extends BLEU

by exploiting human qualitative judgments wi,j ∈
[−1,+1] associated with references ri,j . It is dis-
criminative in that it both rewards matches with
“good” reference responses (w > 0) and penalizes
matches with “bad” reference responses (w < 0).
Formally, ∆BLEU is defined as in Equation 1 and 2,
except that pn is instead defined as:∑
i

∑
g ∈n-grams(hi)

maxj:g ∈ ri,j
{
wi,j ·#g(hi, ri,j)

}∑
i

∑
g ∈n-grams(hi)

maxj
{
wi,j ·#g(hi)

}
In a nutshell, this is saying that each n-gram match
is weighted by the highest scoring reference in
which it occurs, and this weight can sometimes be
negative. To ensure that the denominator is never
zero, we assume that, for each i there exists at least
one reference ri,j whose weight wi,j is strictly pos-
itive. In addition to its discriminative nature, this
metric has two interesting properties. First, if all
weights wi,j are equal to 1, then the metric score is
identical to BLEU. As such, ∆BLEU admits BLEU

as a special case. Second, as with IBM BLEU, the
maximum theoretical score is also 1. If the hy-
pothesis happens to match the highest weighted
reference for each sentence, the numerator equals
the denominator and the metric score becomes 1.
While we find this metric particularly appropriate
for response generation, the metric makes no as-
sumption on the task and is applicable to other text
generation tasks such as MT and image captioning.

4 Data

4.1 Multi-reference Datasets
To create the multi-reference BLEU dev and test
sets used in this study, we adapted and extended the
methodology of Sordoni et al. (2015). From a cor-
pus of 29M Twitter context-message-response con-
versational triples, we randomly extracted approxi-
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Context c Message m Response r Score
i was about to text you and my two cousins got
excited cause they thought you were “rihanna”

aww, i can imagine their disappointment they were very disappointed!!! 0.6

yes. my ex-boyfriend, killed my cat. like i say,
it was the start of a bad time...

i can imagine! yes. luckily, the whole thing feels very much of
the past now.

0.8

its good.. for some reason i can’t name stand
out tracks but i’ve been playing it since it
dropped

i can imagine, banks doesn’t disappoint na this is anything but a disappointment.. 0.6

at my lil cousins dancing to “dance for you”.
these kids are a mess.

lmaoo i can imagine. they were belly rolling, filarious. 0.4

what’s sick about it?? do you know how long it
is?? no so how is it sick?

i can imagine it your imagination is wrong, very wrong at that. -0.1

it’s saad oh yeah the snow is very beautiful yeah i can imagine the weather in russia is very cool. -0.7

walking outside with lightning and thunder
sounds 10x scarier than when you ’re inside

play in the rain haha i love listening to thunder! i would def be
out there if i wasn’t so sleepy

0.9

also rain(s) no play, rain(s) i’m scared of the thunder 0.5

no beach or running today, stupid weather. lets play in the rain. “yolo” isnt that the
vibe??

i would but its thundering to 0.2

then its raining... go outside and play in the rain lol1 if i had a buddy to go play in it with , i would .
it’s no fun alone

0.1

my only official day off this week... now what
to do

play in the rain! yeah right haha. i wan na go swimming 0.1

now playing silence nice music i ’m playing rain ohh i love that song -0.2

yeah it is, i just dont see the point of the first 2
laps

me either it would be sick if there was like 5
laps

exactly and if there were more riders so they
drafted and crashed each other

0.3

yippee how many 711 are there like 5! sweaarr i thought there were more 0.8

i’ve got that muck off dry shower stuff to try out,
hope it’s muddy now.

i think if we go for it we cud get 5 laps in an
hour!

i’ve heard its a 30 min lap. but that was from a
dh rider!

0.6

how much are they ? like $5 i thought they were more then that but ok 0.4

igot you, wen iroll up ill pass that shit. iaint
stingy.

me either!! they more the marrier. -0.3

i dont eat gravy on biscuits. me either. well then! why were the biscuits needed? -0.8

Table 1: Sample reference sets created by our multi-reference extraction algorithm, along with the weights used in ∆BLEU.
Triples from which additional references are extracted are in italics. Boxed sentences are in our multi-reference dev set.

mately 33K candidate triples that were then judged
for conversational quality on a 5-point Likert-type
scale by 3 crowdsourced annotators. Of these, 4232
triples scored an average 4 or higher; these were
randomly binned to create seed dev and test sets
of 2118 triples and 2114 triples respectively. Note
that the dev set is not used in the experiments of
this paper, since ∆BLEU and IBM BLEU are met-
rics that do not require training. However, the dev
set is released along with a test set in the dataset
release accompanying this paper.

We then sought to identify candidate triples in
the 29M corpus for which both message and re-
sponse are similar to the original messages and
responses in these seed sets. To this end, we em-
ployed an information retrieval algorithm with a
bag-of-words BM25 similarity function (Robertson
et al., 1995), as detailed in Sordoni et al. (2015),
to extract the top 15 responses for each message-
response pair. Unlike Sordoni et al. (2015), we
further appended the original messages (as if par-
roted back). The new triples were then scored for
quality of the response in light of both context and
message by 5 crowdsourced raters each on a 5-

point Likert-type scale.3 Crucially, and again in
contradistinction to Sordoni et al. (2015), we did
not impose a score cutoff on these synthetic multi-
reference sets. Instead, we retained all candidate
responses and scaled their scores into [−1, +1].

Table 1 presents representative multi-reference
examples (from the dev set) together with their con-
verted scores. The context and messages associated
with the supplementary mined responses are also
shown for illustrative purposes to demonstrate the
range of conversations from which they were taken.
In the table, negative-weighted mined responses are
semantically orthogonal to the intent of their newly
assigned context and message. Strongly negatively
weighted responses are completely out of the ball-
park (“the weather in Russia is very cool”, “well
then! Why were the biscuits needed?”); others are a
little more plausible, but irrelevant or possibly topic
changing (“ohh I love that song”). Higher-valued
positive-weighted mined responses are typically
reasonably appropriate and relevant (even though

3For this work, we sought 2 additional annotations of the
seed responses for consistency with the mined responses. As a
result, scores for some seed responses slipped below our initial
threshold of 4. Nonetheless, these responses were retained.
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extracted from a completely unrelated conversa-
tion), and in some cases can outscore the original
response, as can be seen in the third set of exam-
ples.

4.2 Human Evaluation of System Outputs

Responses generated by the 7 systems used in this
study on the 2114-triple test set were hand evalu-
ated by 5 crowdsourced raters each on a 5-point
Likert-type scale. From these 7 systems, 12 system
pairs were evaluated, for a total of about pairwise
126K ratings (12 · 5 · 2114). Here too, raters were
asked to evaluate responses in terms of their rele-
vance to both context and message. Outputs from
different systems were randomly interleaved for
presentation to the raters. We obtained human rat-
ings on the following systems:

Phrase-based MT: A phrase-based MT system
similar to (Ritter et al., 2011), whose weights
have been manually tuned. We also included
four variants of that system, which we tuned with
MERT (Och, 2003). These variants differ in their
number of features, and augment (Ritter et al.,
2011) with the following phrase-level features: edit
distance between source and target, cosine similar-
ity, Jaccard index and distance, length ratio, and
DSSM score (Huang et al., 2013).
RNN-based MT: the log-probability according to
the RNN model of (Sordoni et al., 2015).
Baseline: a random baseline.

While ∆BLEU relies on human qualitative judg-
ments, it is important to note that human judgments
on multi-references (§ 4.1) and those on system out-
puts were collected completely independently. We
also note that the set of systems listed above specif-
ically does not include a retrieval-based model, as
this might have introduced spurious correlation be-
tween the two datasets (§ 4.1 and § 4.2).

5 Setup

We use two rank correlation coefficients—
Kendall’s τ and Spearman’s ρ—to assess the level
of correlation between human qualitative ratings
(§4.2) and automated metric scores. More formally,
we compute each correlation coefficient on a series
of paired observations (m1, q1), · · · , (mN , qN ).
Here,mi and qi are respectively differences in auto-
matic metric scores and qualitative ratings for two
given systems A and B on a given subset of the

test set.4While much prior work assesses automatic
metrics for MT and other tasks (Lavie and Agarwal,
2007; Hodosh et al., 2013) by computing correla-
tions on observations consisting of single-sentence
system outputs, it has been shown (e.g., Przybocki
et al. (2008)) that correlation coefficients signifi-
cantly increase as observation units become larger.
For instance, corpus-level or system-level correla-
tions tend to be much higher than sentence-level
correlations; Graham and Baldwin (2014) show
that BLEU is competitive with more recent and ad-
vanced metrics when assessed at the system level.5

Therefore, we define our observation unit size to
be M = 100 sentences (responses),6 unless stated
otherwise. We evaluate qi by averaging human rat-
ings on the M sentences, and mi by computing
metric scores on the same set of sentences.7 We
compare three different metrics: BLEU, ∆BLEU,
and sentence-level BLEU (sBLEU). The last com-
putes sentence-level BLEU scores (Nakov et al.,
2012) and averages them on the M sentences (akin
to macro-averaging). Finally, unless otherwise
noted, all versions of BLEU use n-gram order up
to 2 (BLEU-2), as this achieves better correlation
for all metrics on this data.

6 Results

The main results of our study are shown in Table 2.
∆BLEU achieves better correlation with human
than BLEU, when comparing the best configura-
tion of each metric.8 In the case of Spearman’s ρ,
the confidence intervals of BLEU (.265, .416) and

4For each given observation pair (mi, qi), we randomize
the order in which A and B are presented to the raters in order
to avoid any positional bias.

5We do not intend to minimize the benefit of a metric that
would be competitive at the sentence-level, which would be
particularly useful for detailed error analyses. However, our
main goal is to reliably evaluate generation systems on test
sets of thousands of sentences, in which case any metric with
good corpus-level correlation (such as BLEU, as shown in
(Graham and Baldwin, 2014)) would be sufficient.

6Enumerating all possible ways of assigning sentences to
observations would cause a combinatorial explosion. Instead,
for all our results we sample 1K assignments and average
correlations coefficients over them (using the same 1K assign-
ments across all metrics). These assignments are done in such
a way that all sentences within an observation belong to the
same system pair.

7We refrained from using larger units, as creating larger
observation unitsM reduces the total number of unitsN . This
would have caused confidence intervals to be so wide as to
make this study inconclusive.

8This is also the case on single reference. While ∆BLEU
and BLEU would have the same correlation if original refer-
ences all had the same score of 1, it is not unusual for original
references to get ratings below 1.
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Metric refs. Spearman’s ρ Kendall’s τ

BLEU single .260 (.178, .337) .171 (.087, .252)
BLEU w ≥ 0.6 .343 (.265, .416) .232 (.150, .312)
BLEU all .318 (.239, .392) .212 (.129, .292)

sBLEU single .265 (.183, .342) .175 (.091, .256)
sBLEU w ≥ 0.6 .330 (.252, .404) .222 (.140, .302)
sBLEU all .258 (.177, .336) .167 (.083, .249)

∆BLEU single .280 (.199,.357) .187 (.103, .268)
∆BLEU w ≥ 0.6 .405 (.331,.474) .281 (.200, .357)
∆BLEU all .484 (.415,.546) .342 (.265, .415)

Table 2: Human correlations for IBM BLEU, sentence-level
BLEU, and ∆BLEU with 95% confidence intervals. This
compares 3 types of references: single only, high scoring
references (w ≥ 0.6), and all references.

∆BLEU (.415, .546) barely overlap, while interval
overlap is more significant in the case of Kendall’s
τ . Correlation coefficients degrade for BLEU as
we go from w ≥ 0.6 to using all references. This
is expected, since BLEU treats all references as
equal and has no way of discriminating between
them. On the other hand, correlation coefficients
increase for ∆BLEU after adding lower scoring ref-
erences. It is also worth noticing that BLEU and
sBLEU obtain roughly comparable correlation co-
efficients. This may come as a surprise, because it
has been suggested elsewhere that sBLEU has much
worse correlation than BLEU computed at the cor-
pus level (Przybocki et al., 2008). We surmise that
(at least for this task and data) the differences in
correlations between BLEU and sBLEU observed
in prior work may be less the result of a difference
between micro- and macro-averaging than they are
the effect of different observation unit sizes (as
discussed in §5).

Finally, Figure 2 shows how Spearman’s ρ is
affected along three dimensions of study. In par-
ticular, we see that ∆BLEU actually benefits from
the references with negative ratings. While the im-
provement is not pronounced, we note that most ref-
erences have positive ratings. Negatively-weighted
references could have a greater effect if, for exam-
ple, randomly extracted responses had also been
annotated.

7 Conclusions

∆BLEU correlates well with human quality judg-
ments of generated conversational responses, out-
performing both IBM BLEU and sentence-level
BLEU in this task and demonstrating that it can
serve as a plausible intrinsic metric for system de-
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Figure 2: A comparison of BLEU, sentence-level BLEU, and
∆BLEU along three dimensions: (A) decreasing the threshold
on reference scores wi,j ; (B) increasing the unit size for the
correlation study from a single sentence (M=1) to a size of
100; (C) going from BLEU-1 to BLEU-4 for the different
versions of BLEU.

velopment.9 An upfront cost is paid for human
evaluation of the reference set, but following that,
the need for further human evaluation can be min-
imized during system development. ∆BLEU may
help other tasks that use multiple references for
intrinsic evaluation, including image-to-text, sen-
tence compression, and paraphrase generation, and
even statistical machine translation. Evaluation of
∆BLEU in these tasks awaits future work.
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Abstract 

In Tibetan, as words are written consecutive-

ly without delimiters, finding unknown word 

boundary is difficult. This paper presents a 

hybrid approach for Tibetan unknown word 
identification for offline corpus processing. 

Firstly, Tibetan named entity is preprocessed 

based on natural annotation. Secondly, other 

Tibetan unknown words are extracted from 

word segmentation fragments using MTC, 

the combination of a statistical metric and a 

set of context sensitive rules. In addition, the 

preliminary experimental results on Tibetan 

News Corpus are reported. Lexicon-based 

Tibetan word segmentation system SegT with 

proposed unknown word extension mecha-

nism is indeed helpful to promote the perfor-
mance of Tibetan word segmentation. It in-

creases the F-score of Tibetan word segmen-

tation by 4.15% on random-selected test set. 

Our unknown word identification scheme can 

find new words in any length and in any field. 

1 Introduction 

Tibetan is a phonetic writing script; it is syllabic, 

like many of the alphabets of India and South 
East Asia. Tibetan sentences are strings of sylla-

bles with no delimiters to mark word boundaries. 

Therefore the initial step for Tibetan processing 
is word segmentation.  However, occurrences of 

unknown words, which are  not  listed  in  the  

dictionary, degraded  significantly  the  perfor-
mances  of  most word  segmentation  methods. 

Currently, the lexicon-based Tibetan word 

segmentation scheme is widely adopted. In gen-

eral, any lexicon is limited and unable to cover 
all the words in real texts. According to our sta-

tistics on a 326,062,576-bytes news corpus from 

the website Tibet Daily, there are about 2.89% 
unknown words. Therefore, unknown word iden-

tification (UWI) became a key technology for 

Tibetan segmentation. 

The rest of this paper is organized as follows. 

In Section 2 we recall related work on UWI 

methods. Semi-automatic Tibetan UWI method 
is provided in Section 3. Section 4 gives the de-

scription of experimental results for evaluation, 

and Section 5 offers concluding remarks. 

2 Related Work 

For unknown words with more regular morpho-

logical structures, such as personal names, mor-
phological  rules  are  commonly  used  for im-

proving  the  performance  by  restricting  the 

structures of extracted words (Chen et al. 1994, 
Sun et al. 1995, Lin et al. 1993, Ma & Chen 

2003). However, it is not possible to list morpho-

logical rules for all kinds of unknown words, 
especially those words with very irregular struc-

tures. Therefore, statistical approaches usually 

play major roles on irregular UWI in most previ-

ous work (Sproat & Shih 1990, Chiang et al. 
1992, Tung & Lee 1995, Palmer 1997, Chang et 

al. 1997, Sun et al. 1998, Ge et al. 1999). 

Many statistical metrics have been proposed, 
including point-wise mutual information (MI) 

(Church et al., 1991), mean and variance, hy-

pothesis testing (t-test, chi-square test, etc.), log-

likelihood ratio (LR) (Dunning, 1993), statistic 
language model (Tomokiyo et al., 2003), con-

text-entropy (on each side) and frequency ratio 

against background corpus (Luo & Song 2004), 
DCF (Hong et al., 2009), and so on. Point-wise 

MI is often used to find interesting bigrams (col-

locations). However, MI is actually better to 
think of it as a measure of independence than of 

dependence (Manning et al., 1999). LR is one of 

the most stable methods for automatic term ex-

traction so far, and more appropriate for sparse 
data than other metrics. However, LR is still bi-

ased to two frequent words that are rarely adja-

cent, such as the pair (the, the) (Pantel et al., 
2001). On the other aspect, MI and LR metrics 
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are difficult to extend to extract multi-word 

terms.  

There are also many hybrid methods com-

bined statistical metrics with linguistic 
knowledge and machine Learning algorithms, 

such as Part-of-Speech filters (Smadja, 1994; 

Asanee, 1997), roles tagging based (Zhang et al., 
2002), syntactic discriminators (Chen & Ma 

2002), max-margin Markov networks (Qiao and 

Sun, 2010; Li and Chang, 2010), Unsupervised 
Learning Strategy (Sun et al., 2004), Latent Dis-

criminative Model(Sun et al., 2011), boosting-

based ensemble learning (TeCho et al., 2012). 

But POS filters, roles tagging, machine learning 
algorithms does not work for Tibetan UWI. So 

far, there is no Tibetan POS tagger and Tibetan 

parser. We have built large scale Tibetan text 
resources recently, and we are tagging Part-Of-

Speech and labeling role right now, these corpora 

can form training set in the near future. 
Previous research and work in Tibetan word 

segmentation have made great progresses. How-

ever, cases with unknown words are not satisfac-

tory. In recent years, researchers mainly use 
maximum-matching method accompanying with 

some grammar rules (Chen et al. 2003a, Chen et 

al. 2003b, Cai 2009a, Cai 2009b, Qi 2006, Dolha 
2007, Zha 2007, Tashi 2009) to segment Tibetan 

text. Liu et al. (2012) designed and implemented 

a Tibetan word segmentation system named 

“SegT” which is lexicon-based practical system 
with a constant lexicon. However, it has the dif-

ficulty of identifying unknown words in newspa-

per articles and web documents which are highly 
changeable texts with time. 

The research on Tibetan UWI is, however, still 

at its initial stage. There is no public report of 
performance of Tibetan new word or unknown 

word identification. This paper introduces Tibet-

an UWI work which is in progress. 

3 Tibetan Unknown Word Identification 

from News Corpus 

Generally, Tibetan location name and organiza-

tion names are formed from a shorter word or 

proper noun adding a morpheme, river(ཆུང་), 
lake(མཚོ་), beach(ཐང་), gorge(འགག་), ministry(པུའུ), 

bureau(ཅུའུ), association(ཁང),  company(ཀུང་སི), 

province(ཞིང་ཆེན), city(གྲོང་ཁྱེར), county(རྫོང) etc.; some 

are also followed by modifiers, such as postposi-
tion, size, color, shape. We also observe that of-

ten, these morphemes are segmented separately 

during the first-time segmentation process. “Nat-

ural annotation” in our news articles also indi-

cates the occurrence of unknown words. This 

section simply introduces Tibetan script first and 

then aims to detail the two key procedures in Ti-
betan UWI from Tibetan web resources, that is, 

detect unknown words based on natural annota-

tion and based on context sensitive rules.   

3.1 Characteristics of Tibetan Script 

The Tibetan alphabet is syllabic; a syllable con-

tains one or up to seven character(s). Syllables 

are separated by a marker known as intersyllabic 
marks (tsheg), which is simply a superscripted 

dot. Linguistic words are made up of one or more 

syllables and are also separated by the same 

symbol, “tsheg”. Consonant clusters are written 
with special conjunct letters. Tibetan texts con-

sists of a string of syllables without any blanks to 

mark word boundaries except for punctuation’།’, 
called shad, at the end of each sentence, and ‘་’, 
called tsheg, within syllables. Figure 1 shows the 
structure of a Tibetan word which is made up of 

two syllables and means “show” or “exhibition”. 

 
Figure 1. Structure of a Tibetan word 

 

Tibetan sentence consists of one or more 
words, phrases or multi-word units. Another 

marker known as “shad” indicates the sentence 

boundary, which looks like a vertical pipe. Fig-

ure 2 shows a Tibetan sentence. It is segmented 
in line 2 and word by word translation is given in 

line 3. 

 
Figure 2. A Tibetan sentence and its translation 

3.2 Natural Annotation based Identification 

Tibetan unknown word covers both named entity 

and emerging new words in Tibetan web corpus. 

Special attention is paid to those noticeable 
named entities in order to suggest strong word 

candidates. “naturally annotated” means different 

type of annotations on varieties of Web resources 

which are “unconsciously handcrafted” by Web 
users for their own purposes, but can be used by 
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computational linguists in a conscious and sys-

tematic way for various tasks of natural language 

processing, for examples, punctuation marks in 

Tibetan can benefit word boundaries identifica-
tion, social tags in social media can benefit key-

word extraction, “categories” given in News 

Corpus can benefit text categorization. 
“Space”, “punctuation” and “Tibetan auxiliary 

words” always appear next to a word. Hyperlink 

in web text is a useful explicit natural annotation 
too. In addition, <head> tag of html pages in-

cluding meta data as keywords, author, source, 

description; these are also quite useful natural 

annotation for UWI. Meanwhile, in our Tibetan 
News Corpus, English and Chinese in brackets 

give the hints for their corresponding Tibetan 

translation words. Sentences including this kind 
of annotation are as follow. 

 ༢༠༠༠འཇའ་ ད་ ་མ །(janet gyatso) ག་པ། 
 འཇར་ ་ (germany) ལ་ཁབ་ ་ ན་ ན(münchen ང་ ར་

schloss hohenkammer)མ ་ བ་ ་ གས། 
 ་ ༡༩༩༥ ར་ ར་ ་ ་ ་ ་ ན་ ལ་ནར་(Ernst 

Steinkellner ས་ ་ ་ ་ ་ཡ(Austria ལ་ཁབ་ ་ ་ར་
Graz ང་ ར་ ན་ Schloss Segau)མ ་ བ་ ་ ་ ག་

མཛད། 
 ་ ༡༩༩༨ ར་ ང་ གས་པ་ ་ ་ ་ ་ ་པར་ ང(Elliot Sper-

ling ས་ཨ་ ་ ང་ ར་ ་ ་ ང་ ན(Bloomington ་ ན་ ་ཡ་
ན/ ་མ ་ བ(Indiana University ་བ གས། 

 ཕ་ ས་ ར（ 帕 米 尔 ）མ ་ ང་ནས་ཤར་ གས་ ་ ན་ ན་ ་ ད
（祁连山脉）བར་འ ད་ ག་ ་31 ག་ ད་ལ། 

These brackets in news texts point out the 

right boundary of lots of location name and 
organization names. We confirm left bounda-

ries relying on pre-

established transliteration table. Thus follow-

ing named entities such as གྷེ་ར་ཛྷི(Graz), བྷུ་ལུ་
མིང་ཊོན(Bloomington), ཨིན་ཌི་ཡ་ནའི་མཐོ་སློབ (Indiana 

University), ཕ་ ས་ ར(帕米尔) can be extract-

ed from examples given above.  

3.3 Contextual Rule based Identification 

We will use a hybrid method MTC, that is, com-

bination of statistical metric and context sensitive 

rules, to recognize the boundary of an unknown 
word. It is applied to segmented texts.  

Beforehand, we analyse the lexicon-based pre-

segmentation of a sentence. Unknown words in 

the text would be incorrectly segmented into 
pieces of single syllable or shorter words through 

pre- segmentation. 

Figure 3 illustrates two possible pre-

segmented results of syllable string, that is, ex-

plicit unknown words in above expression or 

hidden unknown word in below expression.  

 
 

 

In Figure 3, UNK, w and s denotes unknown 
word, word and syllable respectively. Only ex-

plicit unknown words are discussed in this paper. 

Assume S is a sentence; and the right side of 

following equation represents its pre-segmented 
result. 

1 2 1 2 3 3 4 5 6 4

1 2 3 4

1 2 3 4 5 6

 

where    , , ,      Lexibase

              ,        Lexibase 

S w w s s s w s s s w

w w w w

s s s s s s







 

We name consecutive monosyllables (i.e.

1 2 3s s s ) after the first-time word segmentation as 

segmentation fragments. Table 1 gives examples 
of Tibetan word segmentation fragments. 

 

segmentation 

fragments 

Correct  

segmentation 

Translation 

of terms 

་/ རལ་/ ་/ ཝ ་/ 
 

་རལ་ ་ཝ ་  
Turrell wylie 

་/ ་/    ་ ་    Tokyo 

་/ མ་/ ་/ ཡ་/ 
མ ་/ བ/ 

་ མ་ ་ཡ་མ ་ བ Columbia 

university 

Table 1: Example of segmentation fragments. 
 

Column II in Table 1 is the correct segmenta-

tion of these unknown words. After maximum-
matching word segmentation, it is segmented to 

the content in column I. Almost all these un-

known words in our corpus are segmented into 

monosyllables because these words are not in-
cluded in our Tibetan word segmentation lexi-

con. 

At detection stages, the contextual rules were 
applied to detect fragments of unknown words, 

i.e. monosyllabic morphemes. Since it is hard to 

derive a set of morphological rules, which exact-
ly cover all types of unknown words, statistical 

rules are designed without differentiate their ex-

tracted word types.  

Figure 3. Categories of Tibetan unknown words 
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A corpus-based learning method is proposed 

to derive a set of rules for monosyllabic words 

and monosyllabic morphemes. The idea is that if 

two consecutive morphemes are highly associat-
ed then combines them to form a new word.  

For each bi-seed-gram, the mutual information 

MI and t-score are calculated. These scores re-
flect the co-occurrence affinity between the two 

tokens of the bi-gram. These two scores are cal-

culated by the following formulas: 
2

2

2log
( )( )

a
MI

a b a c


 
                  (1)

( , ) ( ) ( )

1
( , )

( )( )
 

( )

r a b r a r b

r a b

P w w P w P w
t

P w w
N

a b a c
a

a a b c d

 


 
 

  

                       (2) 

where, a, b, c and d are elements of a contingen-

cy table. For example, given a bi-gram contain-

ing tokens x and y, 
a = number of bi-grams in which both x and y 

occur; 

b = number of bi-grams in which only x occurs; 
c = number of bi-grams in which only y occurs; 

d = number of bi-grams in which neither x nor y 

occurs.  

Another measure for Tibetan UWI is seed ex-
tension confidence. Denote Tibetan word (or syl-

lable) grouping of n-grams as ( )TS n , where n 

indicates the length of current word; Extend it to 

an adjacent Tibetan syllable and get ( 1)TS n , so 

the seed extension confidence 
nC defined as: 

1

2

| ( ) ( 1) |

     | ( ) ( 1) |

n mean mean

mean mean

C MI n MI n

T n T n





  

  
                    (3)          

in which meanMI and meanT indicates the mean of 

MI and t-value in the scope of extended Tibetan 

word respectively. 
To characterize Tibetan unknown words and 

their boundaries the extension step will be held. 

For each extension-ready Tibetan seed word, 

note the extension confidence nC ; if nC is greater 

than the threshold, current Tibetan word is ac-

cepted, and extension continues; when nC is less 

than the threshold extension stops. Boundary for 

Tibetan unknown word is obtained at the end of 

extension. Figure 4 shows the detail of extension 
process. High frequency bi-seed-gram can be 

extended to an unknown word (which is in 

brackets in Figure 4) using nC . 

 
Figure 4. Concept of bi-seed-gram extension 

4 Evaluation 

In this section, we first evaluate performance of 
Tibetan unknown word identification; then pre-

sent the performance of Tibetan word segmenta-

tion system SegT with unknown word discovery 
to show the positive effect of UWI. 

4.1 Experimental Data 

We have built the largest Tibetan text resources 

over the internet via an automatic crawler. They 

are from three web sites, that are, Tibet Daily, 
People’s Daily and Qinghai Daily. This News 

Corpus includes different fields such as politics, 

science, technology, education, language and 
culture, religion, tourism, environment and Ti-

betan medicine. Presently, other types of text, 

especially informal discussion on social network 
like Twitter and Wikipedia in Tibetan is in small 

size. Thus, we will utilize above Tibetan News 

Corpus to extract likely new words in this paper. 

Our evaluation data contains 12,027 words from 
737 randomly selected sentences which have 

word checking results (the proportion of un-

known word is more than 1%). 

4.2 Performance of Tibetan UWI 

We will use the precision, recall, f-score of un-

known word (Punk, Runk, Funk) to evaluate the per-

formance of Tibetan UWI. In our 3-fold cross 

validation, 70% of evaluation data is selected as 
training set, and the remainder is test set. Table 1 

shows the Tibetan unknown word identification 

results on our evaluation dataset. 

Method unkP  unkR  unkF  

MT 0.8205 0.7091 0.7607 
MTC 0.8323 0.7606 0.7948 

Table 1. 3-fold cross validation Results of Tibet-

an unknown word identification. 
 

In Table 1, MT denotes statistical metric, and 

MTC denotes the combination of MT and con-
text sensitive rules; the given result is the aver-

age of 3-fold cross validation. As shown in Table 

1, combination of contextual rules with statistical 
measure can promote the performance of Tibetan 

UWI; the f-score reaches 79.48%.  

454



After analyzing the results, we find that 

wrongly identified words can be divided into two 

classes, i.e., Tibetan person name and translit-

erated names. We will add deictic words into 
context sensitive rule and supplement translitera-

tion table to promote identification accuracy of 

these kinds of unknown words. 

4.3 Evaluation for Tibetan Word Segmen-

tation with the Extended Lexicon 

In order to validate the effect of our unknown 

word identification on Tibetan word segmenta-
tion, we conduct following experiments.  

In a typical word segmentation system, once a 

text is segmented using the available lexicon or 

heuristic rules, the segmentation process is fin-
ished. We observe that unknown words make up 

0.5% to 4% of all the words in our Tibetan news 

articles. Therefore, UWI is an important issue for 
a word segmentation algorithm. We add a semi-

automatic unknown word identification compo-

nent to the back-end of the whole segmentation 

process. 
We will evaluate the precision (Pseg), recall 

(Rseg), f-score (Fseg) of Tibetan word segmenta-

tion in this subsection.  

1 2/seg seg segP N N   

1 3/seg seg segR N N   

2 / ( )seg seg seg seg segF P R P R    

where 1segN denotes the number of correctly seg-

mented Tibetan words; 2segN denotes total num-

ber of segmented Tibetan words; 3segN denotes 

the total number of Tibetan words in the testing 

texts. 
The segmentation of original web texts uses a 

basic Segmentor (SegT (Liu et al, 2012)) and a 

general lexicon (with 220,000 Tibetan entries). 
Unknown words (out of our lexicon) are seg-

mented into pieces in this step. The following 

process is to detect possible unknown words 

from word segmentation fragment which are 
very likely to be words. We will compare lexi-

con-based Tibetan segmenter with and without 

unknown word identification component on our 
evaluation data. Presently, there is no Tibetan 

word segmentation specification and standard; in 

addition, there is no large and publicly available 

Tibetan training corpus. Thus make comparison 
with other research papers is difficult. We choose 

the best Tibetan word segmentation system Liu’s 

SegT (Liu et al. 2012) as baseline. 
Table 2 illustrates the results of Tibetan seg-

mentation by SegT with general lexicon and 

SegT with lexicon extension on evaluation. 

SegT+MTC, denotes Tibetan word segmenter 

SegT with lexicon extension; the proposed meth-

od in section 3 has been applied to semi-

automatically extend the lexicon of Tibetan word 
segmentation system SegT. 

 

 segP  segR  segF  

SegT 0.7769 0.8638 0.8181 
SegT + MTC 0.8197 0.8872 0.8521 

Table 2: Effects of Tibetan word segmentation. 

 
Experimental results show that the maximum 

word segmentation performance is got using 

general lexicon extended by MTC. As we see 
from Table 2, the precision, recall and f-score are 

increased by 5.49%, 2.71%, 4.15% respectively 

compared with SegT. The score of SegT+MTC is 

increased significantly because of the higher 
proportion of unknown words. The experimental 

results demonstrate that the Tibetan word seg-

mentation system SegT with proposed unknown 
word extension mechanism is indeed helpful to 

promote the accuracy and recall rates of Tibetan 

word segmentation. 

5 Conclusion 

In this paper, we present a hybrid method for 

Tibetan unknown word identification. Its f-score 
reaches around 80%. Compared with English or 

Chinese unknown word recognition work, the 

proposed methods doesn’t achieve satisfactory 
results, however, preliminary experimental re-

sults demonstrate that SegT with proposed un-

known word extension mechanism is indeed 

helpful to promote Tibetan word segmentation 
performance. In the future, the evaluation of pro-

posed method needs to be extended to large-scale 

test corpus and detailed context sensitive rules 
are used to identify Tibetan unknown words. 
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Abstract

We propose two improvements on lexi-
cal association used in embedding learn-
ing: factorizing individual dependency re-
lations and using lexicographic knowl-
edge from monolingual dictionaries. Both
proposals provide low-entropy lexical co-
occurrence information, and are empiri-
cally shown to improve embedding learn-
ing by performing notably better than sev-
eral popular embedding models in similar-
ity tasks.

1 Lexical Embeddings and Relatedness

Lexical embeddings are essentially real-valued
distributed representations of words. As a vector-
space model, an embedding model approximates
semantic relatedness with the Euclidean distance
between embeddings, the result of which helps
better estimate the real lexical distribution in var-
ious NLP tasks. In recent years, researchers have
developed efficient and effective algorithms for
learning embeddings (Mikolov et al., 2013a; Pen-
nington et al., 2014) and extended model applica-
tions from language modelling to various areas in
NLP including lexical semantics (Mikolov et al.,
2013b) and parsing (Bansal et al., 2014).

To approximate semantic relatedness with ge-
ometric distance, objective functions are usu-
ally chosen to correlate positively with the Eu-
clidean similarity between the embeddings of re-
lated words. Maximizing such an objective func-
tion is then equivalent to adjusting the embeddings
so that those of the related words will be geomet-
rically closer.

The definition of relatedness among words can
have a profound influence on the quality of the
resulting embedding models. In most existing
studies, relatedness is defined by co-occurrence
within a window frame sliding over texts. Al-

though supported by the distributional hypothe-
sis (Harris, 1954), this definition suffers from two
major limitations. Firstly, the window frame size
is usually rather small (for efficiency and sparsity
considerations), which increases the false negative
rate by missing long-distance dependencies. Sec-
ondly, a window frame can (and often does) span
across different constituents in a sentence, result-
ing in an increased false positive rate by associ-
ating unrelated words. The problem is worsened
as the size of the window increases since each
false-positive n-gram will appear in two subsum-
ing false-positive (n+1)-grams.

Several existing studies have addressed these
limitations of window-based contexts. Nonethe-
less, we hypothesize that lexical embedding learn-
ing can further benefit from (1) factorizing syntac-
tic relations into individual relations for structured
syntactic information and (2) defining relatedness
using lexicographic knowledge. We will show that
implementation of these ideas brings notable im-
provement in lexical similarity tasks.

2 Related Work

Lexical embeddings have traditionally been used
in language modelling as distributed representa-
tions of words (Bengio et al., 2003; Mnih and Hin-
ton, 2009) and have only recently been used in
other NLP tasks. Turian et al. (2010), for example,
used embeddings from existing language models
(Collobert and Weston, 2008; Mnih and Hinton,
2007) as unsupervised lexical features to improve
named entity recognition and chunking. Embed-
ding models gained further popularity thanks to
the simplicity and effectiveness of the word2vec
model (Mikolov et al., 2013a), which implicitly
factorizes the point-wise mutual information ma-
trix shifted by biases consisting of marginal counts
of individual words (Levy and Goldberg, 2014b).
Efficiency is greatly improved by approximating
the computationally costly softmax function with
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negative sampling (similar to that of Collobert and
Weston 2008) or hierarchical softmax (similar to
that of Mnih and Hinton 2007).

To address the limitation of contextual locality
in many language models (including word2vec),
Huang et al. (2012) added a “global context score”
to the local n-gram score (Collobert and Weston,
2008). The concatenation of word vectors and
a “document vector” (centroid of the composing
word vectors weighted by idf ) was used as model
input. Pennington et al. (2014) proposed to explic-
itly factorize the global co-occurrence matrix be-
tween words, and the resulting log bilinear model
achieved state-of-the-art performance in lexical
similarity, analogy, and named entity recognition.

Several later studies addressed the limitations
of window-based co-occurrence by extending the
word2vec model to predict words that are syn-
tactically related to target words. Levy and Gold-
berg (2014a) used syntactically related words non-
discriminatively as syntactic context. Bansal et al.
(2014) used a training corpus consisting of se-
quences of labels following certain manually com-
piled patterns. Zhao et al. (2014) employed
coarse-grained classifications of contexts accord-
ing to the hierarchical structures in a parse tree.

Semantic relations have also been explored as a
form of lexical association. Faruqui et al. (2015)
proposed to retrofit pre-trained embeddings (de-
rived using window-based contexts) to semantic
lexicons. The goal is to derive a set of embeddings
to capture relatedness suggested by semantic lex-
icons while maintaining their resemblance to the
corresponding window-based embeddings. Bolle-
gala et al. (2014) trained an embedding model with
lexical, part-of-speech, and dependency patterns
extracted from sentences containing frequently co-
occurring word pairs. Each relation was repre-
sented by a pattern representation matrix, which
was combined and updated together with the word
representation matrix (i.e., lexical embeddings) in
a bilinear objective function.

3 The Proposed Models

3.1 Factorizing Dependency Relations

One strong limitation of the existing dependency-
based models is that no distinctions are made
among the many different types of dependency re-
lations. This is essentially a compromise to avoid
issues in model complexity and data sparsity, and
it precludes the possibility of studying individual

or interactive effects of individual dependency re-
lations on embedding learning.

Consequently, we propose a relation-dependent
model to predict dependents given a governor un-
der individual dependency relations. For example,
given a nominal governor apple of the adjective
modifier relation (amod), an embedding model
will be trained to assign higher probability to ob-
served adjectival dependents (e.g., red, sweet, etc.)
than to rarely or never observed ones (e.g., pur-
ple, savoury, etc.). If a model is able to accurately
make such predictions, it can then be said to “un-
derstand” the meaning of apple by possessing se-
mantic knowledge about its certain attributes. By
extension, similar models can be trained to learn
the meaning of the governors in other dependency
relations (e.g., adjectival governors in the inverse
relation amod−1, etc.).

The basic model uses an objective function sim-
ilar to that of Mikolov et al. (2013a):

logσ(eT
g e′d)+

k

∑
i=1

Ed̂i
[logσ(−eT

g e′d̂i
)],

where e∗ and e′∗ are the target and the output
embeddings for the corresponding words, respec-
tively, and σ is the sigmoid function. The sub-
scripts g and d indicate whether an embedding cor-
respond to the governor or the dependent of a de-
pendency pair, and d̂∗ correspond to random sam-
ples from the dependent vocabulary (drawn by un-
igram frequency).

3.2 Incorporating Lexicographic Knowledge
Semantic information used in existing studies
(Section 2) either relies on specialized lexical re-
sources with limited availability or is obtained
from complex procedures that are difficult to repli-
cate. To address these issues, we propose to use
monolingual dictionaries as a simple yet effective
source of semantic knowledge. The defining rela-
tion has been demonstrated to have good perfor-
mance in various semantic tasks (Chodorow et al.,
1985; Alshawi, 1987). The inverse of the defining
relation (also known as the Olney Concordance In-
dex, Reichert et al. 1969) has also been proven use-
ful in building lexicographic taxonomies (Amsler,
1980) and identifying synonyms (Wang and Hirst,
2011). Therefore, we use both the defining rela-
tion and its inverse as sources of semantic associ-
ation in the proposed embedding models.

Lexicographic knowledge is represented by
adopting the same terminology used in syntactic
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dependencies: definienda as governors and defini-
entia as dependents. For example, apple is related
to fruit and rosaceous as a governor under def, or
to cider and pippin as a dependent under def−1.

3.3 Combining Individual Knowledge
Sources

Sparsity is a prominent issue in the relation-
dependent models since each individual relation
only receives a limited share of the overall co-
occurrence information. We also propose a post-
hoc, relation-independent model that combines
the individual knowledge sources. The input of the
model is the structured knowledge from relation-
dependent models, for example, that something
can be red or sweet, or it can ripen or fall, etc.
The training objective is to predict the original
word given the relation-dependent embeddings,
with the intuition that if a model is trained to be
able to “solve the riddle” and predict that this
something is an apple, then the model is said
to possess generic, relation-independent knowl-
edge about the target word by learning from the
relation-dependent knowledge sources.

Given input word wI , its relation-independent
embedding is derived by applying a linear model
M on the concatenation of its relation-dependent
embeddings (ẽwI ). The objective function of a
relation-independent model is then defined as

logσ(e′TwI
MẽwI )+

k

∑
i=1

Ew̄i [logσ(−e′Tw̄i
MẽwI )],

where e′∗ are the context embeddings for the corre-
sponding words. Since ẽwI is a real-valued vector
(instead of a 1-hot vector as in relation-dependent
models), M can no longer be updated one column
at a time. Instead, updates are defined as:

∂
∂M

= [1−σ(e′TwO
MẽwI )]e

′
wO

ẽT
wI

−
k

∑
i=1

[1−σ(−e′Twi
MẽwI )]e

′
wi

ẽT
wI
.

Training is quite efficient in practice due to the low
dimensionality of M; convergence is achieved af-
ter very few epochs.1

Note that this model is different from the non-
factorized models that conflate multiple depen-
dency relations because the proposed model is a

1We also experimented with updating the relation-
dependent embeddings together with M, but this worsened
evaluation performance.

deeper structure with pre-training on the factor-
ized results (via the relation-dependent models) in
the first layer.

4 Evaluations

4.1 Training Data and Baselines

The Annotated English Gigaword (Napoles et al.,
2012) is used as the main training corpus. It con-
tains 4 billion words from news articles, parsed by
the Stanford Parser. A random subset with 17 mil-
lion words is also used to study the effect of train-
ing data size (dubbed 17M).

Semantic relations are derived from the defini-
tion text in the Online Plain Text English Dictio-
nary2. There are approximately 806,000 definition
pairs, 33,000 distinct definienda and 24,000 dis-
tinct defining words. The entire corpus has 1.25
million words in a 7.1MB file.

Three baseline systems are used for compar-
ison, including one non-factorized dependency-
based model DEP (Levy and Goldberg, 2014a)
and two window-based embedding models w2v
(or word2vec, Mikolov et al. 2013a) and GloVe
(Pennington et al., 2014). Embedding dimension
is 50 for all models (baselines as well as the pro-
posed). Embeddings in the window-based mod-
els are obtained by running the published software
for each of these systems on the Gigaword corpus
with default values for all hyper-parameters except
for vector size (50) and minimum word frequency
(100 for the entire Gigaword corpus; 5 for the 17M
subset). For the w2v model, for example, we used
the skip-gram model with the default value 5 as
window size, negative sample size, and epoch size,
and 0.025 as initial learning rate.

4.2 Lexical Similarity

Relation-Dependent Models
Table 1 shows the results on four similarity
datasets: MC (Miller and Charles, 1991), RG
(Rubenstein and Goodenough, 1965), FG (or
wordsim353, Finkelstein et al. 2001), and SL (or
SimLex, Hill et al. 2014b). The first three datasets
consist of nouns, while the last one also includes
verbs (SLv) and adjectives (SLa) in addition to
nouns (SLn). Semantically, FG contains many
related pairs (e.g., movie–popcorn), whereas the
other three datasets are purely similarity oriented.

2http://www.mso.anu.edu.au/˜ralph/
OPTED/
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Model MC RG FG SLn SLv SLa

amod .766 .798 .572 .566 .154 .466
amod−1 .272 .296 .220 .218 .248 .602
nsubj .442 .350 .376 .388 .392 .464
nn .596 .620 .514 .486 .130 .068

Baselines

DEP .640 .670 .510 .400 .240 .350
w2v .656 .618 .600 .382 .237 .560
GloVe .609 .629 .546 .346 .142 .517

Table 1: Correlation between human judgement
and cosine similarity of embeddings (trained on
the Gigaword corpus) on six similarity datasets.

Performance is measured by Spearman’s ρ be-
tween system scores and human judgements of
similarity between the pairs that accompany each
dataset.

When dependency information is factorized
into individual relations, models using the best-
performing relation for each dataset3 out-perform
the baselines by large margins on 5 out of the 6
datasets. In comparison, the advantage of the syn-
tactic information is not at all obvious when they
are used in a non-factorized fashion in the DEP
model; it out-performs the window-based meth-
ods (below the dashed line) on only 3 datasets
with limited margins. However, the window-based
methods consistently outperform the dependency-
based methods on the FG dataset, confirming our
intuition that window-based methods are better at
capturing relatedness than similarity.

When dependency relations are factorized into
individual types, sparsity is a rather prominent is-
sue especially when the training corpus is small.
With sufficient training data, however, factorized
models consistently outperform all baselines by
very large margins on all but the FG dataset. Av-
erage correlation (weighted by the size of each
sub-dataset corresponding to the three POS’s) on
the SL dataset is 0.531, outperforming the best re-
ported result on the dataset (Hill et al., 2014a).

3We did not hold out validation data to choose the best-
performing relations for each dataset. Our assumption is that
the dominant part-of-speech of the words in each dataset is
the determining factor of the top-performing syntactic rela-
tion for that dataset. Consequently, the choice of this re-
lation should be relatively constant without having to rely
on traditional parameter tuning. For the four noun datasets,
for example, we observed that amod is consistently the top-
performing relation, and we subsequently assumed similar
consistency on the verb and the adjective datasets. The
same observations and rationales apply for the relation-
independent experiments.

Model MC RG FG SLn SLv SLa

Rel. Dep. #1 .512 .486 .380 .354 .222 .394
Rel. Dep. #2 .390 .380 .360 .304 .206 .236
Rel. Indep. .570 .550 .392 .360 .238 .338

Baselines

DEP .530 .558 .506 .346 .138 .412
w2v .563 .491 .562 .287 .065 .379
GloVe .306 .368 .308 .132 −.007 .254

Table 2: Lexical similarity performance of
relation-independent models (trained on the 17M
corpus) combining top two best-performing rela-
tions for each POS.

Although the co-occurrence data is sparse, it
is nonetheless highly “focused” (Levy and Gold-
berg, 2014a) with much lower entropy. As a result,
convergence is much faster when compared to the
non-factorized models such as DEP, which takes
up to 10 times more iterations to converge.

Among the individual dependency relations, the
most effective relations for nouns, adjectives, and
verbs are amod, amod−1, and nsubj, respec-
tively. For nouns, we observed a notable gap in
performance between amod and nn. Data inspec-
tion reveals that a much higher proportion of nn
modifiers are proper nouns (64.0% compared to
about 0.01% in amod). The comparison suggests
that, as noun modifiers, amod describes the at-
tributes of nominal concepts while nn are more
often instantiations, which apparently is semanti-
cally less informative. On the other hand, nn is
the better choice if the goal is to train embeddings
for proper nouns.

Relation-Independent Model
The relation-independent model (Section 3.3) is
implemented by combining the top two best-
performing relations for each POS: amod and
dobj−1 for noun pairs, nsubj and dobj for
verb pairs, and amod−1 and dobj−1 for adjective
pairs.

Lexical similarity results on the 17M corpus
are listed in Table 2. The combined results
improve over the best relation-dependent mod-
els for all categories except for SLa (adjectives),
where only the top-performing relation-dependent
model (amod−1) yielded statistically significant
results and thus, results are worsened by com-
bining the second-best relation-dependent source
dobj−1 (which is essentially noise). Compar-
ing to baselines, the relation-independent model
achieves better results in four out of the six cat-
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Model MC RG FG SLn SLv SLa

def .640 .626 .378 .332 .320 .306
def−1 .740 .626 .436 .366 .332 .376
Combined .754 .722 .530 .410 .356 .412
w2v .656 .618 .600 .382 .237 .560

Table 3: Lexical similarity performance of mod-
els using dictionary definitions and compared to
word2vec trained on the Gigaword corpus.

egories.

Using Dictionary Definitions

Embeddings trained on dictionary definitions are
also evaluated on the similarity datasets, and
the results are shown in Table 3. The individ-
ual relations (defining and inverse) perform sur-
prisingly well on the datasets when compared
to word2vec. The relation-independent model
brings consistent improvement by combining the
relations, and the results compare favourably to
word2vec trained on the entire Gigaword cor-
pus. Similar to dependency relations, lexico-
graphic information is also better at capturing sim-
ilarity than relatedness, as suggested by the results.

5 Conclusions

This study explored the notion of relatedness in
embedding models by incorporating syntactic and
lexicographic knowledge. Compared to exist-
ing syntax-based embedding models, the proposed
embedding models benefits from factorizing syn-
tactic information by individual dependency rela-
tions. Empirically, syntactic information from in-
dividual dependency types brings about notable
improvement in model performance at a much
higher rate of convergence. Lexicographic knowl-
edge from monolingual dictionaries also helps im-
prove lexical embedding learning. Embeddings
trained on a compact, knowledge-intensive re-
source rival state-of-the-art models trained on free
texts thousands of times larger in size.
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Abstract

Data-driven representation learning for
words is a technique of central importance
in NLP. While indisputably useful as a
source of features in downstream tasks,
such vectors tend to consist of uninter-
pretable components whose relationship to
the categories of traditional lexical seman-
tic theories is tenuous at best. We present
a method for constructing interpretable
word vectors from hand-crafted linguis-
tic resources like WordNet, FrameNet etc.
These vectors are binary (i.e, contain only
0 and 1) and are 99.9% sparse. We analyze
their performance on state-of-the-art eval-
uation methods for distributional models
of word vectors and find they are competi-
tive to standard distributional approaches.

1 Introduction

Distributed representations of words have been
shown to benefit a diverse set of NLP tasks in-
cluding syntactic parsing (Lazaridou et al., 2013;
Bansal et al., 2014), named entity recognition
(Guo et al., 2014) and sentiment analysis (Socher
et al., 2013). Additionally, because they can be
induced directly from unannotated corpora, they
are likewise available in domains and languages
where traditional linguistic resources do not ex-
haust. Intrinsic evaluations on various tasks are
helping refine vector learning methods to discover
representations that captures many facts about lex-
ical semantics (Turney, 2001; Turney and Pantel,
2010).

Yet induced word vectors do not look anything
like the representations described in most lexi-
cal semantic theories, which focus on identifying
classes of words (Levin, 1993; Baker et al., 1998;
Schuler, 2005; Miller, 1995). Though expensive
to construct, conceptualizing word meanings sym-

bolically is important for theoretical understand-
ing and interpretability is desired in computational
models.

Our contribution to this discussion is a new
technique that constructs task-independent word
vector representations using linguistic knowledge
derived from pre-constructed linguistic resources
like WordNet (Miller, 1995), FrameNet (Baker et
al., 1998), Penn Treebank (Marcus et al., 1993)
etc. In such word vectors every dimension is a lin-
guistic feature and 1/0 indicates the presence or
absence of that feature in a word, thus the vec-
tor representations are binary while being highly
sparse (≈ 99.9%). Since these vectors do not en-
code any word cooccurrence information, they are
non-distributional. An additional benefit of con-
structing such vectors is that they are fully inter-
pretable i.e, every dimension of these vectors maps
to a linguistic feature unlike distributional word
vectors where the vector dimensions have no in-
terpretability.

Of course, engineering feature vectors from lin-
guistic resources is established practice in many
applications of discriminative learning; e.g., pars-
ing (McDonald and Pereira, 2006; Nivre, 2008)
or part of speech tagging (Ratnaparkhi, 1996;
Collins, 2002). However, despite a certain com-
mon inventories of features that re-appear across
many tasks, feature engineering tends to be seen
as a task-specific problem, and engineered feature
vectors are not typically evaluated independently
of the tasks they are designed for. We evaluate the
quality of our linguistic vectors on a number of
tasks that have been proposed for evaluating dis-
tributional word vectors. We show that linguistic
word vectors are comparable to current state-of-
the-art distributional word vectors trained on bil-
lions of words as evaluated on a battery of seman-
tic and syntactic evaluation benchmarks.1

1Our vectors can be downloaded at: https://
github.com/mfaruqui/non-distributional
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Lexicon Vocabulary Features
WordNet 10,794 92,117
Supersense 71,836 54
FrameNet 9,462 4,221
Emotion 6,468 10
Connotation 76,134 12
Color 14,182 12
Part of Speech 35,606 20
Syn. & Ant. 35,693 75,972
Union 119,257 172,418

Table 1: Sizes of vocabualry and features induced
from different linguistic resources.

2 Linguistic Word Vectors

We construct linguistic word vectors by extracting
word level information from linguistic resources.
Table 1 shows the size of vocabulary and number
of features induced from every lexicon. We now
describe various linguistic resources that we use
for constructing linguistic word vectors.

WordNet. WordNet (Miller, 1995) is an En-
glish lexical database that groups words into sets
of synonyms called synsets and records a num-
ber of relations among these synsets or their
members. For a word we look up its synset
for all possible part of speech (POS) tags that
it can assume. For example, film will have
SYNSET.FILM.V.01 and SYNSET.FILM.N.01 as
features as it can be both a verb and a noun. In ad-
dition to synsets, we include the hyponym (for ex.
HYPO.COLLAGEFILM.N.01), hypernym (for ex.
HYPER:SHEET.N.06) and holonym synset of the
word as features. We also collect antonyms and
pertainyms of all the words in a synset and include
those as features in the linguistic vector.

Supsersenses. WordNet partitions nouns and
verbs into semantic field categories known as
supsersenses (Ciaramita and Altun, 2006; Nas-
tase, 2008). For example, lioness evokes the su-
persense SS.NOUN.ANIMAL. These supersenses
were further extended to adjectives (Tsvetkov et
al., 2014).2 We use these supsersense tags for
nouns, verbs and adjectives as features in the lin-
guistic word vectors.

FrameNet. FrameNet (Baker et al., 1998; Fill-
more et al., 2003) is a rich linguistic resource that
contains information about lexical and predicate-
argument semantics in English. Frames can be
realized on the surface by many different word

2http://www.cs.cmu.edu/˜ytsvetko/
adj-supersenses.tar.gz

types, which suggests that the word types evok-
ing the same frame should be semantically related.
For every word, we use the frame it evokes along
with the roles of the evoked frame as its features.
Since, information in FrameNet is part of speech
(POS) disambiguated, we couple these feature
with the corresponding POS tag of the word. For
example, since appreciate is a verb, it will have
the following features: VERB.FRAME.REGARD,
VERB.FRAME.ROLE.EVALUEE etc.

Emotion & Sentiment. Mohammad and Turney
(2013) constructed two different lexicons that as-
sociate words to sentiment polarity and to emo-
tions resp. using crowdsourcing. The polar-
ity is either positive or negative but there are
eight different kinds of emotions like anger, an-
ticipation, joy etc. Every word in the lexicon is
associated with these properties. For example,
cannibal evokes POL.NEG, EMO.DISGUST and
EMO.FEAR. We use these properties as features
in linguistic vectors.

Connotation. Feng et al. (2013) construct a lex-
icon that contains information about connotation
of words that are seemingly objective but often
allude nuanced sentiment. They assign positive,
negative and neutral connotations to these words.
This lexicon differs from Mohammad and Tur-
ney (2013) in that it has a more subtle shade of
sentiment and it extends to many more words.
For example, delay has a negative connotation
CON.NOUN.NEG, floral has a positive connota-
tion CON.ADJ.POS and outline has a neutral con-
notation CON.VERB.NEUT.

Color. Most languages have expressions involv-
ing color, for example green with envy and grey
with uncertainly are phrases used in English. The
word-color associtation lexicon produced by Mo-
hammad (2011) using crowdsourcing lists the col-
ors that a word evokes in English. We use every
color in this lexicon as a feature in the vector. For
example, COLOR.RED is a feature evoked by the
word blood.

Part of Speech Tags. The Penn Treebank (Mar-
cus et al., 1993) annotates naturally occurring text
for linguistic structure. It contains syntactic parse
trees and POS tags for every word in the corpus.
We collect all the possible POS tags that a word is
annotated with and use it as features in the linguis-
tic vectors. For example, love has PTB.NOUN,
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Word POL.POS COLOR.PINK SS.NOUN.FEELING PTB.VERB ANTO.FAIR · · · CON.NOUN.POS
love 1 1 1 1 0 1
hate 0 0 1 1 0 0
ugly 0 0 0 0 1 0
beauty 1 1 0 0 0 1
refundable 0 0 0 0 0 1

Table 2: Some linguistic word vectors. 1 indicates presence and 0 indicates absence of a linguistic
feature.

PTB.VERB as features.

Synonymy & Antonymy. We use Roget’s the-
saurus (Roget, 1852) to collect sets of synony-
mous words.3 For every word, its synonymous
word is used as a feature in the linguistic vec-
tor. For example, adoration and affair have
a feature SYNO.LOVE, admissible has a fea-
ture SYNO.ACCEPTABLE. The synonym lexi-
con contains 25,338 words after removal of mul-
tiword phrases. In a similar manner, we also
use antonymy relations between words as fea-
tures in the word vector. The antonymous words
for a given word were collected from Ordway
(1913).4 An example would be of impartial-
ity, which has features ANTO.FAVORITISM and
ANTO.INJUSTICE. The antonym lexicon has
10,355 words. These features are different from
those induced from WordNet as the former en-
code word-word relations whereas the latter en-
code word-synset relations.

After collecting features from the various lin-
guistic resources described above we obtain lin-
guistic word vectors of length 172,418 dimen-
sions. These vectors are 99.9% sparse i.e, each
vector on an average contains only 34 non-zero
features out of 172,418 total features. On average
a linguistic feature (vector dimension) is active for
15 word types. The linguistic word vectors con-
tain 119,257 unique word types. Table 2 shows
linguistic vectors for some of the words.

3 Experiments

We first briefly describe the evaluation tasks and
then present results.

3.1 Evaluation Tasks

Word Similarity. We evaluate our word repre-
sentations on three different benchmarks to mea-
sure word similarity. The first one is the widely

3http://www.gutenberg.org/ebooks/10681
4https://archive.org/details/

synonymsantonyms00ordwiala

used WS-353 dataset (Finkelstein et al., 2001),
which contains 353 pairs of English words that
have been assigned similarity ratings by humans.
The second is the RG-65 dataset (Rubenstein and
Goodenough, 1965) of 65 words pairs. The third
dataset is SimLex (Hill et al., 2014) which has
been constructed to overcome the shortcomings
of WS-353 and contains 999 pairs of adjectives,
nouns and verbs. Word similarity is computed
using cosine similarity between two words and
Spearman’s rank correlation is reported between
the rankings produced by vector model against the
human rankings.

Sentiment Analysis. Socher et al. (2013) cre-
ated a treebank containing sentences annotated
with fine-grained sentiment labels on phrases and
sentences from movie review excerpts. The
coarse-grained treebank of positive and negative
classes has been split into training, development,
and test datasets containing 6,920, 872, and 1,821
sentences, respectively. We use average of the
word vectors of a given sentence as features in
an `2-regularized logistic regression for classifica-
tion. The classifier is tuned on the dev set and ac-
curacy is reported on the test set.

NP-Bracketing. Lazaridou et al. (2013) con-
structed a dataset from the Penn TreeBank (Mar-
cus et al., 1993) of noun phrases (NP) of length
three words, where the first can be an adjective or
a noun and the other two are nouns. The task is to
predict the correct bracketing in the parse tree for
a given noun phrase. For example, local (phone
company) and (blood pressure) medicine exhibit
left and right bracketing respectively. We append
the word vectors of the three words in the NP in or-
der and use them as features in an `2-regularized
logistic regression classifier. The dataset contains
2,227 noun phrases split into 10 folds. The clas-
sifier is tuned on the first fold and cross-validation
accuracy is reported on the remaining nine folds.
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Vector Length (D) Params. Corpus Size WS-353 RG-65 SimLex Senti NP
Skip-Gram 300 D ×N 300 billion 65.6 72.8 43.6 81.5 80.1
Glove 300 D ×N 6 billion 60.5 76.6 36.9 77.7 77.9
LSA 300 D ×N 1 billion 67.3 77.0 49.6 81.1 79.7
Ling Sparse 172,418 – – 44.6 77.8 56.6 79.4 83.3
Ling Dense 300 D ×N – 45.4 67.0 57.8 75.4 76.2
Skip-Gram ⊕ Ling Sparse 172,718 – – 67.1 80.5 55.5 82.4 82.8

Table 3: Performance of different type of word vectors on evaluation tasks reported by Spearman’s
correlation (first 3 columns) and Accuracy (last 2 columns). Bold shows the best performance for a task.

3.2 Linguistic Vs. Distributional Vectors

In order to make our linguistic vectors comparable
to publicly available distributional word vectors,
we perform singular value decompostion (SVD)
on the linguistic matrix to obtain word vectors of
lower dimensionality. If L ∈ {0, 1}N×D is the lin-
guistic matrix with N word types and D linguistic
features, then we can obtain U ∈ RN×K from the
SVD of L as follows: L = UΣV>, with K being
the desired length of the lower dimensional space.

We compare both sparse and dense linguistic
vectors to three widely used distributional word
vector models. The first two are the pre-trained
Skip-Gram (Mikolov et al., 2013)5 and Glove
(Pennington et al., 2014)6 word vectors each of
length 300, trained on 300 billion and 6 billion
words respectively. We used latent semantic anal-
ysis (LSA) to obtain word vectors from the SVD
decomposition of a word-word cooccurrence ma-
trix (Turney and Pantel, 2010). These were trained
on 1 billion words of Wikipedia with vector length
300 and context window of 5 words.

3.3 Results

Table 3 shows the performance of different word
vector types on the evaluation tasks. It can be seen
that although Skip-Gram, Glove & LSA perform
better than linguistic vectors on WS-353, the lin-
guistic vectors outperform them by a huge mar-
gin on SimLex. Linguistic vectors also perform
better at RG-65. On sentiment analysis, linguis-
tic vectors are competitive with Skip-Gram vec-
tors and on the NP-bracketing task they outper-
form all distributional vectors with a statistically
significant margin (p < 0.05, McNemar’s test Di-
etterich (1998)). We append the sparse linguis-
tic vectors to Skip-Gram vectors and evaluate the
resultant vectors as shown in the bottom row of
Table 3. The combined vector outperforms Skip-

5https://code.google.com/p/word2vec
6http://www-nlp.stanford.edu/projects/

glove/

Gram on all tasks, showing that linguistic vectors
contain useful information orthogonal to distribu-
tional information.

It is evident from the results that linguistic vec-
tors are either competitive or better to state-of-the-
art distributional vector models. Sparse linguis-
tic word vectors are high dimensional but they are
also sparse, which makes them computationally
easy to work with.

4 Discussion

Linguistic resources like WordNet have found ex-
tensive applications in lexical semantics, for ex-
ample, for word sense disambiguation, word simi-
larity etc. (Resnik, 1995; Agirre et al., 2009). Re-
cently there has been interest in using linguistic
resources to enrich word vector representations.
In these approaches, relational information among
words obtained from WordNet, Freebase etc. is
used as a constraint to encourage words with sim-
ilar properties in lexical ontologies to have simi-
lar word vectors (Xu et al., 2014; Yu and Dredze,
2014; Bian et al., 2014; Fried and Duh, 2014;
Faruqui et al., 2015a). Distributional represen-
tations have also been shown to improve by us-
ing experiential data in addition to distributional
context (Andrews et al., 2009). We have shown
that simple vector concatenation can likewise be
used to improve representations (further confirm-
ing the established finding that lexical resources
and cooccurrence information provide somewhat
orthogonal information), but it is certain that more
careful combination strategies can be used.

Although distributional word vector dimensions
cannot, in general, be identified with linguistic
properties, it has been shown that some vector
construction strategies yield dimensions that are
relatively more interpretable (Murphy et al., 2012;
Fyshe et al., 2014; Fyshe et al., 2015; Faruqui et
al., 2015b). However, such analysis is difficult
to generalize across models of representation. In
constrast to distributional word vectors, linguistic

467



word vectors have interpretable dimensions as ev-
ery dimension is a linguistic property.

Linguistic word vectors require no training as
there are no parameters to be optimized, meaning
they are computationally economical. While good
quality linguistic word vectors may only be ob-
tained for languages with rich linguistic resources,
such resources do exist in many languages and
should not be disregarded.

5 Conclusion

We have presented a novel method of constructing
word vector representations solely using linguistic
knowledge from pre-existing linguistic resources.
These non-distributional, linguistic word vectors
are competitive to the current models of distribu-
tional word vectors as evaluated on a battery of
tasks. Linguistic vectors are fully interpretable
as every dimension is a linguistic feature and are
highly sparse, so they are computationally easy to
work with.
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Abstract

In this article, we first propose to ex-
ploit a new criterion for improving distri-
butional thesauri. Following a bootstrap-
ping perspective, we select relations be-
tween the terms of similar nominal com-
pounds for building in an unsupervised
way the training set of a classifier perform-
ing the reranking of a thesaurus. Then, we
evaluate several ways to combine thesauri
reranked according to different criteria and
show that exploiting the complementary
information brought by these criteria leads
to significant improvements.

1 Introduction

The work presented in this article aims at im-
proving thesauri built following the distributional
approach as implemented by (Grefenstette, 1994;
Lin, 1998; Curran and Moens, 2002). A part of
the work for improving such thesauri focuses on
the filtering of the components of the distribu-
tional contexts of words (Padró et al., 2014; Po-
lajnar and Clark, 2014) or their reweighting, ei-
ther by turning the weights of these components
into ranks (Broda et al., 2009) or by adapting
them through a bootstrapping method from the
thesaurus to improve (Zhitomirsky-Geffet and Da-
gan, 2009; Yamamoto and Asakura, 2010). The
other part implies more radical changes, includ-
ing dimensionality reduction methods such as La-
tent Semantic Analysis (Padó and Lapata, 2007),
multi-prototype (Reisinger and Mooney, 2010) or
exemplar-based models (Erk and Pado, 2010),
neural approaches (Huang et al., 2012; Mikolov et
al., 2013) or the adoption of a Bayesian viewpoint
(Kazama et al., 2010; Dinu and Lapata, 2010).

Our work follows (Ferret, 2012), which pro-
posed a different way from (Zhitomirsky-Geffet
and Dagan, 2009) to exploit bootstrapping by se-

lecting in an unsupervised way a set of semanti-
cally similar words from an initial thesaurus and
training from them a classifier to rerank the se-
mantic neighbors of the initial thesaurus entries.
More precisely, we propose a new criterion for this
selection, based on the similarity relations of the
components of similar compounds, and we show
two modes – early and late – of combination of
thesauri reranked from different criteria, including
ours, leading to significant further improvements.

2 Reranking a distributional thesaurus

Distributional thesauri are characterized by het-
erogeneous performance in their entries, even for
high frequency entries. This is a favorable situa-
tion for implementing a bootstrapping approach in
which the results for “good” entries are exploited
for improving the results of the other ones. How-
ever, such idea faces two problems: first, detect-
ing “good” entries; second, learning a model from
them for improving the performance of the other
entries.

The first issue consists in selecting without su-
pervision a set of positive and negative examples
of similar words that represents a good compro-
mise between its error rate and its size. Straight-
forward solutions such as using the similarity
value between an entry and its neighbors or relying
on the frequency of entries are not satisfactory in
terms of error rate. Hence, we propose in Section 3
a new method, based on the semantic composi-
tionality hypothesis of compounds, for achieving
this selection in a more indirect way and show the
interest to combine it with the criterion of (Ferret,
2012) for building a large training set with a rea-
sonable error rate.

We address the second issue by following
(Hagiwara et al., 2009), which defined a Sup-
port Vector Machine (SVM) model for deciding
whether two words are similar or not. In our con-
text, a positive example is a pair of nouns that are
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semantically similar while a negative example is
a pair of non similar nouns. The features of each
pair of nouns are built by summing the weights of
the elements shared by their distributional repre-
sentations, which are vectors of weighted cooccur-
rents. Cooccurrents not shared by the two nouns
are given a null weight.

This SVM model is used for improving a the-
saurus by reranking its semantic neighbors as fol-
lows: for each entry E of the thesaurus, the rep-
resentation as an example of the word pair (E,
neighbor) is built for each of the neighbors of E
and submitted to the SVM model in classification
mode. Finally, all the neighbors of E are reranked
according to the value of the decision function
computed for each neighbor by the SVM model.

3 Unsupervised example selection

The evaluation of distributional thesauri shows
that a true semantic neighbor is more likely to be
found when the thesaurus entry is a high frequency
noun and the neighbor has a low rank. However,
relying only on these two criteria doesn’t lead to
a good enough set of positive examples. For in-
stance, taking as positive examples from the ini-
tial thesaurus of Section 4 the first neighbor of its
2,148 most frequent entries, the number of pos-
itive examples of (Hagiwara et al., 2009), only
leads to 44.3% of correct examples. Moreover,
this percentage exceeds 50% only when the num-
ber of examples is less than 654, which represents
a very small training set for this kind of task.

Hence, we propose a more selective approach
for choosing positive examples among high fre-
quency nouns to get a more balanced solution be-
tween the number of examples and their error rate.
This approach exploits a form of semantic compo-
sitionality hypothesis of compounds. While much
work has been done recently for defining the dis-
tributional representation of compounds by com-
posing the distributional representations of their
components (Mitchell and Lapata, 2010; Paperno
et al., 2014), we adopt a kind of reverse viewpoint
by exploiting the possibility to link the meaning
of a compound to the meaning of its components.
More precisely, we assume that the mono-terms
of two semantically related compounds with the
same syntactic role in their compound are likely
to be semantically linked themselves.

In this work, we only consider compounds hav-
ing one of these three term structures (with their

percentage of the vocabulary of compounds):

(a) <noun>mod <noun>head (30)

(b) <adjective>mod <noun>head (58)

(c) <noun>head <preposition><noun>mod (12)

Each compound Ci is represented as a pair
(Hi,Mi), where Hi stands for the head of the
compound whereas Mi represents its modifier
(mod). According to the assumption underlying
our selection procedure, if a compound (H2,M2)
is a semantic neighbor of a compound (H1,M1)
(i.e. at most its cth neighbor in a distributional the-
saurus of compounds), we can expect H1 and H2

on one hand and M1 and M2 on the other hand to
be semantically similar. Since distributional the-
sauri of compounds are far from being perfect, we
added constraints on the matching of the compo-
nents of two compounds. More precisely, the posi-
tive examples of semantically similar nouns (noun
pairs after→) are selected by the three following
rules, where H1 = H2 means that H1 is the same
word asH2 andH1 ≡ H2 means thatH2 is at most
the mth neighbor of H1 in the initial thesaurus of
mono-terms (but is different from H1):

(1) H1 ≡ H2 & M1 = M2 → (H1, H2)
(2) M1 ≡M2 & H1 = H2 → (M1, M2)
(3) M1 ≡M2 & H1 ≡ H2 → (H1, H2), (M1, M2)

The selection of negative examples is also an
important issue but benefits from the fact that the
number of semantic neighbors of an entry that
are actually semantically linked to this entry in a
distributional thesaurus quickly decreases as their
rank increase. In the experiments of Section 4,
we built negative examples from positive exam-
ples by turning each positive example (A,B) into
two negative examples: (A, rank 10 A neighbor)
and (B, rank 10 B neighbor). Choosing neighbors
with a higher rank would have guaranteed fewer
false negative examples but taking neighbors with
a rather small rank for building negative examples
is more useful in terms of discrimination.

4 Experiments and evaluation

4.1 Building of distributional thesauri
The first step of the work we present is the build-
ing of two distributional thesauri: the thesaurus of
mono-terms to improve (A2ST) and a thesaurus
of compounds (A2ST-comp). Similarly to (Ferret,
2012), they were both built from the AQUAINT-2
corpus, a 380 million-word corpus of news arti-
cles in English. The building procedure, defined
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by (Ferret, 2010), was also identical to (Ferret,
2012), with distributional contexts compared with
the Cosine measure and made of window-based
lemmatized cooccurrents (1 word before and af-
ter) weighted by Positive Pointwise Mutual Infor-
mation (PPMI). For the thesaurus of compounds,
a preprocessing step was added to identify nom-
inal compounds in texts. This identification was
done in two steps: first, a set of compounds were
extracted from the AQUAINT-2 corpus by rely-
ing on a restricted set of morpho-syntactic pat-
terns applied by the Multiword Expression Toolkit
(mwetoolkit) (Ramisch et al., 2010); then, the
most frequent compounds in this set (frequency
> 100) were selected as reference and their oc-
currences in the AQUAINT-2 corpus were iden-
tified by applying the longest-match strategy to
the output of the TreeTagger part-of-speech tagger
(Schmid, 1994)1. Finally, distributional contexts
made of mono-terms and compounds were built as
stated above and neighbors were found for 29,174
compounds.

4.2 Example selection

We applied the three rules of Section 3 with all
the entries of our thesaurus of compounds and the
upper half in frequency of our mono-term entries.
For mono-terms, we only took the first neighbor
(m = 1) of each entry because of the rather low
performance of the initial thesaurus while for com-
pounds, a larger value (c = 3) was chosen for
enlarging the number of selected examples since
neighbors were globally more reliable (see results
of Table 2). As the selection method makes the
definition of a development set quite difficult, the
values of these two parameters were chosen in a
conservative way.

Table 1 gives for each rule and two combina-
tions of them the number of selected positive ex-
amples (#pos. ex.) and the percentage of positive
(%good pos.) and negative examples (%bad neg.)
found in our Gold Standard resource for thesaurus
evaluation. This resource results from the union of
the synonyms of WordNet 3.0 and the associated
words of the Moby thesaurus. Table 1 also gives
the same data for examples selected by the method
of (Ferret, 2012) (symmetry row, sym. for short),
based on the fact that as similarity relations are

1Longest-match strategy: if C1 is a reference compound
that is part of a reference compound C2, the identification
of an occurrence of C2 blocks out the identification of the
associated occurrence of C1.

method %good pos. %bad neg. #pos. ex.

symmetry 59.7 12.4 796

(1) 56.9 16.1 921
(2) 44.7 14.7 308
(3) 46.2 16.9 40
rules (1,2) 53.0 16.1 1,115
rules (1,2,3) 52.4 15.9 1,131

sym. + (1,2) 54.3 15.0 1,710
sym. + (1,2,3) 53.9 14.5 1,725

Table 1: Selection of examples.

symmetric, a pair of words (A,B) are more likely
to be similar if the first neighbor of A is B and the
first neighbor of B is A. The data for the union of
the examples produced by the two methods also
appear in Table 1.

Concerning the method we propose, Table 1
shows that rule (3), which is a priori the least reli-
able of the three rules as it only requires similarity
and not equality for both heads and modifiers, ac-
tually produces a very small set of examples that
tends to degrade global results. As a consequence,
only the combination of rules (1) and (2) is used
thereafter (row in bold). Table 1 also suggests that
the heads of two semantically linked compounds
are more likely to be actually linked themselves
if they have the same modifier than the modifiers
of two semantically linked compounds having the
same head. This confirms our expectation that the
head of a compound is more related to the mean-
ing of the compound than its modifier. More glob-
ally, Table 1 shows that the symmetry method has
higher results than the second one but their associ-
ation produces an interesting compromise between
the number of examples, 1,710, and its error rate,
45.7. The fact that the two methods only share 201
noun pairs also illustrates their complementarity.

4.3 Reranking evaluation

For our SVM models, we adopted the RBF kernel,
as (Hagiwara et al., 2009), and a grid search strat-
egy for optimizing both the γ and C parameters
by applying a 5-fold cross validation procedure to
our training set and adopting the precision mea-
sure as the evaluation function to optimize. The
models were built with LIBSVM (Chang and Lin,
2001) and then applied to the neighbors of our ini-
tial thesaurus.

Table 2 gives the results of the reranking for
both the method we propose, compound (comp.
for short), with examples selected by rules (1) and
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(2), and the one of (Ferret, 2012), symmetry. In
either case, they correspond to an intrinsic evalu-
ation achieved by comparing the semantic neigh-
bors of each thesaurus entry with the synonyms
and related words of our Gold Standard resource
for that entry. 12,243 entries with frequency > 10
were present in this resource and evaluated in such
a way. As the neighbors are ranked according to
their similarity value with their entry, we adopted
the classical evaluation measures of Information
Retrieval by replacing documents with synonyms
and queries with entries: R-precision (R-prec.),
Mean Average Precision (MAP) and precision at
different cut-offs (1, 5 and 10).

More precisely, the initial row of Table 2 gives
the values of these measures for our initial the-
saurus of mono-terms while its A2ST-comp row
corresponds to the measures for our thesaurus of
compounds. It should be note that in the case of
the A2ST-comp thesaurus, the number of evalu-
ated entries is very small, restricted to 813 entries,
with also a very small number of reference syn-
onyms by entry. Hence, the results of the evalu-
ation of A2ST-comp have to be considered with
caution even if their high level for the very first se-
mantic neighbors tends to confirm the positive im-
pact of the low level of ambiguity of compounds
compared to mono-terms.

The two following rows gives the results of the
thesauri built from the best models of (Baroni et
al., 2014), B14-count for the count model, whose
main parameters are close or identical to ours,
and B14-predict for the predict model, built from
(Mikolov et al., 2013). These results first illus-
trate the known importance of corpus size, as the
(Baroni et al., 2014)’s corpus is more than 7 times
larger than ours, and the fact that for building the-
sauri, the count model is superior to the predict
model. This last observation is confirmed by the
results of the skip-gram model of (Mikolov et al.,
2013) with its best parameters2 for our corpus (5th

row), which clearly exhibits worst results than ini-
tial. For this Mikolov thesaurus and the follow-
ing reranked ones, each value corresponds to the
difference between the measure for the considered
thesaurus and the measure for the initial thesaurus.
All these differences were found statistically sig-
nificant according to a paired Wilcoxon test with
p-value < 0.05.

2word2vec -cbow 0 -size 600 -window 10 -negative 0 -hs
0 -sample 1e-5

Thesaurus R-prec. MAP P@1 P@5 P@10

initial (A2ST) 7.7 5.6 22.5 14.1 10.8
A2ST-comp 32.7 39.5 34.9 12.3 7.1

B14-count 12.5 9.8 31.9 19.6 15.2
B14-pred 10.9 8.5 30.3 18.4 13.8

Mikolov -2.2 -1.4 -6.2 -4.6 -3.8

symmetry +0.3 +0.1 +2.1 +0.8 +0.6
compound +0.1 +0.0 +2.0 +0.9 +0.6

sym.+comp. +0.3 +0.2 +2.8 +1.2 +0.9

RRF +0.7 +0.6 +3.7 +1.9 +1.4
borda +0.7 +0.5 +3.6 +1.7 +1.3
condorcet +0.5 +0.4 +3.4 +1.6 +1.2
CombSum +0.9 +0.8 +4.7 +2.2 +1.5

CS-w-Mik +1.2 +1.4 +4.2 +2.0 +1.5

Table 2: Evaluation of our initial thesaurus and its
reranked versions (values = percentages).

The analysis of the next two rows of Table 2
first shows that each criterion used for reranking
our initial thesaurus leads to a global increase of
results. The extent of this increase is quite sim-
ilar for the two criteria: symmetry slightly out-
performs compound but the difference is not sig-
nificant. This increase is higher for P@{1,5,10}
than for R-precision and MAP, which can be ex-
plained by the high number of synonyms and re-
lated words, 38.7 on average, that an entry of our
initial thesaurus has in our reference. Hence, even
a significant increase of P@{1,5,10} may have a
modest impact on R-precision and MAP as the
overall recall, equal to 9.8%, is low.

4.4 Thesaurus fusion

Having several thesauri reranked according to dif-
ferent criteria offers the opportunity to apply en-
semble methods. Such idea was already experi-
mented in (Curran, 2002) for thesauri built with
different parameters (window or syntactic based
cooccurrents, etc). We tested more particularly
two general strategies for data fusion (Atrey et al.,
2010): early and late fusions. The first one con-
sists in our case in fusing the training sets built
from our two criteria. As for each criterion, a clas-
sifier is then built from the fused training set and
applied for reranking the initial thesaurus (see the
sym.+comp. row of Table 2).

Table 3 illustrates qualitatively the impact of
this first strategy for the entry esteem. Its Word-
Net row gives all the synonyms for this entry in
WordNet while its Moby row gives the first re-
lated words for this entry in Moby. In our initial
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WordNet respect, admiration, regard

Moby

admiration, appreciation, accep-
tance, dignity, regard, respect, ac-
count, adherence, consideration,
estimate, estimation, fame, great-
ness, homage + 79 words more

initial

cordiality, gratitude, admiration,
comradeship, back-scratching,
perplexity, respect, ruination,
appreciation, neighbourliness . . .

sym.+comp.

respect, admiration, trust, recog-
nition, gratitude, confidence, af-
fection, understanding, solidarity,
dignity, appreciation, regard, sym-
pathy, acceptance . . .

Table 3: Reranking for the entry esteem with the
early fusion strategy.

thesaurus, the first two neighbors of esteem that
are present in our reference resources are admira-
tion (rank 3) and respect (rank 7). The reranking
produces a thesaurus in which these two words ap-
pear as the first two neighbors of the entry while
its third synonym in WordNet raises from rank 22
to rank 12. Moreover, the number of neighbors
among the first 14 ones that are present in Moby
increases from 3 to 6.

The late fusion strategy relies on the methods
used in Information Retrieval for merging ranked
lists of retrieved documents. More precisely, we
experimented the Borda, Condorcet (Nuray and
Can, 2006) and Reciprocal Rank (RRF) (Cormack
et al., 2009) fusions based on ranks and the Comb-
Sum fusion based on similarity values, normalized
in our case with the Zero-one method (Wu et al.,
2006). The corresponding thesauri were built by
fusing, entry by entry, the lists of neighbors com-
ing from the initial, symmetry and compound the-
sauri.

Table 2 first shows that all the thesauri pro-
duced by our ensemble methods outperform our
first three thesauri, which confirms that initial,
symmetry and compound can bring complemen-
tary information, exploited by the fusion. It also
shows that our late fusion methods are more ef-
fective than our early fusion method. However,
no specific element advocates at this stage for a
generalization of this observation. The evaluation
reported by Table 2 also suggests that for fusing
distributional thesauri, the similarity of a neighbor
with its entry is a more relevant criterion than its
rank. Among the rank based methods, we observe

that RRF is clearly superior to condorcet but only
weakly superior to borda. Finally, the last row
of Table 2 – CS-w-Mik – illustrates one step fur-
ther the interest of ensemble methods for distribu-
tional thesauri: whereas the “Mikolov thesaurus”
gets the worst results among all the thesauri of Ta-
ble 2, adding it to the initial, symmetry and com-
pound thesauri in the CombSum method leads to
improve both R-precision and MAP, with a only
small decrease of P@1 and P@5. From a more
global perspective, it is interesting to note that our
best method, CombSum, clearly outperforms the
reranking method of (Ferret, 2013) with the same
initial starting point.

5 Conclusion and perspectives

In this article, we have presented a method based
on bootstrapping for improving distributional the-
sauri. More precisely, we have proposed a new
criterion, based on the relations of mono-terms in
similar compounds, for the unsupervised selection
of training examples used for reranking the seman-
tic neighbors of a thesaurus. We have evaluated
two different strategies for combining this crite-
rion with an already existing one and showed that a
late fusion approach based on the merging of lists
of neighbors is particularly effective compared to
an early fusion approach based on the merging of
training sets.

We plan to extend this work by studying how
the combination of the unsupervised selection of
examples and their use for training supervised
classifiers can be exploited for improving distribu-
tional thesauri through feature selection. We will
also investigated the interest of taking into account
word senses in this framework, as in (Huang et al.,
2012) or (Reisinger and Mooney, 2010).
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Muntsa Padró, Marco Idiart, Aline Villavicencio, and
Carlos Ramisch. 2014. Nothing like good old fre-
quency: Studying context filters for distributional
thesauri. In 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP 2014),
pages 419–424, Doha, Qatar.

Denis Paperno, Nghia The Pham, and Marco Baroni.
2014. A practical and linguistically-motivated ap-
proach to compositional distributional semantics. In
52nd Annual Meeting of the Association for Compu-
tational Linguistics (ACL 2014), pages 90–99, Bal-
timore, Maryland.

Tamara Polajnar and Stephen Clark. 2014. Improv-
ing distributional semantic vectors through context
selection and normalisation. In 14th Conference of
the European Chapter of the Association for Compu-
tational Linguistics (EACL 2014), pages 230–238,
Gothenburg, Sweden.

Carlos Ramisch, Aline Villavicencio, and Christian
Boitet. 2010. mwetoolkit: a Framework for Multi-
word Expression Identification. In Seventh Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2010), Valetta, Malta, May.

475



Joseph Reisinger and Raymond J. Mooney. 2010.
Multi-prototype vector-space models of word mean-
ing. In Human Language Technologies: The 2010
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics
(HLT-NAACL 2010), pages 109–117, Los Angeles,
California, June.

Helmut Schmid. 1994. Probabilistic part-of-speech
tagging using decision trees. In International Con-
ference on New Methods in Language Processing.

Shengli Wu, Fabio Crestani, and Yaxin Bi. 2006. Eval-
uating score normalization methods in data fusion.
In Third Asia Conference on Information Retrieval
Technology (AIRS’06), pages 642–648. Springer-
Verlag.

Kazuhide Yamamoto and Takeshi Asakura. 2010.
Even unassociated features can improve lexical dis-
tributional similarity. In Second Workshop on
NLP Challenges in the Information Explosion Era
(NLPIX 2010), pages 32–39, Beijing, China.

Maayan Zhitomirsky-Geffet and Ido Dagan. 2009.
Bootstrapping Distributional Feature Vector Quality.
Computational Linguistics, 35(3):435–461.

476



Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Short Papers), pages 477–482,

Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Dependency length minimisation effects in short spans: a large-scale
analysis of adjective placement in complex noun phrases

Kristina Gulordava
University of Geneva

Kristina.Gulordava,

Paola Merlo
University of Geneva

Paola.Merlo@unige.ch

Benoit Crabbé
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Abstract

It has been extensively observed that lan-
guages minimise the distance between two
related words. Dependency length min-
imisation effects are explained as a means
to reduce memory load and for effective
communication. In this paper, we ask
whether they hold in typically short spans,
such as noun phrases, which could be
thought of being less subject to efficiency
pressure. We demonstrate that minimisa-
tion does occur in short spans, but also that
it is a complex effect: it is not only the
length of the dependency that is at stake,
but also the effect of the surrounding de-
pendencies.

1 Introduction

One of the main goals in the study of language is
to find explanations for those fundamental proper-
ties that are found in every human language. The
observation that human languages appear to min-
imise the distance between any two related words
– called the property of dependency length min-
imisation (DLM) — is a universal property that
has been documented in sentence processing (Gib-
son, 1998; Hawkins, 1994; Hawkins, 2004; Dem-
berg and Keller, 2008), in corpus properties of
treebanks (Temperley, 2007; Futrell et al., 2015),
in diachronic language change (Tily, 2010). Func-
tional explanations have been proposed for this
pervasive linguistic property. If speakers want to
reduce memory load and maximise efficiency of
processing, they will choose to produce and pref-
erentially analyse constructions where words are
linearised in such a way that minimises the total
distance of related words.

The DLM principle can be stated as follows:
if there exist possible alternative orderings of a
phrase, the one with the shortest overall depen-
dency length (DL) is preferred. We measure the

length of a dependency as the number of words
between the head and its dependent.

As an illustration, DLM principle is widely re-
ported in the literature to explain the alternation
of postverbal complements (Bresnan et al., 2007;
Wasow, 2002). Consider, for example, the case
when a verb has both a direct object (NP) and a
prepositional complement or adjunct (PP). Two al-
ternative orders of the verb complements are pos-
sible: VP1 = V NP PP, whose length is DL1 and
VP2 = V PP NP, whose length is DL2. DL1 is
DL(V-NP) + DL(V-PP) = |NP| + 1; DL2 is
DL(V-NP) +DL(V-PP) = |PP|+ 1. 1 If DL1 is
bigger than DL2, then VP2 is preferred over VP1,
despite the non-canonical V-PP-NP order.

While DLM has been demonstrated on a large
scale and explanations have been proposed based
on human sentence processing facts in the verbal
domain, it is not clear what the effects of DLM are
in the more limited nominal domain. If the expla-
nations are really rooted in memory and efficiency,
will they still hold in phrases that might span only
a few words?

In this paper, we look at the structural fac-
tors that play a role in adjective-noun word order
alternations in Romance languages. We choose
Romance languages because they show a good
amount of variation, making studies of DLM
meaningful. This would not be the case in En-
glish, for instance, as English has no variation of
word order placement in the noun phrase. Ad-
jective placement in Romance is often studied in
connection with semantic and lexical properties of
adjectives (Bouchard, 1998; Cinque, 2010). There
exists, however, a body of work which shows that
structural syntactic properties like the size of ad-
jective phrase also affect the adjective position
(Abeillé and Godard, 2000; Thuilier, 2012).

We demonstrate that, unlike results for the ver-

1The minimal dependency length is equal to one when the
head and its dependent are adjacent.
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RightNP=Yes RightNP=No
X=Left |β| − |α| 2|β|+ 1

X=Right −3|α| − 2 −2|α| − 1

Table 1: Dependency length difference for differ-
ent types of noun phrases. By convention, we al-
ways calculate DL1 −DL2.

bal domain, it is not only the length of the depen-
dency that is at stake, but also the effect of the sur-
rounding dependencies.

2 Dependency length minimisation in the
noun phrase

In applying the general principle of DLM to the
dependency structure of noun phrases, our goal is
to test to what extent the DLM principle predicts
the observed adjective-noun word order alterna-
tion pattern in relatively short spans.

Consider a prototypical noun phrase with an ad-
jective phrase as a modifier. We assume two possi-
ble placements for an adjective phrase: postnom-
inal and prenominal. To simplify, we concentrate
on noun phrases with only one adjective modifier
adjacent to the noun. The adjective modifier can
be a complex phrase with both left and right de-
pendents ( α and β, respectively, in Figure 1). The
noun phrase can have parents and right modifiers
(X and Y, respectively, in Figure 1). These alterna-
tive orderings yield different dependency lengths,
as can be seen from Figure 1. By convention, we
will always indicate the prenominal order as DL1,
and the postnominal order as DL2. Their differ-
ence is always calculated as DL1 −DL2.

We consider all dependencies in a noun phrase
and not only the length of the noun-adjective de-
pendency. This is because we assume, as previ-
ously done, that DLM is global, and not a local, ef-
fect. Our analysis is a faithful interpretation of the
very general DLM principle of Gildea and Tem-
perley (2010) which is based on the overall de-
pendency length of a sentence. We do no take
other dependencies in the sentence into account,
because their lengths are the same acrossDL1 and
DL2. The difference DL1 −DL2 is therefore the
difference between the overall dependency length
of two sentences that differ only in their placement
of one adjective.

The first panel, panel a, shows the case where
the parent of the NP is on the left of it. The depen-
dency length for the prenominal adjective struc-

ture is equal to DL1 = d′1 + d′2 = (|α| + |β| +
1) + |β| and for the postnominal adjective struc-
ture is DL2 = d′′1 + d′′2 = |α|. The difference be-
tween these lengths is 2|β|+ 1, which means that
DL1 > DL2 and suggests that the postnominal
placement is always preferred.

Similarly, the second panel, panel b, in the
figure shows how we calculate the dependency
lengths when the parent of the NP is on its right.
The difference of lengths is equal to −2|α| − 1,
yielding a preference for prenominal adjectives.

We also consider more complex noun phrases
with at least one right dependent, which are very
common in Romance languages (around 50% of
noun phrases in our sample include, for instance,
a complement, such as a relative clause). The
third and fourth panels in Figure 1 illustrate the
case where three dependencies should be taken
into account. The calculations of these depen-
dency lengths for the prenominal and postnominal
alternatives yield the corresponding differences of
|β|−|α| (in the case of a left external dependency)
and −3|α| − 2 (in the case of a right external de-
pendency). These values are different from the
dependency length differences for noun phrases
without a right dependent (panel a and b). The
comparison of the values, where RightNP=Yes is
smaller than RightNP=No in both cases, suggests
that the presence of a right dependent favours the
prenominal placement of adjectives in comparison
to the case of a simple noun phrase.

The differences in dependency lengths are sum-
marized in Table 1. The expectations based on de-
pendency length minimisation are as indicated in
(1) below.

(1) a. the presence of a left dependent of an
adjective favours the adjective’s prenominal
placement;

b. the presence of a right dependent of an
adjective favours the adjective’s postnominal
placement;

c. when the external dependency is leftwards,
X = right, (for canonical subjects, for ex-
ample), then the adjective is prenominal, be-
cause the difference is negative and it is a
function of α;

d. when the noun has a right dependent, the
prenominal adjective position is more pre-
ferred than when there is no right dependent,
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d′′
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d′′
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3

(d) Right noun dependent Y, right external dependency

Figure 1: Noun phrase structure variants and the dependencies relevant for the DLM calculation.

as evinced by the fact that the RightNP = Yes
column is always greater than the RightNP =
No column.

The predictions (1a) and (1b) are formulated
for an average case of adjective placement, across
nouns phrases with different values of X and
RightNP factors. Table 1 shows that for each com-
bination of these context factors the weight of α is
negative or zero and the weight of β is positive or
zero. On average, therefore, we expect to see a
negative effect of α (1a) and a positive effect of β
(1b).

We develop a model to test which of the fine-
grained predictions derived from DLM are con-
firmed by the data provided by the dependency an-
notated corpora of five of the main Romance lan-
guages.

3 Identifying dependency minimisation
factors

3.1 Materials: Dependency treebanks
We use the dependency annotated corpora of five
Romance languages: Catalan, Spanish, Italian
(Hajič et al., 2009), French (Agić et al., 2015), and
Portuguese (Buchholz and Marsi, 2006).

We use part-of-speech information and depen-
dency arcs from the gold annotation to extract

noun phrases containing adjectives. Specifically,
we first convert all treebanks to coarse universal
part-of-speech tags, using existing conventional
mappings from the original tagset to the univer-
sal tagset (Petrov et al., 2012). We then identify
all adjectives (tagged using the universal PoS tag
‘ADJ’) whose dependency head is a noun (tagged
using the universal PoS tag ‘NOUN’). In addition,
we recover all elements of the noun phrase rooted
in this noun, that is, its dependency subtree. For
all languages where this information is available,
we extract lemmas of adjective and noun tokens
which are the features in our analysis. The only
treebank without lemma annotation is French, for
which we extract token forms.2 We extract a total
of around 64’000 instances of adjectives in noun
phrases, ranging from 2’800 for Italian to 20’000
for Spanish.

The data present a substantial amount of varia-
tion in the placement of the adjective: the ratio of
postnominal adjectives ranges from around 65%

2During preprocessing, we exclude all adjectives and
nouns with non-lower case and non-alphabetic symbols
which can include common names, compounds (in Spanish
and Catalan treebanks), and English borrowings. In addition,
we leave out noun phrases which have their elements sepa-
rated by punctuation (for example, commas or parentheses)
to ensure that the placement of adjective is not affected by an
unusual structure of the noun phrase.
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for Italian to 78% for Catalan. Among all adjective
types, at least 10% in each language are observed
both prenominally and postnominally (ranging be-
tween 147 types for Italian and 445 types for Span-
ish).

3.2 Method: Mixed Effects models
We analyse the interactions of several dependency
factors, using a logit mixed effect models (Bates et
al., 2014). Mixed-effect logistic regression mod-
els (logit models) are a type of Generalized Linear
Mixed Models with the logit link function and are
designed for binomially distributed outcomes such
as Order in our case.

More precisely, Generalized Linear Mixed
Models describe an outcome as the linear combi-
nation of fixed effects X and conditional random
effects Z associated with grouping of instances,
where β and γ are the corresponding weights of
the effects.

(2) y = Xβ + Zγ + ε

In logistic regression models, this linear combi-
nation is then transformed with the logit link func-
tion to predict the binomial output:

(3) Order =
1

1 + exp−y

In our model, Order = 0 codes the prenominal
adjective order and Order = 1 codes the post-
nominal order.

3.3 Factors
We define and test the following factors, corre-
sponding to the factors illustrated in Figure 1 and
example (1), represented as binary or real-valued
variables:

• LeftAP - the cumulative length (in words) of
all left dependents of the adjective, indicated
as α in Figure 1;

• RightAP - the cumulative length (in words)
of all right dependents of the adjective, indi-
cated as β in Figure 1;

• RightNP - the indicator variable representing
the presence (RightNP = 1) or absence
(RightNP = 0) of the right dependent of
the noun, indicated as Y in Figure 1;

• ExtDep - the direction of the arc from the
noun to its parent X, an indicator variable.
ExtDep = 0 when X is on the left of the
noun, ExtDep = 1 when X is on the right.

Predictor β SE Z p
Intercept -0.17 (0.117) -1.42 0.16
LeftAP 2.21 (0.101) 21.91 < .001
RightAP 0.76 (0.054) 14.08 < .001
ExtDep -0.06 (0.071) -0.85 0.40
RightNP -0.77 (0.050) -15.34 < .001

Random effects Var
Adjective 1.989
Language 0.024

Table 2: Summary of the fixed and random effects
in the mixed-effects logit model (N = 15842),
shown in (4).

In addition, to account for lexical variation, we
include adjective lemmas (for French, we include
tokens) as grouping variables introducing random
effects. For example, the instances of adjective-
noun order for a particular adjective will share the
same weight value γ for the adjective variable, but
across different adjectives this value can vary.3

For a given example involving an adjective i and
belonging to language j, the linear component of
the model is shown in (4).

yij = LeftAP · βLAP +RightAP · βRAP +
+RightNP · βRNP + ExtDep · βED+
+ γAdji

+ γLangj

(4)

By fitting the logit mixed-effect model to our
dataset, we find the fixed and random effects coef-
ficients which best explain the data. To show that a
factor has a statistically significant effect on adjec-
tive placement, we must show that its fixed effect
coefficient is significantly different from zero.

3.4 Results

The logit mixed-effects model fitted to our data,
shown in (4), reveals the following picture (Table
2).

Both the LeftAP and RightAP factors favour
postnominal placement (βLAP = 2.21, βRAP =
0.76, p < 0.001), however there are important dif-
ferences between the two.

3We include only random intercepts because the size of
the data is not sufficient to estimate the slope variables. In
addition, for a robust estimation of the random effects, we
include in our dataset only adjectives that are observed both
prenominally and postnominally.
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LeftAP shows a complex behavior. When Lef-
tAP is equal to one, it favors (slightly) the prenom-
inal placement and when LeftAP is greater than
one, it favors the postnominal placement. This re-
sult suggests that the adjective can behave differ-
ently depending on the size or type of its left pe-
riphery. For the moment it is not clear if the differ-
ence is due to length or type, as LeftAP of length
one are almost always adverbs. It is important to
notice that the results for LeftAP then do not en-
tirely pattern with the predictions of dependency
length minimisation, shown in (1a).

The RightAP factor shows a consistent post-
nominal preference, positively correlated to its
length. Consequently, we can say that the Righ-
tAP is a stronger indicator of the postnominal
placement than LeftAP, in agreement with the pre-
viously observed ordering patterns of adjective
phrases (Abeillé and Godard, 2000) and the DLM
prediction.

The external dependency factor is not signifi-
cant (p > 0.1). Moreover, the log likelihood ra-
tio between the full model and the model without
ExtDep is χ2 distributed with 1 degree of free-
dom with χ2 = 3.8, p = 0.052. This compar-
ison confirms that the introduction of the exter-
nal dependency does not help predicting the Order.
At first sight, this result suggests that this depen-
dency is not subject to the minimisation principle.
A plausible explanation claims that only the de-
pendencies between the head and the edge of the
dependent phrase are minimised (Hawkins, 1994).
In Romance languages, the majority of the noun
phrases take an article which unambiguously de-
fines the left edge of the noun phrase. There is
no need therefore to minimize the external depen-
dency to the noun, since the noun phrase can be
entirely predicted based on its left corner.

The RightNP factor is significant in the fitted
model (βRNP = −0.77, p < 0.001).4 The pres-
ence of a noun dependent on the right of the noun
favours a prenominal placement, as predicted by
DLM (1d). This is a result which, to our knowl-
edge, was not previously observed in the literature,
and that clearly answers our initial question, con-
firming that DLM also applies to very short spans.
A much more detailed study of the lexical and
structural properties of this effect is developed in

4A log-likelihood test of the model including RightAP,
LeftAP and RightNP factors compared to the model including
only RightAP and LeftAP factors yields χ2 = 107 and p <
.001.

(Gulordava and Merlo, 2015).

4 Conclusion

In this paper, we have developed a model of de-
pendency length minimisation in the noun phrase
and shown subtle interactions among its subcom-
ponents. We show that most of DLM predictions
are confirmed, and that DLM also apply to short
spans. The fact that DLM effects also hold in
such short spans casts doubts, in our opinion, on
the grounding of this effect in memory limitations.
The subtle interactions also raise questions on the
exact definition of what dependencies are min-
imised and to what extent a given dependency an-
notation captures these distinctions, questions that
we reserve for future work.
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Abstract

Many NLP tools for English and German
are based on manually annotated articles
from the Wall Street Journal and Frank-
furter Rundschau. The average readers of
these two newspapers are middle-aged (55
and 47 years old, respectively), and the an-
notated articles are more than 20 years old
by now. This leads us to speculate whether
tools induced from these resources (such
as part-of-speech taggers) put older lan-
guage users at an advantage. We show that
this is actually the case in both languages,
and that the cause goes beyond simple vo-
cabulary differences. In our experiments,
we control for gender and region.

1 Introduction

One of the main challenges in natural language
processing (NLP) is to correct for biases in the
manually annotated data available to system en-
gineers. Selection biases are often thought of in
terms of textual domains, motivating work in do-
main adaptation of NLP models (Daume III and
Marcu, 2006; Ben-David et al., 2007; Daume III,
2007; Dredze et al., 2007; Chen et al., 2009; Chen
et al., 2011, inter alia). Domain adaptation prob-
lems are typically framed as adapting models that
were induced on newswire to other domains, such
as spoken language, literature, or social media.

However, newswire is not just a domain with
particular conventions. It is also a source of infor-
mation written by and for particular people. The
reader base of most newspapers is older, richer,
and more well-educated than the average popu-
lation. Also, many newspapers have more read-
ers in some regions of their country. In addition,

1Both authors contributed equally to the paper, and
flipped a heavily biased coin until they were both satisfied
with the order.

newswire text is much more canonical than other
domains, and includes fewer neologisms and non-
standard language. Both, however, are frequent
in the language use of young adults, who are the
main drivers of language change (Holmes, 2013;
Nguyen et al., 2014).

In this paper, we focus on the most widely used
manually annotated resources for English and Ger-
man, namely the English Penn Treebank and the
TIGER Treebank for German. The English tree-
bank consists of manually annotated Wall Street
Journal articles from 1989. The TIGER Treebank
consists of manually annotated Frankfurter Rund-
schau articles from the early 1990s. Both newspa-
pers have regionally and demographically biased
reader bases, e.g., with more old than young read-
ers. We discuss the biases in §2.

In the light of recent research (Volkova et al.,
2013; Hovy, 2015; Jørgensen et al., 2015), we ex-
plore the hypothesis that these biases transfer to
NLP tools induced from these resources. As a re-
sult, these models perform better on texts written
by certain people, namely those whose language
is closer to the training data. Language dynamics
being what they are, we expect English and Ger-
man POS taggers to perform better on texts written
by older people. To evaluate this hypothesis, we
collected English and German user reviews from
a user review site used by representative samples
of the English and German populations. We anno-
tated reviews written by users whose age, gender,
and location were known with POS tags. The re-
sulting data set enables us to test whether there are
significant performance differences between ages,
genders, and regions, while controlling for the two
respective other, potentially confounding, factors.

Contribution We show that age bias leads
to significant performance differences in off-the-
shelf POS taggers for English and German. We
also analyze the relevant linguistic differences be-
tween the age groups, and show that they are not
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solely lexical, but instead extend to the grammat-
ical level. As a corollary, we also present several
new evaluation datasets for English and German
that allow us to control for age, gender, and loca-
tion.

2 Data

2.1 Wall Street Journal and Frankfurter
Rundschau

The Wall Street Journal is a New York City-based
newspaper, in print since 1889, with about two
million readers. It employs 2,000 journalists in
85 news bureaus across 51 countries. Wall Street
Journal is often considered business-friendly, but
conservative. In 2007, Rupert Murdoch bought
the newspaper. The English Penn Treebank con-
sists of manually annotated articles from 1989, in-
cluding both essays, letters and errata, but the vast
majority are news pieces.1

Frankfurter Rundschau is a German language
newspaper based in Frankfurt am Main. Its first is-
sue dates back to 1945, shortly after the end of the
second world war. It has about 120,000 readers. It
is often considered a left-wing liberal newspaper.
According to a study conducted by the newspa-
per itself,2 its readers are found in “comfortable”
higher jobs, well-educated, and on average in their
mid-forties. While the paper is available interna-
tionally, most of its users come from the Rhine-
Main region.

2.2 The Trustpilot Corpus

The Trustpilot Corpus (Hovy et al., 2015a) con-
sists of user reviews scraped from the multi-
lingual website trustpilot.com. The re-
viewer base has been shown to be representative
of the populations in the countries for which large
reviewer bases exist, at least wrt. age, gender, and
geographical spread (Hovy et al., 2015a). The lan-
guage is more informal than newswire, but less
creative than social media posts. This is similar to
the language in the reviews section of the English
Web Treebank.3 For the experiments below, we
annotated parts of the British and German sections

1http://www.let.rug.nl/˜bplank/
metadata/genre_files_updated.html

2http://www.fr-online.de/
wir-ueber-uns/studie-wer-sind-unsere-leser-,
4353508,4356262.html

3https://catalog.ldc.upenn.edu/
LDC2012T13

of the Trustpilot Corpus with the tag set proposed
in Petrov et al. (2011).

2.3 POS annotations

We use an in-house interface to annotate the En-
glish and German data. For each of the two lan-
guages, we annotate 600 sentences. The data is
sampled in the following way: we first extract all
reviews associated with a location, split and to-
kenize the review using the NLTK tokenizer for
the respective language, and discard any sentences
with fewer than three or more than 100 tokens. We
then map each review to the NUTS region corre-
sponding to the location. If the location name is
ambiguous, we discard it.

We then run two POS taggers (TreeTagger4, and
a model implemented in CRF++5) to obtain log-
likelihoods for each sentence in the English and
German sub corpora. We normalize by sentence
length and compute the average score for each re-
gion under each tagger.

We single out the two regions in England and
Germany with the highest, respectively lowest, av-
erage log-likelihoods from both taggers. We do
this to be able to control for dialectal variation.
In each region, we randomly sample 200 reviews
written by women under 35, 200 reviews written
by men under 35, 200 reviews written by women
over 45, and 200 reviews written by men over 45.
This selection enables us to study and control for
gender, region, and age.

While sociolinguistics agrees on language
change between age groups (Barke, 2000; Schler
et al., 2006; Barbieri, 2008; Rickford and Price,
2013), it is not clear where to draw the line. The
age groups selected here are thus solely based on
the availability of even-sized groups that are sepa-
rated by 10 years.

3 Experiments

3.1 Training data and models

As training data for our POS tagging models, we
use manually annotated data from the Wall Street
Journal (English Penn Treebank) and Frankfurter
Rundschau (TIGER). We use the training and test
sections provided in the CoNLL 2006–7 shared
tasks, but we convert all tags to the universal POS
tag set (Petrov et al., 2011).

4http://www.cis.uni-muenchen.de/
˜schmid/tools/TreeTagger/

5http://taku910.github.io/crfpp/
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Our POS taggers are trained using TreeTagger
with default parameters, and CRF++ with default
parameters and standard POS features (Owoputi
et al., 2013; Hovy et al., 2015b). We use two dif-
ferent POS tagger induction algorithms in order
to be able to abstract away from their respective
inductive biases. Generally, TreeTagger (TREET)
performs better than CRF++ on German, whereas
CRF++ performs best on English.

3.2 Results

country group TREET CRF++ avg.

DE

U35 87.42 85.93 86.68
O45 89.39 87.04 88.22
male 88.53 86.11 87.32
female 88.21 86.78 87.50

highest reg. 88.46 86.49 87.48
lowest reg. 88.85 87.41 88.13

EN

U35 87.92 88.23 88.08
O45 88.26 88.40 88.33

male 88.19 88.55 88.37
female 87.97 88.08 88.03

highest reg. 88.27 88.57 88.42
lowest reg. 88.24 88.52 88.38

Table 1: POS accuracy on different demographic
groups for English and German. Significant dif-
ferences per tagger in bold

Table 1 shows the accuracies for both algo-
rithms on the three demographic groups (age, gen-
der, region) for German and English. We see that
there are some consistent differences between the
groups. In both languages, results for both taggers
are better for the older group than for the younger
one. In three out of the four cases, this difference
is statistically significant at p < 0.05, according
to a bootstrap-sample test. The difference between
the genders is less pronounced, although we do see
CRF++ reaching a significantly higher accuracy
for women in German. For regions, we find that
while the models assign low log-likelihood scores
to some regions, this is not reflected in the accu-
racy.

As common in NLP, we treat American (train-
ing) and British English (test data) as variants. It
is possible that this introduces a confounding fac-
tor. However, since we do not see marked effects
for gender or region, and since the English results

closely track the German data, this seems unlikely.
We plan to investigate this in future work.

4 Analysis

The last section showed the performance differ-
ences between various groups, but it does not tell
us where the differences come from. In this sec-
tion, we try to look into potential causes, and ana-
lyze the tagging errors for systematic patterns. We
focus on age, since this variable showed the largest
differences between groups.

Holmes (2013) argues that people between 30
and 55 years use standard language the most,
because of societal pressure from their workplace.
Nguyen et al. (2014) made similar observations
for Twitter. Consequently, both young and retired
people often depart from the standard linguistic
norms, young people because of innovation, older
people because of adherence to previous norms.
Our data suggests, however, that young people do
so in ways that are more challenging for off-the-
shelf NLP models induced on age-biased data.
But what exactly are the linguistic differences that
lead to lower performance for this group?

The obvious cause for the difference between
age groups would be lexical change, i.e., the use
of neologisms, spelling variation, or linguistic
change at the structural level in the younger
group. The resulting vocabulary differences
between age groups would result in an increased
out-of-vocabulary (OOV) rate in the younger
group, which in turn negatively affects model
performance.

While we do observe an unsurprising corre-
lation between sentence-level performance and
OOV-rate, the young reviewers in our sample do
not use OOV words more often than the older
age group. Both groups differ from the training
data roughly equally. This strongly suggests that
age-related differences in performance are not a
result of OOV items.

In order to investigate whether the differ-
ences extend beyond the vocabulary, we compare
the tag bigram distributions, both between the
two age groups and between each group and
the training data. We measure similarity by KL
divergence between the distributions, and inspect
the 10 tag bigrams which are most prevalent
for either group. We use Laplace smoothing to
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Figure 1: Tag bigrams with highest differences between distributions in English data.

account for missing bigrams and ensure a proper
distribution.

For the English age groups, we find that a) the
two Trustpilot data sets have a smaller KL diver-
gence with respect to each other (1.86e − 6) than
either has with the training data (young: 3.24e−5,
old.: 2.36e−5, respectively). We do note however,
b), that the KL divergence for the older groups is
much smaller than for the younger group. This
means that there is a cross-domain effect, which is
bigger, measured this way, than the difference in
age groups. The age group difference in KL diver-
gence, however, suggests that the two groups use
different syntactic constructions.

Inspecting the bigrams which are most preva-
lent for each group, we find again that a) the
Trustpilot groups show more instances involving
verbs, such as PRON–VERB, VERB–ADV, and
VERB–DET, while the English Penn Treebank
data set has a larger proportion of instances of
nominal constructions, such as NOUN–VERB,
NOUN–ADP, and NOUN–NOUN.

On the other hand, we find that b) the younger
group has more cases of verbal constructions and
the use of particles, such as PRT–VERB, VERB–
PRT, PRON–PRT, and VERB–ADP, while the
older group–similar to the treebank–shows more
instances of nominal constructions, i.e., again
NOUN–VERB, ADJ–NOUN, NOUN–ADP,
and NOUN–NOUN.

The heatmaps in Figure 1 show all pairwise
comparisons between the three distributions. In
the interest of space and visibility, we select the 10
bigrams that differ most from each other between
the two distributions under comparison. The
color indicates in which of the two distributions
a bigram is more prevalent, and the degree of

shading indicates the size of the difference.

For German, we see similar patterns. The
Trustpilot data shows more instances of ADV–
ADV, PRON–VERB, and ADV–VERB, while
the TIGER treebank contains more NOUN–DET,
NOUN–ADP, and NOUN–NOUN.

Again, the younger group is more dissimilar
to the CoNLL data, but less so than for English,
with CONJ–PRON, NOUN–VERB, VERB–
VERB, and PRON–DET, while the older
group shows more ADV–ADJ, ADP–NOUN,
NOUN–ADV, and ADJ–NOUN.

In all of these cases, vocabulary does not
factor into the differences, since we are at the
POS level. The results indicate that there exist
fundamental grammatical differences between the
age groups, which go well beyond mere lexical
differences. These findings are in line with the
results in Johannsen et al. (2015), who showed
that entire (delexicalized) dependency structures
correlate with age and gender, often across several
languages.

4.1 Tagging Error Analysis

Analyzing the tagging errors of our model can give
us an insight into the constructions that differ most
between groups.

In German, most of the errors in the younger
group occur with adverbs, determiners, and verbs.
Adverbs are often confused with adjectives, be-
cause adverbs and adjectives are used as modi-
fiers in similar ways. The taggers also frequently
confused adverbs with nouns, especially sentence-
initially, presumably largely because they are cap-
italized. Sometimes, such errors are also due to
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spelling mistakes and/or English loanwords. De-
terminers are often incorrectly predicted to be pro-
nouns, presumably due to homography: in Ger-
man, der, die, das, etc. can be used as determin-
ers, but also as relative pronouns, depending on
the position. Verbs are often incorrectly predicted
to be nouns. This last error is again mostly due
to capitalization, homographs, and, again, English
loanwords. Another interesting source is sentence-
initial use of verbs, which is unusual in canoni-
cal German declarative sentences, but common in
informal language, where pronouns are dropped,
i.e, “[Ich] Kann mich nicht beschweren” ([I] Can’t
complain).

Errors involving verbs are much less frequent
in the older group, where errors with adjectives
and nouns are more frequent.

For English, the errors in the younger and
older group are mostly on the same tags (nouns,
adjectives, and verbs). Nouns often get mis-
tagged as VERB, usually because of homography
due to null-conversion (ordering, face, needs).
Adjectives are also most commonly mis-tagged
as VERB, almost entirely due to homography in
participles (–ed, –ing). We see more emoticons
(labeled X) in the younger group, and some of
them end up with incorrect tags (NOUN or ADV).
There are no mis-tagged emoticons in the older
group, who generally uses fewer emoticons (see
also Hovy et al. (2015a)).

5 Conclusion

In this position paper, we show that some of the
common training data sets bias NLP tools towards
the language of older people. I.e., there is a statis-
tically significant correlation between tagging per-
formance and age for models trained on CoNLL
data. A study of the actual differences between
age groups shows that they go beyond the vocabu-
lary, and extend to the grammatical level.

The results suggest that NLP’s focus on a lim-
ited set of training data has serious consequences
for model performance on new data sets, but also
demographic groups. Due to language dynam-
ics and the age of the data sets, performance de-
grades significantly for younger speakers. Since
POS tagging is often the first step in any NLP
pipeline, performance differences are likely to in-
crease downstream. As a result, we risk disadvan-

taging younger groups when it comes to the bene-
fits of NLP.

The case study shows that our models are sus-
ceptible to the effects of language change and de-
mographic factors. Luckily, the biases are not in-
herent to the models, but reside mostly in the data.
The problem can thus mostly be addressed with
more thorough training data selection that takes
demographic factors into account. It does high-
light, however, that we also need to develop more
robust technologies that are less susceptible to data
biases.
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Abstract

Biterm Topic Model (BTM) is designed
to model the generative process of
the word co-occurrence patterns in
short texts such as tweets. However,
two aspects of BTM may restrict its
performance: 1) user individualities are
ignored to obtain the corpus level words
co-occurrence patterns; and 2) the strong
assumptions that two co-occurring words
will be assigned the same topic label
could not distinguish background words
from topical words. In this paper, we
propose Twitter-BTM model to address
those issues by considering user level
personalization in BTM. Firstly, we
use user based biterms aggregation to
learn user specific topic distribution.
Secondly, each user’s preference between
background words and topical words is
estimated by incorporating a background
topic. Experiments on a large-scale
real-world Twitter dataset show that
Twitter-BTM outperforms several state-
of-the-art baselines.

1 Introduction

In recent years, short texts are increasingly preva-
lent due to the explosive growth of online social
media. For example, about 500 million tweets are
published per day on Twitter1, one of the most
popular online social networking services. Proba-
bilistic topic models (Blei et al., 2003) are broadly
used to uncover the hidden topics of tweets, s-
ince the low-dimensional semantic representation
is crucial for many applications, such as prod-
uct recommendation (Zhao et al., 2014), hashtag
recommendation (Ma et al., 2014), user interest
tracking (Sasaki et al., 2014), sentiment analysis

1See https://about.Twitter.com/company

(Si et al., 2013). However, the scarcity of context
and the noisy words restrict LDA and its variations
in topic modeling over short texts.

Previous works model topic distribution at
three different levels for tweets: 1) document,
the standard LDA assumes each document is
associated with a topic distribution (Godin et
al., 2013; Huang, 2012). LDA and its variations
suffer from context sparsity in each tweet. 2)
user, user based aggregation is utilized to alleviate
the sparsity problem in short texts (Weng et al.,
2010; Hong and Davison, 2010). In these models,
all the tweets of the same user are aggregated
together as a pseudo document based on the
observation that the tweets written by the same
user are more similar. 3) corpus, BTM (Yan et al.,
2013) assumes that all the biterms (co-occurring
word pairs) are generated by a corpus level topic
distribution to benefit from the global rich word
co-occurrence patterns.

As far as we know, how to incorporate user
factor into BTM has not been studied yet. User
based aggregation has proven effective for LDA.
But unfortunately, our preliminary experiments in-
dicate that simple user-based aggregation for BTM
will generate incoherent topics. To distinguish be-
tween commonly used words (e.g., good, people,
etc) and topical words (e.g., food, travel, etc), a
background topic is often incorporated into the
topic models. Zhao et al. (2011) use a back-
ground topic in Twitter-LDA to distill discrimi-
native words in tweets. Sasaki et al. (2014) re-
duce the perplexity of Twitter-LDA by estimating
the ratio between choosing background words and
topical words for each user. They both make a very
strong assumption that one tweet only covers one
topic. Yan et al. (2015) use a background topic to
distinguish between common biterms and bursty
biterms, which need external data to evaluate the
burstiness of each biterm as prior knowledge. Un-
like those above, we incorporate a background
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topic to absorb non-discriminative common words
in each biterm. And we also estimate the user’s
preference between common words and topical
words. Our new model is named as Twitter-BTM,
which combines user based aggregation and the
background topic in BTM. Finally, experiments on
a Twitter dataset show that Twitter-BTM not only
can discover more coherent topics but also can
give more accurate topic representation of tweets
compared with several state-of-the-art baselines.

We organize the rest of the paper as follows.
Section 2 gives a brief review for BTM. Section
3 introduces our Twitter-BTM model and its im-
plementation. Section 4 describes experimental
results on a large-scale Twitter dataset. Finally,
Section 5 contains a conclusion and future work.

2 BTM

There are two major differences between BTM
and LDA (Yan et al., 2013). For one thing, con-
sidering a topic is a mixture of highly correlated
words, which implies that they often occur togeth-
er in the same document, BTM models the gen-
erative process of the word co-occurrence patterns
directly. Thus a document made up of n words will
be converted to C2

n biterms. For another, LDA and
its variants suffer from the severe data sparsity in
short documents. BTM uses global co-occurrence
patterns to model the topic distribution over corpus
level instead of document level.

The graphical representation of BTM (Yan et
al., 2013) is shown in Figure 1(a). It assumes
that the whole corpus is associated with a distri-
butions θ over K topics drawn from a Dirichlet
prior Dir(α). And each topic t is associated with
a multinomial distribution φt over a vocabulary
of V unique words drawn from a Dirichlet pri-
or Dir(β). The generative process for a corpus
which consists of NB biterms B = {b1, ..., bNB},
where bi = (wi1 , wi2), is as follows:

1 For each topic t=1,...,T
(a) Draw φt ∼ Dir(β)

2 For the whole tweets collection
(a) Draw θ ∼ Dir(α)

3 For each biterm b = 1,...,NB

(a) Draw zb ∼Multi(θ)
(b) Draw wb,1, wb,2 ∼Multi(φzb)

In the above process, zb is the topic assign-
ment latent variable of biterm b. To infer the
parameters φ and θ, collapsed Gibbs sampling
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(a) BTM (b) Twitter-BTM

Figure 1: Graphical representation of (a) BTM, (b)
Twitter-BTM

algorithm (Griffiths and Steyvers, 2004) is used
for approximate inference.

Compared with the strong assumption that a
short document only covers a single topic (Diao et
al., 2012; Ding et al., 2013), BTM makes a looser
assumption that two words will be assigned the
same topic label if they have co-occurred. Thus a
short document could cover more than one topic,
which is more close to the reality. But this assump-
tion causes another issue, those commonly used
words and those topical words are treated equally.
Obviously it is inappropriate to assign same topic
label to those words.

3 Twitter-BTM

In this Section, we introduce our Twitter-BTM
model. Figure 1(b) shows the graphical represen-
tation of Twitter-BTM. The generative process of
Twitter-BTM is as follows:

1 Draw φB ∼ Dir(β)
2 For each topic t=1,...,T

(a) Draw φt ∼ Dir(β)
3 For each user u=1,...,U

(a) Draw θu ∼ Dir(α), πu ∼ Beta(γ)
(b) For each biterm b = 1,...,Nu

(i) Draw zu,b ∼Multi(θu)
(ii) For each word n = 1,2

(A) Draw yu,b,n ∼ Bern(πu)
(B) if yu,b,n = 0 Draw wu,b,n ∼

Multi(φB)
if yu,b,n = 1 Draw wu,b,n ∼
Multi(φzu,b)
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In the above process, user u’s topic interest θu

is a multinomial distribution over K topics drawn
from a Dirichlet prior Dir(α). The background
topic B is associated with a multinomial distribu-
tion φB drawn from a Dirichlet prior Dir(β). The
assumption that each user has a different prefer-
ence between topical words and background word-
s is shown to be effective in (Sasaki et al., 2014).
We adopt this assumption in Twitter-BTM. User
u’s preference is represented as a Bernoulli distri-
bution with parameter πu drawn from a beta prior
Beta(γ). Nu is the number of biterms of user u,
zu,b is the topic assignment latent variable of user
u’s biterm b. For user u and his/her biterm b, n=1
or 2, we use a latent variable yu,b,n to indicate the
word type of the wordwb,n. When yu,b,n = 1,wb,n

is generated from topic zu,b. When yu,b,n = 0,
wb,n is generated from the background topic B.

We adopt collapsed Gibbs Sampling to estimate
the parameters. Because of the limitations of s-
pace, we leave out the details about the sampling
algorithm. Since we can’t get a document’s distri-
bution over topics from the parameters estimated
by Twitter-BTM directly, we utilize the following
formula (Yan et al., 2013) to infer the topic distri-
bution of document d. Given a document d whose
author is user u:

P (z = t|d) =

Nb∑
i

P (z = t|bi)P (bi|d) (1)

Now the problem is converted to how to estimate
P (bi|d) and P (z = t|bi). P (bi|d) is estimated by
empirical distribution in d:

P (bi|d) =
Nbi
Nb

(2)

where Nbi is the number of biterm bi occurred in
d, Nb is the total number of biterms in d. We
can apply Bayes’ rule to compute P (z = t|bi) via
following expression:

θu
t

[
πuφB

wi,1
+ (1− πu)φt

wi,1

] [
πuφB

wi,2
+ (1− πu)φt

wi,2

]
∑

k θ
u
k

[
πuφB

wi,1
+ (1− πu)φk

wi,1

] [
πuφB

wi,2
+ (1− πu)φk

wi,2

]
(3)

4 Experiments

In this Section, we describe our experiments car-
ried on a Twitter dataset collected form 10th Jun,
2009 to 31st Dec, 2009. Stop words and words
occur less than 5 times are removed. We also filter

tweets which only have one or two words. All
letters are converted into lower case. The dataset is
divided into two parts. The first part whose statis-
tics is shown in Table 1 is used for training. The
second part which consists of 22,496,107 tweets
is used as the external dataset in topic coherence
evaluation task in Section 4.1.

We compare the performance of Twitter-BTM
with five baselines:

• LDA-U, user based aggregation is applied
before training LDA.

• Twitter-LDA (Zhao et al., 2011), which
makes a strong assumption that a tweet only
covers one topic.

• TwitterUB-LDA (Sasaki et al., 2014), an im-
proved version of Twitter-LDA, which mod-
els the user level preference between topical
words and background words.

• BTM (Yan et al., 2013), the Biterm Topic
Model.

• BTM-U, a simplified version of Twitter-BTM
without background topic.

For all the above models, we use symmetric
Dirichlet priors. The hyperparameters are set as
follows: for all the models, we set α = 50/K,
β = 0.01; for Twitter-LDA, TwitterUB-LDA and
Twitter-BTM, we set γ = 0.5. We run Gibbs
sampling for 400 iterations.

DataSet Twitter
#tweets 1,201,193
#users 12,006

#vocabulary 71,038
#avgTweetLen 7.04

Table 1: Summary of dataset

Perplexity metric is not used in our experiments
since it is not a suitable evaluation metric for BTM
(Cheng et al., 2014). The first reason is that
BTM and LDA optimize different likelihood. The
second reason is that topic models which have bet-
ter perplexity may infer less semantically topics
(Chang et al., 2009).

4.1 Topic Coherence

We use PMI-Score (Newman et al., 2010) to quan-
titatively evaluate the quality of topic component.
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K 50 100
method Top5 Top10 Top20 Top5 Top10 Top20
LDA-U 2.83±0.07 1.93±0.06 1.40±0.04 3.11±0.09 1.89±0.09 1.15±0.04

Twitter-LDA 2.58±0.04 1.90±0.03 1.39±0.03 2.97±0.20 1.98±0.09 1.44±0.06
TwitterUB-LDA 2.57±0.05 1.87±0.07 1.45±0.04 3.07±0.11 2.05±0.05 1.45±0.05

BTM 2.88±0.14 2.01±0.09 1.44±0.08 3.25±0.14 2.13±0.06 1.49±0.06
BTM-U 2.92±0.10 1.89±0.05 1.33±0.04 3.03±0.07 1.95±0.05 1.34±0.07

Twitter-BTM 3.04±0.10 2.05±0.08 1.47±0.05 3.27±0.12 2.15±0.08 1.48±0.05

Table 2: PMI-Score of different topic models

Equation (4) defines PMI (Pointwise Mutual In-
formation) for two words wi and wj :

PMI(wi, wj) = log
P (wi, wj) + ε

P (wi)P (wj)
(4)

ε is an extremely small constant (Stevens et al.,
2012), which is equal to 10−12 in this paper. The
word probabilities and the co-occurrence proba-
bilities are computed on the large-scale external
dataset empirically. Here we use the second part
Twitter dataset as the external dataset. Then for a
topic t and its top T words ranked by topic-word
probability φt

w, the PMI-Score of topic t is defined
as follow:

PMI − Score(t)=
1

T (T − 1)

∑
1≤i<j≤T

PMI(wi, wj)

(5)

The model’s PMI-Score is defined as the mean
of all the topics’ PMI-Score. Table 2 shows the
average results over 10 runs of different models.
When K = 50, Twitter-BTM outperforms all
other models significantly. When K = 100, The
PMI-Score of BTM and Twitter-BTM are very
close. BTM-U is worse than BTM, the reason may
be that each user’s biterm sets provide extremely
limited words co-occurring information.

Table 3 shows top 10 words of topic “food”
learned by BTM, BTM-U and Twitter-BTM when
K = 50. We use italic fonts to indicate back-
ground words labeled by human judgement. Com-
pared with BTM and BTM-U, Twitter-BTM can
rank those background words at lower level. It
demonstrates that representative words learned by
Twitter-BTM are more coherent and meaningful.

4.2 Document Representation

Topic models are powerful dimension reduction
methods for texts. Given a tweet d, we can in-
fer its probability distribution over K topics with

BTM BTM-U Twitter-BTM
food food vegan
eat vegan food

chicken eat eat
good good chicken
vegan chicken chocolate

lol #vegan cheese
cheese cream cream

chocolate cheese #vegan
love chocolate ice

dinner ice dinner

Table 3: Top 10 words of topic food

equation (1). Thus d can be represented as a topic
probability vector:

d = [P (z = 1|d), ..., P (z = K|d)] (6)

We use document classification task (Cheng et
al., 2014) and document clustering task (Duan
et al., 2012) to measure the quality of the docu-
ments’ topic proportions. Tweets in Twitter have
no explicit label information. But some tweets
are labeled by one or more hashtags (a type of
label whose form is “#keyword”) manually by its
author to indicate the topic the tweets involve. We
follow previous works (Cheng et al., 2014; Wang
et al., 2014) and use hashtags as the tweets’ labels.
Table 4 lists 38 frequent (at least appears in 100
tweets ) hashtags relating to certain topic or event
manually selected in our dataset.

We choose those tweets which contain only one
of these hashtags appear in Table 4 from our o-
riginal data in the following experiments. When
we infer a tweet’s topic distribution, the hashtag is
ignored. Because it doesn’t make sense to use the
label information to construct the feature vector
directly.

We classify these selected tweets by Random
Forest classifier (Breiman, 2001) implemented in
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aaliyah afghanistan beatcancer birding
blogtalkradio digguser dmv dontyouhate fact

giladshalit gno gov green haiku healthcare
honduras india iranelection jazz jesus krp lgbt
mindsetshift nfl nn oink rhoa slaughterhouse

socialmedia tech travel trueblood vegan vegas
voss weeklyfitnesschallenge wordpress yyj

Table 4: Hashtags selected for evaluation
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Figure 2: Performance of classification

sklearn 2 python module with 10-fold cross valida-
tion. Using accuracy as the evaluation metric, we
report the classification performance of different
topic models in Figure 2. With the increase of
the topic number K, all the models’ accuracies
are tending to increase. BTM is worse than all
other models, which confirms the effectiveness of
user based aggregation. Twitter-BTM and BTM-
U always outperform LDA-U, Twitter-LDA and
TwitterUB-LDA. Twitter-BTM’s accuracy is a lit-
tle higher than BTM-U, which demonstrates that
the background topic is helpful to capture more
accurate topic representation of documents.

We adopt k-means algorithm implemented in
sklearn python module as our clustering method.
The number of cluster is set to 38. Consider-
ing we have the knowledge of ground truth class
assignments of each tweet, and Adjusted Rand
Index (ARI) and Normalized Mutual Information
are used as cluster validation indices in our exper-
iments. As shown in Figure 3 and Figure 4, The
higher ARI and NMI value indicate that Twitter-
BTM outperform other models. And BTM per-
forms worse than all other models.

5 Conclusion

In this paper, we investigate the problem of topic
modeling over short texts with user factor. Us-

2See http://scikit-learn.org/stable/
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Figure 3: Performance of clustering (ARI)
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er individualities are sacrificed to obtain the cor-
pus level words co-occurrence patterns in BTM.
However, unlike LDA, simple user based aggre-
gation will reduce the topic coherence for BTM.
To address this problem, we propose Twitter-BTM
which loosens the inappropriate assumption that
two co-occurring words must have same topic la-
bel made in BTM by leveraging user based ag-
gregation and incorporating a background topic in
BTM. The experimental results show that Twitter-
BTM substantially outperforms BTM.

In the future, we plan to study the influence of
other factors such as temporal information to BTM
and its variants.
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Abstract

In this paper, we propose the new fixed-
size ordinally-forgetting encoding (FOFE)
method, which can almost uniquely en-
code any variable-length sequence of
words into a fixed-size representation.
FOFE can model the word order in a se-
quence using a simple ordinally-forgetting
mechanism according to the positions of
words. In this work, we have applied
FOFE to feedforward neural network lan-
guage models (FNN-LMs). Experimental
results have shown that without using any
recurrent feedbacks, FOFE based FNN-
LMs can significantly outperform not only
the standard fixed-input FNN-LMs but
also the popular recurrent neural network
(RNN) LMs.

1 Introduction

Language models play an important role in many
applications like speech recognition, machine
translation, information retrieval and nature lan-
guage understanding. Traditionally, the back-off
n-gram models (Katz, 1987; Kneser, 1995) are
the standard approach to language modeling. Re-
cently, neural networks have been successfully ap-
plied to language modeling, yielding the state-
of-the-art performance in many tasks. In neural
network language models (NNLM), the feedfor-
ward neural networks (FNN) and recurrent neu-
ral networks (RNN) (Elman, 1990) are two pop-
ular architectures. The basic idea of NNLMs is
to use a projection layer to project discrete words
into a continuous space and estimate word con-
ditional probabilities in this space, which may be
smoother to better generalize to unseen contexts.
FNN language models (FNN-LM) (Bengio and
Ducharme, 2001; Bengio, 2003) usually use a lim-
ited history within a fixed-size context window

to predict the next word. RNN language mod-
els (RNN-LM) (Mikolov, 2010; Mikolov, 2012)
adopt a time-delayed recursive architecture for the
hidden layers to memorize the long-term depen-
dency in language. Therefore, it is widely re-
ported that RNN-LMs usually outperform FNN-
LMs in language modeling. While RNNs are the-
oretically powerful, the learning of RNNs needs to
use the so-called back-propagation through time
(BPTT) (Werbos, 1990) due to the internal recur-
rent feedback cycles. The BPTT significantly in-
creases the computational complexity of the learn-
ing algorithms and it may cause many problems
in learning, such as gradient vanishing and ex-
ploding (Bengio, 1994). More recently, some
new architectures have been proposed to solve
these problems. For example, the long short
term memory (LSTM) RNN (Hochreiter, 1997) is
an enhanced architecture to implement the recur-
rent feedbacks using various learnable gates, and
it has obtained promising results on handwriting
recognition (Graves, 2009) and sequence model-
ing (Graves, 2013).

Comparing with RNN-LMs, FNN-LMs can be
learned in a simpler and more efficient way. How-
ever, FNN-LMs can not model the long-term de-
pendency in language due to the fixed-size input
window. In this paper, we propose a novel encod-
ing method for discrete sequences, named fixed-
size ordinally-forgetting encoding (FOFE), which
can almost uniquely encode any variable-length
word sequence into a fixed-size code. Relying
on a constant forgetting factor, FOFE can model
the word order in a sequence based on a sim-
ple ordinally-forgetting mechanism, which uses
the position of each word in the sequence. Both
the theoretical analysis and the experimental sim-
ulation have shown that FOFE can provide al-
most unique codes for variable-length word se-
quences as long as the forgetting factor is prop-
erly selected. In this work, we apply FOFE to
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neural network language models, where the fixed-
size FOFE codes are fed to FNNs as input to
predict next word, enabling FNN-LMs to model
long-term dependency in language. Experiments
on two benchmark tasks, Penn Treebank Corpus
(PTB) and Large Text Compression Benchmark
(LTCB), have shown that FOFE-based FNN-LMs
can not only significantly outperform the stan-
dard fixed-input FNN-LMs but also achieve better
performance than the popular RNN-LMs with or
without using LSTM. Moreover, our implementa-
tion also shows that FOFE based FNN-LMs can
be learned very efficiently on GPUs without the
complex BPTT procedure.

2 Our Approach: FOFE

Assume vocabulary size is K, NNLMs adopt the
1-of-K encoding vectors as input. In this case,
each word in vocabulary is represented as a one-
hot vector e ∈ RK . The 1-of-K representation is a
context independent encoding method. When the
1-of-K representation is used to model a word in a
sequence, it can not model its history or context.

2.1 Fixed-size Ordinally Forgetting Encoding
We propose a simple context-dependent encoding
method for any sequence consisting of discrete
symbols, namely fixed-size ordinally-forgetting
encoding (FOFE). Given a sequence of words (or
any discrete symbols), S = {w1, w2, · · · , wT },
each word wt is first represented by a 1-of-K rep-
resentation et, from the first word t = 1 to the end
of the sequence t = T , FOFE encodes each par-
tial sequence (history) based on a simple recursive
formula (with z0 = 0) as:

zt = α · zt−1 + et (1 ≤ t ≤ T ) (1)

where zt denotes the FOFE code for the partial
sequence up to wt, and α (0 < α < 1) is a con-
stant forgetting factor to control the influence of
the history on the current position. Let’s take a
simple example here, assume we have three sym-
bols in vocabulary, e.g., A, B, C, whose 1-of-
K codes are [1, 0, 0], [0, 1, 0] and [0, 0, 1] respec-
tively. In this case, the FOFE code for the se-
quence {ABC} is [α2, α, 1], and that of {ABCBC}
is [α4, α+ α3, 1 + α2].

Obviously, FOFE can encode any variable-
length discrete sequence into a fixed-size code.
Moreover, it is a recursive context dependent en-
coding method that smartly models the order in-

Figure 1: The FOFE-based FNN language model.

formation by various powers of the forgetting fac-
tor. Furthermore, FOFE has an appealing property
in modeling natural languages that the far-away
context will be gradually forgotten due to α < 1
and the nearby contexts play much larger role in
the resultant FOFE codes.

2.2 Uniqueness of FOFE codes

Given the vocabulary (of K symbols), for any se-
quence S with a length of T , based on the FOFE
code zT computed as above, if we can always de-
code the original sequence S unambiguously (per-
fectly recovering S from zT ), we say FOFE is
unique.

Theorem 1 If the forgetting factor α satisfies 0 <
α ≤ 0.5, FOFE is unique for any K and T .

The proof is simple because if the FOFE code
has a value αt in its i-th element, we may de-
termine the word wi occurs in the position t of
S without ambiguity since no matter how many
times wi occurs in the far-away contexts (< t),
they do not sum to αt (due to α ≤ 0.5). If wi ap-
pears in any closer context (> t), the i-th element
must be larger than αt.

Theorem 2 For 0.5 < α < 1, given any finite
values of K and T , FOFE is almost unique every-
where for α ∈ (0.5, 1.0), except only a finite set of
countable choices of α.

Refer to (Zhang et. al., 2015a) for the complete
proof. Based on Theorem 2, FOFE is unique al-
most everywhere between (0.5, 1.0) only except a
countable set of isolated choices of α. In practice,
the chance to exactly choose these isolated values
between (0.5, 1.0) is extremely slim, realistically
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Figure 2: Numbers of collisions in simulation.

almost impossible due to quantization errors in the
system. To verify this, we have run simulation ex-
periments for all possible sequences up to T = 20
symbols to count the number of collisions. Each
collision is defined as the maximum element-wise
difference between two FOFE codes (generated
from two different sequences) is less than a small
threshold ε. In Figure 2, we have shown the num-
ber of collisions (out of the total 220 tested cases)
for various α values when ε = 0.01, 0.001 and
0.0001.1 The simulation experiments have shown
that the chance of collision is extremely small even
when we allow a word to appear any times in the
context. Obviously, in a natural language, a word
normally does not appear repeatedly within a near
context. Moreover, we have run the simulation to
examine whether collisions actually occur in two
real text corpora, namely PTB (1M words) and
LTCB (160M words), using ε = 0.01, we have
not observed a single collision for nine different α
values between [0.55, 1.0] (incremental 0.05).

2.3 Implement FOFE for FNN-LMs

The architecture of a FOFE based neural network
language model (FOFE-FNNLM) is shown in Fig-
ure 1. It is similar to regular bigram FNN-LMs ex-
cept that it uses a FOFE code to feed into neural
network LM at each time. Moreover, the FOFE
can be easily scaled to higher orders like n-gram
NNLMs. For example, Figure 3 is an illustration
of a second order FOFE-based neural network lan-
guage model.

FOFE is a simple recursive encoding method
but a direct sequential implementation may not be

1When we use a bigger value for α, the magnitudes of the
resultant FOFE codes become much larger. As a result, the
number of collisions (as measured by a fixed absolute thresh-
old ε) becomes smaller.

Figure 3: Diagram of 2nd-order FOFE FNN-LM.

efficient for the parallel computation platform like
GPUs. Here, we will show that the FOFE compu-
tation can be efficiently implemented as sentence-
by-sentence matrix multiplications, which are
suitable for the mini-batch based stochastic gra-
dient descent (SGD) method running on GPUs.

Given a sentence, S = {w1, w2, · · · , wT },
where each word is represented by a 1-of-K code
as et (1 ≤ t ≤ T ). The FOFE codes for all par-
tial sequences in S can be computed based on the
following matrix multiplication:

S =



1
α 1

α2 α 1
...

. . . 1

αT−1 · · · α 1





e1

e2

e3

...

eT


= MV

where V is a matrix arranging all 1-of-K codes
of the words in the sentence row by row, and M
is a T -th order lower triangular matrix. Each row
vector of S represents a FOFE code of the partial
sequence up to each position in the sentence.

This matrix formulation can be easily extended
to a mini-batch consisting of several sentences.
Assume that a mini-batch is composed of N se-
quences, L = {S1 S2 · · ·SN}, we can compute
the FOFE codes for all sentences in the mini-batch
as follows:

S̄ =


M1

M2

. . .

MN




V1

V2

...

VN

 = M̄V̄.
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When feeding the FOFE codes to FNN as
shown in Figure 1, we can compute the activation
signals (assume f is the activation function) in the
first hidden layer for all histories in S as follows:

H = f
(
(M̄V̄)UW+b

)
= f

(
M̄(V̄U)W+b

)
where U denotes the word embedding matrix that
projects the word indices onto a continuous low-
dimensional continuous space. As above, V̄U
can be done efficiently by looking up the embed-
ding matrix. Therefore, for the computational ef-
ficiency purpose, we may apply FOFE to the word
embedding vectors instead of the original high-
dimensional one-hot vectors. In the backward
pass, we can calculate the gradients with the stan-
dard back-propagation (BP) algorithm rather than
BPTT. As a result, FOFE based FNN-LMs are the
same as the standard FNN-LMs in terms of com-
putational complexity in training, which is much
more efficient than RNN-LMs.

3 Experiments

We have evaluated the FOFE method for NNLMs
on two benchmark tasks: i) the Penn Treebank
(PTB) corpus of about 1M words, following the
same setup as (Mikolov, 2011). The vocabu-
lary size is limited to 10k. The preprocess-
ing method and the way to split data into train-
ing/validation/test sets are the same as (Mikolov,
2011). ii) The Large Text Compression Bench-
mark (LTCB) (Mahoney, 2011). In LTCB, we use
the enwik9 dataset, which is composed of the first
109 bytes of enwiki-20060303-pages-articles.xml.
We split it into three parts: training (153M), val-
idation (8.9M) and test (8.9M) sets. We limit the
vocabulary size to 80k for LTCB and replace all
out-of-vocabulary words by <UNK>. 2

3.1 Experimental results on PTB
We have first evaluated the performance of the
traditional FNN-LMs, taking the previous several
words as input, denoted as n-gram FNN-LMs here.
We have trained neural networks with a linear pro-
jection layer (of 200 hidden nodes) and two hid-
den layers (of 400 nodes per layer). All hidden
units in networks use the rectified linear activation
function, i.e., f(x) = max(0, x). The nets are
initialized based on the normalized initialization

2Matlab codes are available at https://wiki.eecs.
yorku.ca/lab/MLL/projects:fofe:start for
readers to reproduce all results reported in this paper.

Figure 4: Perplexities of FOFE FNNLMs as a
function of the forgetting factor.

in (Glorot, 2010), without using any pre-training.
We use SGD with a mini-batch size of 200 and an
initial learning rate of 0.4. The learning rate is kept
fixed as long as the perplexity on the validation set
decreases by at least 1. After that, we continue six
more epochs of training, where the learning rate
is halved after each epoch. The performance (in
perplexity) of several n-gram FNN-LMs (from bi-
gram to 6-gram) is shown in Table 1.

For the FOFE-FNNLMs, the net architecture
and the parameter setting are the same as above.
The mini-batch size is also 200 and each mini-
batch is composed of several sentences up to 200
words (the last sentence may be truncated). All
sentences in the corpus are randomly shuffled at
the beginning of each epoch. In this experiment,
we first investigate how the forgetting factor α
may affect the performance of LMs. We have
trained two FOFE-FNNLMs: i) 1st-order (using
zt as input to FNN for each time t; ii) 2nd-order
(using both zt and zt−1 as input for each time t,
with a forgetting factor varying between [0.0, 1.0].
Experimental results in Figure 4 have shown that
a good choice of α lies between [0.5, 0.8]. Us-
ing a too large or too small forgetting factor will
hurt the performance. A too small forgetting fac-
tor may limit the memory of the encoding while a
too large α may confuse LM with a far-away his-
tory. In the following experiments, we set α = 0.7
for the rest experiments in this paper.

In Table 1, we have summarized the perplexi-
ties on the PTB test set for various models. The
proposed FOFE-FNNLMs can significantly out-
perform the baseline FNN-LMs using the same
architecture. For example, the perplexity of the
baseline bigram FNNLM is 176, while the FOFE-
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Table 1: Perplexities on PTB for various LMs.
Model Test PPL

KN 5-gram (Mikolov, 2011) 141
FNNLM (Mikolov, 2012) 140
RNNLM (Mikolov, 2011) 123

LSTM (Graves, 2013) 117
bigram FNNLM 176
trigram FNNLM 131
4-gram FNNLM 118
5-gram FNNLM 114
6-gram FNNLM 113

1st-order FOFE-FNNLM 116
2nd-order FOFE-FNNLM 108

Table 2: Perplexities on LTCB for various lan-
guage models. [M*N] denotes the sizes of the in-
put context window and projection layer.

Model Architecture Test PPL
KN 3-gram - 156
KN 5-gram - 132

[1*200]-400-400-80k 241
[2*200]-400-400-80k 155

FNN-LM [2*200]-600-600-80k 150
[3*200]-400-400-80k 131
[4*200]-400-400-80k 125

RNN-LM [1*600]-80k 112
[1*200]-400-400-80k 120

FOFE [1*200]-600-600-80k 115
FNN-LM [2*200]-400-400-80k 112

[2*200]-600-600-80k 107

FNNLM can improve to 116. Moreover, the
FOFE-FNNLMs can even overtake a well-trained
RNNLM (400 hidden units) in (Mikolov, 2011)
and an LSTM in (Graves, 2013). It indicates
FOFE-FNNLMs can effectively model the long-
term dependency in language without using any
recurrent feedback. At last, the 2nd-order FOFE-
FNNLM can provide further improvement, yield-
ing the perplexity of 108 on PTB. It also outper-
forms all higher-order FNN-LMs (4-gram, 5-gram
and 6-gram), which are bigger in model size. To
our knowledge, this is one of the best reported re-
sults on PTB without model combination.

3.2 Experimental results on LTCB
We have further examined the FOFE based FNN-
LMs on a much larger text corpus, i.e. LTCB,
which contains articles from Wikipedia. We have
trained several baseline systems: i) two n-gram

LMs (3-gram and 5-gram) using the modified
Kneser-Ney smoothing without count cutoffs; ii)
several traditional FNN-LMs with different model
sizes and input context windows (bigram, trigram,
4-gram and 5-gram); iii) an RNN-LM with one
hidden layer of 600 nodes using the toolkit in
(Mikolov, 2010), in which we have further used
a spliced sentence bunch in (Chen et al. 2014)
to speed up the training on GPUs. Moreover, we
have examined four FOFE based FNN-LMs with
various model sizes and input window sizes (two
1st-order FOFE models and two 2nd-order ones).
For all NNLMs, we have used an output layer of
the full vocabulary (80k words). In these exper-
iments, we have used an initial learning rate of
0.01, and a bigger mini-batch of 500 for FNN-
LMMs and of 256 sentences for the RNN and
FOFE models. Experimental results in Table 2
have shown that the FOFE-based FNN-LMs can
significantly outperform the baseline FNN-LMs
(including some larger higher-order models) and
also slightly overtake the popular RNN-based LM,
yielding the best result (perplexity of 107) on the
test set.

4 Conclusions

In this paper, we propose the fixed-size ordinally-
forgetting encoding (FOFE) method to almost
uniquely encode any variable-length sequence into
a fixed-size code. In this work, FOFE has been
successfully applied to neural network language
modeling. Next, FOFE may be combined with
neural networks (Zhang and Jiang, 2015; Zhang
et. al., 2015b) for other NLP tasks, such as sen-
tence modeling/matching, paraphrase detection,
machine translation, question and answer and etc.
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Abstract

This paper proposes a new unsupervised
method for decomposing a multi-author
document into authorial components. We
assume that we do not know anything
about the document and the authors, ex-
cept the number of the authors of that doc-
ument. The key idea is to exploit the dif-
ference in the posterior probability of the
Naive-Bayesian model to increase the pre-
cision of the clustering assignment and the
accuracy of the classification process of
our method. Experimental results show
that the proposed method outperforms two
state-of-the-art methods.

1 Introduction

The traditional studies on text segmentation, as
shown in Choi (2000), Brants et al. (2002), Misra
et al. (2009) and Hennig and Labor (2009), focus
on dividing the text into signification components
such as words, sentences and topics rather than
authors. Natural Language Processing techniques
(NLP) and various machine learning schemas have
been applied for these approaches. Due to the
availability of online communication facilities, the
cooperation between authors to produce a docu-
ment becomes much easier. The co-authored doc-
uments include Web pages, books, academic pa-
pers and blog posts. There are almost no ap-
proaches that have concentrated on developing
techniques for segmentation of a multi-author doc-
ument according to the authorship. The exist-
ing approaches, as those in Schaalje et al. (2013),
Segarra et al. (2014) and Layton et al. (2013) that
are most related to our research in this paper, deal
with documents written by a single author only.
Although the work in Koppel et al. (2011) has con-
sidered the segmentation of a document according
to multi-authorship, this approach requires man-
ual translations and concordance to be available

beforehand. Hence, their method can only be ap-
plied on particular types of documents such as
Bible books. Akiva and Koppel (2013) investi-
gated this limitation and presented a generic unsu-
pervised method. They evaluated their method us-
ing two different types of features. The first one is
the occurrence of the 500 most common words in
the document. The second one is the synonym set,
which is only valid on special types of documents
like Bible books. Their method relies on the dis-
tance measurement to increase the precision and
accuracy of the clustering and classification pro-
cess. The performance of this method is degraded
when the number of authors increases to more than
two.

The contributions of this paper are as follows.

• A procedure for segment elicitation is devel-
oped and it is applied in the clustering assign-
ment process. It is for the first time to develop
such a procedure relying upon the differences
in the posterior probabilities.

• A probability indication procedure is devel-
oped to improve the accuracy of sentence
classification. It selects the significant and
trusted sentences from a document and in-
volves them to reclassify all sentences in the
document. Our approach does not require
any information about the document and the
authors other than the number of authors of
the document.

• Our proposed method is not restricted to any
type of documents. It is still workable even
when the topics in a document are not de-
tectable.

The organization of this paper is as follows.
Section 2 demonstrates the proposed framework.
Section 3 uses an example to clarify our method.
Results are conducted in Section 4. Finally, Sec-
tion 5 presents the conclusion and future work.
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2 Proposed Framework

Given a multi-author document written by l au-
thors, it is assumed that every author has writ-
ten consecutive sequences of sentences, and every
sentence is completely written by only one of the
l authors. The value of l is pre-defined.

Our approach goes through the following steps:

• Step 1 Divide the document into segments of
fixed length.

• Step 2 Represent the resulted segments as
vectors using an appropriate feature set
which can differentiate the writing styles
among authors.

• Step 3 Cluster the resulted vectors into l clus-
ters using an appropriate clustering algorithm
targeting on achieving high recall rates.

• Step 4 Re-vectorize the segments using a dif-
ferent feature set to more accurately discrim-
inate the segments in each cluster.

• Step 5 Apply the ”Segment Elicitation Proce-
dure” to select the best segments from each
cluster to increase the precision rates.

• Step 6 Re-vectorize all selected segments us-
ing another feature set that can capture the
differences among the writing styles of all
sentences in a document.

• Step 7 Train the classifier using the Naive-
Bayesian model.

• Step 8 Classify each sentence using the
learned classifier.

• Step 9 Apply the ”Probability Indication Pro-
cedure” to increase the accuracy of the clas-
sification results using five criteria.

To assess the performance of the proposed
scheme, we perform our experiments on an arti-
ficially merged document. The generation of this
merged document begins with randomly choosing
an author from an authors list. Then, we pick
up the first r previously-unselected sentences from
a document of that author, and merge them with
the first r previously-unselected sentences from
the documents of other randomly selected authors.
Keep doing like this until all sentences from all au-
thors’ documents are selected. The value of r on
each switch is an integer value chosen randomly
from a uniform distribution varying from 1 to V.

3 Ezekiel-Job Document as Example

For interpretative intent, we will exploit the bible
books of Ezekiel and Job to create a merged doc-
ument. The book of Ezekiel contains 1,273 sen-
tences and book of Job contains 1,018 sentences.
We use this example of a merged document to clar-
ify each step of our proposed framework shown
in Section 2. We also use this merged docu-
ment to work out the values of parameters used
in our approach. We set V to be equal to 200. In
the merged document, there are 2,291 sentences
in total and there are hence 20 transitions from
Ezekiel sentences to Job sentences and from Job’s
to Ezekiel’s.

In Step 1, we divide the merged document into
segments. Each segment has 30 sentences. As a
result, we get 77 segments, of which 34 are writ-
ten by Ezekiel, 27 are written by Job and 16 are
mixed. In Step 2, we represent each segment us-
ing a binary vector that reflects all words that ap-
pear at least three times in the document. In Step
3, we cluster these segments by using a Gaus-
sian Mixture Model (GMMs) into 2 multivariate
Gaussian densities. The GMMs are trained using
the iterative Expectation-Maximization (EM) al-
gorithm (Bilmes and others, 1998). We find that
all 34 Ezekiel segments are clustered in Cluster 1,
and all 27 Job segments are clustered in Cluster 2.
Mixed segments are divided equally between the
two clusters (Note that, the recalls of both cluster
are 100%, and the precisions are 81% and 77% in
Cluster 1 and Cluster 2, respectively). In Step 4, all
of the segments in both clusters are re-vectorized
using the binary representation of the 1500 most
frequently-appeared words in the document.

In the Step 5, a Segment Elicitation Procedure
is proposed. The key idea is to choose only the
segments from a cluster that can best represent the
writing style of the cluster. We call these selected
segments vital segments. The vital segments have
the following two features. First, they can repre-
sent the expressive style of a specific cluster. Sec-
ond, they can distinguish the writing style of that
cluster from other clusters. Henceforth, we con-
sider all of the segments as labelled, based on the
results of the clustering assignment (Step 3). To
find the vital segments of each class (noting that,
the term ’cluster’ is now substituted with ’class’),
we consider the differences in the posterior prob-
abilities of each segment according to the other
classes. Expressly, for each segment in a class,
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we compute the differences between the posterior
probability of that segment in its class and the
maximum posterior probability of that segment in
other classes. Then, we select s% of them which
have the biggest differences as vital segments of
that class. To prevent the underflow point, we
compute the posterior probability by adding the
logarithms of probabilities instead of multiplying
the probabilities. Furthermore, we assume that
the features in the segments are mutually indepen-
dent. In the Ezekiel-Job document, Cluster 1 is
the Ezekiel class and Cluster 2 is the Job class.
We set s to be 80, so we get 34 vital segments for
the Ezekiel class and 28 vital segments for the Job
class. Of the 34 vital segments in Ezekiel class,
30 are truly written by Ezekiel, and of the 28 vi-
tal segments in Job class, 25 are truly written by
Job. As a result, the precisions of Ezekiel class
and Job class are increased to 88.2% and 89.3%,
respectively. The vital segments for two classes
are used to train the supervised classifier which
can best classify each sentence to the correct au-
thor’s class. Therefore, in Step 6, the vital seg-
ments are represented in terms of the frequencies
of all words that have appeared at least three times
in the whole document.

In Step 7, the Naive-Bayesian model is applied
to learn a classifier. In Step 8, this classifier is used
to classify the sentences in the merged document
to either Ezekiel class or Job class.We find that
93.1% of all sentences of Ezekiel and Job classes
are correctly classified.

In (Step 9), a probability indication procedure
is proposed based on the following five criteria.
First, any sentence in the document is considered
as trusted sentence if its posterior probability in its
class is greater than its posterior probabilities in
all other classes by more than threshold q. There-
upon, every trusted sentence holds its class. Sec-
ond, if the first sentences in the document are not
deemed to be trusted sentences, then they are as-
signed to the same class of the first trusted sen-
tence that follow them. Third, if the last sentences
in the document are not deemed to be trusted sen-
tences, then they are assigned to the same class of
the last trusted sentence that precede them. Fourth,
if a group of unassigned sentences is located be-
tween two trusted sentences which have the same
class, then all of the sentences in that group are as-
signed to the same class of these trusted sentences.
Fifth, if a group of unassigned sentences is located

between two trusted sentences which have differ-
ent labels, then the best separated point in that
group is detected to separate it into two subgroups,
left and right subgroups. The left subgroup is as-
signed to the same label of the last trusted sen-
tence that precede it and the right subgroup is as-
signed to the same label of the first trusted sen-
tence that follow it. In the Ezekiel-Job document,
by setting the value of q to be 5.0, 98.8% of the
Ezekiel sentences and 99.1% of the Job sentences
are correctly classified. The overall accuracy of all
sentences is 99.0%.

4 Results

We use three datasets to test our method and show
the adaptability of our method to different types
of documents. The first dataset consists of 690
blogs written by Gary Becker and Richard Pos-
ner. This dataset containing articles of multiple
authors is challenging because it covers a lot of
different topics. That means, we cannot depend
on the topics to help us distinguish the authors.
The second dataset consists of 1,182 New York
Times articles. These articles have been written
by Maureeen Dowd, Gail Collins, Thomas Fried-
man and Paul Krugman. The third dataset consists
of 5 biblical books which are written in Hebrew,
a language other than English. These books are
written by Isaiah (for Chapters 1-33), Jeremiah,
Ezekiel, Job (for Chapters 3-41) and Proverbs.
The first 3 are all in the prophetic literature and
the other two are in the wisdom literature. In view
of this, we conduct our experiments on three dif-
ferent datasets, each dataset has its characteristics
which yield us to use it. In our experiments, the
merged documents are created in the same way as
we have discussed before. We set the value of V
to be 200, and the number of authors of these doc-
uments to be two, three or four (l = {2,3,4}). We
use the same values of the parameters as we have
used in the Ezekiel-Job document.

4.1 Becker-Posner

In the first dataset, each author has written for a
lot of different topics, and there have been some
topics taken by both authors. Therefore, there is
no topic indication to distinguish between the two
authors. We have achieved an overall accuracy
of 96.6% when testing on this dataset. This re-
sult is gratifying in this merged document that has
more than 246 transitions between sentences writ-
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Figure 1: Accuracy comprisons between our
method and the method used by Akiva and Koppel
(2013) in Becker-Posner document, and in docu-
ments created by three or four New York Times au-
thors (GC = Gail Collins, PK = Paul Krugman, TF
= Thomas Friedman, MD = Maureen Dowd)

ten by the two authors and more than 26,900 sen-
tences. In Figure 1, we show the comparison be-
tween our method and the method in Akiva and
Koppel (2013).

4.2 New York Times Articles

This dataset contains articles written by four au-
thors. First, we test our method using the merged
documents created by any pair of the four authors.
The results again are noticeable. The classification
accuracies range from 93.3% to 96.1%. For com-
parison,the accuracy can be as low as 88.0% when
applying the method in Akiva and Koppel (2013)
on some of the merged documents.

To prove that our method can also work well
when merged documents written by more than two
authors, we have created merged documents writ-
ten by any three of these four authors and formed
four merged documents. We have also created a
merged document written by all four New York
Times authors. Then, we apply our method on
these documents. In Figure 1, we show the ac-
curacies of our method for classification on these
documents. It is obvious that our method achieves
high accuracies even when the documents are writ-
ten by more than two authors. Furthermore, Fig-
ure 1 also compares our results with the results
achieved by Akiva and Koppel (2013). It shows
that our method has given consistent results and
better performance than the ones in Akiva and
Koppel (2013).

4.3 Bible Books

In these experiments, we use two literature types
of biblical books. We create merged documents
written by any pair of authors. The resulted docu-

D
iff

er
en

t

Documents 1 2 3 Our method
Eze-Prov 77% 99% 91% 98%
Jer-Prov 73% 97% 75% 99%
Jer-Job 88% 98% 93% 98%
Isa-Job 83% 99% 89% 99%
Eze-Job 86% 99% 95% 99%
Isa-Prov 71% 95% 85% 98%
Overall 80% 98% 88% 99%

Sa
m

e

Jer-Eze 82% 97% 96% 97%
Isa-Eze 79% 80% 88% 83%

Job-Prov 85% 94% 82% 95%
Isa-Jer 72% 67% 83% 71%
Overall 80% 85% 87% 87%

Table 1: Accuracy performance obtained from
documents having different literatures or same
literatures using the methods of 1- Koppel
et al. (2011), 2- Akiva and Koppel (2013)-
BinaryCommonWords, 3- Akiva and Koppel
(2013)-Synonyms and our method

ments may belong to either the same literatures or
different literatures.

In Tables 1, we show the comparisons of accu-
racies of using our method and the methods pre-
sented in Koppel et al. (2011), Akiva and Kop-
pel (2013)-BinaryCommonWords and Akiva and
Koppel (2013)-Synonyms.

As can be seen, the accuracies using our method
in the documents with different literatures are in-
teresting, and have achieved the accuracies of ei-
ther 99% or 98% and have performed a lot bet-
ter than the three state-of-the-art methods. Fur-
thermore, the accuracies using our method on the
documents with same literature are encouraging,
and our method has achieved approximately the
same overall accuracy compared with the method
in Akiva and Koppel (2013), and have achieved
better overall accuracy compared with the meth-
ods in Akiva and Koppel (2013) and Koppel et al.
(2011).

5 Conclusion and Future Work

In this paper, we have proposed an unsupervised
method for decomposing a multi-author document
by authorship.

We have tested our method on three datasets, of
which every one has its own characteristics. It is
clear that our method has achieved a significantly
high accuracies in these datasets, even when there
is no topic indication to differentiate sentences be-
tween authors, and when the number of authors
exceeds 2. Our results tested on these datasets
have shown significantly better than those using
the methods in Koppel et al. (2011) and Akiva and
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Koppel (2013). Furthermore, our method can also
compete with the method proposed in (Akiva and
Koppel, 2013)-Synonyms, which is only valid for
Bible documents.

In our research, our aim is to segment classify
sentences in a multi-author document according to
the sentences’ authors. We assume that the num-
ber of authors of that document is known. In our
future work, we work to automatically determine
the number of authors of a multi-author document.
Furthermore, we will explore an adaptive learning
method to select the optimal value of the threshold
q for the probability indication procedure.
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Abstract

Topic Model such as Latent Dirichlet
Allocation(LDA) makes assumption that
topic assignment of different words are
conditionally independent. In this paper,
we propose a new model Extended Global
Topic Random Field (EGTRF) to model
non-linear dependencies between words.
Specifically, we parse sentences into de-
pendency trees and represent them as a
graph, and assume the topic assignment of
a word is influenced by its adjacent words
and distance-2 words. Word similarity in-
formation learned from large corpus is in-
corporated to enhance word topic assign-
ment. Parameters are estimated efficiently
by variational inference and experimen-
tal results on two datasets show EGTRF
achieves lower perplexity and higher log
predictive probability.

1 Introduction

Probabilistic topic model such as Latent Dirich-
let Allocation(LDA) (Blei et al, 2003) has been
widely used for discovering latent topics from
document collections by capturing words’ co-
occuring relation. However, the “bag of words”
assumption is employed in most existing topic
models, it assumes the order of words can be ig-
nored and topic assignment of each word is condi-
tionally independent given the topic mixture of a
document.

To relax the “bag of words” assumption, many
extended topic models have been proposed to ad-
dress the limitation of conditional independence.
Wallach (Wallach, 2006) explores a hierarchical
generative probabilistic model that incorporates
both n-gram statistics and latent topic variables.
Gruber (Gruber et al, 2007) models the topics of
words in the document as a Markov chain, and as-
sumes all words in the same sentence are more

likely to have the same topic. Zhu (Zhu et al,
2010) incorporates Markov dependency between
topic assignments of neighboring words, and em-
ploys a general structure of the GLM to define
a conditional distribution of latent topic assign-
ments over words. Most of the models above are
limited to model linear topical dependencies be-
tween words, word topical dependencies can also
be modeled by a non-linear way. In Syntactic topic
models (Boyd-Graber et al, 2009), each word of
a sentence is generated by a distribution that com-
bines document-specific topic weights and parse-
tree-specific syntactic transitions.

In Global Topic Random Field(GTRF)
model (Li et al, 2014), sentences of a document
are parsed into dependency trees (Marneffe et
al, 2008) (Manning et al, 2014) (Marneffe et
al, 2006). They show topics of semantically
or syntactically dependent words achieve the
highest similarity and are able to provide more
useful information in topic modeling, which is
also the basic assumption of our model. Then
they propose GTRF to model non-linear topical
dependencies, word topics are sampled based
on graph structure instead of “bag of words”
representation, the conditional independence of
word topic assignment is thus relaxed.

However, GTRF assumes topic assignment of a
word vertex depends on the topic mixture of the
document and its neighboring word vertices, ig-
noring the fact that word vertex can also be influ-
enced by the distance-2 or further word vertices.
In this paper, we extend GTRF model and present
a novel model Extended Global Topic Random
Field (EGTRF) to exploit topical dependency be-
tween words. In EGTRF, the topic assignment of a
word is assumed to depend on both distance-1 and
distance-2 word vertices. An example of a simple
document that has two sentences shows in Figure
1. The two sentences are parsed into dependency
trees respectively, and then merged into a graph.

506



stands

LDA alloation

latent dirichlet

(a) Sentence 1

discovers

It topics

latent

corpus

(b) Sentence 2

stands

LDA alloation

latent

topics

discovers

it corpus

dirichlet

(c) Document

Example document: LDA stands for latent dirichlet allocation. It discovers

latent topcis from corpus.

Example word vertex: allocation

Distance-1 word vertics: {stands, latent, dirichlet}
Distance-2 word vertics: {LDA, topics}

Figure 1: Dependency tree example

Some hidden dependency relations can also be ex-
tracted by merging dependency trees. For exam-
ple, word “allocation” has a new distance-2 word
“topics” after merging. Therefore, EGTRF can
exploit more semantically or syntactically word
dependencies. Theoretically, we can also model
the distance further than 2, however, it leads to
more complicated computation and small increase
of performance.

Another advantage of EGTRF is it incorporates
word features. The word vector representations
are very interesting because the learned vectors
explicitly encode many linguistic regularities and
patterns (Mikolov et al, 2013). We use the pre-
trained model from Google News dataset(about
100 billion words) using word2vec1 tool to repre-
sent each word as a 300-dimensional word vector,
and apply normalized word similarity as a con-
fidence score to indicate how possible two word
vertices share same topic.

We organized the paper as below: EGTRF is
presented in Section 2, variational inference and
parameter estimation are derived in Section 3, ex-
periments on two datasets are showed in Section
4, we conclude the paper in Section 5.

2 Extended Global Topic Random Field

In this section, we first present Extended Global
Random Field(EGRF) in section 2.1, then show
how to model topical dependencies using EGRF
in section 2.2. We incorporate word similarity in-
formation into model in section 2.3.

1https://code.google.com/p/word2vec/

2.1 Extended Global Random Field
After representing document to undirected graph
on previous section, we extend Global Random
Field and give the definition of Extended Global
Random Field to model the graph as below:

Given an undirected graph G, word vertex set is
denoted as W = {wi|i = 1, 2, ..n}, where wi is a
word vertex, and n is the number of unique words
in a document. E1 is distance-1 edge set, E1 =
{(wi, wj)|∃path between wi, wj that length is 1}.
E2 is distance-2 edge set, E2 =
{(wi, wj)|∃path between wi, wj that length is 2}.
The state(topic assignment) of a word vertex w is
generated from Z = {zi|i = 1, 2, ..., k}, k is the
number of topics.

P (G) = fG(g) =
1

| E1 | + | E2 |
∏

w∈W

f(zw)×

(
∑

(w′1,w′′1 )∈E1

f(1)(zw′1
, zw′′1

) +
∑

(w′2,w′′2 )∈E2

f(2)(zw′2
, zw′′2

))

(1)

s.t. 1.f(z) > 0, f(1)(z
′
, z
′′

) > 0, f(2)(z
′
, z
′′

) > 0

2.
∑
z∈Z

f(z) = 1

3.
∑

z′,z′′∈Z

f(z
′
)f(z

′′
)f(1)(z

′
, z
′′

) = 1

4.
∑

z′,z′′∈Z

f(z
′
)f(z

′′
)f(2)(z

′
, z
′′

) = 1

In Equation (1), f(z) is the function defined on
word vertex, which is a probability measure be-
cause of the constraints 1 and 2. f(1)(z, z′) and
f(2)(z, z′) are the function defined on edge set E1

and E2. f(1) and f(2) are not necessarily probabil-
ity measure, however, summing over all possible
states of the product of the edge and the linked
word pair should equal to 1, which are from con-
straints 3 and 4. So f(z′)f(z′′)f(1)(z′, z′′) and
f(z′)f(z′′)f(2)(z′, z′′) are probability measure. g
is one sample of word topic assignments from
graph G. If Equation (1) satisfies all the four con-
straints, it is easy to verify P (G) is also a prob-
ability measure since summing over all possible
samples g equals to 1.

We define the random field as in Equation (1)
a Extended Global Random Field (EGRF). And
EGRF does not have normalization factor, which
is much simplier than models with intractable nor-
malizing factor.

2.2 Topic Model Using EGRF
We define Extended Global Topic Random Field
based on EGRF. EGTRF is a generative proba-
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bilistic model, the basic idea is that documents
are represented as mixtures of topics, words are
generated depending on the topic mixtures and
graph structure of current document. The genera-
tive process for word sequence of a document is
described as below:

For each document d in corpus D:
Transform document d into graph.
Choose θ ∼ Dir(α).
For each of the n words wn in d:

Choose topic zn ∼ Pegrf (z | θ),
Choose word wn ∼Multi(βzn,wn).

Given Dirichlet priorα, word distribution of topics
β, topic mixture of document θ, topic assignments
z and words w. We obtain the marginal distribu-
tion of a document:

p(w | α, β) =

∫
P (θ | α)

∑
z

Pegrf (z | θ)
∏
n

P (wn | zwn , β)dθ

(2)

We can see the marginal distribution is similar
to LDA except topic assignment of word is sam-
pled by Extended Global Random Field instead
of Multinomial. So the word topic assignment is
no longer conditionally independent. According
to EGRF described in section 2.1, we define the
probability of topic sequence z as below:

Pegrf (z | θ) =
1

| E1 | + | E2 |
∏

w∈V

f(zw)×

(
∑

(w′1,w′′1 )∈E1

f(1)(zw′1
, zw′′1

) +
∑

(w′2,w′′2 )∈E2

f(2)(zw′2
, zw′′2

))

(3)

where f(zw) = Multi(zw|θ) (4)

f(1)(zw′1
, zw′′1

) = σz
w′1

=z
w′′1

λ1 + σz
w′1
6=z

w′′1
λ2 (5)

f(2)(zw′2
, zw′′2

) = σz
w′2

=z
w′′2

λ3 + σz
w′2
6=z

w′′2
λ4 (6)

σ is an indicator function and equals 1 if the
topic assignments of two words on an edge are
same. In order to model Equation (3) as an EGRF,
it must satisfy all the four constraints in Equation
(1). Equation (4) defines word vertex as multino-
mial distribution, and we assign λ1, λ2, λ3 and λ4

nonzero values, then it is clear to verify constraint
1 and 2 are satisfied. To satisfy the constraint 3
and 4, combine with (5), (6), we get the relation
between λ1 and λ2, λ3 and λ4.

∑
θ
2
i λ1 + (1−

∑
θ
2
i )λ2 = 1 i = 1, 2, ..|E1| (7)∑

θ
2
i λ3 + (1−

∑
θ
2
i )λ4 = 1 i = 1, 2, ..|E2| (8)

Lower λ2, λ4 give higher reward to the edge
that connects two word vertices with same topic.
If (7) and (8) hold true, Equation (3) is an EGRF.
And we define the topic model based on EGRF as
Extended Global Topic Random Field(EGTRF).
If |E2| = 0, |E1| 6= 0, EGTRF is equivalent to
GTRF. If |E1| = 0, |E2| = 0, EGTRF is equiva-
lent to LDA.

2.3 Word Similarity Information
The coherent edge is the edge that the two linked
words have same topic. In distance-i edge set,
i= 1, 2. ECi includes all coherent edges, ENCi

contains all non-coherent edges. Then equation
(3) can be represented as below:

Pegrf (z | θ)

=
1

| E1 | + | E2 |
∏

w∈V

Multi(zw | θ)×

(| EC1 | λ1+ | ENC1 | λ2+ | EC2 | λ3+ | ENC2 | λ4)

=

∏
w∈V

Multi(zw | θ)

(| E1 | + | E2 |)θT θ
× (| EC1 | (1− λ2)+ | E1 | λ2θ

T
θ+

| EC2 | (1− λ4)+ | E2 | λ4θ
T
θ)

(9)

From the second line to the third line of Equa-
tion (9), we represent λ1, λ3 as the function of
λ2, λ4 based on (7) and (8). The expectation of
the number of edges in Eci can be computed as:

E(| ECi
|) =

∑
(w1,w2)∈Ei

φ
T
w1
φw2Sw1,w2 (10)

φ is the K dimensional variational multinomial
parameters and can be thought as the posterior
probability of a word given the topic assignment.
Sw1,w2 is the similarity measure between word w1

and w2.
As we discussed in section 1, word similarity

information Sw1,w2 works as a confidence score to
model how likely two words on an edge have same
topic. And we make assumption that two words
are more likely to have same topic if they have a
higher similarity score. To get the similarity score
between words, we use word2vec tool to learn the
word representation of each word from pre-trained
model. The word representations are computed
using neural networks, and the learned representa-
tions explicitly encode many linguistic regularities
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Figure 2: Experimental results on NIPS(left) and 20 news(right) data

and patterns from the corpus. Normalized similar-
ity between word vectors can be regarded as the
confidence score of how possible two words have
same topic. In this way, knowledge from large cor-
pus other than current document collections is in-
corporated to guide topic modeling.

3 Posterior Inference and Parameter
Estimation

We derive Variational Inference for posterior in-
ference. The variational function q is same to the
original LDA paper (Blei et al, 2003). All terms
except P (z|θ) in likelihood function are also same
to LDA, Based on Equation (9), we obtain:

Eq [logPegrf (z | θ)]
≈Eq [log(

∏
n

Multi(zwn | θ))]+

1− λ2

ζ1
Eq(| EC1 |) +

1− λ4

ζ1
Eq(| EC2 |)+

(
| E1 | λ2+ | E2 | λ4

ζ1
− | E1 | + | E2 |

ζ2
)Eq(θ

T
θ)+

log ζ1 − log ζ2

(11)

We get the approximation in Equation (11)
from Taylor series, where ζ1 and ζ2 are Taylor
approximation. Eq(| ECi |) is obtained directly
from (10),Eq(θT θ) is from the property of Dirich-
let distribution. The updating rule of α and β are
same to LDA, γ is updated using Newton method
since we can not obtain the direct updating rule for
γ. φ can be approximated as:

φwn,i
∝ βi,vexp(Ψ(γi)+

1− λ2

ζ1
×

∑
(wn,wm)∈E1

φwm,i
Sm,n+

1− λ4

ζ1
×

∑
(wn,wp)∈E2

φwp,i
Sp,n) (12)

EM algorithm is applied using above updating
rules. At E-step, we estimate the best γ and φ
given current α and β. At M-step, we update new
α and β based on obtained γ and φ. We run such
iterations until convergence.

4 Experiment

In this section we study the empirical performance
of EGTRF on two datasets. For each dataset, we
remove very short documents, and compute a vo-
cabulary by removing stop words, rare words, fre-
quent words. Eighty percent data are used for
training, others for testing.

• 20 News Groups: After processing, it con-
tains 13706 documents with a vocabulary of
5164 terms.

• NIPS data (Globerson et al, 2004): Span-
ning from 2000 to 2005. After processing,
it contains 843 documents with a vocabulary
of 6098 terms.

We evaluate how well a model fits the data with
held-out perplexity (Blei et al, 2003) and predic-
tive distribution (Hoffman et al, 2013). Lower
perplexity, higher log predictive probability indi-
cate better generalization performance. We im-
plement GTRF without adding self defined edges
from the original paper, and set λ2 = 0.2 to give
higher reward to edges from E1 that the two word
vertices have same topic. We set λ4 = 1.2 to
give lower(even negative) reward to edges from
E2 that the two word vertices have same topic in
EGTRF, since the distance-1 words are expected
to have greater topical affects than distance-2
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words. Word is represented as vector from pre-
trained Google News dataset, we use the word vec-
tor learned from original corpus when the word
does not exist in pre-trained Google News dataset.

We choose 10, 20, 30, 50 topics for 20 news
dataset, 10, 15, 20, 25 topics for NIPS dataset.
Figure 2 shows the experimental results of four
models: lda, gtrf, egtrf(EGTRF without word
similarity information), and egtrf+s(EGTRF with
word similarity information) on two datasets. The
results show EGTRF outperforms LDA and GTRF
in general, and EGTRF with word similarity infor-
mation achieves best performance.

We believe modeling distance-2 word vertices
can exploit more semantically or syntactically
word dependencies from document, and word sim-
ilarity information obtained from large corpus can
make up the lack of sufficient information from the
original corpus. Therefore, adding the influence of
distance-2 word vertices and word similarity infor-
mation can improve performance of topic model-
ing.

5 Conclusion

In this paper, we extended Global Topic Random
Field(GTRF) and proposed a novel topic model
Extended Global Topic Random Field(EGTRF)
which can model dependency relation between
adjacent words and distance-2 words. Word
topics are drawed by Extended Global Random
Field(EGRF) instead of Multinomial, the con-
ditional independence of word topic assignment
is thus relaxed. Word similarity information
learned from large corpus is incorporated into the
model. Experiments on two datasets show EGTRF
achieves better performance than GTRF and LDA,
which confirm our assumption that adding topical
dependency of distance-2 words and incorporating
word similarity information can improve model
performance.
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Abstract

Recent work on language modelling has
shifted focus from count-based models to
neural models. In these works, the words
in each sentence are always considered in
a left-to-right order. In this paper we show
how we can improve the performance of
the recurrent neural network (RNN) lan-
guage model by incorporating the syntac-
tic dependencies of a sentence, which have
the effect of bringing relevant contexts
closer to the word being predicted. We
evaluate our approach on the Microsoft
Research Sentence Completion Challenge
and show that the dependency RNN pro-
posed improves over the RNN by about
10 points in accuracy. Furthermore, we
achieve results comparable with the state-
of-the-art models on this task.

1 Introduction

Language Models (LM) are commonly used to
score a sequence of tokens according to its prob-
ability of occurring in natural language. They are
an essential building block in a variety of applica-
tions such as machine translation, speech recogni-
tion and grammatical error correction. The stan-
dard way of evaluating a language model has been
to calculate its perplexity on a large corpus. How-
ever, this evaluation assumes the output of the lan-
guage model to be probabilistic and it has been
observed that perplexity does not always correlate
with the downstream task performance.

For these reasons, Zweig and Burges (2012)
proposed the Sentence Completion Challenge, in
which the task is to pick the correct word to com-
plete a sentence out of five candidates. Perfor-
mance is evaluated by accuracy (how many sen-
tences were completed correctly), thus both prob-
abilistic and non-probabilistic models (e.g. Roark

et al. (2007)) can be compared. Recent approaches
for this task include both neural and count-based
language models (Zweig et al., 2012; Gubbins
and Vlachos, 2013; Mnih and Kavukcuoglu, 2013;
Mikolov et al., 2013).

Most neural language models consider the to-
kens in a sentence in the order they appear, and
the hidden state representation of the network
is typically reset at the beginning of each sen-
tence. In this work we propose a novel neu-
ral language model that learns a recurrent neu-
ral network (RNN) (Mikolov et al., 2010) on
top of the syntactic dependency parse of a sen-
tence. Syntactic dependencies bring relevant con-
texts closer to the word being predicted, thus en-
hancing performance as shown by Gubbins and
Vlachos (2013) for count-based language models.
Our Dependency RNN model is published simul-
taneously with another model, introduced in Tai et
al. (2015), who extend the Long-Short Term Mem-
ory (LSTM) architecture to tree-structured net-
work topologies and evaluate it at sentence-level
sentiment classification and semantic relatedness
tasks, but not as a language model.

Adapting the RNN to use the syntactic depen-
dency structure required to reset and run the net-
work on all the paths in the dependency parse tree
of a given sentence, while maintaining a count of
how often each token appears in those paths. Fur-
thermore, we explain how we can incorporate the
dependency labels as features.

Our results show that the dependency RNN lan-
guage model proposed outperforms the RNN pro-
posed by Mikolov et al. (2011) by about 10 points
in accuracy. Furthermore, it improves upon the
count-based dependency language model of Gub-
bins and Vlachos (2013), while achieving slightly
worse than the recent state-of-the-art results by
Mnih and Kavukcuoglu (2013). Finally, we make
the code and preprocessed data available to facili-
tate comparisons with future work.

511



2 Dependency Recurrent Neural
Network

Count-based language models operate by assign-
ing probabilities to sentences by factorizing their
likelihood into n-grams. Neural language mod-
els further embed each word w(t) into a low-
dimensional vector representation (denoted by
s(t))1. These word representations are learned as
the language model is trained (Bengio et al., 2003)
and enable to define a word in relation to other
words in a metric space.

Recurrent Neural Network Mikolov et al.
(2010) suggested the use of Recurrent Neural Net-
works (RNN) to model long-range dependencies
between words as they are not restricted to a fixed
context length, like the feedforward neural net-
work (Bengio et al., 2003). The hidden representa-
tion s(t) for the word in position t of the sentence
in the RNN follows a first order auto-regressive
dynamic (Eq. 1), where W is the matrix connect-
ing the hidden representation of the previous word
s(t− 1) to the current one, w(t) is the one-hot in-
dex of the current word (in a vocabulary of size N
words) and U is the matrix containing the embed-
dings for all the words in the vocabulary:

s(t) = f (Ws(t− 1) + Uw(t)) (1)

The nonlinearity f is typically the logistic sigmoid
function f(x) = 1

1+exp(−x) . At each time step, the
RNN generates the word probability vector y(t)
for the next word w(t+ 1), using the output word
embedding matrix V and the softmax nonlinearity
g(xi) = exp(xi)∑

i
exp(xi)

:

y(t) = g (Vs(t)) (2)

RNN with Maximum Entropy Model Mikolov
et al. (2011) combined RNNs with a maximum en-
tropy model, essentially adding a matrix that di-
rectly connects the input words’ n-gram context
w(t − n + 1, . . . , t) to the output word proba-
bilities. In practice, because of the large vocab-
ulary size N , designing such a matrix is computa-
tionally prohibitive. Instead, a hash-based imple-
mentation is used, where the word context is fed
through a hash function h that computes the in-
dex h(w(t − n + 1, . . . , t)) of the context words

1In our notation, we make a distinction between the word
token w(t) at position t in the sentence and its one-hot vector
representation w(t). We note wi the i-th word token on a
breadth-first traversal of a dependency parse tree.

in a one-dimensional array d of size D (typically,
D = 109). Array d is trained in the same way as
the rest of the RNN model and contributes to the
output word probabilities:

y(t) = g
(
Vs(t) + dh(w(t−n+1,...,t))

)
(3)

As we show in our experiments, this additional
matrix is crucial to a good performance on word
completion tasks.

Training RNNs RNNs are trained using maxi-
mum likelihood through gradient-based optimiza-
tion, such as Stochastic Gradient Descent (SGD)
with an annealed learning rate λ. The Back-
Propagation Through Time (BPTT) variant of
SGD enables to sum-up gradients from consecu-
tive time steps before updating the parameters of
the RNN and to handle the long-range temporal
dependencies in the hidden s and output y se-
quences. The loss function is the cross-entropy
between the generated word distribution y(t) and
the target one-hot word distribution w(t+ 1), and
involves the log-likelihood terms log yw(t+1)(t).

For speed-up, the estimation of the output word
probabilities is done using hierarchical softmax
outputs, i.e., class-based factorization (Mikolov
and Zweig, 2012). Each word wi is assigned to
a class ci and the corresponding log-likelihood is
effectively log ywi(t) = log yci(t) + log ywj (t),
where j is the index of word wi among words
belonging to class ci. In our experiments, we
binned the words found in our training corpus into
250 classes according to frequency, roughly corre-
sponding to the square root of the vocabulary size.

Dependency RNN RNNs are designed to pro-
cess sequential data by iteratively presenting them
with word w(t) and generating next word’s proba-
bility distribution y(t) at each time step. They can
be reset at the beginning of a sentence by setting
all the values of hidden vector s(t) to zero.

Dependency parsing (Nivre, 2005) generates,
for each sentence (which we note {w(t)}Tt=0), a
parse tree with a single root, many leaves and an
unique path (also called unroll) from the root to
each leaf, as illustrated on Figure 1. We now note
{wi}i the set of word tokens appearing in the parse
tree of a sentence. The order in the notation de-
rives from the breadth-first traversal of that tree
(i.e., the root word is noted w0). Each of the un-
rolls can be seen as a different sequence of words
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ROOT I saw the ship with very strong binoculars

nsubj

prep
dobj

dep

pobj

advmod
amodROOT

Figure 1: Example dependency tree

{wi}, starting from the single rootw0, that are vis-
ited when one takes a specific path on the parse
tree. We propose a simple transformation to the
RNN algorithm so that it can process dependency
parse trees. The RNN is reset and independently
run on each such unroll. As detailed in the next
paragraph, when evaluating the log-probability of
the sentence, a word token wi can appear in mul-
tiple unrolls but its log-likelihood is counted only
once. During training, and to avoid over-training
the network on word tokens that appear in more
than one unroll (words near the root appear in
more unrolls than those nearer the leaves), each
word token wi is given a weight discount αi = 1

ni
,

based on the number ni of unrolls the token ap-
pears in. Since the RNN is optimized using SGD
and updated at every time-step, the contribution of
word token wi can be discounted by multiplying
the learning rate by the discount factor: αiλ.

Sentence Probability in Dependency RNN
Given a word wi, let us define the ancestor se-
quence A(wi) to be the subsequence of words,
taken as a subset from {wk}i−1

k=0 and describing
the path from the root node w0 to the parent of wi.
For example, in Figure 1, the ancestors A(very)
of word token very are saw, binoculars and
strong. Assuming that each word wi is con-
ditionally independent of the words outside of
its ancestor sequence, given its ancestor sequence
A(wi), Gubbins and Vlachos (2013) showed that
the probability of a sentence (i.e., the probability
of a lexicalized tree ST given an unlexicalized tree
T ) could be written as:

P [ST |T ] =
|S|∏
i=1

P [wi|A(wi)] (4)

This means that the conditional likelihood of a
word given its ancestors needs to be counted only
once in the calculation of the sentence likelihood,
even though each word can appear in multiple un-
rolls. When modeling a sentence using an RNN,
the state sj that is used to generate the distribution

of words wi (where j is the parent of i in the tree),
represents the vector embedding of the history of
the ancestor words A(wi). Therefore, we count
the term P [wi|sj ] only once when computing the
likelihood of the sentence.

3 Labelled Dependency RNN

The model presented so far does not use
dependency labels. For this purpose we
adapted the context-dependent RNN (Mikolov and
Zweig, 2012) to handle them as additional M -
dimensional label input features f(t). These fea-
tures require a matrix F that connects label fea-
tures to word vectors, thus yielding a new dynam-
ical model (Eq. 5) in the RNN, and a matrix G
that connects label features to output word proba-
bilities. The full model becomes as follows:

s(t) = f (Ws(t− 1) + Uw(t) + Ff(t))(5)

y(t) = g
(
Vs(t) + Gf(t) + dh(wt

t−n+1)

)
(6)

On our training dataset, the dependency parsing
model found M = 44 distinct labels (e.g., nsubj,
det or prep). At each time step t, the context word
w(t) is associated a single dependency label f(t)
(a one-hot vector of dimension M ).

Let G(w) be the sequence of grammatical rela-
tions (dependency tree labels) between successive
elements of (A(w), w). The factorization of the
sentence likelihood from Eq. 4 becomes:

P [ST |T ] =
|S|∏
i=1

P [wi|A(wi), G(wi)] (7)

4 Implementation and Dataset

We modified the Feature-Augmented RNN
toolkit2 and adapted it to handle tree-structured
data. Specifically, and instead of being run se-
quentially on the entire training corpus, the RNN
is run on all the word tokens in all unrolls of all
the sentences in all the books of the corpus. The
RNN is reset at the beginning of each unroll of a
sentence. When calculating the log-probability of
a sentence, the contribution of each word token
is counted only once (and stored in a hash-table
specific for that sentence). Once all the unrolls
of a sentence are processed, the log-probability
of the sentence is the sum of the per-token log-
probabilities in that hash-table. We also further

2http://research.microsoft.com/en-us/projects/rnn/
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enhanced the RNN library by replacing some
large matrix multiplication routines by calls to the
CBLAS library, thus yielding a two- to three-fold
speed-up in the test and training time.3

The training corpus consists of 522 19th cen-
tury novels from Project Gutenberg (Zweig and
Burges, 2012). All processing (sentence-splitting,
PoS tagging, syntactic parsing) was performed us-
ing the Stanford CoreNLP toolkit (Manning et al.,
2014). The test set contains 1040 sentences to be
completed. Each sentence consists of one ground
truth and 4 impostor sentences where a specific
word has been replaced with a syntactically cor-
rect but semantically incorrect impostor word. De-
pendency trees are generated for each sentence
candidate. We split that set into two, using the first
520 sentences in the validation (development) set
and the latter 520 sentences in the test set. Dur-
ing training, we start annealing the learning rate λ
with decay factor 0.66 as soon as the classification
error on the validation set starts to increase.

5 Results

Table 1 shows the accuracy (validation and test
sets) obtained using a simple RNN with 50, 100,
200 and 300-dimensional hidden word represen-
tation and 250 frequency-based word classes (vo-
cabulary size N = 72846 words appearing at least
5 times in the training corpus). One notices that
adding the direct word context to target word con-
nections (using the additional matrix described in
section 2), enables to jump from a poor perfor-
mance of about 30% accuracy to about 40% test
accuracy, essentially matching the 39% accuracy
reported for Good-Turing n-gram language mod-
els in Zweig et al. (2012). Modelling 4-grams
yields even better results, closer to the 45% accu-
racy reported for RNNs in (Zweig et al., 2012).4

As Table 2 shows, dependency RNNs (de-
pRNN) enable about 10 point word accuracy im-
provement over sequential RNNs.

The best accuracy achieved by the depRNN on
the combined development and test sets used to re-
port results in previous work was 53.5%. The best
reported results in the MSR sentence completion
challenge have been achieved by Log-BiLinear
Models (LBLs) (Mnih and Hinton, 2007), a vari-

3Our code and our preprocessed datasets are avail-
able from: https://github.com/piotrmirowski/
DependencyTreeRnn

4The paper did not provide details on the maximum en-
tropy features or on class-based hierarchical softmax).

Architecture 50h 100h 200h 300h
RNN (dev) 29.6 30.0 30.0 30.6
RNN (test) 28.1 30.0 30.4 28.5
RNN+2g (dev) 29.6 28.7 29.4 29.8
RNN+2g (test) 29.6 28.7 28.1 30.2
RNN+3g (dev) 39.2 39.4 38.8 36.5
RNN+3g (test) 40.8 40.6 40.2 39.8
RNN+4g (dev) 40.2 40.6 40.0 40.2
RNN+4g (test) 42.3 41.2 40.4 39.2

Table 1: Accuracy of sequential RNN on the MSR
Sentence Completion Challenge.

Architecture 50h 100h 200h
depRNN+3g (dev) 53.3 54.2 54.2
depRNN+3g (test) 51.9 52.7 51.9
ldepRNN+3g (dev) 48.8 51.5 49.0
ldepRNN+3g (test) 44.8 45.4 47.7
depRNN+4g (dev) 52.7 54.0 52.7
depRNN+4g (test) 48.9 51.3 50.8
ldepRNN+4g (dev) 49.4 50.0 (48.5)
ldepRNN+4g (test) 47.7 51.4 (47.7)

Table 2: Accuracy of (un-)labeled dependency
RNN (depRNN and ldepRNN respectively).

ant of neural language models with 54.7% to
55.5% accuracy (Mnih and Teh, 2012; Mnih and
Kavukcuoglu, 2013). We conjecture that their su-
perior performance might stem from the fact that
LBLs, just like n-grams, take into account the or-
der of the words in the context and can thus model
higher-order Markovian dynamics than the simple
first-order autoregressive dynamics in RNNs. The
depRNN proposed ignores the left-to-right word
order, thus it is likely that a combination of these
approaches will result in even higher accuracies.
Gubbins and Vlachos (2013) developed a count-
based dependency language model achieving 50%
accuracy. Finally, Mikolov et al. (2013) report that
they achieved 55.4% accuracy with an ensemble of
RNNs, without giving any other details.

6 Discussion

Related work Mirowski et al. (2010) incorpo-
rated syntactic information into neural language
models using PoS tags as additional input to LBLs
but obtained only a small reduction of the word
error rate in a speech recognition task. Similarly,
Bian et al. (2014) enriched the Continuous Bag-of-
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Words (CBOW) model of Mikolov et al. (2013)
by incorporating morphology, PoS tags and en-
tity categories into 600-dimensional word embed-
dings trained on the Gutenberg dataset, increas-
ing sentence completion accuracy from 41% to
44%. Other work on incorporating syntax into lan-
guage modeling include Chelba et al. (1997) and
Pauls and Klein (2012), however none of these ap-
proaches considered neural language models, only
count-based ones. Levy and Goldberg (2014) and
Zhao et al. (2014) proposed to train neural word
embeddings using skip-grams and CBOWs on de-
pendency parse trees, but did not extend their ap-
proach to actual language models such as LBL and
RNN and did not evaluate the word embeddings
on word completion tasks.

Note that we assume that the dependency tree
is supplied prior to running the RNN which limits
the scope of the Dependency RNN to the scoring
of complete sentences, not to next word prediction
(unless a dependency tree parse for the sentence
to be generated is provided). Nevertheless, it is
common in speech recognition and machine trans-
lation to use a conventional decoder to produce an
N-best list of the most likely candidate sentences
and then re-score them with the language model.
(Chelba et al., 1997; Pauls and Klein, 2011)

Tai et al. (2015) propose a similar approach to
ours, learning Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997; Graves,
2012) RNNs on dependency parse tree network
topologies. Their architectures is not designed to
predict next-word probability distributions, as in
a language model, but to classify the input words
(sentiment analysis task) or to measure the sim-
ilarity in hidden representations (semantic relat-
edness task). Their relative improvement in per-
formance (tree LSTMs vs standard LSTMs) on
these two tasks is smaller than ours, probably be-
cause the LSTMs are better than RNNs at storing
long-term dependencies and thus do not benefit
form the word ordering from dependency trees as
much as RNNs. In a similar vein to ours, Miceli-
Barone and Attardi (2015) simply propose to en-
hance RNN-based machine translation by permut-
ing the order of the words in the source sentence to
match the order of the words in the target sentence,
using a source-side dependency parsing.

Limitations of RNNs for word completion
Zweig et al. (2012) reported that RNNs achieve
lower perplexity than n-grams but do not always

Figure 2: Perplexity vs. accuracy of RNNs

outperform them on word completion tasks. As
illustrated in Fig. 2, the validation set perplex-
ity (comprising all 5 choices for each sentence)
of the RNN keeps decreasing monotonically (once
we start annealing the learning rate), whereas the
validation accuracy rapidly reaches a plateau and
oscillates. Our observation confirms that, once an
RNN went through a few training epochs, change
in perplexity is no longer a good predictor of
change in word accuracy. We presume that the
log-likelihood of word distribution is not a train-
ing objective crafted for precision@1, and that
further perplexity reduction happens in the middle
and tail of the word distribution.

7 Conclusions

In this paper we proposed a novel language model,
dependency RNN, which incorporates syntactic
dependencies into the RNN formulation. We eval-
uated its performance on the MSR sentence com-
pletion task and showed that it improves over
RNN by 10 points in accuracy, while achieving re-
sults comparable with the state-of-the-art. Further
work will include extending the dependency tree
language modeling to Long Short-Term Memory
RNNs to handle longer syntactic dependencies.
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Abstract

Rumours on social media exhibit complex
temporal patterns. This paper develops a
model of rumour prevalence using a point
process, namely a log-Gaussian Cox pro-
cess, to infer an underlying continuous
temporal probabilistic model of post fre-
quencies. To generalize over different ru-
mours, we present a multi-task learning
method parametrized by the text in posts
which allows data statistics to be shared
between groups of similar rumours. Our
experiments demonstrate that our model
outperforms several strong baseline meth-
ods for rumour frequency prediction eval-
uated on tweets from the 2014 Ferguson
riots.

1 Introduction

The ability to model rumour dynamics helps with
identifying those, which, if not debunked early,
will likely spread very fast. One such example is
the false rumour of rioters breaking into McDon-
ald’s during the 2011 England riots. An effective
early warning system of this kind is of interest to
government bodies and news outlets, who struggle
with monitoring and verifying social media posts
during emergencies and social unrests. Another
application of modelling rumour dynamics could
be to predict the prevalence of a rumour through-
out its lifespan, based on occasional spot checks
by journalists.

The challenge comes from the observation that
different rumours exhibit different trajectories.
Figure 1 shows two example rumours from our
dataset (see Section 3): online discussion of ru-
mour #10 quickly drops away, whereas rumour
#37 takes a lot longer to die out. Two charac-
teristics can help determine if a rumour will con-
tinue to be discussed. One is the dynamics of post
occurrences, e.g. if the frequency profile decays

quickly, chances are it would not attract further
attention. A second factor is text from the posts
themselves, where phrases such as not true, un-
confirmed, or debunk help users judge veracity and
thus limit rumour spread (Zhao et al., 2015).

This paper considers the problem of modelling
temporal frequency profiles of rumours by taking
into account both the temporal and textual infor-
mation. Since posts occur at continuous times-
tamps, and their density is typically a smooth func-
tion of time, we base our model on point pro-
cesses, which have been shown to model well such
data in epidemiology and conflict mapping (Brix
and Diggle, 2001; Zammit-Mangion et al., 2012).
This framework models count data in a continuous
time through the underlying intensity of a Poisson
distribution. The posterior distribution can then
be used for several inference problems, e.g. to
query the expected count of posts, or to find the
probability of a count of posts occurring during
an arbitrary time interval. We model frequency
profiles using a log-Gaussian Cox process (Møller
and Syversveen, 1998), a point process where the
log-intensity of the Poisson distribution is mod-
elled via a Gaussian Process (GP). GP is a non-
parametric model which allows for powerful mod-
elling of the underlying intensity function.

Modelling the frequency profile of a rumour
based on posts is extremely challenging, since
many rumours consist of only a small number of
posts and exhibit complex patterns. To overcome
this difficulty we propose a multi-task learning ap-
proach, where patterns are correlated across mul-
tiple rumours. In this way statistics over a larger
training set are shared, enabling more reliable pre-
dictions for distant time periods, in which no posts
from the target rumour have been observed. We
demonstrate how text from observed posts can be
used to weight influence across rumours. Using a
set of Twitter rumours from the 2014 Ferguson un-
rest, we demonstrate that our models provide good
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(b) rumour #10

Figure 1: Predicted frequency profiles for example rumours. Black bars denote training intervals, white bars denote test
intervals. Dark-coloured lines correspond to mean predictions by the models, light shaded areas denote the 95% confidence
interval, µ± 2σ. This figure is best viewed in colour.

prediction of rumour popularity.
This paper makes the following contributions:

1. Introduces the problem of modelling rumour
frequency profiles, and presents a method based
on a log-Gaussian Cox process; 2. Incorporates
multi-task learning to generalize across disparate
rumours; and 3. Demonstrates how incorporating
text into multi-task learning improves results.

2 Related Work

There have been several descriptive studies of ru-
mours in social media, e.g. Procter et al. (2013)
analyzed rumours in tweets about the 2011 Lon-
don riots and showed that they follow similar life-
cycles. Friggeri et al. (2014) showed how Face-
book constitutes a rich source of rumours and con-
versation threads on the topic. However, none of
these studies tried to model rumour dynamics.

The problem of modelling the temporal nature
of social media explicitly has received little at-
tention. The work most closely related modelled
hash tag frequency time-series in Twitter using
GP (Preotiuc-Pietro and Cohn, 2013). It made
several simplifications, including discretising time
and treating the problem of modelling counts as
regression, which are both inappropriate. In con-
trast we take a more principled approach, using
a point process. We use the proposed GP-based
method as a baseline to demonstrate the benefit of
using our approaches.

The log-Gaussian Cox process has been applied
for disease and conflict mapping, e.g. Zammit-
Mangion et al. (2012) developed a spatio-temporal
model of conflict events in Afghanistan. In
contrast here we deal with temporal text data,
and model several correlated outputs rather than
their single output. Related also is the extensive
work done in spatio-temporal modelling of meme
spread. One example is application of Hawkes

processes (Yang and Zha, 2013), a probabilistic
framework for modelling self-excitatory phenom-
ena. However, these models were mainly used for
network modelling rather than revealing complex
temporal patterns, which may emerge only implic-
itly, and are more limited in the kinds of temporal
patterns that may be represented.

3 Data & Problem

In this section we describe the data and we formal-
ize the problem of modelling rumour popularity.

Data We use the Ferguson rumour data set (Zu-
biaga et al., 2015), consisting of tweets collected
in August and September 2014 during the Fergu-
son unrest. It contains both source tweets and the
conversational threads around these (where avail-
able). All source tweets are categorized as ru-
mour vs non-rumour, other tweets from the same
thread are assigned automatically as belonging to
the same event as the source tweet. Since some
rumours have few posts, we consider only those
with at least 15 posts in the first hour as rumours
of particular interest. This results in 114 rumours
consisting of a total of 4098 tweets.

Problem Definition Let us consider a time in-
terval [0, l] of length l=2 hours, a set of n rumours
R = {Ei}ni=1, where rumour Ei consists of a
set of mi posts Ei = {pi

j}mi
j=1. Posts are tuples

pi
j = (xi

j , t
i
j), where xi

j is text (in our case a bag
of words text representation) and tij is a timestamp
describing post pi

j , measured in time elapsed since
the first post on rumour Ei.

Posts occur at different timestamps, yielding
varying density of posts over time, which we are
interested in estimating. To evaluate the predicted
density for a given rumour Ei we leave out posts
from a set of intervals Tte = {[si

k, e
i
k]}Ki

k=1 (where
si
k and eik are respectively start and end points of
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interval k for rumour i) and estimate performance
at predicting counts in them by the trained model.

The problem is considered in supervised
settings, where posts on this rumour out-
side of these intervals form the training set
EO

i ={pi
j : tij 6∈

⋃Ki
k=1[s

i
k, e

i
k]}. Let the number of

elements in EO
i be mO

i . We also consider a do-
main adaptation setting, where additionally posts
from other rumours are observed RO

i =R\Ei.
Two instantiations of this problem formulation

are considered. The first is interpolation, where
the test intervals are not ordered in any particular
way. This corresponds to a situation, e.g., when
a journalist analyses a rumour during short spot
checks, but wants to know the prevalence of the
rumour at other times, thus limiting the need for
constant attention. The second formulation is that
of extrapolation, where all observed posts occur
before the test intervals. This corresponds to a
scenario where the user seeks to predict the future
profile of the rumour, e.g., to identify rumours that
will attract further attention or wither away.

Although our focus here is on rumours, our
model is more widely applicable. For example,
one could use it to predict whether an advertise-
ment campaign would be successful or how a po-
litical campaign would proceed.

4 Model

We consider a log-Gaussian Cox process (LGCP)
(Møller and Syversveen, 1998), a generalization
of inhomogeneous Poisson process. In LGCP
the intensity function is assumed to be a stochas-
tic process which varies over time. In fact, the
intensity function λ(t) is modelled using a la-
tent function f(t) sampled from a Gaussian pro-
cess (Rasmussen and Williams, 2005), such that
λ(t) = exp (f(t)) (exponent ensures positivity).
This provides a non-parametric approach to model
the intensity function. The intensity function can
be automatically learned from the data set and its
complexity depends on the data points.

We model the occurrence of posts in a rumour
Ei to follow log-Gaussian Cox process (LGCP)
with intensity λi(t), where λi(t) = exp(fi(t)).
We associate a distinct intensity function with
each rumour as they have varying temporal pro-
files. LGCP models the likelihood that a single
tweet occurs at time t in the interval [s, t] for a ru-
mour Ei given the latent function fi(t) as

p(y = 1|fi) = exp(fi(t)) exp(−
∫ t

s
exp(fi(u))du).

Then, the likelihood of posts EO
i in time interval

T given a latent function fi can be obtained as

p(EO
i |fi)=exp

−∫
T−Tte

exp (fi(u)) du+
mO

i∑
j=1

fi(tij)


(1)

The likelihood of posts in the rumour data is
obtained by taking the product of the likelihoods
over individual rumours. The likelihood (1) is
commonly approximated by considering sub-
regions of T and assuming constant intensities
in sub-regions of T (Møller and Syversveen,
1998; Vanhatalo et al., 2013) to overcome com-
putational difficulties arising due to integration.
Following this, we approximate the likelihood as
p(EO

i |fi) =
∏S

s=1 Poisson(ys | lsexp
(
fi(ṫs)

)
).

Here, time is divided into S intervals indexed
by s, ṫs is the centre of the sth interval, ls is the
length of the sth interval and ys is number of
tweets posted during this interval.

The latent function f is modelled via a Gaussian
process (GP) (Rasmussen and Williams, 2005):
f(t) ∼ GP(m(t), k(t, t′)), where m is the mean
function (equal 0) and k is the kernel specifying
how outputs covary as a function of the inputs.
We use a Radial Basis Function (RBF) kernel,
k(t, t′) = a exp(−(t− t′)2/l), where lengthscale
l controls the extent to which nearby points influ-
ence one another and a controls the scale of the
function.

The distribution of the posterior p(fi(t)|EO
i ) at

an arbitrary timestamp t is calculated based on the
specified prior and the Poisson likelihood. It is
intractable and approximation techniques are re-
quired. There exist various methods to deal with
calculating the posterior; here we use the Laplace
approximation, where the posterior is approxi-
mated by a Gaussian distribution based on the first
2 moments. For more details about the model and
inference we refer the reader to (Rasmussen and
Williams, 2005). The predictive distribution over
time t∗ is obtained using the approximated poste-
rior. This predictive distribution is then used to
obtain the intensity function value at the point t∗:

λi(t∗|EO
i ) =

∫
exp (fi(t)) p

(
fi(t)|EO

i

)
dfi .

The predictive distribution over counts at a par-
ticular time interval of length w with a mid-point
t∗ for rumour Ei is Poisson distributed with rate
wλi(t∗|EO

i ).
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Multi-task learning and incorporating text In
order to exploit similarities across rumours we
propose a multi-task approach where each rumour
represents a task. We consider two approaches.

First, we employ a multiple output GP based
on the Intrinsic Coregionalization Model (ICM)
(Álvarez et al., 2012). It is a method which has
been successfully applied to a range of NLP tasks
(Beck et al., 2014; Cohn and Specia, 2013). ICM
parametrizes the kernel by a matrix representing
similarities between pairs of tasks. We expect it to
find correlations between rumours exhibiting sim-
ilar temporal patterns. The kernel takes the form

kICM((t, i), (t′, i′))=ktime(t, t′)Bi,i′ ,

whereB is a square coregionalization matrix (rank
1,B = κI + vvT ), i and i′ denote the tasks of the
two inputs, ktime is a kernel for comparing inputs
t and t′ (here RBF) and κ is a vector of values
modulating the extent of each task independence.

In a second approach, we parametrize the inter-
task similarity measures by incorporating text of
the posts. The full multi-task kernel takes form

kTXT((t, i), (t′, i′)) = ktime(t, t′) ×

ktext

( ∑
pi

j∈EO
i

xi
j ,
∑

pi′
j ∈EO

i′

xi′
j

)
.

We compare text vectors using cosine similar-
ity, ktext(x,y) = b+ c xT y

‖x‖‖y‖ , where the hyper-
parameters b > 0 and c > 0 modulate between
text similarity and a global constant similarity. We
also consider combining both multi-task kernels,
yielding kICM+TXT = kICM + kTXT.

Optimization All hyperparameters are opti-
mized by maximizing the marginal likelihood of
the data L(EO

i |θ), where θ = (a, l,κ,v, b, c) or a
subset thereof, depending on the choice of kernel.

5 Experimental Setup
Evaluation metric We use mean squared error
(MSE) to measure the difference between true
counts and predicted counts in the test intervals.
Since probabilistic models (GP, LGCP) return dis-
tributions over possible outputs, we also evalu-
ate them via the log-likelihood (LL) of the true
counts under the returned distributions (respec-
tively Gaussian and Poisson distribution).

Baselines We use the following baselines. The
first is the Homogenous Poisson Process (HPP)

trained on the training set of the rumour. We se-
lect its intensity λ using maximum likelihood esti-
mate, which equals to the mean frequency of posts
in the training intervals. The second baseline is
Gaussian Process (GP) used for predicting hash-
tag frequencies in Twitter by Preotiuc-Pietro and
Cohn (2013). Authors considered various kernels
in their experiments, most notably periodic ker-
nels. In our case it is not apparent that rumours
exhibit periodic characteristics, as can be seen in
Figure 1. We restrict our focus to RBF kernel and
leave inspection of other kernels such as periodic
ones for both GP and LGCP models for future.
The third baseline is to always predict 0 posts in
all intervals. The fourth baseline is tailored for the
interpolation setting, and uses simple interpolation
by averaging over the frequencies of the closest
left and right intervals, or the frequency of the
closest interval for test intervals on a boundary.

Data preprocessing In our experiments, we
consider the first two hours of each rumour lifes-
pan, which we split into 20 evenly spaced inter-
vals. This way, our dataset consists in total of 2280
intervals. We iterate over rumours using a form
of folded cross-validation, where in each iteration
we exclude some (but not all) time intervals for a
single target rumour. The excluded time intervals
form the test set: either by selecting half at random
(interpolation); or by taking only the second half
for testing (extrapolation). To ameliorate the prob-
lems of data sparsity, we replace words with their
Brown cluster ids, using 1000 clusters acquired on
a large scale Twitter corpus (Owoputi et al., 2013).

The mean function for the underlying GP in
LGCP methods is assumed to be 0, which results
in intensity function to be around 1 in the absence
of nearby observations. This prevents our method
from predicting 0 counts in these regions. We
add 1 to the counts in the intervals to deal with
this problem as a preprocessing step. The original
counts can be obtained by decrementing 1 from
the predicted counts. Instead, one could use a GP
with a non-zero mean function and learn the mean
function, a more elegant way of approaching this
problem, which we leave for future work.

6 Experiments
The left columns of Table 1 report the results
for the extrapolation experiments, showing the
mean and variance of results across the 114 ru-
mours. According to log likelihood evaluation
metric, GP is the worst from the probabilistic ap-
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Extrapolation Interpolation
MSE LL MSE LL

HPP 7.14±10.1? -23.5±10.1? 7.66±7.55? -25.8±11.0?
GP 4.58±11.0? -34.6±8.78? 6.13±6.57? -90.1±198 ?

Interpolate 4.90±13.1? - 5.29±6.06? -
0 2.76±7.81? - 7.65±11.0? -

LGCP 3.44±9.99? -15.8±11.6†? 6.01±6.29? -21.0±8.77†?
LGCP ICM 2.46±7.82†? -14.8±11.2†? 8.59±19.9? -20.7±9.87†?
LGCP TXT 2.32±7.06† -14.7±9.12† 3.66±5.67† -16.9±5.91†

LGCP ICM+TXT 2.31±7.80† -14.6±10.8† 3.92±5.20† -16.8±5.34†
Table 1: MSE between the true counts and the predicted counts (lower is better) and predictive log likelihood of the true
counts from probabilistic models (higher is better) for test intervals over the 114 Ferguson rumours for extrapolation (left) and
interpolation (right) settings, showing mean ± std. dev. Baselines are shown above the line, with LGCP models below. Key:
† denotes significantly better than the best baseline; ? denotes significantly worse than LGCP TXT, according to one-sided
Wilcoxon signed rank test p < 0.05.

proaches. This is due to GP modelling a dis-
tribution with continuous support, which is inap-
propriate for modelling discrete counts. Chang-
ing the model from a GP to a better fitting to the
modelling temporal count data LGCP gives a big
improvement, even when a point estimate of the
prediction is considered (MSE). The 0 baseline is
very strong, since many rumours have compara-
tively little discussion in the second hour of their
lifespan relative to the first hour. Incorporating in-
formation about other rumours helps outperform
this method. ICM, TXT and ICM+TXT multi-
task learning approaches achieve the best scores
and significantly outperform all baselines. TXT
turns out to be a good approach to multi-task learn-
ing and outperforms ICM. In Figure 1a we show
an example rumour frequency profile for the ex-
trapolation setting. TXT makes a lower error than
LGCP and LGCPICM, both of which underesti-
mate the counts in the second hour.

Next, we move to the interpolation setting. Un-
surprisingly, Interpolate is the strongest baseline,
and outperforms the raw LGCP method. Again,
HPP and GP are outperformed by LGCP in terms
of both MSE and LL. Considering the output dis-
tributions (LL) the difference in performance be-
tween the Poisson Process based approaches and
GP is especially big, demonstrating how well the
principled models handle uncertainty in the pre-
dictive distributions. As for the multi-task meth-
ods, we notice that text is particularly useful, with
TXT achieving the highest MSE score out of all
considered models. ICM turns out to be not very
helpful in this setting. For example, ICM (just as

LGCP) does not learn there should be a peak at the
beginning of a rumour frequency profile depicted
in Figure 1b. TXT manages to make a signifi-
cantly smaller error by predicting a large posting
frequency there. We also found, that for a few ru-
mours ICM made a big error by predicting a high
frequency at the start of a rumour lifespan when
there was no such peak. We hypothesize ICM per-
forms poorly because it is hard to learn correct cor-
relations between frequency profiles when training
intervals do not form continuous segments of sig-
nificant sizes. ICM manages to learn correlations
more properly in extrapolation setting, where the
first hour is fully observed.

7 Conclusions

This paper introduced the problem of modelling
frequency profiles of rumours in social media.
We demonstrated that joint modelling of collec-
tive data over multiple rumours using multi-task
learning resulted in more accurate models that are
able to recognise and predict commonly occurring
temporal patterns. We showed how text data from
social media posts added important information
about similarities between different rumours. Our
method is generalizable to problems other than
modelling rumour popularity, such as predicting
success of advertisement campaigns.
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Abstract

Recently, a variety of representation learn-
ing approaches have been developed in
the literature to induce latent generalizable
features across two domains. In this paper,
we extend the standard hidden Markov
models (HMMs) to learn distributed state
representations to improve cross-domain
prediction performance. We reformu-
late the HMMs by mapping each discrete
hidden state to a distributed representa-
tion vector and employ an expectation-
maximization algorithm to jointly learn
distributed state representations and model
parameters. We empirically investigate the
proposed model on cross-domain part-of-
speech tagging and noun-phrase chunking
tasks. The experimental results demon-
strate the effectiveness of the distributed
HMMs on facilitating domain adaptation.

1 Introduction

Domain adaptation aims to obtain an effective pre-
diction model for a particular target domain where
labeled training data is scarce by exploiting la-
beled data from a related source domain. Domain
adaptation is very important in the field of natu-
ral language processing (NLP) as it can reduce the
expensive manual annotation effort in the target
domain. Various NLP tasks have benefited from
domain adaptation techniques, including part-of-
speech tagging (Blitzer et al., 2006; Huang and
Yates, 2010a), chunking (Daumé III, 2007; Huang
and Yates, 2009), named entity recognition (Guo
et al., 2009; Turian et al., 2010), dependency pars-
ing (Dredze et al., 2007; Sagae and Tsujii, 2007)
and semantic role labeling (Dahlmeier and Ng,
2010; Huang and Yates, 2010b).

In a typical domain adaptation scenario of NLP,
the source and target domains contain text data

of different genres (e.g., newswire vs biomedi-
cal (Blitzer et al., 2006)). Under such circum-
stances, the original lexical features may not per-
form well in cross-domain learning since differ-
ent genres of text may use very different vocab-
ularies and produce cross-domain feature distri-
bution divergence and feature sparsity issue. A
number of techniques have been developed in the
literature to tackle the problem of cross-domain
feature divergence and feature sparsity, includ-
ing clustering based word representation learn-
ing methods (Huang and Yates, 2009; Candito et
al., 2011), word embedding based representation
learning methods (Turian et al., 2010; Hovy et
al., 2015) and some other representation learning
methods (Blitzer et al., 2006).

In this paper, we extend the standard hidden
Markov models (HMMs) to perform distributed
state representation learning and induce context-
aware distributed word representations for domain
adaptation. Instead of learning a single discrete
latent state for each observation in a given sen-
tence, we learn a distributed representation vec-
tor. We define a state embedding matrix to map
each latent state value to a low-dimensional dis-
tributed vector and reformulate the three local dis-
tributions of HMMs based on the distributed state
representations. We then simultaneously learn the
state embedding matrix and the model parame-
ters using an expectation-maximization (EM) al-
gorithm. The hidden states of each word in a sen-
tence can be decoded using the standard Viterbi
decoding procedure of HMMs, and its distributed
representation can be obtained by a simple map-
ping with the state embedding matrix. We then
use the context-aware distributed representations
of the words as their augmenting features to per-
form cross-domain part-of-speech (POS) tagging
and noun-phrase (NP) chunking.

The proposed approach is closely related to
the clustering based method (Huang and Yates,
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2009) as we both use latent state representations
as generalizable features. However, they use stan-
dard HMMs to produce discrete hidden state fea-
tures for each observation word, while we induce
distributed state representation vectors. Our dis-
tributed HMMs share similarities with the word
embedding based method (Hovy et al., 2015),
and can be more space-efficient than the stan-
dard HMMs. Moreover, our model can incor-
porate context information into observation fea-
ture vectors to perform representation learning in
a context-aware manner. The distributed state
representations induced by our model hence have
larger representing capacities and generalizing ca-
pabilities for cross-domain learning than standard
HMMs.

2 Related Work

A variety of representation learning approaches
have been developed in the literature to address
NLP domain adaptation problems. The cluster-
ing based word representation learning methods
perform word clustering within the sentence struc-
ture and use word cluster indicators as generaliz-
able features to address domain adaptation prob-
lems. For example, Huang and Yates (2009) used
the discrete hidden state of a word under HMMs
as augmenting features for cross-domain POS tag-
ging and NP chunking. Brown clusters (Brown
et al., 1992), which was used as latent features
for simple in-domain dependency parsing (Koo et
al., 2008), has recently been exploited for out-of-
domain statistical parsing (Candito et al., 2011).

The word embedding based representation
learning methods learn a dense real-valued repre-
sentation vector for each word as latent features
for domain adaptation. Turian et al. (2010) em-
pirically studied using word embeddings learned
from hierarchical log-bilinear models (Mnih and
Geoffrey, 2008) and neural language models (Col-
lobert and Weston, 2008) for cross-domain NER
tasks. Hovy et al. (2015) used the word embed-
dings learned from the Skip-gram Model (SGM)
(Mikolov et al., 2013) to develop a POS tagger for
Twitter data with labeled newswire training data.

Some other representation learning methods
have been developed to tackle NLP cross-domain
problems as well. For example, Blitzer et
al. (2006) proposed a structural correspondence
learning method for POS tagging, which first se-
lects a set of pivot features (occurring frequently in

Figure 1: Hidden Markov models with distributed
state representations (dHMM).

the two domains) and then models the correlations
between pivot features and non-pivot features to
induce generalizable features.

In terms of performing distributed representa-
tion learning for output variables, our proposed
model shares similarity with the structured out-
put representation learning approach developed
by Srikumar and Manning (2014), which extends
the structured support vector machines to simul-
taneously learn the prediction model and the dis-
tributed representations of the output labels. How-
ever, the approach in (Srikumar and Manning,
2014) assumes the training labels (i.e., output val-
ues) are given and performs learning in the stan-
dard supervised in-domain setting, while our pro-
posed distributed HMMs address cross-domain
learning problems by performing unsupervised
representation learning. There are also a few
works that extended standard HMMs in the liter-
ature, including the observable operator models
(Jaeger, 1999), and the spectral learning method
(Stratos et al., 2013). But none of them performs
representation learning to address cross-domain
adaptation problems.

3 Proposed Model

In this paper, we propose a novel distributed hid-
den Markov model (dHMM) for representation
learning over sequence data. This model ex-
tends the hidden Markov models (Rabiner and
Juang, 1986) to learn distributed state representa-
tions. Similar as HMMs, a dHMM (shown in Fig-
ure 1) is a two-layer generative graphical model,
which generates a sequence of observations from
a sequence of latent state variables using Markov
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properties. Let O = {o1,o2, . . . ,oT } be the se-
quence of observations with length T , where each
observation ot ∈ Rd is a d-dimensional feature
vector. Let S = {s1, s2, . . . , sT } be the sequence
of T hidden states, where each hidden state st has
a discrete state value from a total H hidden states
H = {1, 2, . . . ,H}. Besides, we assume that
there is a low-dimensional distributed representa-
tion vector associated with each hidden state. Let
M ∈ RH×m be the state embedding matrix where
the i-th rowMi: denotes them-dimensional repre-
sentation vector for the i-th state. Previous works
have demonstrated the usefulness of discrete hid-
den states induced from a HMM on addressing
feature sparsity in domain adaptation (Huang and
Yates, 2009). However, expressing a semantic
word by a single discrete state value is too re-
strictive, as it has been shown in the literature
that words have many different features in a multi-
dimensional space where they could be separately
characterized as number, POS tag, gender, tense,
voice and other aspects (Sag and Wasow, 1999;
Huang et al., 2011). Our proposed model aims
to overcome this inherent drawback of standard
HMMs on learning word representations. Given
a set of observation sequences in two domains, the
dHMM induces a distributed representation vector
with continuous real values for each observation
word as generalizable features, which has the ca-
pacity of capturing multi-aspect latent characteris-
tics of the word clusters.

3.1 Model Formulation

To build the dHMMs, we reformulate the standard
HMMs by defining three main local distributions
based on the distributed state representations, i.e.,
the initial state distribution, the state transition dis-
tribution, and the observation emission distribu-
tion. Below we introduce them by using Θ to de-
note the set of parameters involved and using 1 to
denote a column vector with all 1s.

First we use the following multinomial distribu-
tion as the initial state distribution,

P (s1; Θ) = φ(s1)>λ,

where φ(st) ∈ {0, 1}H is a one-hot vector with a
single 1 value at its st-th entry, and λ ∈ RH is the
parameter vector such that λ ≥ 0 and λ>1 = 1.

We then define a multinomial logistic regression

model for the state transition distribution,

P (st+1|st; Θ) =
exp

{
φ(st+1)>WM>φ(st)

}
Z(st; Θ)

where W ∈ RH×m is the regression parameter
matrix and Z(st; Θ) is the normalization term.

Finally, we assume the observation vector is
generated from a multivariate Gaussian distribu-
tion, i.e., ot ∼ N

(
φ(st)>MQ,σId

)
, and use the

following model for the emission distribution,

P (ot|st; Θ) =
exp

{−1
2σ κ(st,ot)κ(st,ot)>

}
(2π)d/2σd/2

,

with κ(st,ot) = φ(st)>MQ − o>t , where Q ∈
Rm×d and σ ∈ R are the model parameters. Dif-
ferent from the standard HMMs which have dis-
crete hidden states and discrete observations, the
multivariate Gaussian model here generates each
observation ot as a d-dimensional continuous fea-
ture vector. This type of emission distribution pro-
vides us the flexibility to incorporate local context
information or statistical global information for in-
ducing distributed state representations. For ex-
ample, we can use the concatenation of the one-hot
word vectors within a sliding window around the
target word as the observation vector. Moreover,
we can also use the globally preprocessed continu-
ous word vectors as the observation vectors, which
we will describe later in our experiments.

The standard HMMs (Rabiner and Juang, 1986)
use conditional probability tables for the state tran-
sition distribution, which grows quadratically with
respect to the number of hidden states, and the
emission distribution, which grows linearly with
respect to the observed vocabulary size that is
usually very large in NLP tasks. Instead, the
dHMMs can significantly reduce the sizes of these
conditional probability tables by introducing the
low-dimensional state embedding vectors, and the
dHMM is much more efficient in terms of mem-
ory storage. In fact, the complexity of dHMMs
can be independent of the vocabulary size by us-
ing flexible observation features. We represent the
dHMM parameter set as Θ = {M ∈ RH×m,W ∈
RH×m, Q ∈ Rm×d, σ ∈ R, λ ∈ [0, 1]H}, where
m is a small constant.

3.2 Model Training

Given a data set of N observed sequences
{O1, . . . , On, . . . , ON}, its regularized log-
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Table 1: Test performance for cross-domain POS tagging and NP chunking.

Systems
POS Tagging (Accuracy (%)) NP Chunking (F1-score)
All Words OOV Words All NPs OOV NPs

Baseline 88.3 67.3 0.86 0.74
SGM (Hovy et al., 2015) 89.0 71.4 0.88 0.78
HMM (Huang and Yates, 2009) 90.5 75.2 0.91 0.85
dHMM 91.1 76.0 0.93 0.88

likelihood can be written as follows

L(Θ)=
∑
n

logP (On; Θ)− η
2
R(W,Q,M) (1)

where the regularization function is defined
with Frobenius norms such as R(W,Q,M) =
‖W‖2F + ‖Q‖2F + ‖M‖2F . Moreover, each log-
likelihood term has the following lower bound

logP (On; Θ) = log
∑
Sn

P (On, Sn; Θ)

≥ logP (On; Θ)−KL(Q(Sn)||P (Sn|On; Θ)) (2)

whereQ(Sn) is any valid distribution over the hid-
den state variables Sn and KL(.||.) denotes the
Kullback-Leibler divergence. LetF(Q,Θ) denote
the regularized lower bound function obtained by
plugging the lower bound (2) back into the ob-
jective function (1). We then perform training
by using an expectation-maximization (EM) algo-
rithm (Dempster et al., 1977) that iteratively max-
imizes F(Q,Θ) to reach a local optimal solution.
We first randomly initialize the model parame-
ters while enforcing λ to be in the feasible region
(λ ≥ 0, λ>1 = 1). In the (k+1)-th iteration, given
{Q(k),Θ(k)}, we then sequentially update Q with
an E-step (3) and update Θ with a M-step (4).

Q(k+1) = arg max
Q

F(Q,Θ(k)) (3)

Θ(k+1) = arg max
Θ

F(Q(k+1),Θ) (4)

3.3 Domain Adaptation with Distributed
State Representations

We use all training data from the two domains
to train dHMMs for local optimal model pa-
rameters Θ∗ = {M∗,W ∗, Q∗, σ∗, λ∗}. We
then infer the latent state sequence S∗ =
{s∗1, s∗2, . . . , s∗T } using the standard Viterbi algo-
rithm (Rabiner and Juang, 1986) for each la-
beled source training sentence and each target
test sentence. The corresponding distributed

state representation vectors can be obtained as
{M∗>φ(s∗1),M∗>φ(s∗2), . . . ,M∗>φ(s∗T )}. We
then train a supervised NLP system (e.g., POS tag-
ging or NP chunking) on the labeled source train-
ing sentences using the distributed state represen-
tations as augmenting input features and perform
prediction on the augmented test sentences.

4 Experiments

We conducted experiments on cross-domain part-
of-speech (POS) tagging and noun-phrase (NP)
chunking tasks. We used the same experimen-
tal datasets as in (Huang and Yates, 2009) for
cross-domain POS tagging from Wall Street Jour-
nal (WSJ) domain (Marcus et al., 1993) to MED-
LINE domain (PennBioIE, 2005) and for cross-
domain NP chunking from CoNLL shared task
dataset (Tjong et al., 2000) to Open American Na-
tional Corpus (OANC) (Reppen et al., 2005).

4.1 Representation Learning
We first built a unified vocabulary with all the data
in the two domains. We then conducted latent
semantic analysis (LSA) over the sentence-word
frequency matrix to get a low-dimensional repre-
sentation vector for each word. We used a sliding
window with size 3 to construct the d-dimensional
feature vector (d = 1500) for each observation in
a given sentence. We used η = 0.5, set the number
of hidden statesH to be 80 and the dimensionality
m = 20. We used all the labeled and unlabeled
training data in the two domains to train dHMMs.

4.2 Test Results
We used the induced distributed state representa-
tions of each observation as augmenting features
to train conditional random fields (CRF) with the
CRFSuite package (Okazaki, 2007) on the labeled
source sentences and perform prediction on the
target test sentences. We compared with the fol-
lowing systems: a Baseline system without repre-
sentation learning, a SGM based word embedding
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system (Hovy et al., 2015), and a discrete hidden
state based clustering system (Huang and Yates,
2009). We used the word id and orthographic fea-
tures as the baseline features for POS tagging and
added POS tags for NP chunking. We reported
the POS tagging accuracy for all words and out-
of-vocabulary (OOV) words (which appear less
than three times in the labeled source training sen-
tences), and NP chunking F1 scores for all NPs
and only OOV NPs (whose beginning word is an
OOV word) in Table 1.

We can see that the Baseline method per-
forms poorly on both tasks especially on the OOV
words/NPs, which shows that the original lexical
based features are not sufficient to develop a ro-
bust POS tagger/NP chunker for the target domain
with labeled source training sentences. By us-
ing unlabeled training sentences from the two do-
mains, all representation learning approaches in-
crease the cross-domain test performance, espe-
cially on the OOV words/NPs. These improve-
ments over the Baseline method demonstrate that
the induced latent features do alleviate feature
sparsity issue across the two domains and help the
trained NLP system generalize well in the target
domain. Between these representation learning
approaches, the proposed distributed state repre-
sentation learning method outperforms both of the
word embedding based and discrete HMM hidden
state based systems. This suggests that by learn-
ing distributed representations in a context-aware
manner, dHMMs can effectively bridge domain
divergence.

4.3 Sensitivity Analysis over the
Dimensionality of State Embeddings

We also conducted experiments to investigate how
does the dimensionality of the distributed state
representations, m, in our proposed approach af-
fect cross-domain test performance given a fixed
state number H = 80. We tested a number of
different m values from {10, 20, 30, 40} and used
the same experimental setting as before for eachm
value. The POS tagging accuracy on all words of
the test sentences and the chunking F1 score on all
NPs with different m values are reported in Fig-
ure 2. We can see that the performance of both
POS tagging and NP chunking has notable im-
provements with m increasing from 10 to 20. The
POS tagging performance improves very slightly
from m = 20 to m = 30 and is very stable from
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Figure 2: Cross-domain test performance with re-
spect to different dimensionality values (m) of the
hidden state representation vectors.

m = 30 to m = 40. The NP chunking perfor-
mance is very stable from m = 20 to m = 40.
These results suggest that the distributed state rep-
resentation vectors only need to have a succinct
length to capture useful information. The pro-
posed distributed HMMs are not sensitive to the
dimensionality of the state embeddings as long as
m reaches a reasonable small value.

5 Conclusion

In this paper, we extended the standard HMMs
to learn distributed state representations and fa-
cilitate cross-domain sequence predictions. We
mapped each state variable to a distributed rep-
resentation vector and simultaneously learned the
state embedding matrix and the model parameters
with an EM algorithm. The experimental results
on cross-domain POS tagging and NP chunking
tasks demonstrated the effectiveness of the pro-
posed approach for domain adaptation. In the
future, we plan to apply this approach to other
cross-domain prediction tasks such as named en-
tity recognition or semantic role labeling. We also
plan to extend our method to learn cross-lingual
representations with auxiliary resources such as
bilingual dictionaries or parallel sentences.
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Abstract

The usefulness of translation quality es-
timation (QE) to increase productivity
in a computer-assisted translation (CAT)
framework is a widely held assumption
(Specia, 2011; Huang et al., 2014). So far,
however, the validity of this assumption
has not been yet demonstrated through
sound evaluations in realistic settings. To
this aim, we report on an evaluation in-
volving professional translators operating
with a CAT tool in controlled but natural
conditions. Contrastive experiments are
carried out by measuring post-editing time
differences when: i) translation sugges-
tions are presented together with binary
quality estimates, and ii) the same sug-
gestions are presented without quality in-
dicators. Translators’ productivity in the
two conditions is analysed in a principled
way, accounting for the main factors (e.g.
differences in translators’ behaviour, qual-
ity of the suggestions) that directly impact
on time measurements. While the gen-
eral assumption about the usefulness of
QE is verified, significance testing results
reveal that real productivity gains can be
observed only under specific conditions.

1 Introduction

Machine translation (MT) quality estimation aims
to automatically predict the expected time (e.g. in
seconds) or effort (e.g. number of editing opera-
tions) required to correct machine-translated sen-
tences into publishable translations (Specia et al.,
2009; Mehdad et al., 2012; Turchi et al., 2014a;
C. de Souza et al., 2015). In principle, the task
has a number of practical applications. An intu-
itive one is speeding-up the work of human trans-
lators operating with a CAT tool, a software de-

signed to support and facilitate the translation pro-
cess by proposing suggestions that can be edited
by the user. The idea is that, since the suggestions
can be useful (good, hence post-editable) or use-
less (poor, hence requiring complete re-writing),
reliable quality indicators could help to reduce the
time spent by the user to decide which action to
take (to correct or re-translate).

So far, despite the potential practical benefits,
the progress in QE research has not been followed
by conclusive results that demonstrate whether the
use of quality labels can actually lead to noticeable
productivity gains in the CAT framework. To the
best of our knowledge, most prior works limit the
analysis to the intrinsic evaluation of QE perfor-
mance on gold-standard data (Callison-Burch et
al., 2012; Bojar et al., 2013; Bojar et al., 2014).
On-field evaluation is indeed a complex task, as
it requires: i) the availability of a CAT tool ca-
pable to integrate MT QE functionalities, ii) pro-
fessional translators used to MT post-editing, iii)
a sound evaluation protocol to perform between-
subject comparisons,1 and iv) robust analysis tech-
niques to measure statistical significance under
variable conditions (e.g. differences in users’ post-
editing behavior).

To bypass these issues, the works more closely
related to our investigation resort to controlled and
simplified evaluation protocols. For instance, in
(Specia, 2011) the impact of QE predictions on
translators’ productivity is analysed by measuring
the number of words that can be post-edited in a
fixed amount of time. The evaluation, however,
only concentrates on the use of QE to rank MT
outputs, and the gains in translation speed are mea-
sured against the contrastive condition in which no
QE-based ranking mechanism is used. In this arti-
ficial scenario, the analysis disregards the relation

1Notice that the same sentence cannot be post-edited
twice (e.g. with/without quality labels) by the same translator
without introducing a bias in the time measurements.
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between the usefulness of QE and the intrinsic fea-
tures of the top-ranked translations (e.g. sentence
length, quality of the MT). More recently, Huang
et al. (2014) claimed a 10% productivity increase
when translation is supported by the estimates of
an adaptive QE model. Their analysis, however,
compares a condition in which MT suggestions are
presented with confidence labels (the two factors
are not decoupled) against the contrastive condi-
tion in which no MT suggestion is presented at all.
Significance testing, moreover, is not performed.

The remainder of this work describes our
on-field evaluation addressing (through objective
measurements and robust significance tests) the
two key questions:

• Does QE really help in the CAT scenario?

• If yes, under what conditions?

2 Experimental Setup

One of the key questions in utilising QE in the
CAT scenario is how to relay QE information to
the user. In our experiments, we evaluate a way of
visualising MT quality estimates that is based on a
color-coded binary classification (green vs. red) as
an alternative to real-valued quality labels. In our
context, ‘green’ means that post-editing the trans-
lation is expected to be faster than translation from
scratch, while ‘red’ means that post-editing the
translation is expected to take longer than trans-
lating from scratch.

This decision rests on the assumption that the
two-color scheme is more immediate than real-
valued scores, which require some interpretation
by the user. Analysing the difference between al-
ternative visualisation schemes, however, is cer-
tainly an aspect that we want to explore in the fu-
ture.

2.1 The CAT Framework
To keep the experimental conditions as natural as
possible, we analyse the impact of QE labels on
translators’ productivity in a real CAT environ-
ment. To this aim, we use the open-source Mate-
Cat tool (Federico et al., 2014), which has been
slightly changed in two ways. First, the tool has
been adapted to provide only one single transla-
tion suggestion (MT output) per segment, instead
of the usual three (one MT suggestion plus two
Translation Memory matches). Second, each sug-
gestion is presented with a colored flag (green for

good, red for bad), which indicates its expected
quality and usefulness to the post-editor. In the
contrastive condition (no binary QE visualization),
grey is used as the neutral and uniform flag color.

2.2 Getting binary quality labels.

The experiment is set up for a between-subject
comparison on a single long document as follows.

First, the document is split in two parts. The
first part serves as the training portion for a bi-
nary quality estimator; the second part is re-
served for evaluation. The training portion is
machine-translated with a state-of-the-art, phrase-
based Moses system (Koehn et al., 2007)2 and
post-edited under standard conditions (i.e. with-
out visualising QE information) by the same users
involved in the testing phase. Based on their post-
edits, the raw MT output samples are then la-
beled as ‘good’ or ‘bad’ by considering the HTER
(Snover et al., 2006) calculated between raw MT
output and its post-edited version.3 Our labeling
criterion follows the empirical findings of (Turchi
et al., 2013; Turchi et al., 2014b), which indicate
an HTER value of 0.4 as boundary between post-
editable (HTER ≤ 0.4) and useless suggestions
(HTER> 0.4).

Then, to model the subjective concept of qual-
ity of different subjects, for of each translator
we train a separate binary QE classifier on the
labeled samples. For this purpose we use the
Scikit-learn implementation of support vector ma-
chines (Pedregosa et al., 2011), training our mod-
els with the 17 baseline features proposed by Spe-
cia et al. (2009). This feature set mainly takes
into account the complexity of the source sentence
(e.g. number of tokens, number of translations per
source word) and the fluency of the target trans-
lation (e.g. language model probabilities). The
features are extracted from the data available at
prediction time (source text and raw MT output)
by using an adapted version (Shah et al., 2014)
of the open-source QuEst software (Specia et al.,
2013). The SVM parameters are optimized by
cross-validation on the training set.

With these classifiers, we finally assign quality
flags to the raw segment translations in the test

2The system was trained with 60M running words from
the same domain (Information Technology) of the input doc-
ument.

3HTER measures the minimum edit distance (# word In-
sertions + Deletions + Substitutions + Shifts / # Reference
Words) between the MT output and its manual post-edition.
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Average PET
(sec/word)

colored
grey

8.086
9.592

p = 0.33

% Wins
of colored 51.7 p = 0.039

Table 1: Comparison (Avg. PET and ranking) be-
tween the two testing conditions (with and without
QE labels).

portion of the respective document, which is even-
tually sent to each post-editor to collect time and
productivity measurements.

2.3 Getting post-editing time measurements.

While translating the test portion of the docu-
ment, each translator is given an even and ran-
dom distribution of segments labeled according to
the test condition (colored flags) and segments la-
beled according to the baseline, contrastive condi-
tion (uniform grey flags). In the distribution of the
data, some constraints were identified to ensure
the soundness of the evaluation in the two condi-
tions: i) each translator must post-edit all the seg-
ments of the test portion of the document, ii) each
translator must post-edit the segments of the test
set only once, iii) all translators must post-edit the
same amount of segments with colored and grey
labels. After post-editing, the post-editing times
are analysed to assess the impact of the binary col-
oring scheme on translators’ productivity.

3 Results

We applied our procedure on an English user man-
ual (Information Technology domain) to be trans-
lated into Italian. Post-editing was performed in-
dependently by four professional translators, so
that two measurements (post-editing time) for
each segment and condition could be collected.
Training and and test respectively contained 542
and 847 segments. Half of the 847 test segments
were presented with colored QE flags, with a ra-
tio of green to red labels of about 75% ‘good’ and
25% ’bad’.

3.1 Preliminary analysis

Before addressing our research questions, we per-
formed a preliminary analysis aimed to verify the
reliability of our experimental protocol and the
consequent findings. Indeed, an inherent risk of
presenting post-editors with an unbalanced distri-
bution of colored flags is to incur in unexpected

subconscious effects. For instance, green flags
could be misinterpreted as a sort of pre-validation,
and induce post-editors to spend less time on
the corresponding segments (by producing fewer
changes). To check this hypothesis we compared
the HTER scores obtained in the two conditions
(colored vs. grey flags), assuming that noticeable
differences would be evidence of unwanted psy-
chological effects. The very close values mea-
sured in the two conditions (the average HTER is
respectively 23.9 and 24.1) indicate that the pro-
fessional post-editors involved in the experiment
did what they were asked for, by always changing
what had to be corrected in the proposed sugges-
tions, independently from the color of the associ-
ated flags. In light of this, post-editing time varia-
tions in different conditions can be reasonably as-
cribed to the effect of QE labels on the time spent
by the translators to decide whether correcting or
re-translating a given suggestion.

3.2 Does QE Really Help?

To analyse the impact of our quality estimates on
translators’ productivity, we first compared the av-
erage post-editing time (PET – seconds per word)
under the two conditions (colored vs. grey flags).
The results of this rough, global analysis are re-
ported in Table 1, first row. As can be seen, the av-
erage PET values indicate a productivity increase
of about 1.5 seconds per word when colored flags
are provided. Significance tests, however, indicate
that such increase is not significant (p > 0.05,
measured by approximate randomization (Noreen,
1989; Riezler and Maxwell, 2005)).

An analysis of the collected data to better un-
derstand these results and the rather high average
PET values observed (8 to 9.5 secs. per word) evi-
denced both a large number of outliers, and a high
PET variability across post-editors.4 To check
whether these factors make existing PET differ-
ences opaque to our study, we performed further
analysis by normalizing the PET of each transla-
tor with the robust z-score technique (Rousseeuw
and Leroy, 1987).5 The twofold advantage of

4We consider as outliers the segments with a PET lower
than 0.5 or higher than 30. Segments with unrealistically
short post-editing times may not even have been read com-
pletely, while very long post-editing times suggest that the
post-editor interrupted his/her work or got distracted. The
average PET for the four post-editors ranges from 2.266 to
13.783. In total, 48 segments have a PET higher than 30, and
6 segments were post-edited in more than 360 seconds.

5For each post-editor, it is computed by removing from
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Figure 1: % wins of colored with respect to length and quality of MT output. Left: all pairs. Right: only
pairs with correct color predictions.

this method is to mitigate idiosyncratic differences
in translators’ behavior, and reduce the influence
of outliers. To further limit the impact of out-
liers, we also moved from a comparison based
on average PET measurements to a ranking-based
method in which we count the number of times
the segments presented with colored flags were
post-edited faster than those presented with grey
flags. For each of the (PET colored, PET grey)
pairs measured for the test segments, the percent-
age of wins (i.e. lower time) of PET colored is
calculated. As shown in the second row of Ta-
ble 1, a small but statistically significant difference
between the two conditions indeed exists.

Although the usefulness of QE in the CAT
framework seems hence to be verified, the extent
of its contribution is rather small (51.7% of wins).
This motivates an additional analysis, aimed to
verify if such marginal global gains hide larger lo-
cal productivity improvements under specific con-
ditions.

3.3 Under what Conditions does QE Help?

To address this question, we analysed two im-
portant factors that can influence translators’ pro-
ductivity measurements: the length (number of
tokens) of the source sentences and the quality
(HTER) of the proposed MT suggestions. To
this aim, all the (PET colored, PET grey) pairs
were assigned to three bins based on the length of
the source sentences: short (length≤5), medium
(5<length≤20), and long (length>20). Then, in
each bin, ten levels of MT quality were identi-
fied (HTER ≤ 0.1, 0.2, . . ., 1). Finally, for each
bin and HTER threshold, we applied the ranking-

the PET of each segment the post-editor median and dividing
by the post-editor median absolute deviation (MAD).

based method described in the previous section.
The left plot of Figure 1 shows how the “% wins

of colored” varies depending on the two factors on
all the collected pairs. As can be seen, for MT sug-
gestions of short and medium length the percent-
age of wins is always above 50%, while its value is
systematically lower for the long sentences when
HTER>0.1. However, the differences are statis-
tically significant only for medium-length sugges-
tions, and when HTER>0.1. Such condition, in
particular when 0.2<HTER≤0.5, seems to rep-
resent the ideal situation in which QE labels can
actually contribute to speed-up translators’ work.
Indeed, in terms of PET, the average productiv-
ity gain of 0.663 secs. per word measured in the
[0.2 − 0.5] HTER interval is statistically signifi-
cant.

Although our translator-specific binary QE clas-
sifiers (see Section 2) have acceptable perfor-
mance (on average 80% accuracy on the test data
for all post-editors),6 to check the validity of our
conclusions we also investigated if, and to what
extent, our results are influenced by classification
errors. To this aim, we removed from the three
bins those pairs that contain a misclassified in-
stance (i.e. the pairs in which there is a mismatch
between the predicted label and the true HTER
measured after post-editing).7

The results obtained by applying our ranking-
based method to the remaining pairs are shown in
the right plot of Figure 1. In this “ideal”, error-free
scenario the situation slightly changes (unsurpris-
ingly, the “% wins of colored” slightly increases,

6Measured by comparing each predicted binary label with
the ‘true’ label obtained applying the 0.4 HTER threshold as
a separator between good and bad MT suggestions.

7The three bins contained 502, 792, 214 pairs before mis-
classification removal and 339, 604, 160 pairs after cleaning.
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especially for long suggestions for which we have
the highest number of misclassifications), but the
overall conclusions remain the same. In particular,
the higher percentage of wins is statistically sig-
nificant only for medium-length suggestions with
HTER>0.1 and, in the best case (HTER≤0.2) it is
about 56.0%.

4 Conclusion

We presented the results of an on-field evalua-
tion aimed to verify the widely held assumption
that QE information can be useful to speed-up
MT post-editing in the CAT scenario. Our results
suggest that this assumption should be put into
perspective. On one side, global PET measure-
ments do not necessarily show statistically signif-
icant productivity gains,8 indicating that the con-
tribution of QE falls below expectations (our first
contribution). On the other side, an in-depth anal-
ysis abstracting from the presence of outliers and
the high variability across post-editors, indicates
that the usefulness of QE is verified, at least to
some extent (our second contribution). Indeed,
the marginal productivity gains observed with QE
at a global level become statistically significant in
specific conditions, depending on the length (be-
tween 5 and 20 words) of the source sentences and
the quality (0.2<HTER≤0.5) of the proposed MT
suggestions (our third contribution).
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José G. C. de Souza, Matteo Negri, Marco Turchi, and
Elisa Ricci. 2015. Online Multitask Learning For
Machine Translation Quality Estimation. In Pro-
ceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics), Beijing, China.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
Matt Post, Radu Soricut, and Lucia Specia. 2012.
Findings of the 2012 Workshop on Statistical Ma-
chine Translation. In Proceedings of the 7th Work-
shop on Statistical Machine Translation (WMT’12),
pages 10–51, Montréal, Canada.
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Abstract

We propose a novel method for translation
selection in statistical machine translation,
in which a convolutional neural network is
employed to judge the similarity between
a phrase pair in two languages. The specif-
ically designed convolutional architecture
encodes not only the semantic similarity
of the translation pair, but also the con-
text containing the phrase in the source
language. Therefore, our approach is
able to capture context-dependent seman-
tic similarities of translation pairs. We
adopt a curriculum learning strategy to
train the model: we classify the training
examples into easy, medium, and difficult
categories, and gradually build the abil-
ity of representing phrases and sentence-
level contexts by using training examples
from easy to difficult. Experimental re-
sults show that our approach significantly
outperforms the baseline system by up to
1.4 BLEU points.

1 Introduction

Conventional statistical machine translation
(SMT) systems extract and estimate translation
pairs based on their surface forms (Koehn et al.,
2003), which often fail to capture translation
pairs which are grammatically and semantically
similar. To alleviate the above problems, several
researchers have proposed learning and utilizing
semantically similar translation pairs in a contin-
uous space (Gao et al., 2014; Zhang et al., 2014;
Cho et al., 2014). The core idea is that the two
phrases in a translation pair should share the same
semantic meaning and have similar (close) feature
vectors in the continuous space.

∗* Corresponding author

The above methods, however, neglect the infor-
mation of local contexts, which has been proven
to be useful for disambiguating translation candi-
dates during decoding (He et al., 2008; Marton and
Resnik, 2008). The matching scores of translation
pairs are treated the same, even they are in dif-
ferent contexts. Accordingly, the methods fail to
adapt to local contexts and lead to precision issues
for specific sentences in different contexts.

To capture useful context information, we pro-
pose a convolutional neural network architecture
to measure context-dependent semantic similari-
ties between phrase pairs in two languages. For
each phrase pair, we use the sentence contain-
ing the phrase in source language as the context.
With the convolutional neural network, we sum-
marize the information of a phrase pair and its con-
text, and further compute the pair’s matching score
with a multi-layer perceptron. We discriminately
train the model using a curriculum learning strat-
egy. We classify the training examples according
to the difficulty level of distinguishing the positive
candidate from the negative candidate. Then we
train the model to learn the semantic information
from easy (basic semantic similarities) to difficult
(context-dependent semantic similarities).

Experimental results on a large-scale transla-
tion task show that the context-dependent convo-
lutional matching (CDCM) model improves the
performance by up to 1.4 BLEU points over a
strong phrase-based SMT system. Moreover,
the CDCM model significantly outperforms its
context-independent counterpart, proving that it is
necessary to incorporate local contexts into SMT.
Contributions. Our key contributions include:
• we introduce a novel CDCM model to cap-

ture context-dependent semantic similarities
between phrase pairs (Section 2);
• we develop a novel learning algorithm to

train the CDCM model using a curriculum
learning strategy (Section 3).
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Figure 1: Architecture of the CDCM model. The convolutional sentence model (bottom) summarizes the
meaning of the tagged sentence and target phrase, and the matching model (top) compares the represen-
tations using a multi-layer perceptron. “/” indicates all-zero padding turned off by the gating function.

2 Context-Dependent Convolutional
Matching Model

The model architecture, shown in Figure 1, is a
variant of the convolutional architecture of Hu et
al. (2014). It consists of two components:

• convolutional sentence model that summa-
rizes the meaning of the source sentence and
the target phrase;

• matching model that compares the two
representations with a multi-layer percep-
tron (Bengio, 2009).

Let ê be a target phrase and f be the source sen-
tence that contains the source phrase aligning to ê.
We first project f and ê into feature vectors x and
y via the convolutional sentence model, and then
compute the matching score s(x,y) by the match-
ing model. Finally, the score is introduced into a
conventional SMT system as an additional feature.
Convolutional sentence model. As shown in Fig-
ure 1, the model takes as input the embeddings of
words (trained beforehand elsewhere) in f and ê.
It then iteratively summarizes the meaning of the
input through layers of convolution and pooling,
until reaching a fixed length vectorial representa-
tion in the final layer.

In Layer-1, the convolution layer takes sliding
windows on f and ê respectively, and models all

the possible compositions of neighbouring words.
The convolution involves a filter to produce a new
feature for each possible composition. Given a
k-sized sliding window i on f or ê, for example,
the jth convolution unit of the composition of the
words is generated by:

ci(1,j) = g(ĉi(0)) · φ(w(1,j) · ĉi(0) + b(1,j)) (1)

where

• g(·) is the gate function that determines
whether to activate φ(·);

• φ(·) is a non-linear activation function. In
this work, we use ReLu (Dahl et al., 2013)
as the activation function;

• w(1,j) is the parameters for the jth convolu-
tion unit on Layer-1, with matrix W(1) =
[w(1,1), . . . ,w(1,J)];

• ĉi(0) is a vector constructed by concatenating
word vectors in the k-sized sliding widow i;

• b(1,j) is a bias term, with vector B(1) =
[b(1,1), . . . ,b(1,J)].

To distinguish the phrase pair from its con-
text, we use one additional dimension in word
embeddings: 1 for words in the phrase pair and
0 for the others. After transforming words to
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their tagged embeddings, the convolutional sen-
tence model takes multiple choices of composition
using sliding windows in the convolution layer.
Note that sliding windows are allowed to cross
the boundary of the source phrase to exploit both
phrasal and contextual information.

In Layer-2, we apply a local max-pooling in
non-overlapping 1 × 2 windows for every convo-
lution unit

c(2,j)
i = max{c(1,j)

2i , c(1,j)
2i+1} (2)

In Layer-3, we perform convolution on output
from Layer-2:

ci(3,j) = g(ĉi(2)) · φ(w(3,j) · ĉi(2) + b(3,j)) (3)

After more convolution and max-pooling opera-
tions, we obtain two feature vectors for the source
sentence and the target phrase, respectively.
Matching model. The matching score of a source
sentence and a target phrase can be measured
as the similarity between their feature vectors.
Specifically, we use the multi-layer perceptron
(MLP), a nonlinear function for similarity, to com-
pute their matching score. First we use one layer
to combine their feature vectors to get a hidden
state hc:

hc = φ(wc · [xf̄i
: yēj ] + bc) (4)

Then we get the matching score from the MLP:

s(x,y) = MLP (hc) (5)

3 Training

We employ a discriminative training strategy with
a max-margin objective. Suppose we are given
the following triples (x,y+,y−) from the ora-
cle, where x,y+,y− are the feature vectors for
f , ê+, ê− respectively. We have the ranking-based
loss as objective:

LΘ(x,y+,y−) = max(0, 1+s(x,y−)−s(x,y+))
(6)

where s(x,y) is the matching score function de-
fined in Eq. 5, Θ consists of parameters for both
the convolutional sentence model and MLP. The
model is trained by minimizing the above ob-
jective, to encourage the model to assign higher
matching scores to positive examples and to as-
sign lower scores to negative examples. We use
stochastic gradient descent (SGD) to optimize the

model parameters Θ. We train the CDCM model
with a curriculum strategy to learn the context-
dependent semantic similarity at the phrase level
from easy (basic semantic similarities between
the source and target phrase pair) to difficult
(context-dependent semantic similarities for the
same source phrase in varying contexts).

3.1 Curriculum Training
Curriculum learning, first proposed by Bengio et
al. (2009) in machine learning, refers to a se-
quence of training strategies that start small, learn
easier aspects of the task, and then gradually in-
crease the difficulty level. It has been shown
that the curriculum learning can benefit the non-
convex training by giving rise to improved gener-
alization and faster convergence. The key point is
that the training examples are not randomly pre-
sented but organized in a meaningful order which
illustrates gradually more concepts, and gradually
more complex ones.

For each positive example (f , ê+), we have three
types of negative examples according to the diffi-
culty level of distinguishing the positive example
from them:

• Easy: target phrases randomly chosen from
the phrase table;

• Medium: target phrases extracted from the
aligned target sentence for other non-overlap
source phrases in the source sentence;

• Difficult: target phrases extracted from other
candidates for the same source phrase.

We want the CDCM model to learn the following
semantic information from easy to difficult:

• the basic semantic similarity between the
source sentence and target phrase from the
easy negative examples;

• the general semantic equivalent between
the source and target phrase pair from the
medium negative examples;

• the context-dependent semantic similarities
for the same source phrase in varying con-
texts from the difficult negative examples.

Alg. 1 shows the curriculum training algorithm
for the CDCM model. We use different portions of
the overall training instances for different curricu-
lums (lines 2-11). For example, we only use the
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Algorithm 1 Curriculum training algorithm. Here
T denotes the training examples, W the initial
word embeddings, η the learning rate in SGD, n
the pre-defined number, and t the number of train-
ing examples.
1: procedure CURRICULUM-TRAINING(T , W )
2: N1← easy negative(T )
3: N2← medium negative(T )
4: N3← difficult negative(T )
5: T ← N1

6: CURRICULUM(T , n · t) . CUR. easy
7: T ←MIX([N1, N2])
8: CURRICULUM(T , n · t) . CUR. medium
9: for step← 1 . . . n do

10: T ←MIX([N1, N2, N3], step)
11: CURRICULUM(T , t) . CUR. difficult
12: procedure CURRICULUM(T , K)
13: iterate until reaching a local minima or K iterations
14: calculate LΘ for a random instance in T
15: Θ = Θ− η · ∂LΘ

∂Θ
. update parameters

16: W = W − η · 0.01 · ∂LΘ
∂W

. update embeddings
17: procedure MIX(N, s = 0)
18: len← length of N
19: if len < 3 then
20: T ← sampling with [0.5, 0.5] from N
21: else
22: T ← sampling with [ 1

s+2
, 1

s+2
, s

s+2
] from N

training instances that consist of positive examples
and easy negative examples in the easy curriculum
(lines 5-6). For the latter curriculums, we gradu-
ally increase the difficulty level of the training in-
stances (lines 7-12).

For each curriculum (lines 12-16), we compute
the gradient of the loss objective LΘ and learn Θ
using the SGD algorithm. Note that we mean-
while update the word embeddings to better cap-
ture the semantic equivalence across languages
during training. If the loss function LΘ reaches
a local minima or the iterations reach the pre-
defined number, we terminate this curriculum.

4 Related Work

Our research builds on previous work in the field
of context-dependent rule matching and bilingual
phrase representations.

There is a line of work that employs local con-
texts over discrete representations of words or
phrases. For example, He et al. (2008), Liu et
al. (2008) and Marton and Resnik (2008) em-
ployed within-sentence contexts that consist of
discrete words to guide rule matching. Wu et
al. (2014) exploited discrete contextual features in
the source sentence (e.g. words and part-of-speech
tags) to learn better bilingual word embeddings for
SMT. In this study, we take into account all the

phrase pairs and directly compute phrasal similari-
ties with convolutional representations of the local
contexts, integrating the strengths associated with
the convolutional neural networks (Collobert and
Weston, 2008).

In recent years, there has also been growing
interest in bilingual phrase representations that
group phrases with a similar meaning across dif-
ferent languages. Based on that translation equiv-
alents share the same semantic meaning, they can
supervise each other to learn their semantic phrase
embeddings in a continuous space (Gao et al.,
2014; Zhang et al., 2014). However, these mod-
els focused on capturing semantic similarities be-
tween phrase pairs in the global contexts, and ne-
glected the local contexts, thus ignored the use-
ful discriminative information. Alternatively, we
integrate the local contexts into our convolutional
matching architecture to obtain context-dependent
semantic similarities.

Meng et al. (2015) and Zhang (2015) have
proposed independently to summary source sen-
tences with convolutional neural networks. How-
ever, they both extend the neural network joint
model (NNJM) of Devlin et al. (2014) to include
the whole source sentence, while we focus on cap-
turing context-dependent semantic similarities of
translation pairs.

5 Experiments

5.1 Setup

We carry out our experiments on the NIST
Chinese-English translation tasks. Our training
data contains 1.5M sentence pairs coming from
LDC dataset.1 We train a 4-gram language model
on the Xinhua portion of the GIGAWORD corpus
using the SRI Language Toolkit (Stolcke, 2002)
with modified Kneser-Ney Smoothing (Kneser
and Ney, 1995). We use the 2002 NIST MT
evaluation test data as the development data, and
the 2004, 2005 NIST MT evaluation test data as
the test data. We use minimum error rate train-
ing (Och, 2003) to optimize the feature weights.
For evaluation, case-insensitive NIST BLEU (Pa-
pineni et al., 2002) is used to measure translation
performance. We perform a significance test using
the sign-test approach (Collins et al., 2005).

1The corpus includes LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06.
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Models MT04 MT05 All
Baseline 34.86 33.18 34.40
CICM 35.82α 33.51α 34.95α

CDCM1 35.87α 33.58 35.01α

CDCM2 35.97α 33.80α 35.21α

CDCM3 36.26αβ 33.94αβ 35.40αβ

Table 1: Evaluation of translation quality.
CDCMk denotes the CDCM model trained in the
kth curriculum in Alg. 1 (i.e., three levels of
curriculum training), CICM denotes its context-
independent counterpart, and “All” is the com-
bined test sets. The superscripts α and β indicate
statistically significant difference (p < 0.05) from
Baseline and CICM, respectively.

For training the neural networks, we use 4 con-
volution layers for source sentences and 3 convo-
lution layers for target phrases. For both of them, 4
pooling layers (pooling size is 2) are used, and all
the feature maps are 100. We set the sliding win-
dow k = 3, and the learning rate η = 0.02. All
the parameters are selected based on the develop-
ment data. We train the word embeddings using a
bilingual strategy similar to Yang et al. (2013), and
set the dimension of the word embeddings be 50.
To produce high-quality bilingual phrase pairs to
train the CDCM model, we perform forced decod-
ing on the bilingual training sentences and collect
the used phrase pairs.

5.2 Evaluation of Translation Quality
We have two baseline systems:

• Baseline: The baseline system is an open-
source system of the phrase-based model –
Moses (Koehn et al., 2007) with a set of com-
mon features, including translation models,
word and phrase penalties, a linear distortion
model, a lexicalized reordering model, and a
language model.

• CICM (context-independent convolutional
matching) model: Following the previous
works (Gao et al., 2014; Zhang et al., 2014;
Cho et al., 2014), we calculate the match-
ing degree of a phrase pair without consider-
ing any contextual information. Each unique
phrase pair serves as a positive example and
a randomly selected target phrase from the
phrase table is the corresponding negative ex-
ample. The matching score is also introduced
into Baseline as an additional feature.

Table 1 summaries the results of CDCMs
trained from different curriculums. No matter
from which curriculum it is trained, the CDCM
model significantly improves the translation qual-
ity on the overall test data (with gains of 1.0
BLEU points). The best improvement can be up to
1.4 BLEU points on MT04 with the fully trained
CDCM. As expected, the translation performance
is consistently increased with curriculum grow-
ing. This indicates that the CDCM model indeed
captures the desirable semantic information by the
curriculum learning from easy to difficult.

Comparing with its context-independent coun-
terpart (CICM, Row 2), the CDCM model shows
significant improvement on all the test data con-
sistently. We contribute this to the incorporation
of useful discriminative information embedded in
the local context. In addition, the performance of
CICM is comparable with that of CDCM1. This is
intuitive, because both of them try to capture the
basic semantic similarity between the source and
target phrase pair.

One of the hypotheses we tested in the course of
this research was disproved. We thought it likely
that the difficult curriculum (CDCM3 that distin-
guishs the correct translation from other candi-
dates for a given context) would contribute most to
the improvement, since this circumstance is more
consistent with the real decoding procedure. This
turned out to be false, as shown in Table 1. One
possible reason is that the “negative” examples
(other candidates for the same source phrase) may
share the same semantic meaning with the posi-
tive one, thus give a wrong guide in the supervised
training. Constructing a reasonable set of nega-
tive examples that are more semantically different
from the positive one is left for our future work.

6 Conclusion

In this paper, we propose a context-dependent con-
volutional matching model to capture semantic
similarities between phrase pairs that are sensitive
to contexts. Experimental results show that our ap-
proach significantly improves the translation per-
formance and obtains improvement of 1.0 BLEU
scores on the overall test data.

Integrating deep architecture into context-
dependent translation selection is a promising way
to improve machine translation. In the future, we
will try to exploit contextual information at the tar-
get side (e.g., partial translations).
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Abstract
Statistical models for reordering source
words have been used to enhance the hier-
archical phrase-based statistical machine
translation system. Existing word reorder-
ing models learn the reordering for any
two source words in a sentence or only
for two continuous words. This paper pro-
poses a series of separate sub-models to
learn reorderings for word pairs with dif-
ferent distances. Our experiments demon-
strate that reordering sub-models for word
pairs with distance less than a specific
threshold are useful to improve translation
quality. Compared with previous work,
our method may more effectively and effi-
ciently exploit helpful word reordering in-
formation.

1 Introduction

The hierarchical phrase-based model (Chiang,
2005) is capable of capturing rich translation
knowledge with the synchronous context-free
grammar. But selecting proper translation rules
during decoding is a challenge as a huge number
of hierarchical rules can be applied to one source
sentence.

Chiang (2005) used a log-linear model to com-
pute rule weights with features similar to Pharaoh
(Koehn et al., 2003). However, to select appropri-
ate rules, more effective criteria are required. A lot
of work has been done for better rule selection. He
et al. (2008) and Liu et al. (2008) used maximum
entropy approaches to integrate rich contextual in-
formation for target side rule selection. Cui et al.
(2010) proposed a joint model to select hierarchi-
cal rules for both source and target sides.

Hayashi et al. (2010) demonstrated the ef-
fectiveness of using word reordering information
within hierarchical phrase-based SMT by integrat-
ing Tromble and Eisner (2009)’s word reordering
model into decoder as a feature, which estimates
the probability of any two source words in a sen-
tence being reordered during translating. Feng
et al. (2013) proposed a word reordering model
to learn reorderings only for continuous words,
which reduced computation cost a lot compared
with Tromble and Eisner (2009)’s model and still
achieved significant reordering improvement over
the baseline system.

In this paper, we incorporate word reordering
information into hierarchical phrase-based SMT
by training a series of separate reordering sub-
models for word pairs with different distances.
We will demonstrate that the translation perfor-
mance achieves consistent improvement as more
sub-models for longer distance reorderings being
integrated, but the improvement levels off quickly.
That means sub-models for reordering distance
longer than a given threshold do not improve trans-
lation quality significantly. Compared with previ-
ous models (Tromble and Eisner, 2009; Feng et al.,
2013), our method makes full use of helpful word
reordering information and also avoids unneces-
sary computation cost for long distance reorder-
ings. Besides, our reordering model is learned
by feed-forward neural network (FNN) for better
performance and uses efficient caching strategy to
further reduce time cost.

Phrase reordering models have also been inte-
grated into hierarchical phrase-based SMT. Phrase
reordering models were originally developed for
phrase-based SMT (Koehn et al., 2005; Zens and
Ney, 2006; Ni et al., 2009; Li et al., 2014) and
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could not be used in hierarchical phrase-based
model directly. Nguyen and Vogel (2013) and
Cao et al. (2014) proposed to integrate phrase-
based reordering features into hierarchical phrase-
based SMT. However, their work limited to learn-
ing the reordering of continuous phrases. For short
phrases, in extreme cases, when phrase length is
one, their model only learned reordering for con-
tinuous word pairs like Feng et al. (2013)’s work,
while our model can be applied to word pairs with
longer distances.

2 Our Approach

Let em1 = e1, . . . , em be a target translation of
f l
1 = f1, . . . , fl and A be word alignments be-

tween em1 and f l
1, our model estimates the reorder-

ing probability of the source sentence as follows:

Pr
(
f l1, e

m
1 , A

)
≈

N∏
n=1

∏
i,j:1≤i<j≤l,j−i=n

Pr
(
f l1, e

m
1 , A, i, j

) (1)

where Pr
(
f l
1, e

m
1 , A, i, j

)
is the reordering prob-

ability of the word pair 〈fi, fj〉 during translat-
ing; N is the maximum distance for source word
reordering, which is empirically determined by
supposing that estimating reorderings longer than
N does not improve translation performance any
more.

Previous word reordering models (Tromble and
Eisner, 2009; Feng et al., 2013) consider the re-
ordering of a source word pair to be reversed or
not. When a source word is aligned to several
uncontinuous target words, it can be hard to de-
termine if a word pair is reversed or not. They
solved this problem by only using one alignment
from multiple alignments and ignoring the others.
In contrast, our model handles all alignments as
shown below.

Suppose that fi is aligned to πi (πi ≥ 0) target
words. When πi > 0, {aik|1 ≤ k ≤ πi} stands for
the positions of target words aligned to fi. If πi =
0 or πj = 0, Pr

(
f l
1, e

m
1 , A, i, j

)
= 1, otherwise,

Pr
(
f l1, e

m
1 , A, i, j

)
=

πi∏
u=1

πj∏
v=1

Pr
(
oijuv|fi−3, ..., fj+3, eaiu , eajv

)
where

oijuv =

{
0 (aiu ≤ ajv)
1 (aiu > ajv)

(2)

We train a series of sub-models,

M1,M2, . . . ,MN

Algorithm 1 Extract training instances.

Require: A pair of parallel sentence f l1 and em1 with word
alignments.

Ensure: Training examples for M1,M2, . . . ,MN .
for i = 1 to l − 1 do

for j = i+ 1 to l do
if j − i ≤ N then

for u = 1 to πi do
for v = 1 to πj do

if aiu ≤ ajv then(
fi−3, ..., fj+3, eaiu , eajv , 0

)
is a neg-

ative instance for Mj−i
else(

fi−3, ..., fj+3, eaiu , eajv , 1
)

is a posi-
tive instance for Mj−i

to learn reorderings for word pairs with different
distances. That means, for the word pair 〈fi, fj〉
with distance j − i = n, its reordering proba-
bility Pr

(
oijuv|fi−3, ..., fj+3, eaiu , eajv

)
is esti-

mated by Mn. Different sub-models are trained
and integrated into the translation system sepa-
rately.

Each sub-model Mn is implemented by an
FNN, which has the same structure with the neu-
ral language model in (Vaswani et al., 2013).
The input to Mn is a sequence of n + 9
words: fi−3, ..., fj+3, eaiu , eajv . The input layer
projects each word into a high dimensional
vector using a matrix of input word embed-
dings. Two hidden layers can combine all in-
put data1. The output layer has two neurons that
give Pr

(
oijuv = 1|fi−3, ..., fj+3, eaiu , eajv

)
and

Pr
(
oijuv = 0|fi−3, ..., fj+3, eaiu , eajv

)
.

那个 戴 眼镜 的 男生 是 詹姆士 

That guy who wears  glasses  is James  

Figure 1: A Chinese-English sentence pair.

The backpropagation algorithm is used to train
these reordering sub-models. The training in-
stances for each sub-model are extracted from the
word-aligned parallel corpus according to Algo-
rithm 1. For example, the word pair “戴(wears)
男生(guy)” in Figure 1 will be extracted as a pos-
itive instance for M3. The input of this instance is
as follows: “<s> <s>那个戴眼镜的男生是

1If we choose the averaged perceptron algorithm to learn
reordering task as used in (Hayashi et al., 2010), we need to
artificially select n-gram features, which is not necessary for
FNN.
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詹姆士</s> wears guy”, where<s> and</s>
represent the beginning and ending of a sentence.
If a word never occurs or only occurs once in train-
ing corpus, we replace it with a special symbol
<unk>.

3 Integration into the Decoder

In the hierarchical phrase-based model, a transla-
tion rule r is like:

X → 〈γ, α,∼〉
where X is a nonterminal, γ and α are re-

spectively source and target strings of terminals
and nonterminals, and ∼ is the alignment between
nonterminals and terminals in γ and α.

Each rule has several features and the feature
weights are tuned by the minimum error rate train-
ing (MERT) algorithm (Och, 2003). To integrate
our model into the hierarchical phrase-based trans-
lation system, a new feature scoren (r) is added
to each rule r for each Mn. The score of this fea-
ture is calculated during decoding. Note that these
scores are correspondingly calculated for differ-
ent sub-modelsMn and the sub-model weights are
tuned separately.

Suppose that r is applied to the input sentence
f l
1, where

• r covers the source span [fϕ, fϑ]

• γ contains nonterminals {Xk|1 ≤ k ≤ K}
• Xk covers the span [fϕk , fϑk ]

Then

scoren (r)

=
∑

〈i,j〉∈S−
K⋃

k=1

Sk∧j−i=n

log
(
Pr
(
f l1, e

m
1 , A, i, j

))
where
S : {〈i, j〉 |ϕ ≤ i < j ≤ ϑ}
Sk : {〈i, j〉 |ϕk ≤ i < j ≤ ϑk}

For example, if a rule “X1 X2 男生→ X1 guy
X2” is applied to the input sentence in Figure 1,
then

[fϕ, fϑ] = [1, 5] ; [fϕ1 , fϑ1 ] = [1, 1] ; [fϕ2 , fϑ2 ] = [2, 4]

S −
K⋃
k=1

Sk =

{
〈1, 2〉 , 〈1, 3〉 , 〈1, 4〉 , 〈1, 5〉 ,
〈2, 5〉 , 〈3, 5〉 , 〈4, 5〉

}
One concern in using target features is the com-

putational efficiency, because reordering probabil-
ities have to be calculated during decoding. So we
cache probabilities to reduce the expensive neural
network computation in experiments.

4 Experiments

We evaluated the proposed approach for Chinese-
to-English (CE) and Japanese-to-English (JE)
translation tasks. The official datasets for the
patent machine translation task at NTCIR-9 (Goto
et al., 2011) were used. The detailed statistics for
training, development and test sets are given in Ta-
ble 1.

SOURCE TARGET

CE

TRAINING #Sents 954K
#Words 37.2M 40.4M
#Vocab 288K 504K

DEV #Sents 2K
TEST #Sents 2K

JE

TRAINING #Sents 3.14M
#Words 118M 104M
#Vocab 150K 273K

DEV #Sents 2K
TEST #Sents 2K

Table 1: Data sets.

In NTCIR-9, the development and test sets were
both provided for CE task while only the test set
was provided for the JE task. Therefore, we used
the sentences from the NTCIR-8 JE test set as the
development set for JE task. The word segmenta-
tion was done by BaseSeg (Zhao et al., 2006; Zhao
and Kit, 2008; Zhao et al., 2010; Zhao and Kit,
2011; Zhao et al., 2013) for Chinese and Mecab2

for Japanese.
To learn neural reordering models, the train-

ing and development sets were put together to ob-
tain symmetric word alignments using GIZA++
(Och and Ney, 2003) and the grow-diag-final-
and heuristic (Koehn et al., 2003). The reorder-
ing instances extracted from the aligned training
and development sets were used as the training
and validation data respectively for learning neu-
ral reordering models. Neural reordering models
were trained by the toolkit NPLM (Vaswani et al.,
2013). For CE task, training instances extracted
from all the 1M sentence pairs were used to train
neural reordering models. For JE task, training
instances were from 1M sentence pairs that were
randomly selected from all the 3.14M sentence
pairs.

We also implemented Hayashi et al. (2010)’s
model for comparison. The training instances for
their model were extracted from the same sentence
pairs as ours.

2http://sourceforge.net/projects/mecab/files/
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Base Hayashi M1
1 M2

1 M3
1 M4

1

model
CE 32.95 34.25 34.78 35.75 35.97 36.05
JE 30.13 30.70 31.35 32.07 32.40 32.60

(a) BLEU scores
CE Base Hayashi M1

1 M2
1 M3

1

model
Hayashi
model �
M1

1 � �
M2

1 � � �
M3

1 � � � >
M4

1 � � � > −
JE Base Hayashi M1

1 M2
1 M3

1

model
Hayashi
model �
M1

1 � �
M2

1 � � �
M3

1 � � � �
M4

1 � � � � −
(b) Significance test results using bootstrap sampling (Koehn,
2004) w.r.t. BLEU scores. The symbol � represents a sig-
nificant difference at the p < 0.01 level; > represents a sig-
nificant difference at the p < 0.05 level; − means not signif-
icantly different at p = 0.05.

Table 2: Translation results.

For each translation task, the recent version
of the Moses hierarchical phrase-based decoder
(Koehn et al., 2007) with the training scripts was
used as the baseline system Base. We used the
default parameters for Moses. A 5-gram language
model was trained on the target side of the training
corpus by IRST LM Toolkit3 with the improved
Kneser-Ney smoothing.

We integrated our reordering models into Base.
Table 2 gives detailed translation results. “Hayashi
model” represents the method of (Hayashi et al.,
2010). “M j

1 (j = 1, 2, 3, 4)” means that Base was
augmented with the reordering scores calcuated
from a series of sub-models M1 to Mj .

As shown in Table 2, integrating only M1,
which predicts reordering for two continuous
source words, has already given BLEU improve-
ment 1.8% and 1.2% over baseline on CE and
JE, respectively. As more sub-models for longer
distance reordering being integrated, the transla-
tion performance improved consistently, though
the improvement leveled off quickly. For CE and
JE tasks, Mn with n ≥ 3 and n ≥ 4, respectively,
cannot give further performance improvement at
any significant level.

Why did the improvement level off quickly?

3http://hlt.fbk.eu/en/irstlm

Sub-model M1 M2 M3 M4

CE 93.9 92.8 92.2 91.2
JE 92.9 91.3 90.1 89.3

(a) Our model
Reordering
Distance 1 2 3 4
CE 90.1 88.3 87.0 85.6
JE 85.3 81.9 80.6 78.8

(b) Hayashi model

Table 3: Classification accuracy (%).

In other words, why do long distance reordering
models have a much less leverage over translation
performance than short ones?

First, the prediction accuracy decreases as the
reordering distance increasing. Table 3a gives
classification accuracies on the validation data for
each sub-model. The reason for accuracy decreas-
ing is that the input size of sub-model grows as
reordering distance increasing. Namely, long dis-
tance reordering needs to consider more compli-
cated context.

Second, we attribute the influence decrease of
the longer reordering models to the redundancy of
the predictions among different reordering mod-
els. For example, in Figure 1, when word pairs
“男生(guy) 是(is)” and “是(is) 詹姆士(James)”
are both predicted to be not reversed, the reorder-
ing for “男生(guy) 詹姆士(James)” can be logi-
cally determined to be not reversed without further
reordering model prediction. That means, some-
times, a long distance word reordering can be de-
termined by a series of shorter word reordering
pairs.

But still, some predictions for longer reorder-
ing are useful. For example, the reordering
of “戴(wears) 男生(guy)” cannot be determined
when “戴(wears)眼镜(glasses)” is predicted to be
not reversed and “眼镜(glasses)男生(guy)” is re-
versed. This is the reason why translation perfor-
mance improves as more sub-models being inte-
grated.

As shown in Table 2, with 4 sub-models be-
ing integrated, our model improved baseline sys-
tem significantly and also outperformed Hayashi
model clearly. It is easy to understand, since our
model was trained by feed-forward neural network
on a high dimensional space and incorporated rich
context information, while Hayashi model used
the averaged perceptron algorithm and simple fea-
tures. Table 3b shows the prediction accuracies
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of Hayashi model. Note that Hayashi model pre-
dicts reorderings for all word pairs, but only pre-
diction accuracies for word pairs with distance 4
or less are shown. Compared with Table 3a, the
prediction accuracy of our model is much higher
than Hayashi model. Actually, FNN is not suitable
for Hayashi model since the computation cost for
Hayashi model is quite expensive. Using FNN to
reorder all word pairs could cost nearly one minute
to translate one sentence according to our experi-
ments, while integrating 4 sub-models only cost
10 seconds4.

Compared with Hayashi model, our model not
only speeds up decoding time but also reduces
the training time. Training for Hayashi model
is much slower since word pairs with all differ-
ent distances are used as training data. By using
separate sub-models, we can train each sub-model
one by one and stop when translation performance
cannot be improved any more. However, despite
of efficiency, one unified model will theoretically
have better performance than separate sub-models
since separate sub-models do not share training in-
stances and the unified model will suffer less from
data sparsity. So, we did some extra experiments
and trained a neural network which had the same
structure as M4 to learn reorderings for all word
pairs with distance 4 or less, instead of using 4
separate neural networks. A specific word null
was used since word pairs with distance 1,2,3 do
not have enough inputs for M4. The significance
test results showed that translation performance
had no significant difference between one unified
model and multiple sub-models. This is because
the training corpus for our model is quite large, so
separate training sets are sufficient for each sub-
model to learn the reorderings well. Besides, us-
ing neural networks to learn these sub-models on
a continuous space can relieve the data sparsity
problem to some extent.

Note that if we only integrate M4 into Base, the
translation quality of Base can be improved in our
preliminary experiments. But M4 cannot predict
reorderings for word pairs with distance less than
4. So M3

1 will be still needed for predicting re-
orderings of word pairs with distance 1,2,3. But
after M3

1 being integrated, M4 will not be needed
due to the redundancy of the predictions among

4Note that cache was used in all our experiments to reduce
the expensive neural network computation cost and turned out
to be very useful. Without caching, integrating 4 sub-models
could cost nearly 7 minutes to translate a sentence.

different reordering models.

5 Conclusion

In this paper, we propose to enhance hierarchi-
cal phrase-based SMT by training a series of sep-
arate sub-models to learn reorderings for word
pairs with distances less than a specific thresh-
old, based on the experimental fact that longer dis-
tance reordering models are not quite helpful for
translation quality. Compared with Hayashi et al.
(2010)’s work, our model is much more efficient
and keeps all helpful word reordering informa-
tion. Besides, our reordering model is learned by
feed-forward neural network and incorporates rich
context information for better performance. On
both Chinese-to-English and Japanese-to-English
translation tasks, the proposed model outperforms
the previous model significantly.
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Abstract

In this paper we present the UNRAVEL

toolkit: It implements many of the recently
published works on decipherment, includ-
ing decipherment for deterministic ciphers
like e.g. the ZODIAC-408 cipher and Part
two of the BEALE ciphers, as well as deci-
pherment of probabilistic ciphers and un-
supervised training for machine transla-
tion. It also includes data and example
configuration files so that the previously
published experiments are easy to repro-
duce.

1 Introduction

The idea of applying decipherment techniques to
the problem of machine translation has driven re-
search on decipherment in the recent time. Even
though the theoretical knowledge has been pub-
lished in the form of papers there has not been
any release of software until now. This made it
very difficult to follow upon the recent research
and to contribute new ideas. With this publica-
tion we want to share our implementation of two
important decipherment algorithms: Beam search
for deterministic substitution ciphers and beamed
EM training for probabilistic ciphers. It is clear
that the field of decipherment is still under heavy
research and that the true value of this release does
not lie in the current implementations themselves,
but rather in the opportunity for other researchers
to contribute their ideas to the field.

2 Overview

Enciphering a plaintext into a ciphertext can be
done using a myriad of encipherment methods.
Each of these methods needs its own customized
tools and tweaks in order to be deciphered auto-
matically. The goal of UNRAVEL is not to provide

a solver for every single encipherment method, but
rather to provide reusable tools that can be applied
to unsupervised learning for machine translation.

UNRAVEL contains two tools: DET-UNRAVEL

for decipherment of deterministic ciphers, and
EM-UNRAVEL for EM decipherment for proba-
bilistic substitution ciphers and simple machine
translation tasks. A comparison of both tools is
given in Table 1.

The code base is implemented in C++11 and
uses many publicly available libraries: The
GOOGLE-GLOG logging library is used for all log-
ging purposes, the GOOGLE-GFLAGS library is
used for providing command line flags, and the
GOOGLETEST library is used for unit testing and
consistency checks throughout the code base.

Classes for compressed I/O, access to
OpenFST (Allauzen et al., 2007), access to
KENLM(Heafield, 2011), representing mappings,
n-gram counts, vocabularies, lexicons, etc. are
shared across the code base.

For building we use the GNU build system. UN-
RAVEL can be compiled using GCC, ICC, and
CLANG on various Linux distributions and on
MacOS X. Scripts to download and compile nec-
essary libraries are also included: This makes it
easy to install UNRAVEL and its dependencies in
different computing environments.

Also, configuration- and data files (if possible
from a license point of view) for various experi-
ments (see Section 4.2 and Section 5.2) are dis-
tributed. Amongst others this includes setups for
the ZODIAC-408 and Part two of the BEALE ci-
phers (deterministic ciphers), as well as the OPUS

corpus and the VERBMOBIL corpus (probabilistic
cipher/machine translation).

3 Related Work

We list the most important publications that lead to
the implementation of UNRAVEL: Regarding DET-
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UNRAVEL, the following literature is relevant:
Hart (1994) presents a tree search algorithm for
simple substitution ciphers with known word seg-
mentations. The idea of performing a tree search
and looking for mappings fulfilling consistency
constraints was later adopted to n-gram based de-
cipherment in an A* search approach presented
by Corlett and Penn (2010). DET-UNRAVEL im-
plements the beam search approach presented by
Nuhn et al. (2013) together with the refinements
presented in (Nuhn et al., 2014). The Bayesian
approach presented by Ravi and Knight (2011a) to
break the ZODIAC-408 cipher is not implemented,
but configuration and data to solve the ZODIAC-
408 cipher with DET-UNRAVEL is included. Also
it is worth noting that Hauer et al. (2014) provided
further work towards homophonic decipherment
that is not included in UNRAVEL.

The EM training for the decipherment of prob-
abilistic substitution ciphers, as first described by
Lee (2002) is implemented in EM-UNRAVEL to-
gether with various improvements and extensions:
The beam- and preselection search approxima-
tions presented by Nuhn and Ney (2014), the con-
text vector based candidate induction presented
by Nuhn et al. (2012), as well as training of the
simplified machine translation model presented by
Ravi and Knight (2011b).

4 Deterministic Ciphers: DET-UNRAVEL

Given an input sequence fN
1 with tokens fn from

a vocabulary Vf and a language model of a tar-
get language p(eN1 ) with the target tokens from
a target vocabulary Ve, the task is to find a
mapping function φ : Vf → Ve so that the
language model probability of the decipherment
p(φ(f1)φ(f2) . . . φ(fN )) is maximized.

DET-UNRAVEL solves this optimization prob-

lem using the beam search approach presented by
Nuhn et al. (2013): The main idea is to structure
all partial φs into a search tree: If a cipher con-
tains |Vf | unique symbols, then the search tree is
of height |Vf |. At each level a decision about the
n-th symbol is made. The leaves of the tree form
full hypotheses. Instead of traversing the whole
search tree, beam search traverses the tree top to
bottom and only keeps the most promising candi-
dates at each level. Table 2 shows the important
parameters of the algorithm.

4.1 Implementation Details

During search, our implementation keeps track of
all partial hypotheses in two arraysHs andHt. We
use two different data structures for the hypothe-
ses in Hs and the hypotheses in Ht: Hs contains
the full information of the current partial mapping
φ. The candidates in the array Ht are generated
by augmenting hypotheses from the array Hs by
just one additional mapping decision f → e and
thus we use a different data structure for these hy-
potheses: They contain the current mapping deci-
sion f → e and a pointer to the parent node in
Hs. This saves memory in comparison to storing
the complete mapping at every point in time and
is faster than storing the mapping as a tree, which
would have to be traversed for every score estima-
tion.

The fact that only one additional decision is
made during the expansion process is also used
when calculating the scores for the new hypothe-
sis: Only the additional terms of the final score for
the current partial hypothesis φ are added to the
predecessor score (i.e. the scheme is scorenew =
scoreold + δ, where scoreold is independent of the
current decision f → e).

The now scored hypotheses in Ht (our imple-
mentation also includes the improved rest cost es-

Aspect Deterministic Ciphers: DET-UNRAVEL Probabilistic Ciphers: EM-UNRAVEL

Search Space Mappings φ Substitution tables {p(f |e)}
Training Beam search over all φ. The order in

which the decisions for φ(f) for each f
are made is based on the extension order.

EM-training: In the E-step use beam
search to obtain the most probable deci-
pherments eI1 for a given ciphertext se-
quence fJ

1 . Update {p(f |e)} in M-step.
Decoding Apply φ to cipher text. Viterbi decoding using final {p(f |e)}.
Experiments ZODIAC-408, pt. two of BEALE ciphers OPUS, VERBMOBIL

Table 1: Comparison of DET-UNRAVEL and EM-UNRAVEL.
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timation as described in (Nuhn et al., 2014)) are
pruned using different pruning strategies: Thresh-
old pruning—given the best hypothesis, add a
threshold score and prune the hypotheses with
scores lower than best hypothesis plus this thresh-
old score—and histogram pruning—which only
keeps the best Bhisto hypothesis at every level of
the search tree. Further, the surviving hypotheses
are checked whether they fulfill certain constraints
C(φ) like e.g. enforcing 1-to-1 mappings during
search.

Those hypotheses in Ht that survived the prun-
ing step and the constraints check are converted to
full hypotheses so that they can be stored in Hs.
Then, the search continues with the next cardinal-
ity.

The order in which decisions about the symbols
f ∈ Vf are made during search (called extension
order) can be computed using different strategies:
We implement a simple frequency sorting heuris-
tic, as well as a more advanced strategy that uses
beam search to find an improved enumeration of
f ∈ Vf , as presented in (Nuhn et al., 2014).

Our implementation expands the partial hy-
potheses in Hs in parallel: The implementation
has been tested with up to 128 threads (on a 128
core machine) with parallelization overhead of
less than 20%.

4.2 Experiments

The configurations for decoding the ZODIAC-408
cipher as well as Part two of the BEALE ciphers are
almost identical: For both setups we use an 8-gram
character language model trained on a subset of
the English Gigaword corpus (Parker et al., 2011).
We obtain n-gram counts (order 2 to 8) from the
input ciphers and pass these to DET-UNRAVEL. In
both cases we use the improved heuristic together
with the improved extension order as presented in
(Nuhn et al., 2014).

For the ZODIAC-408, using a beam sizeBhist =
26 yields 52 out of 54 correct mappings. For the
Part two of the BEALE ciphers a much larger beam
size of Bhist = 10M yields 157 correct mappings
out of 185, resulting in an error rate on the string
of 762 symbols is 5.4 %.

5 Probabilistic Ciphers: EM-UNRAVEL

For probabilistic ciphers, the goal is to find a prob-
abilistic substitution table {p(f |e)} with normal-
ization constraint ∀e

∑
f p(f |e) = 1. Learning

this table is done iteratively using the EM algo-
rithm (Dempster et al., 1977).

Each iteration consists of two steps: Hypoth-
esis generation (E-Step) and retraining the table
{p(f |e)} using the posterior probability pj(e|fJ

1 )
that any translation eI1 of fJ

1 has the word e aligned
to the source word fj (M-Step).

From a higher level view, EM-UNRAVEL can be
seen as a specialized word based MT decoder that
can efficiently generate and organize all possible
translations in the E-step, and efficiently retrain
the model {p(f |e)} on all these hypotheses in the
M-step.

5.1 Implementation Details

In contrast to DET-UNRAVEL, EM-UNRAVEL pro-
cesses the input corpus sentence by sentence. For
each sentence, we build hypotheses eI1 from left to
right, one word at a time:

First, the empty hypothesis is added to a set
of currently active partial hypotheses. Then, for
each partial hypothesis, a new source word is cho-
sen such that local reordering constraints are ful-
filled. For this, a coverage vector (which encodes
the words that have already been translated) has
to be updated for each hypothesis. Once the cur-
rent source word to be translated next has been
chosen, hypotheses for all possible translations of
this source word are generated and scored. Af-
ter having processed the entire set of partial hy-
potheses, the set of newly generated hypotheses is

Name Description

Pruning
Bhist Histogram pruning. Only the best Bhist

hypotheses are kept.
Bthres Threshold pruning. Hypotheses with

scores S worse than Sbest+Bthres, where
Sbest is the score of the best hyptohesis,
are pruned.

Constraints
C(φ) Substitution constraint. Hypotheses not

fulfilling the constraintC(φ) are discarded
from search.

Extension Order
Vext Extension order. Enumeration of the vo-

cabulary Vf in which the search tree over
all φ is visited.

Bext
hist Histogram Pruning for extension order

search.
W ext

n Weight for n−gram language model
lookahead score.

Table 2: Important parameters of DET-UNRAVEL.
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pruned: Here, the partial hypotheses are organized
and pruned with respect to their cardinality. For
each cardinality, we keep the Bhisto best scoring
hypotheses.

Similarly to DET-UNRAVEL, the previously de-
scribed expansion and pruning step is imple-
mented using two arrays Hs and Ht. However,
in EM-UNRAVEL the partial hypotheses in Hs and
Ht use the same data structures since—in contrast
to DET-UNRAVEL—recombination of hypotheses
is possible.

In the case of large vocabularies it is not feasi-
ble to keep track of all possible substitutions for a
given source word. This step can also be approx-
imated using the preselection technique by Nuhn
and Ney (2014): Instead of adding hypotheses for
all possible target words, only a small subset of
possible successor hypotheses is generated: These
are based on the current source word that is to be
translated, as well as the current language model
state.

Once the search is completed we compute pos-
teriors on the resulting word graph and accumu-
late those across all sentences in the corpus. Hav-
ing finished one pass over the corpus, the accumu-

Name Description

Pruning
Bhist Histogram pruning. Only the best Bhist

hypotheses are kept.

Preselection Search
Blex

cand Lexical candidates. Try only the best
Blex

cand substitutions e for each word f
based on p(f |e)

BLM
cand LM candidates. Try only the best BLM

hist

successor words e with respect to the pre-
vious hypothesis’ LM state.

Translation Model
Wjump Jump width. Maximum jump size allowed

in local reordering.
Cjump Jump cost. Cost for non-monotonic tran-

sitions.
Cins Insertion cost. Cost for insertions of

words.
Mins Maximum number of insertions per sen-

tence.
Cdel Deletion cost. Cost for deletions of words.
Mdel Maximum number of of deletions per sen-

tence.

Other
λlex Lexical smoothing parameter.
Nctx Number of candidate translations allowed

in lexicon generation in context vector
step.

Table 3: Important parameters of EM-UNRAVEL.

lated posteriors are used to re-estimate {p(e|f)}
and the next iteration of the EM algorithm begins.
Also, with every new parameter table {p(e|f)},
the Viterbi decoding of the source corpus is com-
puted.

While full EM training is feasible and gives
good results for the OPUS corpus, Nuhn et al.
(2012) suggest to include a context vector step in
between EM iterations for large vocabulary tasks.

Using the Viterbi decoding of the source se-
quence from the last E-step and the corpus used
to train the LM, we create normalized context vec-
tors for each word e and f . The idea is that vec-
tors for words e and f that are translations of each
other are similar. For each word f ∈ Vf , a set of
candidates e ∈ Ve can be computed. These candi-
dates are used to initialize a new lexicon, which is
further refined using standard EM iterations after-
wards.

Both, EM training and the context vector step
are implemented in a parallel fashion (running in
a single process). Parallelization is done on a sen-
tence level: We successfully used our implemen-
tation with up to 128 cores.

5.2 Experiments

We briefly mention experiments on two corpora:
The OPUS corpus and the VERBMOBIL corpus.

The OPUS corpus is a subtitle corpus of roughly
100k running words. Here the vocabulary size
of the source language (Spanish) is 562 and the
target language (English) contains 411 unique
words. Using a 3-gram language model UNRAVEL

achieves 19.5 % BLEU on this task.
The VERBMOBIL corpus contains roughly 600k

running words. The target language vocabulary
size is 3, 723 (English) and the source language
vocabulary size is 5, 964 (German). Using a 3-
gram language model and the context vector ap-
proach, UNRAVEL achieves 15.5 % BLEU.

6 Download and License

UNRAVEL can be downloaded at
www.hltpr.rwth-aachen.de/unravel.
UNRAVEL is distributed under a custom open
source license. This includes free usage for
noncommercial purposes as long as any changes
made to the original software are published
under the terms of the same license. The exact
formulation is available at the download page for
UNRAVEL.
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We have chosen to keep this paper independent
of actual implementation details such as method-
and parameter names. Please consult the README
files and comments in UNRAVEL’s source code for
implementation details.

7 Conclusion

UNRAVEL is a flexible and efficient decipherment
toolkit that is freely available to the scientific com-
munity. It implements algorithms for solving de-
terministic and probabilistic substitution ciphers.

We hope that this release sparks more interest-
ing research on decipherment and its applications
to machine translation.
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Abstract

In Statistical Machine Translation, some
complex features are still difficult to in-
tegrate during decoding and usually used
through the reranking of the k-best hy-
potheses produced by the decoder. We
propose a translation table partitioning
method that exploits the result of this
reranking to iteratively guide the decoder
in order to produce a new k-best list
more relevant to some complex features.
We report experiments on two transla-
tion domains and two translations direc-
tions which yield improvements of up to
1.4 BLEU over the reranking baseline us-
ing the same set of complex features. On
a practical viewpoint, our approach al-
lows SMT system developers to easily
integrate complex features into decoding
rather than being limited to their use in
one-time k-best list reranking.

1 Introduction

State-of-the-art Phrase-Based Statistical Machine
Translation (PBSMT) systems can use a large
number of feature functions decomposable into lo-
cal scores to efficiently evaluate the partial hy-
potheses built during decoding. However, some
feature functions are difficult to integrate into the
decoder mainly because they are not easily decom-
posable, very costly to compute and/or only avail-
able after complete hypotheses have been posited.
Usually such complex features are used through
the rescoring and reranking of the k-best transla-
tion hypotheses produced by the decoder (Och et
al., 2004). Although this reranking pass is per-
formed over the best part of the decoder search
space, it is limited by the actual diversity ex-
pressed in the k-best list. Additionally, reranking
being performed on a list generated by a simpler

set of features, it may not have access to hypothe-
ses that can best exploit the potential of the com-
plex features used. We describe a translation ta-
ble partitioning approach that exploits the result
of such a reranking to iteratively guide the de-
coder to produce new hypotheses that are more
relevant to the complex features used. To this end,
we focus in this work on the simple exploitation
of the disagreement between hypotheses ranked
best according to the decoder and to our feature-
rich decoder. In particular, we seek to provide
the next-pass decoder with separate translation ta-
bles that either contain bi-phrases that are unique
to the decoder’s one-best or to the reranker’s one-
best, in the hope that it will tend, in a soft man-
ner, to exploit the preferences expressed by the
complex features, and to otherwise explore alter-
native translation choices. Such a comparison is
then iteratively repeated, until convergence on a
development set between the new pass of the de-
coder and a reranker trained on the full set of
hypotheses generated thus far. On the test data,
this procedure thus produces after each iteration a
new decoder n-best, as well as an iteration-specific
new reranker best hypothesis. We report consis-
tent improvements of translation quality over a
strong reranking baseline using the same features
on 2 different domains and 2 translation directions.

The remainder of this article is organized as fol-
lows: we first briefly review related work (Sec-
tion 2), then introduce our approach (Section 3),
describe our experiments (Section 4), and finally
discuss our results and present our future work
(Section 5).

2 Related Work

Chen et al. (2008a; 2008b) expand the k-best list
of the decoder using three methods. One of them
involves re-decodings using models trained on the
decoder k-best list to integrate posterior knowl-
edge during the next re-decoding. The new k-best
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list produced by the decoder is concatenated to the
original one and then reranked with complex fea-
tures, which yields improvements over a rerank-
ing performed on the original k-best list. The
reranking pass is done out of the loop and the re-
decodings do not exploit the reranking result that
used the complex features.

Recently, we proposed a rewriting system that
explores in a greedy fashion the neighborhood of
the one-best hypothesis found by the reranking
pass using complex features, assuming that a bet-
ter hypothesis can be very close to this seed hy-
pothesis (Marie and Max, 2014). Nevertheless,
this rewriting only explores a small search space,
limited by the greedy search algorithm that con-
centrates on individual, local rewritings.

Other works proposed methods to produce more
diverse lists of hypotheses by iteratively encourag-
ing the decoder to produce translations that are dif-
ferent from the previous one (Gimpel et al., 2013)
or by making small changes to the scoring func-
tion to extract k-best lists from other parts of the
search space (Devlin and Matsoukas, 2012). Some
useful diversity can be obtained as these hypothe-
ses can be combined using SMT system combina-
tion or help to better train reranking systems. But
in spite of the introduction of more diversity, these
methods do not guarantee that eventually lists con-
taining hypotheses that are more relevant to com-
plex features will be obtained.

3 Translation Table Partitioning

3.1 Exploiting the Reranking Pass Result

Because all bi-phrases initially belong to the same
translation table, they share their feature weights
after tuning. Our main idea is to partition the set
of bi-phrases by putting aside, in new translation
tables, possibly misused bi-phrases according to
the reranking with complex features of the decoder
k-best list (Rerank). This partitioning gives to
subsequent tunings the opportunity to assign more
adapted weights to the features of these specific
groups of bi-phrases. Intuitively, if the Rerank
one-best hypothesis is different from that of the
initial decoder, the bi-phrases that account for the
differences should have received different weights
to encourage the decoder to either choose them or
instead avoid them.

To achieve the partitioning of the translation ta-
ble we compare the Rerank one-best hypothe-
sis to the decoder one-best and compute their dif-

ferences. On the one hand, there are n-grams
from the decoder one-best hypothesis that are not
found any more in the Rerank one-best; on
the other hand, there are n-grams that only exist
in the Rerank one-best hypothesis. Since the
decoder produces word alignments between the
source sentence to translate and its hypotheses,
we can extract all the bi-phrases from the transla-
tion table that are compatible with these n-grams
and their alignments. Each set of bi-phrases ex-
tracted from n-grams1 either appearing (IN) or
disappearing (OUT) in the Rerank one-best hy-
pothesis compared to the decoder’s, is moved to
a specific translation table. Then a new tuning is
performed for each relevant partitioning configu-
ration.

The described translation table partioning pro-
cedure can be performed iteratively as each new
decoding can be followed by Rerank on the new
k-best list generated. The differences between
Rerank and the decoder one-bests are extracted
anew and put in new translation tables at each it-
eration.2 Iterations are performed until no more
improvements of the BLEU score are obtained by
Rerank on a development set. The decoder is re-
tuned and Rerank is re-trained after each itera-
tion3 to obtain more specific and updated weights
for each old or new translation table. Finally, at
test time, the learned weights corresponding to the
current iteration are applied.

3.2 Located Tokens
As a token can appear more than once in an input
text and in a sentence, and because complex fea-
tures are computed locally, the source tokens are
located: an identifier is concatenated to each token
to make them unique in the source text to translate.
Tokens of source phrases in the translation table
are also located, meaning that each bi-phrases is
duplicated to cover all located tokens. This proce-
dure allows our approach to differentiate changes
between Moses and Rerank one-best hypothe-
ses at the token level by taking context into ac-

1In decoders phrases typically have a fixed maximum
length, which corresponds to our maximum value for n.

2So, if both types of translation tables are extracted at
each iteration, 3 iterations would produce 6 translation tables
in addition to the remainder of the initial one. Note that a
bi-phrase can in fact be present in more than one translation
table after several iterations.

3Rerank re-training uses only the k-best list of the cur-
rent iteration. k-bests from different iteration cannot be con-
catenated as they use a different number of features corre-
sponding to a different number of translation tables.
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a means of transport safer is the subway .

le@0 moyen@1 de@2 transport@3 le@4 plus@5 sûr@6 c’@7 est@8 le@9 métro@10 .@11

the safest means of transport is the subway .

source

Rerank

Moses

source OUT IN
le@0 a the

le@0 moyen@1 a means
moyen@1 de@2 transport@3 a means of transport

le@4 plus@5 sûr@6 safer safest

Figure 1: Example of IN and OUT translation tables extraction from the n-grams that differ between the
Rerank and Moses one-best hypotheses.

count. An example of IN and OUT translation ta-
bles extraction with located tokens is presented in
Figure 1.

4 Experiments

4.1 Data

We ran experiments on two translation tasks for
different domains: the WMT’14 Medical trans-
lation task (medical) and the WMT’11 news
translation task (news) for the language pair Fr-
En on both directions. For both tasks we trained
two strong baseline systems using data provided
by WMT4. Statistics about the training, develop-
ment and testing data are presented in Table 1.

Tasks Corpus Sentences Tokens (Fr-En)

news
train 12M 383M - 318M
dev 2,525 73k - 65k
test 3,003 85k - 74k

medical
train 4.9M 91M - 78M
dev 500 12k - 10k
test 1,000 26k - 21k
in-domain LM 146M - 78M

for both tasks LM 2.5B - 6B

Table 1: Data used in our experiments.

4.2 MT system

For our experiments we used the Moses phrase-
based SMT toolkit (Koehn et al., 2007) with de-
fault settings and features, including the five fea-
tures from the translation table, and kb-mira
tuning (Cherry and Foster, 2012). Rerank is
trained using kb-mira on the 1,000-best list gen-
erated by Moses on the development set with the

4http://www.statmt.org/wmt14

distinct-nbest parameter to have no dupli-
cates. Testing is also performed on distinct 1,000-
best lists. Rerank uses all the decoder features
along with the following complex features:

• MosesNorm: all decoder features and the
Moses score normalized by the hypothesis
length

• NNM: bilingual and monolingual neural net-
work models with a structured output layer
(SOUL) (Le et al., 2012)

• POSLM: 6-gram POS language model

• WPP: count-based word posterior probabil-
ity (Ueffing and Ney, 2007)

• TagRatio: ratio of translation hypothesis by
number of source tokens tagged as: verb,
noun or adjective

• Syntax: depth, number of nodes and num-
ber of unary rules of the syntactic parse nor-
malized by the hypothesis length (Carter and
Monz, 2011)

• IBM1: IBM1 features (Och et al., 2004;
Hildebrand and Vogel, 2008)

Part-of-speech tagging and syntactic parsing
were respectively performed with the Stanford
Part-of-speech Tagger (Toutanova and Manning,
2000) and the Shift-Reduce parser of Zhu et
al. (2013). We report the individual performance
of each feature set in Table 2 and the Rerank
performance when using all feature sets. As ex-
pected, the NNM feature set brings most of the im-
provements and attain by itself nearly the BLEU
score of Rerank when using all feature sets for
the news task with a gain of 1.4 and 1.1 BLEU re-
spectively for En→Fr and Fr→En over the Moses

556



0 1 2 3 4
iteration

35

40

45

50

55

60

B
LE

U

Moses 1-best
Rerank 1-best
1,000-best average
1,000-best oracle

Figure 2: BLEU score evolution over iterations
for the IN configuration on the test set of the
medical En→Fr translation task.

baseline. Among the other feature sets, POSLM
performs well, especially for the medical task
with an improvement of 0.3 and 0.5 BLEU for
En→Fr and Fr→En, respectively.
Some types of our complex features have already
been used during decoding, although sometimes
for a very important cost (Schwartz et al., 2011).
Our feature sets are to be considered only as ex-
perimental parameters, as any other feature types
usually used during reranking could also be used.

Features medical news
En→Fr Fr→En En→Fr Fr→En

Moses 38.8 37.1 31.1 28.6

+ MosesNorm 38.9 37.2 31.1 28.7
+ NNM 41.9 38.9 32.5 29.8
+ POSLM 39.2 37.7 31.1 28.9
+ WPP 39.1 37.1 31.2 28.6
+ TagRatio 38.9 37.3 31.1 28.8
+ Syntax 38.8 37.2 31.2 28.9
+ IBM1 39.1 37.2 30.9 28.8

Rerank 42.8 40.1 32.5 29.9

Table 2: Reranking results for each set of features
added individually; Rerank uses the full set.

4.3 Results
Table 3 presents our results for different transla-
tion table partitioning configurations. For each
configuration, results are presented for the last
iteration of the multi-pass decoding performed
by Moses and the reranking of its k-best list
by the Rerank system using complex features.
First, we observe for the baseline systems that
Rerank outperforms Moses for all translation
tasks and directions, especially on medical with

improvements of 3.0 and 4.0 BLEU respectively
for Fr→En and En→Fr. These improvements il-
lustrate the strong potential of our set of complex
features to provide more accurate scores for trans-
lation hypotheses than the set of features used dur-
ing the initial decoding.

All studied configurations yield improvements
with multi-pass Moses over the Moses baseline,
showing the advantage of extracting from the main
translation table misused bi-phrases according to
a reranking pass done with complex features. As
illustrated by Figure 2, the multi-pass decoding
quickly reduces the gap in BLEU score between
our multi-pass Moses and Rerank one-best hy-
potheses. Although the 1,000-best oracle remains
at the same level over the iterations, the 1,000-
best average score5 increases by 2 BLEU at the
last iteration over the first 1,000-best hypotheses
produced by Moses, pointing out a strong im-
provement of the average quality of the 1,000-
best hypotheses. However, except for the IN
configuration on medical En→Fr, multi-pass
Moses does not bring improvements by itself
over the Rerank baseline. Nevertheless, multi-
pass Moses coupled with Rerank does improve
over Rerank baseline for all configurations on all
translation tasks. These consistent improvements
over the Rerank baseline demonstrate the abil-
ity of our procedure to help the Moses decoder
to produce k-best lists of better quality which are
more suitable to our complex features.

The IN configuration, which puts in a trans-
lation table all bi-phrases in the one-best hy-
pothesis of Rerank that do not belong to the
Moses one-best hypothesis, performs the best for
all translation tasks: multi-pass Rerank yields a
1.4 BLEU improvement over the Rerank base-
line on medical En→Fr, and 0.7 BLEU on
news En→Fr. Improvements are lower, but
nonetheless consistent, for the Fr→En direction,
with +0.9 and +0.5 BLEU respectively on the
medical and news tasks. The OUT configu-
ration yields smaller improvements in compari-
son, meaning that putting aside (a few) first-ranked
bi-phrases downgraded by Rerank is less use-
ful in order to produce better k-best lists with
Moses. Using in the same system both IN and

5To obtain this average we compute the arithmetic mean
of the 1,000-best hypotheses sentence-BLEU scores and se-
lect the hypothesis with the closest score to the mean. Once
we have selected an hypothesis for each sentence, the BLEU
score is computed.
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Configuration medical En→Fr medical Fr→En news En→Fr news Fr→En
dev test # iter. dev test # iter. dev test # iter. dev test # iter.

baseline Moses 40.9 38.8 - 41.3 37.1 - 27.1 31.1 - 28.0 28.6 -
Rerank 43.9 42.8 44.2 40.1 28.5 32.5 29.1 29.9

OUT
Moses 43.3 41.8 4 43.0 38.7 3 27.9 31.8 1 28.5 29.2 1
Rerank 45.3 43.8 44.5 40.5 28.5 32.9 29.2 30.3

IN
Moses 45.1 43.2 4 43.6 39.9 3 28.4 32.4 2 28.6 29.3 2
Rerank 45.7 44.2 45.0 41.0 28.8 33.2 29.3 30.4

IN and OUT Moses 44.8 42.4 4 42.8 38.7 3 28.3 32.1 2 28.8 29.2 2
Rerank 45.3 43.5 44.5 40.6 28.7 32.9 29.3 30.4

Table 3: Results for different translation table partitioning configurations. OUT: configuration with a
translation table containing bi-phrases of the Moses 1-best not in the Rerank 1-best. IN: configuration
with a translation table containing bi-phrases of the Rerank 1-best not in the Moses 1-best. For all
configuration the main translation table is still used but does not contain the extracted bi-phrases.

OUT iteration-specific translation tables (“IN and
OUT”) yields a performance situated between us-
ing IN and OUT separately, but which still consis-
tently improves over the baseline Rerank.

5 Discussion and future work

We have presented a method for guiding a phrase-
based decoder with translation tables partitioned
on the basis of k-best list reranking making use
of complex features. Our results showed consis-
tent improvements in BLEU score over a strong
Rerank baseline using the same features. We ex-
perimented with a simple criterion for iteratively
partitioning the original phrase table of the sys-
tem, and found that focusing on providing the next
iteration decoder with the bi-phrases that were
prefered at first rank by Rerank (IN) performed
best.6

We now intend to study how to better take ad-
vantage of the expected characteristics of our IN
and OUT tables, possibly by adding more features
to our iteration-specific tables, or by exploiting
information on bi-phrases computed on the full
reranked lists. For our future work, we also plan to
study approaches that can enhance the diversity in
the k-best lists (Chatterjee and Cancedda, 2010;
Gimpel et al., 2013) between each iteration of
the multi-pass decoding to train a better Rerank
after each decoding pass. Another area for im-
provement lies in the addition of yet more com-
plex features, for instance to allow a better dis-

6Interestingly, a control experiment showed that using
iteration-specific tables yields slightly better performance
than fusioning all bi-phrases of a given type in a non iteration-
specific table, possibly allowing later tunings to prefer the
contents of the most recent, and possibly more reliable tables.

course coherence modelling over iterations (Ture
et al., 2012; Hardmeier et al., 2012). Going fur-
ther, we could study the effect of using other hy-
potheses instead of the Rerank one-best to per-
form the comparison with the Moses one-best hy-
pothesis. For instance, we can reasonably expect
that making this comparison with the output of a
rewriting system, such as the one proposed in our
previous work (Marie and Max, 2014), could ex-
tract more misused and useful bi-phrases on which
to base our translation table partitioning since this
rewriting system’s output is usually better than the
Rerank one-best and not in the k-best list of the
decoder.
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Abstract

Domain adaptation is an active field of
research in statistical machine translation
(SMT), but so far most work has ignored
the distinction between the topic and genre
of documents. In this paper we quan-
tify and disentangle the impact of genre
and topic differences on translation qual-
ity by introducing a new data set that has
controlled topic and genre distributions.
In addition, we perform a detailed analy-
sis showing that differences across topics
only explain to a limited degree transla-
tion performance differences across gen-
res, and that genre-specific errors are more
attributable to model coverage than to sub-
optimal scoring of translation candidates.

1 Introduction

Training corpora for statistical machine translation
(SMT) are typically collected from a wide variety
of sources and therefore have varying textual char-
acteristics such as writing style and vocabulary.
The test set, on the other hand, is much smaller and
usually more homogeneous. The resulting mis-
match between the test data and the majority of
the training data can lead to suboptimal translation
performance. In such situations, it is beneficial to
adapt the translation system to the translation task
at hand, which is exactly the challenge of domain
adaptation in SMT.

The concept of a domain, however, is not unam-
biguously defined across existing domain adapta-
tion methods. Commonly used interpretations of
domains neglect the fact that topic and genre are
two distinct properties of text (Lee and Myaeng,
2002; Stein and Meyer Zu Eissen, 2006). Two

texts can discuss a similar topic, but using different
styles. Since most work on domain adaptation in
SMT uses in-domain and out-of-domain data that
differ on both the topic and the genre level, it is un-
clear whether the proposed solutions address topic
or genre differences.

In this work we take a step back and disentan-
gle the concepts topic and genre, then we analyze
and quantify their effect on SMT, which we be-
lieve is a necessary step towards further improv-
ing domain adaptation for SMT. Concretely, we
address the following questions:

(i) Can we clarify the ambiguous use of the con-
cept domain with regard to adaptation in SMT?

(ii) Which of two intrinsic text properties, topic
and genre, presents a larger challenge to SMT?

(iii) To what extent do topic and genre differ
with respect to SMT model coverage and observed
out-of-vocabulary (OOV) types?

To answer these questions, we introduce a new
data set with controlled topic-genre distributions,
which we use for an in-depth analysis of the im-
pact of topic and genre differences on SMT.

2 Topic and genre differences in SMT

The definition of a domain varies across work on
domain adaptation and is often imprecise. In this
work we avoid using this ambiguous term, and in-
stead focus on the text properties topic and genre.

Topic is the general subject of a document. Top-
ics can be determined on multiple levels, rang-
ing from very broad to more detailed. Examples
of topics include sports, politics, and science
(high-level), or football and tennis (low-level).

Genre is harder to define, as there is no single
definition in literature (Swales, 1990; Karlgren,
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Topic Newswire sentence User-generated sentence

Culture The 12 contestants competed during a May 3rd
Prime before a panel of judges and millions of
viewers across the Arab world.

Your program’s name is “Arab Idol”, which is in English,
and you allowed Barwas to participate and represent Iraq
while she sings in Kurdish!!!

Economy Yemen is mulling the establishment of 13 indus-
trial zones across its six planned administrative
regions in a bid to stimulate development and
create job opportunities.

What development in Yemen are you talking about? We will
continue to call for freedom until independence and liber-
ation and the routing of the northern occupation from our
lands.

Table 1: English-side samples from the Gen&Topic data set. All pairs of newswire (NW) and user-
generated (UG) fragments in the data set discuss the same article and are topically related.

2004). Based on previous definitions, Santini
(2004) concludes that the term genre is used
as a concept complementary to topic, covering
the non-topical text properties function, style,
and text type. Like topics, genres can also ex-
hibit different levels of granularity (Lee, 2001).
Examples of genres include formal or informal
text (high-level), and newswire, editorials, and
user-generated text (low-level).

Topic and genre are both intrinsic properties of
texts, but most work on domain adaptation uses
provenance or subcorpus information to adapt
SMT systems to a specific translation task (Fos-
ter and Kuhn, 2007; Duh et al., 2010; Bisazza
et al., 2011; Sennrich, 2012; Bisazza and Fed-
erico, 2012; Haddow and Koehn, 2012, among
others). In recent years, some work has explicitly
addressed topic adaptation for SMT (Eidelman et
al., 2012; Hewavitharana et al., 2013; Hasler et al.,
2014a; Hasler et al., 2014c) using latent Dirich-
let allocation (Blei et al., 2003). While Hasler et
al. (2014b) showed that provenance and topic can
serve as complements to each other, the effects of
genre and topic on SMT have not been systemati-
cally studied.

3 The Gen&Topic benchmark set

To analyze the impact of genre and topic differ-
ences in SMT, we need a test set where both
dimensions are controlled as much as possible.
Unfortunately, currently available and commonly
used benchmarks meet this requirement only to
a limited degree. For instance, while the NIST
OpenMT sets do contain documents drawn from
two genres, newswire and web, both genres ex-
hibit a different distribution over topics, i.e., the
same topic might not be equally represented across
genres, and vice versa.

To overcome this limitation, we introduce a
new Arabic-English parallel benchmark set, the

Genre

Topic NW UG Total

Culture segments 654 507 1161
tokens 15.5K 14.9K 30.4K

Economy segments 500 578 1078
tokens 16.0K 15.5K 31.5K

Health segments 384 319 703
tokens 9.7K 9.3K 19.1K

Politics segments 494 646 1140
tokens 15.8K 15.8K 31.6K

Security segments 532 826 1358
tokens 16.1K 15.9K 32.0K

Total segments 2564 2876 5440
tokens 73.2K 71.3K 144.5K

Table 2: Statistics of the Arabic-English
Gen&Topic data set containing five topics and
two genres: newswire (NW) and user-generated
(UG) text. Tokens are counted on the Arabic side.

Gen&Topic data set, that contains documents with
controlled topic and genre distributions. This
benchmark set consists of manually translated
news articles crawled from the web with their
corresponding, manually translated readers’ com-
ments and thus comprises the genres newswire
(NW) and user-generated (UG) text. Since each
pair of NW and UG documents originates from the
same article, we can assume that both documents
discuss the same topic, for which labels are pro-
vided by the source websites. By including com-
parable numbers of tokens per genre for each arti-
cle, we enforce equal topic distributions across the
genres. Two examples of NW-UG pairs are shown
in Table 1. Note that the selected UG sentences in
the Gen&Topic data set are well-formulated com-
ments rather than dialog-oriented content such as
SMS or chat messages, which pose substantially
larger challenges to SMT than the Gen&Topic
comments (van der Wees et al., 2015).

For parameter estimation purposes, we split the
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complete benchmark into a development and a test
set, such that the development set contains approx-
imately one-third of the data, while ensuring that
articles in each set originate from non-overlapping
time periods. Table 2 lists the specifications of the
complete benchmark, which we make available for
download1.

4 Quantifying the impact of genre and
topic differences on SMT

To quantify the impact of multiple genres and top-
ics in a test corpus, we run a series of experiments
in which we measure translation quality, model
coverage, and observed OOV types.

4.1 Translation quality

We first run a translation experiment on the
Gen&Topic test set using our in-house phrase-
based SMT system similar to Moses (Koehn et
al., 2007). Features include lexicalized reordering,
linear distortion with limit 5, and lexical weight-
ing. In addition, we use a 5-gram linearly inter-
polated language model, trained on 1.6B words
with Kneser-Ney smoothing (Chen and Goodman,
1999), that covers all topics and genres contained
in the benchmark. We tune our system on the
Gen&Topic development set using pairwise rank-
ing optimization (PRO) (Hopkins and May, 2011).

Naturally, performance differences across top-
ics and genres depend on the degree to which both
are represented in the parallel training data. To
allow for fair comparison, we down-sample our
available training data to be as balanced as pos-
sible in terms of topics and genres. The resulting
system is trained on approximately 200K sentence
pairs with 6M source tokens per genre, as much
as is available for UG. All data originates from the
same web sources as the documents in the bench-
mark. Our more competitive system (van der Wees
et al., 2015) that uses also LDC-distributed data
yields slightly higher BLEU scores, but is more fa-
vorable for NW than for UG translation tasks. Due
to the strict data requirements in terms of topic and
genre distributions, as well as the availability of
sizable parallel training data, our current experi-
mental set-up covers Arabic-English only.

Table 3 compares BLEU scores (Papineni et al.,
2002, 1 reference) of the Gen&Topic data, split
down by topics and genres. We observe that trans-

1http://ilps.science.uva.nl/resources/
gen-topic/

NW UG All

Culture 19.2 17.6 19.3
Avg. diff.: ±0.6

Economy 19.9 15.9 18.9
Health 19.3 17.7 18.8
Politics 21.3 13.6 18.2
Security 19.3 16.2 18.5

All 19.9 16.0 18.9︸ ︷︷ ︸
Avg. diff.: ±3.9

Table 3: Arabic-to-English BLEU scores on the
Gen&Topic test set (1 reference translation) per
topic-genre combination. Tuning was done on the
complete Gen&Topic development set. Variations
in translation quality are represented by average
pairwise BLEU score differences.

lation performance fluctuates much more across
genres than across topics: There is a large gap of
3.9 BLEU points between NW and UG, which can
be entirely attributed to actual genre differences
given the construction of the Gen&Topic data set
and the use of down-sampled training data. On
the other hand, the gap between different topics is
only 0.6 BLEU points on average, and at most 1.1
(between culture and politics). A translation qual-
ity gap between genres has also been observed in
past OpenMT evaluation campaigns. However, as
the NIST benchmarks have not been controlled for
topics across genres, it is unclear to what extent
this gap can be attributed to genre differences.

4.2 Model coverage analysis

Next, to explain the large performance gap be-
tween genres, we analyze the phrase lengths
within Viterbi translations, source phrase and
phrase pair recall, and phrase pair OOV of the
Gen&Topic test set (Table 4).

Average source-side phrase length We first
compute the average number of source words con-
tained in the phrases that our SMT system uses to
produce the 1-best translations for the Gen&Topic
test set. One can see that UG is translated with
shorter phrases than NW, and that differences be-
tween genres are more pronounced than among
topics. This difference, in turn, can be due to
unreliable translation probabilities but also to the
mere lack of translation options in the models.
We quantify the impact of the latter by measuring
phrase recall on each test portion.

Phrase recall and phrase pair OOV To com-
pute phrase recall, we first automatically word-
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Gen&Topic
BLEU

Avg.phr. Source phrase recall Src-trg phrase pair recall Phr.pair
portion length 1 2 3 4+ 1 2 3 4+ OOV

NW 19.9 1.45 99.3 81.4 41.8 7.1 73.8 39.4 13.7 1.8 71.5
UG 16.0 1.38 97.2 74.7 36.0 6.3 56.2 28.8 8.7 1.1 76.0

Culture 19.3 1.39 98.2 77.6 36.5 5.3 66.2 35.2 10.7 1.2 74.2
Economy 18.9 1.42 98.4 78.7 39.4 6.5 65.3 33.5 10.9 1.4 73.8
Health 18.8 1.41 98.3 76.6 37.1 5.4 64.5 33.5 11.0 1.2 75.2
Politics 18.2 1.41 98.1 78.6 39.8 7.7 60.8 33.1 11.2 1.5 73.4
Security 18.4 1.42 97.6 77.0 40.2 8.4 62.7 33.3 11.6 1.8 73.3

Table 4: Impact of genre and topic differences on various indicators of SMT model quality.

align the test set and extract from it a set of ref-
erence phrase pairs using the same procedure ap-
plied to the training data. Then, we count the num-
ber of reference phrase pairs whose source side is
covered by the translation models (source phrase
recall) and the number of reference phrase pairs
that are fully covered by the translation models
(source-target phrase pair recall). Formally, we
define the set of source-matching phrases as:

MS = {(f̄ , ē) | (f̄ ,·) ∈ Ptest ∧ (f̄ ,·) ∈ Ptrain},

where Pd refers to the set of phrase pairs (f̄ , ē)
that can be extracted from corpus d. Source phrase
recallRS

n for phrases of length n is then defined as:

RS
n =

∑
(f̄ ,ē)∈MS∧|̄f |=n ctest(f̄ , ē)∑
(f̄ ,ē)∈Ptest∧|̄f |=n ctest(f̄ , ē)

, (1)

where ctest(f̄ , ē) denotes the frequency of phrase
pair (f̄ , ē) in the test set. Analogously, we define
the set of source-target-matching phrase pairs as:

MS,T = {(f̄ , ē) | (f̄ , ē) ∈ Ptest ∧ (f̄ , ē) ∈ Ptrain}

and the source-target phrase pair recall RS,T
n for

phrases of length n as:

RS,T
n =

∑
(f̄ ,ē)∈MS,T∧|̄f |=n ctest(f̄ , ē)∑
(f̄ ,ē)∈Ptest∧|̄f |=n ctest(f̄ , ē)

. (2)

Finally, we call phrase pair OOV the portion of
reference phrase pairs that are not covered by the
translation models, that is: 1 −∑N

n RS,T
n , where

N is the phrase limit used for phrase extraction.
The results of our analysis, broken down by

source phrase length, show that source phrase re-
call is much lower in UG than in NW, while vari-
ations among topics are only very small. The

stronger impact of genre differences is even more
visible on phrase pair recall: for instance, our
system knows the correct translation of 73.8% of
the single-source-word phrase pairs in the NW
genre. In UG this is only 56.2%, despite the equal
amounts of training data per genre in our system.
These figures suggest that model coverage—both
mono- and bilingual—is an important reason for
the low SMT quality on UG data.

Most existing approaches to domain adaptation
focus on domain-sensitive scoring or selection of
existing translation candidates (Matsoukas et al.,
2009; Foster et al., 2010; Axelrod et al., 2011;
Chen et al., 2013, among others). This strat-
egy is supported by the error analysis of Irvine
et al. (2013), who show that scoring errors are
more common across domains than errors caused
by OOVs, in the source as well as the target lan-
guage. Across genres however, our results in Ta-
ble 4 show that both word-level and phrase-level
OOVs are a more likely explanation for the per-
formance differences. This stresses the need to ad-
dress model coverage, for example by paraphras-
ing (Callison-Burch et al., 2006) or translation
synthesis (Irvine and Callison-Burch, 2014).

4.3 Manual OOV analysis

To get a better understanding of the OOVs ob-
served for the genres and topics in the Gen&Topic
set, we perform a fine-grained manual analysis2.
For this analysis a bilingual speaker manually an-
notated 500 sentences on the source side (equally
distributed over genres and topics) to identify the
class of each OOV. Annotations are done for top
and sub-level classes (e.g., replaced letter, which

2Available with the benchmark data at http://ilps.
science.uva.nl/resources/gen-topic/
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Arabic OOV English translation Explanation of OOV Main OOV class
��«@X ISIL New proper noun Rare but correct (Rare)

@ñ� 	�J
ë (they) will forget Dialectal future tense Dialectal forms (Dial)
	àñ�Y�®K
 (they) revere Third person plural present tense Morphological variants (Morph)

	­
KA 	£ñË@Q�
 	̄ñ�K creationofjobs Missing blank Spelling errors (Spell)
	á�
J
«ñ¢�JÖÏ @ volunteeeers Wrong but understandable spelling Colloquialisms (Coll)

Table 5: Examples of OOVs observed in the Gen&Topic set with their respective main OOV class.

Gen&Topic OOV type
portion Rare Dial Morph Spel Coll Other

NW 77.8 0.0 16.7 5.6 0.0 0.0
UG 9.8 9.0 17.2 42.6 12.3 9.0

Culture 17.4 0.0 17.4 52.2 8.7 4.3
Economy 13.8 0.0 34.5 31.0 13.8 6.9
Health 15.8 10.5 15.8 36.8 10.5 10.5
Politics 25.0 25.0 12.5 25.0 0.0 12.5
Security 23.5 8.8 5.9 41.2 14.7 5.9

Table 6: Error percentages per Gen&Topic por-
tion of main OOV classes, see Table 5 for expla-
nation. Other events include words that are not un-
derstandable or occur in the phrase table but only
captured in a different context.

is a subclass of spelling errors). In total, we con-
sider 17 subclasses which we group into five main
classes, see Table 5 for examples.

Table 6 shows the type level percentages3 for
each main OOV class per genre or topic. When
comparing the two genres, a number of observa-
tions emerge. Firstly, rare but correct words (e.g.,
proper nouns and technical terms, both regular is-
sues for adaptation in SMT) make up the vast ma-
jority of the OOVs in NW, but are relatively in-
frequent in UG. By contrast, OOVs containing un-
seen morphological variants are equally common
in both genres. Although complex morphology is
language-specific, a rare morphological word in
Arabic often maps to a rare multi-word phrase in
English, resulting in phrase-level OOVs. Next, not
entirely surprising, the majority of OOVs in UG
are due to spelling errors. Finally, OOVs assigned
to the remaining classes are never observed in NW
but occasionally occur in UG.

Next, a comparison of the main OOV classes
among the various topics shows a few notable

3We also collected token level frequencies which are very
similar to the listed type level statistics, except for a small
number of repeatedly occurring proper nouns.

distributions. Dialectal forms, for example, are
rare in all topics except politics, where they are
commonly observed in the form of Egyptian fu-
ture tense. This can be explained by the presence
of news articles about elections in Egypt in the
Gen&Topic set. Next, while spelling errors are
common in all topics, its abundance is most promi-
nent in culture. Most spelling errors concern miss-
ing or inserted blanks, suggesting that comments
are likely written on mobile devices. Finally, un-
seen morphological variants are more frequent in
economy than in other topics, however with no
conclusive explanation.

5 Conclusions and implications

Despite the fact that domain adaptation is an ac-
tive field of research in SMT, there is little con-
sensus on what exactly constitutes a domain. By
introducing and analyzing a new benchmark with
balanced topic and genre distributions, we have
shown that earlier findings explaining the differ-
ences across topics only explain to a limited de-
gree translation performance differences across
genres. Our analysis shows that genre-specific er-
rors are more attributable to model-coverage er-
rors than to suboptimal scoring of existing trans-
lation candidates. This suggests that future work
on improving SMT across genres needs to inves-
tigate approaches that increase model coverage.
Our fine-grained manual error analysis at the word
level also suggests that source coverage could ben-
efit from text normalization (Bertoldi et al., 2010).
Finally, we make both our benchmark and the
manual OOV annotations publicly available.
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Abstract

A joint-space model for cross-lingual
distributed representations generalizes
language-invariant semantic features.
In this paper, we present a matrix co-
factorization framework for learning
cross-lingual word embeddings. We
explicitly define monolingual training
objectives in the form of matrix de-
composition, and induce cross-lingual
constraints for simultaneously factorizing
monolingual matrices. The cross-lingual
constraints can be derived from parallel
corpora, with or without word alignments.
Empirical results on a task of cross-lingual
document classification show that our
method is effective to encode cross-lingual
knowledge as constraints for cross-lingual
word embeddings.

1 Introduction

Word embeddings allow one to represent words in
a continuous vector space, which characterizes the
lexico-semanic relations among words. In many
NLP tasks, they prove to be high-quality features,
successful applications of which include language
modelling (Bengio et al., 2003), sentiment analy-
sis (Socher et al., 2011) and word sense discrimi-
nation (Huang et al., 2012).

Like words having synonyms in the same lan-
guage, there are also word pairs across lan-
guages which share resembling semantic proper-
ties. Mikolov et al. (2013a) observed a strong
similarity of the geometric arrangements of cor-
responding concepts between the vector spaces of
different languages, and suggested that a cross-
lingual mapping between the two vector spaces is
technically plausible. In the meantime, the joint-
space models for cross-lingual word embeddings
are very desirable, as language-invariant seman-
tic features can be generalized to make it easy to

transfer models across languages. This is espe-
cially important for those low-resource languages,
where it allows one to develop accurate word rep-
resentations of one language by exploiting the
abundant textual resources in another language,
e.g., English, which has a high resource density.
The joint-space models are not only technically
plausible, but also useful for cross-lingual model
transfer. Further, studies have shown that using
cross-lingual correlation can improve the quality
of word representations trained solely with mono-
lingual corpora (Faruqui and Dyer, 2014).

Defining a cross-lingual learning objective is
crucial at the core of the joint-space model. Her-
mann and Blunsom (2014) and Chandar A P et
al. (2014) tried to calculate parallel sentence (or
document) representations and to minimize the
differences between the semantically equivalen-
t pairs. These methods are useful in capturing
semantic information carried by high-level units
(such as phrases and beyond) and usually do not
rely on word alignments. However, they suffer
from reduced accuracy for representing rare to-
kens, whose semantic information may not be well
generalized. In these cases, finer-grained informa-
tion at lexical level, such as aligned word pairs,
dictionaries, and word translation probabilities, is
considered to be helpful.

Kočiskỳ et al. (2014) integrated word aligning
process and word embedding in machine transla-
tion models. This method makes full use of paral-
lel corpora and produces high-quality word align-
ments. However, it is unable to exploit the richer
monolingual corpora. On the other hand, Zou et al.
(2013) and Faruqui and Dyer (2014) learnt word
embeddings of different languages in separate s-
paces with monolingual corpora and projected the
embeddings into a joint space, but they can only
capture linear transformation.

In this paper, we address the above challenges
with a framework of matrix co-factorization. We
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simultaneously learn word embeddings in multi-
ple languages via matrix factorization, with in-
duced constraints to assure cross-lingual seman-
tic relations. It provides the flexibility of con-
structing learning objectives from separate mono-
lingual and cross-lingual corpora. Intricate rela-
tions across languages, rather than simple linear
projections, are automatically captured. Addition-
ally, our method is efficient as it learns from global
statistics. The cross-lingual constraints can be de-
rived both with or without word alignments, given
that there is a valid measure of cross-lingual co-
occurrences or similarities.

We test the performance in a task of cross-
lingual document classification. Empirical result-
s and a visualization of the joint semantic space
demonstrate the validity of our model.

2 Framework

Without loss of generality, here we only consider
bilingual embedding learning of the two languages
l1 and l2. Given monolingual corpora Dli and
sentence-aligned parallel data Dbi, our task is to
find word embedding matrices of the size |V li |×d
where each line corresponds to the embedding of
a single word. We also define vocabularies of con-
textsU li and we learn context embedding matrices
C li of the size |U li | × d at the same time. 1

These matrices are obtained by simultaneous
matrix factorization of the monolingual word-
context PMI (point-wise mutual information) ma-
trices M li . During monolingual factorization, we
put a cross-lingual constraint (cost) on it, ensuring
cross-lingual semantic relations. We formalize the
global loss function as

Ltotal =
∑

i∈{1,2}
ωi · Lmono(W

li , Cli)

+ωc · Lcross(W
l1 , Cl1 , W l2 , Cl2),

(1)

where Lmono and Lcross are the monolingual and
cross-lingual objectives respectively. ωi and ωc

weigh the contribution of the different parts to the
total objective. An overview of our algorithm is
illustrated in Figure 1.

3 Monolingual Objective

Our monolingual objective follows the GloVe
model (Pennington et al., 2014), which learns
from global word co-occurrence statistics. For a
word-context pair (j, k) in language li, we try to

1In this paper, we let U li = V li .

Monolingual

corpora
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Bilingual corpus 

𝑾𝒍𝟏 𝑪𝒍𝟏⋅
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𝑴𝒍𝟏

𝑾𝒍𝟐𝑴𝒍𝟐

≈

≈

PMI

matrices

L1-L2

Figure 1: The framework of cross-lingual word embedding
via matrix co-factorization.

minimize the difference between the dot produc-
t of the embeddings wli

j · clik and their PMI value

M li
jk. M li

jk =
X
li
jk·

∑
j,k X

li
jk∑

j X
li
jk·

∑
k X

li
jk

, where X li is the

matrix of word-context co-occurrence counts. As
Pennington et al. (2014), we add separate terms
bliwj , b

li
ck

for each word and context to absorb the
effect of any possible word-specific biases. We al-
so add an additional matrix bias bli for the ease
of sharing embeddings among matrices. The loss
function is written as the sum of the weighted
square error,

Llimono =
∑
j,k

f(Xli
jk)
(
wlij · clik + bliwj

+ blick
+ bli −M li

jk

)2

,

(2)

where we choose the same weighting function as
the GloVe model to place less confidence on those
word-context pairs with rare occurrences,

f(x) =

{
(x/xmax)

α if x < xmax

1 otherwise
. (3)

Notice that we only have to optimize those X li
jk 6=

0, which can be solved efficiently since the matrix
of co-occurrence counts is usually sparse.

4 Cross-lingual Objectives

As the most important part in our model, the cross-
lingual objective describes the cross-lingual word
relations and sets constraints when we factorize
monolingual co-occurrence matrices. It can be de-
rived from either cross-lingual co-occurrences or
similarities between cross-lingual word pairs.

4.1 Cross-lingual Contexts
The monolingual objective stems from the distri-
butional hypothesis (Harris, 1954) and optimizes
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words in similar contexts into similar embeddings.
It is natural to further extend this idea to define
cross-lingual contexts, for which we have multi-
ple choices.

For the definition of cross-lingual contexts, we
have multiple choices. A straightforward option
is to count all the word co-occurrences in aligned
sentence pairs, which is equivalent to a uniform
word alignment model adopted by Gouws et al.
(2015). For the sentence-aligned bilingual corpus
Dbi = {(Sl1 , Sl2)}, where each Sli is a monolin-
gual sentence, we count the co-occurrences as

Xbi
jk =

∑
(Sl1 ,Sl2 )∈Dbi

#(j, Sl1)×#(k, Sl2), (4)

where Xbi is the matrix of cross-lingual co-
occurrence counts, and #(j, S) is a function
counting the number of j’s in the sequence S. We
then use a similar loss function as Equation 2, with
the exception that we optimize for the dot product-
s of wl1

j · wl2
k . This method works without word

alignments and we denote it as CLC-WA (Cross-
lingual context without word alignments).

We can also leverage word alignments and de-
fine CLC+WA (Cross-lingual context with word
alignments). The idea is to count those word-
s co-occurring with k as the context of j, where
k ∈ V l2 is the translationally equivalent word
of j ∈ V l1 . An example is shown in Figure 2.
CLC+WA is expected to contain more precise in-
formation than CLC-WA, and we will compare the
two definitions in the following experiments.

Once we have counted the co-occurrences, a
naı̈ve solution is to concatenate the bilingual vo-
cabularies and perform matrix factorization as a
whole. To induce additional flexibility, such as
separate weighting, we divide the matrix into three
parts. It is also more reasonable to calculate PMI
values without mixing the monolingual and bilin-
gual corpora.

4.2 Cross-lingual Similarities
An alternative way to set cross-lingual constraints
is to minimize the distances between similar word
pairs. Here the semantic similarities can be mea-
sured by equivalence in translation, sim(j, k),
which is produced by a machine translation sys-
tem. In this paper, we use the translation proba-
bilities produced by a machine translation system.
Minimizing the distances of related words in the
two languages weighted by their similarities gives
us the cross-lingual objective

…   we    must    do    all    we    can,    not    just    to   …

…   wir    alles    daran    setzen    müssen, nicht nur …

Figure 2: An example of CLC+WA, where we show the
cross-lingual context of the German word “müssen” in the
dashed box.

Table 1: Accuracy for cross-lingual classification.

Model en→de de→en
Machine translation 68.1 67.4

Majority class 46.8 46.8
Klementiev et al. 77.6 71.1

BiCVM 83.7 71.4
BAE 91.8 74.2

BilBOWA 86.5 75.0
CLC-WA 91.3 77.2
CLC+WA 90.0 75.0

CLSim 92.7 80.2

Lcross =
∑

j∈V l1 ,k∈V l2

sim(j, k) · distance(wl1j , wl2k ), (5)

where wl1
j and wl2

k are the embeddings of j and k
in l1 and l2 respectively. In this paper, we choose
the distance function to be the Euclidean distance,
distance(wl1

j , w
l2
k ) = ||wl1

j − wl2
k ||2. Notice that

similar to the monolingual objective, we may op-
timize for only those sim(j, k) 6= 0, which is ef-
ficient as the matrix of translation probabilities or
dictionary is sparse. We call this method CLSim.

5 Experiments

To evaluate the quality of the relatedness between
words in different languages, we induce the task
of cross-lingual document classification for the
English-German language pair, where a classifier
is trained in one language and later used to classi-
fy documents in another. We exactly replicated the
experiment settings of Klementiev et al. (2012).

5.1 Data and Training
For optimizing the monolingual objectives, We
used exactly the same subset of RCV1/RCV2 cor-
pora (Lewis et al., 2004) as by Klementiev et al.
(2012), which were sampled to balance the num-
ber of tokens between languages. Our preprocess-
ing strategy followed Chandar A P et al. (2014),
where we lowercased all words, removed punctu-
ations and used the same vocabularies (|V en| =
43, 614 and |V de| = 50, 110). When counting

569



0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 10 100

A
cc

u
ra

y

Weight of cross-lingual objective

en→de

de→en

(a)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 10 100

A
cc

u
ra

y

Percentage of RCV used for training (%)

en→de

de→en

(b)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 10 100

A
cc

u
ra

y

Percentage of Europarl used for training (%)

en→de

de→en

(c)

Figure 3: Cross-lingual document classification accuracy, with (a) varying weighting of cross-lingual objective (b) varying size
of training monolingual corpora, and (c) varying size of training bilingual corpus.

word co-occurrences, we use a decreasing weight-
ing function as Pennington et al. (2014), where d-
word-apart word pairs contribute 1/d to the total
count. We used a symmetric window size of 10
words for all our experiments.

The cross-lingual constraints were derived us-
ing the English and German sections of the Eu-
roparl v7 parallel corpus (Koehn, 2005), which
were similarly preprocessed. For CLC+WA and
CLSim, we obtained word alignments and trans-
lation probabilities with SyMGIZA++ (Junczys-
Dowmunt and Szał, 2012). We did not use Eu-
roparl for monolingual training.

The documents for classification were ran-
domly selected by Klementiev et al. (2012)
from those in RCV1/RCV2 that are assigned
to only one single topic among the four:
CCAT (Corporate/Industrial), ECAT (Economics),
GCAT (Government/Social), and MCAT (Market-
s). 1,000/5,000 documents in each language were
used as a train/test set and we kept another 1,000
documents as a development set for hyperparame-
ter tuning. Each document was represented as an
idf-weighted average embedding of all its tokens,
and a multi-class document classifier was trained
for 10 epochs with an averaged perceptron algo-
rithm as by Klementiev et al. (2012). A classifier
trained with English documents is used to classify
German documents and vice versa.

We trained our models using stochastic gradient
descent. We run 50 iterations for all of our exper-
iments and the dimensionality of the embeddings
is 40. We set xmax to be 100 for cross-lingual co-
occurrences and 30 for monolingual ones, while
α is fixed to 3/4. Other parameters are chosen
according to the performance on the development
set.

5.2 Results

We present the empirical results on the task of
cross-lingual document classification in Table 1,
where the performance of our models is compared
with some baselines and previous work. The effec-
t of weighting between parts of the total objective
and the amount of training data on the quality of
the embeddings is demonstrated in Figure 3.

The baseline systems are Majority class where
test documents are simply classified as the class
with the most training samples, and Machine
translation where a phrased-based machine trans-
lation system is used to translate test documents
into the same language as the training documents.

We also summarize the classification accuracy
reported in some previous work, including Multi-
task learning (Klementiev et al., 2012), Bilingual
compositional vector model (BiCVM) (Herman-
n and Blunsom, 2014), Bilingual autoencoder for
bags-of-words (BAE) (Chandar A P et al., 2014),
and BilBOWA (Gouws et al., 2015). A more re-
cent work of Soyer et al. (2015) developed a com-
positional approach and reported an accuracy of
90.8% (en→de) and 80.1% (de→en) when using
full RCV and Europarl corpora.

Our method outperforms the previous work and
we observe improvements when we exploit word
translation probabilities (CLSim) over the mod-
el without word-level information (CLC-WA).
The best result is achieved with CLSim. It
is interesting to notice that CLC+WA, which
makes use of word alignments in defining cross-
lingual contexts, does not provide better perfor-
mance than CLC-WA. We guess that sentence-
level co-occurrence is more suitable for captur-
ing sentence-level semantic relations in the task of
document classification.
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Figure 4: A visualization of the joint vector space.

5.3 Visualization

Figure 4 gives a visualization of some selected
words using t-SNE (Van der Maaten and Hin-
ton, 2008) where we observe the topical nature of
word embeddings. Regardless of their source lan-
guages, words sharing a common topic, e.g. econ-
omy, are closely aligned with each other, revealing
the semantic validity of the joint vector space.

6 Related Work

Matrix factorization has been successfully applied
to learn word representations, which use several
low-rank matrices to approximate the original ma-
trix with extracted statistical information, usually
word co-occurrence counts or PMI. Singular value
decomposition (SVD) (Eckart and Young, 1936),
SVD-based latent semantic analysis (LSA) (Lan-
dauer et al., 1998), latent semantic indexing (LSI)
(Deerwester et al., 1990), and the more recently-
proposed global vectors for word representation
(GloVe) (Pennington et al., 2014) find their wide
applications in the area of NLP and information
retrieval (Berry et al., 1995). Additionally, there is
evidence that some neural-network-based models,
such as Skip-gram (Mikolov et al., 2013b) which
exhibits state-of-the-art performance, are also im-
plicitly factorizing a PMI-based matrix (Levy and
Goldberg, 2014). The strategy for matrix factor-
ization in this paper, as Pennington et al. (2014),
is in a stochastic fashion, which better handles un-
observed data and allows one to weigh samples ac-
cording to their importance and confidence.

Joint matrix factorization allows one to decom-
pose matrices with some correlational constraints.
Collective matrix factorization has been develope-
d to handle pairwise relations (Singh and Gordon,
2008). Chang et al. (2013) generalized LSA to
Multi-Relational LSA, which constructs a 3-way
tensor to combine the multiple relations between

words. While matrix factorization is widely used
in recommender systems, matrix co-factorization
helps to handle multiple aspects of the data and
improves in predicting individual decisions (Hong
et al., 2013). Multiple sources of information,
such as content and linkage, can also be connected
with matrix co-factorization to derive high-quality
webpage representations (Zhu et al., 2007). The
advantage of this approach is that it automatical-
ly finds optimal parameters to optimize both sin-
gle matrix factorization and relational alignments,
which avoids manually defining a projection ma-
trix or transfer function. To the best of our knowl-
edge, we are the first to introduce this technique to
learn cross-lingual word embeddings.

7 Conclusions

In this paper, we introduced a framework of matrix
co-factorization to learn cross-lingual word em-
beddings. It is capable of capturing the lexico-
semantic similarities of different languages in a
unified vector space, where the embeddings are
jointly learnt instead of projected from separate
vector spaces. The overall objective is divided into
monolingual parts and a cross-lingual one, which
enables one to use different weighting and learn-
ing strategies, and to develop models either with
or without word alignments. Exploiting global
context and similarity information instead of local
ones, our proposed models are computationally ef-
ficient and effective.

With matrix co-factorization, it allows one to
integrate external information, such as syntactic
contexts and morphology, which is not discussed
in this paper. Its application in statistical ma-
chine translation and cross-lingual model transfer
remains to be explored. Learning multiple em-
beddings per word and compositional embeddings
with matrix factorization are also interesting fu-
ture directions.
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Abstract

Pivot translation allows for translation of
language pairs with little or no parallel
data by introducing a third language for
which data exists. In particular, the trian-
gulation method, which translates by com-
bining source-pivot and pivot-target trans-
lation models into a source-target model,
is known for its high translation accuracy.
However, in the conventional triangulation
method, information of pivot phrases is
forgotten and not used in the translation
process. In this paper, we propose a novel
approach to remember the pivot phrases in
the triangulation stage, and use a pivot lan-
guage model as an additional information
source at translation time. Experimen-
tal results on the Europarl corpus showed
gains of 0.4-1.2 BLEU points in all tested
combinations of languages1.

1 Introduction

In statistical machine translation (SMT) (Brown et
al., 1993), it is known that translation with mod-
els trained on larger parallel corpora can achieve
greater accuracy (Dyer et al., 2008). Unfor-
tunately, large bilingual corpora are not readily
available for many language pairs, particularly
those that don’t include English. One effective so-
lution to overcome the scarceness of bilingual data
is to introduce a pivot language for which parallel
data with the source and target languages exists
(de Gispert and Mariño, 2006).

Among various methods using pivot languages,
the triangulation method (Cohn and Lapata, 2007;
Utiyama and Isahara, 2007; Zhu et al., 2014),
which translates by combining source-pivot and
pivot-target translation models into a source-target

1Code to replicate the experiments can be found at
https://github.com/akivajp/acl2015
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(c) Proposed Triangulated Phrases

Figure 1: An example of (a) triangulation and the
resulting phrases in the (b) traditional method of
forgetting pivots and (c) our proposed method of
remembering pivots.

model, has been shown to be one of the most effec-
tive approaches. However, word sense ambiguity
and interlingual differences of word usage cause
difficulty in accurately learning correspondences
between source and target phrases.

Figure 1 (a) shows an example of three words
in German and Italian that each correspond to the
English polysemic word “approach.” In such a
case, finding associated source-target phrase pairs
and estimating translation probabilities properly
becomes a complicated problem. Furthermore, in
the conventional triangulation method, informa-
tion about pivot phrases that behave as bridges be-
tween source and target phrases is lost after learn-
ing phrase pairs, as shown in Figure 1 (b).

To overcome these problems, we propose a
novel triangulation method that remembers the
pivot phrase connecting source and target in the
records of phrase/rule table, and estimates a joint
translation probability from the source to target
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and pivot simultaneously. We show an example
in Figure 1 (c). The advantage of this approach
is that generally we can obtain rich monolingual
resources in pivot languages such as English, and
SMT can utilize this additional information to im-
prove the translation quality.

To utilize information about the pivot language
at translation time, we train a Multi-Synchronous
Context-free Grammar (MSCFG) (Neubig et al.,
2015), a generalized extension of synchronous
CFGs (SCFGs) (Chiang, 2007), that can gener-
ate strings in multiple languages at the same time.
To create the MSCFG, we triangulate source-pivot
and pivot-target SCFG rule tables not into a single
source-target SCFG, but into a source-target-pivot
MSCFG rule table that remembers the pivot. Dur-
ing decoding, we use language models over both
the target and the pivot to assess the naturalness of
the derivation. We perform experiments on pivot
translation of Europarl proceedings, which show
that our method indeed provide significant gains in
accuracy (of up to 1.2 BLEU points), in all com-
binations of 4 languages with English as a pivot
language.

2 Translation Formalisms

2.1 Synchronous Context-free Grammars
First, we cover SCFGs, which are widely used
in machine translation, particularly hierarchical
phrase-based translation (Hiero; Chiang (2007)).

In SCFGs, the elementary structures are rewrite
rules with aligned pairs of right-hand sides:

X → 〈
s, t

〉
(1)

where X is the head of the rewrite rule, and s and t
are both strings of terminals and non-terminals in
the source and target side respectively. Each string
in the right side tuple has the same number of in-
dexed non-terminals, and identically indexed non-
terminals correspond to each-other. For example,
a synchronous rule could take the form of:

X → ⟨X0 of the X1, X1 的 X0⟩ . (2)

In the SCFG training method proposed by
Chiang (2007), SCFG rules are extracted based
on parallel sentences and automatically obtained
word alignments. Each extracted rule is scored
with phrase translation probabilities in both direc-
tions φ(s|t) and φ(t|s), lexical translation proba-
bilities in both directions φlex(s|t) and φlex(t|s),

a word penalty counting the terminals in t, and a
constant phrase penalty of 1.

At translation time, the decoder searches for
the target sentence that maximizes the derivation
probability, which is defined as the sum of the
scores of the rules used in the derivation, and the
log of the language model probability over the tar-
get strings. When not considering an LM, it is pos-
sible to efficiently find the best translation for an
input sentence using the CKY+ algorithm (Chap-
pelier et al., 1998). When using an LM, the ex-
panded search space is further reduced based on a
limit on expanded edges, or total states per span,
through a procedure such as cube pruning (Chi-
ang, 2007).

2.2 Multi-Synchronous CFGs
MSCFGs (Neubig et al., 2015) are a generalization
of SCFGs that are be able to generate sentences in
multiple target languages simultaneously. The sin-
gle target side string t in the SCFG production rule
is extended to have strings for N target languages:

X → 〈
s, t1, ..., tN

〉
. (3)

Performing multi-target translation with
MSCFGs is quite similar to translating using
standard SCFGs, with the exception of the ex-
panded state space caused by having one LM
for each target. Neubig et al. (2015) propose a
sequential search method, that ensures diversity in
the primary target search space by first expanding
with only primary target LM, then additionally
expands the states for other LMs, a strategy we
also adopt in this work.

In the standard training method for MSCFGs,
the multi-target rewrite rules are extracted from
multilingual line-aligned corpora by applying an
extended version of the standard SCFG rule ex-
traction method, and scored with features that con-
sider the multiple targets. It should be noted that
this training method requires a large amount of
line-aligned training data including the source and
all target languages. This assumption breaks down
when we have little parallel data, and thereby we
propose a method to generate MSCFG rules by
triangulating 2 SCFG rule tables in the following
section.

3 Pivot Translation Methods

Several methods have been proposed for SMT us-
ing pivot languages. These include cascade meth-
ods that consecutively translate from source to
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pivot then pivot to target (de Gispert and Mariño,
2006), synthetic data methods that machine-
translate the training data to generate a pseudo-
parallel corpus (de Gispert and Mariño, 2006),
and triangulation methods that obtain a source-
target phrase/rule table by merging source-pivot
and pivot-target table entries with identical pivot
language phrases (Cohn and Lapata, 2007). In par-
ticular, the triangulation method is notable for pro-
ducing higher quality translation results than other
pivot methods (Utiyama and Isahara, 2007), so we
use it as a base for our work.

3.1 Traditional Triangulation Method

In the triangulation method by Cohn and Lapata
(2007), we first train source-pivot and pivot-target
rule tables, then create rules:

X → 〈
s, t

〉
(4)

if there exists a pivot phrase p such that the pair
⟨s, p⟩ is in source-pivot table TSP and the pair〈
p, t

〉
is in pivot-target table TPT . Source-target

table TST is created by calculation of the trans-
lation probabilities using phrase translation prob-
abilities φ(·) and lexical translation probabilities
φlex(·) for all connected phrases according to the
following equations (Cohn and Lapata, 2007):

φ
(
t|s) =

∑

p∈TSP∩TP T

φ
(
t|p)φ (p|s) , (5)

φ
(
s|t) =

∑

p∈TSP∩TP T

φ (s|p) φ
(
p|t) , (6)

φlex

(
t|s) =

∑

p∈TSP∩TP T

φlex

(
t|p)φlex (p|s) , (7)

φlex

(
s|t) =

∑

p∈TSP∩TP T

φlex (s|p) φlex

(
p|t) . (8)

The equations (5)-(8) are based on the memo-
ryless channel model, which assumes φ

(
t|p, s

)
=

φ
(
t|p)

and φ
(
s|p, t

)
= φ (s|p). Unfortunately,

these equations are not accurate due to polysemy
and disconnects in the grammar of the languages.
As a result, pivot translation is significantly more
ambiguous than standard translation.

3.2 Proposed Triangulation Method

To help reduce this ambiguity, our proposed tri-
angulation method remembers the corresponding
pivot phrase as additional information to be uti-
lized for disambiguation. Specifically, instead of
marginalizing over the pivot phrase p, we create an

MSCFG rule for the tuple of the connected source-
target-pivot phrases such as:

X → 〈
s, t, p

〉
. (9)

The advantage of translation with these rules is
that they allow for incorporation of additional fea-
tures over the pivot sentence such as a strong pivot
LM.

In addition to the equations (5)-(8), we also es-
timate translation probabilities φ(t, p|s), φ(s|p, t)
that consider both target and pivot phrases at the
same time according to:

φ
(
t, p|s) = φ

(
t|p)

φ (p|s) , (10)

φ
(
s|p, t

)
= φ (s|p) . (11)

Translation probabilities between source and pivot
phrases φ(p|s), φ(s|p), φlex(p|s), φlex(s|p) can
also be used directly from the source-pivot rule ta-
ble. This results in 13 features for each MSCFG
rule: 10 translation probabilities, 2 word penalties
counting the terminals in t and p, and a constant
phrase penalty of 1.

It should be noted that remembering the pivot
results in significantly larger rule tables. To save
computational resources, several pruning methods
are conceivable. Neubig et al. (2015) show that an
effective pruning method in the case of a main tar-
get T1 with the help of target T2 is the T1-pruning
method, namely, using L candidates of t1 with the
highest translation probability φ(t1|s) and select-
ing t2 with highest φ(t1, t2|s) for each t1. We fol-
low this approach, using the L best t, and the cor-
responding 1 best p .

4 Experiments

4.1 Experimental Setup

We evaluate the proposed triangulation method
through pivot translation experiments on the Eu-
roparl corpus, which is a multilingual corpus in-
cluding 21 European languages (Koehn, 2005)
widely used in pivot translation work. In our
work, we perform translation among German (de),
Spanish (es), French (fr) and Italian (it), with En-
glish (en) as the pivot language. To prepare the
data for these 5 languages, we first use the Gale-
Church alignment algorithm (Gale and Church,
1993) to retrieve a multilingual line-aligned cor-
pus of about 900k sentences, then hold out 1,500
sentences each for tuning and test. In our basic
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Source Target BLEU Score [%]

Direct Cascade Tri. SCFG
(baseline)

Tri. MSCFG
-PivotLM

Tri. MSCFG
+PivotLM 100k

Tri. MSCFG
+PivotLM 2M

es 27.10 25.05 25.31 25.38 25.52 † 25.75
de fr 25.65 23.86 24.12 24.16 24.25 † 24.58

it 23.04 20.76 21.27 21.42 † 21.65 ‡ 22.29
de 20.11 18.52 18.77 18.97 19.08 † 19.40

es fr 33.48 27.00 29.54 † 29.87 † 29.91 † 29.95
it 27.82 22.57 25.11 25.01 25.18 ‡ 25.64
de 19.69 18.01 18.73 18.77 18.87 † 19.19

fr es 34.36 27.26 30.31 30.53 † 30.73 ‡ 31.00
it 28.48 22.73 25.31 25.50 † 25.72 ‡ 26.22
de 19.09 14.03 17.35 † 17.99 ‡ 18.17 ‡ 18.52

it es 31.99 25.64 28.85 28.83 29.01 † 29.31
fr 31.39 25.87 28.48 28.40 28.63 † 29.02

Table 1: Results for each method. Bold indicates the highest BLEU score in pivot translation, and
daggers indicate statistically significant gains over Tri. SCFG († : p < 0.05, ‡ : p < 0.01)

training setup, we use 100k sentences for train-
ing both the TMs and the target LMs. We as-
sume that in many situations, a large amount of
English monolingual data is readily available and
therefore, we train pivot LMs with different data
sizes up to 2M sentences.

As a decoder, we use Travatar (Neubig, 2013),
and train SCFG TMs with its Hiero extraction
code. Translation results are evaluated by BLEU
(Papineni et al., 2002) and we tuned to maxi-
mize BLEU scores using MERT (Och, 2003). For
trained and triangulated TMs, we use T1 rule prun-
ing with a limit of 20 rules per source rule. For
decoding using MSCFG, we adopt the sequential
search method.

We evaluate 6 translation methods:

Direct: Translating with a direct SCFG trained on
the source-target parallel corpus (not using a
pivot language) for comparison.

Cascade: Cascading source-pivot and pivot-
target translation systems.

Tri. SCFG: Triangulating source-pivot and
pivot-target SCFG TMs into a source-target
SCFG TM using the traditional method.

Tri. MSCFG: Triangulating source-pivot and
pivot-target SCFG TMs into a source-
target-pivot MSCFG TM in our approach.
-PivotLM indicates translating without a
pivot LM and +PivotLM 100k/2M indicates
a pivot LM trained using 100k/2M sentences
respectively.

4.2 Experimental Results
The result of experiments using all combinations
of pivot translation tasks for 4 languages via En-
glish is shown in Table 1. From the results, we can
see that the proposed triangulation method consid-
ering pivot LMs outperforms the traditional trian-
gulation method for all language pairs, and trans-
lation with larger pivot LMs improves the BLEU
scores. For all languages, the pivot-remembering
triangulation method with the pivot LM trained
with 2M sentences achieves the highest score of
the pivot translation methods, with gains of 0.4-
1.2 BLEU points from the baseline method. This
shows that remembering the pivot and using it
to disambiguate results is consistently effective in
improving translation accuracy.

We can also see that the MSCFG triangulated
model without using the pivot LM slightly outper-
forms the standard SCFG triangulation method for
the majority of language pairs. It is conceivable
that the additional scores of translation probabil-
ities with pivot phrases are effective features that
allow for more accurate rule selection.

Finally, we show an example of a translated sen-
tence for which pivot-side ambiguity is resolved in
the proposed triangulation method:

Input (German): ich bedaure , daß es keine
gemeinsame annäherung gegeben hat .

Reference (Italian): sono spiacente del mancato
approccio comune .

Tri. SCFG: mi rammarico per il fatto che non si
ravvicinamento comune . (BLEU+1: 13.84)

Tri. MSCFG+PivotLM 2M:
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mi dispiace che non esiste un approccio co-
mune . (BLEU+1: 25.10)
i regret that there is no common approach .
(Generated English Sentence)

The derivation uses an MSCFG rule connecting
“approccio” to “approach” in the pivot, and we
can consider that appropriate selection of English
words according to the context contributes to se-
lecting relevant vocabulary in Italian.

5 Conclusion

In this paper, we have proposed a method for pivot
translation using triangulation of SCFG rule ta-
bles into an MSCFG rule table that remembers the
pivot, and performing translation with pivot LMs.
In experiments, we found that these models are
effective in the case when a strong pivot LM ex-
ists. In the future, we plan to explore more refined
methods to devising effective intermediate expres-
sions, and improve estimation of probabilities for
triangulated rules.
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Abstract 

In this article, we discuss the challenges of 

document summarization for the blind and 

visually impaired people and then propose 

a new system called BrailleSUM to pro-

duce better summaries for the blind and 

visually impaired people. Our system con-

siders the factor of braille length of each 

sentence in news articles into the ILP-

based summarization method. Evaluation 

results on a DUC dataset show that 

BrailleSUM can produce shorter braille 

summaries than existing methods, mean-

while, it does not sacrifice the content qual-

ity of the summaries. 

1 Introduction  

People with normal vision can read news docu-

ments with their eyes conveniently. However, ac-

cording to WHO’s statistics, up to October 2013, 

285 million people are estimated to be visually 

impaired worldwide: 39 million are blind and 246 

have low vision. Unfortunately, the large number 

of blind and visually impaired people cannot di-

rectly or conveniently read ordinary news docu-

ments like sighted people, and they have to read 

braille with their fingerprints or special equip-

ments, which brings much more burden to them. 

Braille is a special system with a set of symbols 

composed of small rectangular braille cells that 

contain tiny palpable bumps called raised dots 

used by the blind and visually impaired. It is tra-

ditionally written with embossed paper. Special 

equipments such as refreshable braille displays 

and braille embosser have been developed for the 

blind and visually impaired people to read or print 

on computers and other electronic supports.  

   Though some news materials have already been 

prepared in braille format for the blind people’s 

reading and learning, most daily news documents 

are written for sighted people, and it is necessary 

to first translate the news documents into Braille, 

and then the blind people can read the news with 

their fingertips. Speech synthesizers are also com-

monly used for the task (Freitas and Kouroupetro-

glou, 2008), but the way of reading braille texts is 

still popular in the daily life of the blind people, 

especially for the deaf-blind people.  

    As we know, document summarization is a very 

useful means for people to quickly read and 

browse news articles in the big data era. Existing 

summarization systems focus on content quality 

and fluency of summaries, and they usually ex-

tract several informative and diversified sentences 

to form a summary with a given length. The sum-

maries are produced for sighted people, but not for 

the blind and visually impaired people. A text 

summary can be translated into a braille summary 

for the blind and visually impaired people’s read-

ing, and the length of a braille summary is defined 

as the number of the braille cells in the summary.  

It is noteworthy that the shorter the braille sum-

mary is, the less burden the blind people have 

when reading the summary with their fingertips. 

The burden lies in the fact that reading a braille 

text by touching each braille cell with fingertips is 

more difficult and inconvenient than reading a 

normal text with eyes. So a braille summary is re-

quired to be as short as possible, while keeping the 

content quality and fluency.  

    In this study, we investigate the task of docu-

ment summarization for the blind and visually im-

paired people for the first time. We discuss the 

major challenges of document summarization for 

the blind and visually impaired people and then 

propose a new system called BrailleSUM to pro-

duce better summaries for them. Our system con-

siders the factor of braille length of each sentence 

in news articles into the ILP-based summarization 

method. Evaluation results on a DUC dataset 

show that BrailleSUM can produce much shorter 

braille summaries than existing methods, mean-

while, it does not sacrifice the content quality of 

the summaries. 

2 Related Work 

Most previous summarization methods are extrac-

tion-based, which directly rank and extract exist-
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ing sentences in a document set to form a sum-

mary. Typical methods include the centroid-based 

method (Radev et al., 2004), NeATS (Lin and 

Hovy, 2002), supervised learning based methods 

(Ouyang et al., 2007; Shen  et al., 2007; Schilder 

and Kondadadi, 2008; Wong et al., 2008), graph-

based ranking (Erkan and Radev, 2004; Mihalcea 

and Tarau, 2005), Integer Linear Programming 

(Gillick et al., 2008; Gillick and Favre, 2009; Li 

et al., 2013), and submodular function (Lin and 

Bilmes, 2010). Moreover, cross-language docu-

ment summarization has been investigated (Wan 

et al., 2010), but the task focuses on how to select 

the translated sentences with good content quality. 

We can see that all existing summarization sys-

tems were proposed for sighted people, but not for 

the blind and visually impaired people. Document 

summarization for the blind and visually impaired 

people has its specialty and is worth exploring.  

    It has been a long way to help the blind and vis-

ually impaired people to browse information as 

conveniently as ordinary people. Special devices 

have been developed for achieving this long-term 

goal (Linvill and Bliss, 1966; Shinohara et al., 

1998). After the popularity of Braille, many kinds 

of braille display devices have been developed for 

braille reading (Rantala et al., 2009). In addition, 

most research in this area focused on how to im-

prove accessibility of web information for the 

blind people (Salampasis et al., 2005; Mahmud et 

al., 2007; Hadjadj and Burger, 1999). 

3 Preliminaries of Braille Grades 

Braille is a system of raised dots arranged in cells 

and it was developed by Louis Braille in the be-

ginning of the 19th century. Braille letters, com-

mon punctuation marks, and a few symbols are 

displayed as raised 6 dot braille cell patterns read 

by using a fingertip to feel the raised dots. The 

number and arrangement of these raised dots 

within a cell distinguish one character from an-

other. For example, the letters “a”, “b” and “c” are 

displayed as  , respectively. Due to the var-

ying needs of braille readers, there are different 

grades of braille. In this study we adopt grade 2 

braille – EBAE (English Braille America Edition). 

Grade 2 braille was a space-saving alternative to 

grade 1 braille. In grade 2 braille, a cell can repre-

sent a shortened form of a word. Many cell com-

binations have been created to represent common 

words, making this the most popular of the grades 

of braille. There are part-word contractions (e.g. 

“stand” → , “without” → ), which often 

stand in for common suffixes or prefixes, and 

whole-word contractions (e.g. “every” → , 

“knowledge” → ), in which a single cell repre-

sents an entire commonly used word. Words may 

be abbreviated by using a single letter to represent 

the entire word, using a special symbol to precede 

either the first or last letter of the word while trun-

cating the rest of the word, using a double-letter 

contraction such as "bb" or "cc", or removing 

most or all of the vowels in a word in order to 

shorten it. A complex system of styles, rules, and 

usage has been developed for this grade of braille. 

4 System Overview 

The focus of traditional summarization tasks is 

how to improve the content quality of a summary 

with a given length limit, and the content quality 

of a summary is measured by the overlap between 

the summary and reference summaries written by 

annotators. However, document summarization 

for the blind and visually impaired people is dif-

ferent from traditional summarization tasks. Be-

sides the content quality, the length of a braille 

summary is a very important factor to be consid-

ered, because the number of braille cells in a 

braille summary have a direct impact on the blind 

and visually impaired people when they read the 

summary with their fingertips, and more highly 

contracted braille is quicker to read, as shown in 

previous studies such as (Veispak et al., 2012). 

   Given a document set, our new summarization 

task aims to produce a braille summary, which are 

translated from a traditional textual summary with 

a predefined length (usually measured by the 

count of words). The braille summary is required 

to keep the content quality, measured by the con-

tent quality of the textual summary. Moreover, the 

braille length of the summary is required to be as 

short as possible. The length of a braille summary 

is defined as the number of the rectangular braille 

cells in the summary. The shorter the length is, the 

blind and visually impaired people will spend less 

time reading the summary with their fingertips 

and thus the summary is better. For simplicity, we 

define the braille length of a textual summary as 

the length of its translated braille summary. For 

example, the braille length of a text “hello, world!” 

is 9 since the length of its translated braille text 

 is 9.  

A basic solution to the new summarization task 

is first applying an existing summarization algo-

rithm (e.g. the most popular ILP-based method) to 

produce a summary, and then translating the sum-

mary into a braille summary, which is called Ba-

sicSUM. However, the braille translation is not a 
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simple character-to-block conversion process and 

there exist various contractions during the transla-

tion process, as mentioned in the previous section. 

Two content-similar sentences may be translated 

into two braille sentences with totally different 

lengths due to the different word lengths and con-

version contractions.  Therefore, our solution is to 

consider the new factor of braille length of each 

sentence during the summarization process and 

produce a summary with shorter braille length 

while keeping its content quality. In our proposed 

BrailleSUM system, we incorporate the factor of 

braille length into the ILP-based summarization 

framework with a new ILP formulation.  

5 ILP-Based Braille Summarization 

In this study, we adopt the popular ILP-based 

summarization framework for addressing the new 

task of braille summarization. The concept-based 

ILP method for summarization is introduced by 

(Gillick et al., 2008; Gillick and Favre, 2009), and 

its goal is to maximize the sum of the weights of 

the language concepts (i.e. bigrams) that appear in 

the summary. The ILP method is very powerful 

for extractive summarization because it can select 

important sentences and remove redundancy at 

the same time. Formally, the ILP method can be 

represented as below: 

   𝑚𝑎𝑥 ∑ 𝑐𝑏𝑖
𝑏𝑖

|𝐵|
𝑖=1                                     (1) 

subject to: 

    ∑ 𝑙𝑖
𝑁
𝑖=1 𝑠𝑖 ≤  𝐿𝑚𝑎𝑥                                     (2) 

∑ 𝑏𝑖 ≥ |𝐵𝑗|𝑠𝑗 𝑖∈𝐵𝑗
, for j = 1, …, N             (3) 

∑ 𝑠𝑗 ≥ 𝑏𝑖𝑗∈𝑆𝑖
,  for i = 1, …,|B|                 (4) 

 𝑏𝑖 , 𝑠𝑗 ∈ {0,1}, ∀𝑖, 𝑗                                           

where: 

      𝑏𝑖 , 𝑠𝑗  are binary variables that indicate the pres-

ence of bigram i and sentence j, respectively; 

𝑐𝑏𝑖
 is the document frequency of bigram 𝑏𝑖; 

B is the set of unique bigrams; 

𝐵𝑗  is the set of bigrams that sentence j contains. 

𝑆𝑖 is the set of sentences that contain bigram i. 

N is the count of the sentences; 

𝐿𝑚𝑎𝑥 is the maximum word count of the summary, 

which is set to 250 in the experiments; 

𝑙𝑖 is the word count of sentence i. 

Constraint (2) ensures that the total length of 

the selected sentences is limited by the given 

length limit. Inequalities (3)(4) associate the sen-

tences and bigrams. Constraint (3) ensures that se-

lecting a sentence leads to the selection of all the 

bigrams it contains, and constraint (4) ensures that 

selecting a bigram only happens when it is present 

in at least one of the selected sentences.  

                                                 
1 http://libbraille.org/ 

The new objective function for braille summa-

rization consists of two parts: the original part re-

flecting the content quality and the new part re-

flecting the braille length factor. The function is 

presented as below and the constraints are the 

same with (2)(3)(4). 

𝑚𝑎𝑥{(1 − 𝜆) ∑
𝑐𝑏𝑖

𝑏𝑖

𝐶

|𝐵|
𝑖=1 + 𝜆 ∑ 𝑏𝑟𝑎𝑖𝑙𝑙𝑒_𝑟𝑎𝑡𝑖𝑜𝑗𝑠𝑗

𝑁
𝑗=1 }     

(5) 

where 𝐶 = ∑ 𝑐𝑏𝑖𝑖∈𝐵  is a normalization constant to 

make the values of the two parts in the equation 

comparable. 𝜆 ∈ [0, 1] is a combination parame-

ter to reflect the different influences of the two 

parts.  𝑏𝑟𝑎𝑖𝑙𝑙𝑒_𝑟𝑎𝑡𝑖𝑜𝑗 is a new factor to reflect the 

suitability level of sentence j to be selected, which 

is computed as below: 

    𝑏𝑟𝑎𝑖𝑙𝑙𝑒_𝑟𝑎𝑡𝑖𝑜𝑗 =
𝑙𝑗

𝑏𝑙𝑗
                                   (6) 

where 𝑏𝑙𝑗 is the braille length of sentence j, and it 

is defined as the number of braille cells in the cor-

responding braille sentence. 𝑙𝑗 is the word count 

in the original sentence. As mentioned earlier, the 

number of characters and signs in an English sen-

tence is not equal to the number of the braille cells 

in the corresponding braille sentence, since grade 

2 braille is not based on a simple one-to-one con-

version from each character or sign to a braille cell. 

In this study, we adopt the open-source libbraille1 

tool for converting an English sentence into a 

braille sentence, and then get the braille length of 

the sentence. An example English sentence and its 

corresponding braille sentence are shown below: 
Infected feed cannot account for four cases. 

 
We can see that the number of characters and 

signs in the English sentence is 38, while the num-

ber of braille cells in the braille sentence is 26, and 

thus the braille length 𝑏𝑙𝑗  is 26. We can also 

simply know that the word count of the sentence 

𝑙𝑗  is 7. Thus the braille ratio of the sentence is 

7/26=0.269. We can see that if a sentence has a 

larger ratio of its word count to its braille length, 

then it is more suitable to be selected. Particularly, 

for two sentences with the same word count, the 

one with a shorter braille length is preferred. Note 

that since the sum of 𝑙𝑗 for the sentences in a sum-

mary is fixed, the sum of 𝑏𝑙𝑗  for the sentences 

should be as small as possible in order to maxim-

ize the second part in Equation (5). For the new 

objective function in Equation (5), the first part 

ensures the content quality, and the second part 

tries to make the braille length of the summary as 

short as possible. The combination of the two 
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parts can achieve the two goals of our new sum-

marization task at the same time. If the combina-

tion parameter 𝜆 is set to 0, then the formulation 

in (5) is actually the same with (1).   

Finally, we solve the above linear programming 

problem by using the IBM CPLEX optimizer and 

get the English summary according the value of 

each variable 𝑠𝑗.  The corresponding braille sum-

mary can be produced after translation with lib-

braille. 

6 Evaluation 

In this study, we used the multi-document sum-

marization task in DUC2006 for evaluation. 

DUC2006 provided 50 document sets and a sum-

mary with a length limit of 250 words was re-

quired to be created for each document set. Refer-

ence summaries have been provided by NIST an-

notators. For simplicity, the topic description was 

ignored in this study. In the experiments, our pro-

posed BrailleSUM system with the new ILP 

method in Equation (5) was compared with the 

BasicSUM system with the traditional ILP 

method in Equation (1). The parameter 𝜆  in 

BrailleSUM is simply set to 1/4 (i.e. 0.25). 

Since the aim of our system is reducing the 

braille length of a summary without sacrificing its 

content quality, we evaluate the summaries from 

the following two aspects: First, we evaluate the 

content quality of the summaries by measuring the 

content overlap between the summaries and the 

reference summaries with the ROUGE-1.5.5 

toolkit (Lin and Hovy, 2003). In this study, we 

use three ROUGE recall scores in the experi-

mental results: ROUGE-1 (unigram-based), 

ROUGE-2 (bigram-based) and ROUGE-SU4 

(based on skip bigram with a maximum skip 

distance of 4). Second, we compute the braille 

length of each summary by summing the 

braille lengths of all the sentences in the sum-

mary, and then average the lengths across the 50 

document sets.  

The comparison results on summary content 

quality and average summary braille length are 

shown in Table 1. We can see that BrailleSUM 

and BasicSUM can achieve very similar ROUGE 

scores, and the score differences are non-signifi-

cant because the 95% confidence intervals are 

highly overlapped. The scores of BrailleSUM and 

BasicSUM are much higher than that of the NIST 

baseline and the average scores of all participating 

systems (i.e. AverageDUC). More importantly, 

BrailleSUM can produce summaries with much 

shorter braille lengths than BasicSUM, and the 

braille length reduction is significant. The results 

demonstrate that BrailleSUM can produce much 

shorter braille summaries while not sacrificing the 

summaries’ content quality. We can see that the 

incorporation of the braille length factor into the 

ILP framework is very effective for addressing the 

new summarization task. 

In order to show the influence of parameter λ in 

BrailleSUM, we vary λ from 0 to 1, and show the 

curves of ROUGE-1 and ROUGE-2 scores, and 

average braille length in Figures 1-3, respectively. 

We can see that with the increase of λ, the average 

braille length of the produced summaries is de-

creasing steadily. The result can be easily ex-

plained by that a larger λ means more considera-

tion of the braille length factor. We can also see 

from the figures that when λ is less than 0.3, the 

ROUGE scores usually keep steady and do not de-

cline significantly, but when λ is becoming larger, 

the ROUGE scores decline obviously. The results 

demonstrate that the content quality factor and the 

braille length factor need to be balanced with a 

proper value of λ. 

Table 1: Comparison results of summary content quality 

(ROUGE Recall) and average summary braille length. (The 

95% confidence interval for each ROUGE score is reported 

in brackets; △bl means the reduction of average braille length 

over BasicSUM; * means the average braille length reduction 

over BasicSUM is statistically significant with p-

value=2.46975E-18 for t-test.) 
 

 
Figure 1.  ROUGE-1 vs. λ 

 

 
Figure 2.  ROUGE-2 vs. λ 

 

 
Figure 3.  Average braille length vs. λ 

 ROUGE-1 ROUGE-2 ROUGE-

SU4 

Average 

Braille Length 

BrailleSUM 0.39012 

[0.38380-

0.39590] 

0.09010 

[0.08617-

0.09396] 

0.14009 

[0.13665 - 

0.14332] 

932* 

(△bl =103) 

BasicSUM 0.38958 

[0.38273-
0.39586] 

0.09219 

[0.08791-
0.09614] 

0.14011 

[0.13691-
0.14368] 

1035 

AverageDUC 0.37250 0.07391 0.12928 - 

NIST Baseline 0.30217 0.04947 0.09788 - 
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Abstract

This paper presents a novel task, namely
the automatic identification of age-
appropriate ratings of a musical track, or
album, based on its lyrics. Details are
provided regarding the construction of a
dataset of lyrics from 12,242 tracks across
1,798 albums along with age-appropriate
ratings obtained from various web re-
sources, along with results from various
text classification experiments. The best
accuracy of 71.02% for classifying albums
by age groups is achieved by combining
vector space model and psycholinguistic
features.

1 Introduction

Media age-appropriateness can be defined as the
suitability of the consumption of a media item,
e.g. a song, book, film, videogame, etc., by a
child of a given age based on norms that are gen-
erally agreed upon within a society. Such norms
may include behavioral, sociological, psycholog-
ical, and other factors. Whilst we acknowledge
that this is largely a subjective judgment, and that
there may be wide variance between very small
circles that could be considered demographically
homogenous, nevertheless, parents, educators, and
policymakers may find such judgments valuable in
the process of guiding and supervising the media
consumption of children.

This topic is closely related to well-known con-
tent rating schemes such as the MPAA film rating
system1, but whereas such schemes are focused
more on whether a film contains adult material or
not, age-appropriatness can be thought of as being
more nuanced, and takes into consideration more
factors such as educational value.

1http://www.mpaa.org/film-ratings

One popular resource for such ratings is Com-
mon Sense Media2, a website that provides re-
views for various media, with a focus on age ap-
propriateness and learning potential for children.

Whilst acknowledging that such ratings are of
interest to many people, the position of this re-
search is neutral towards the efficacy and utility
of such ratings: we only seek to ask the question
of whether it is possible to automate the identifi-
cation of these age-appropriateness ratings.

This work focuses on song lyrics. There are
many aspects that can contribute to the age-
appropriateness of a song, but we believe that by
far the most dominant factor is its lyrics. Thus, the
approach that is taken to automating the identifi-
cation of age-appropriatness ratings is to treat it as
a supervised text classification task: first, a corpus
of song lyrics along with age-appropriateness rat-
ings is constructed, and subsequently this corpus
is used to train a model based on various textual
features.

To give the reader an idea of this task, Fig-
ures 1 to 3 show a sampler of snippets of lyrics3

from songs along with their age-appropriate rat-
ings according to Common Sense Media. Our
goal is to be able to automatically predict the age-
appropriate rating given the lyrics of a song in such
cases.

Oh, I’m Sammy the snake
And I look like the letter ”S”ssss.
Oh, yes.
I’m all wiggly and curvy,
And I look like the letter ”S”ssss.
I confess.
(age-appropriate rating: 2)

Figure 1: Snippet of “Sammy the Snake”, from
Sesame Street Halloween Collection

2http://www.commonsensemedia.org
3All works are copyrighted to their respective owners.
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Do you want to build a snowman?
Come on, let’s go and play
I never see you anymore
Come out the door
It’s like you’ve gone away
(age-appropriate rating: 5)

Figure 2: Snippet of “Do you want to build a
snowman?”, from Frozen Original Motion Picture
Soundtrack

You can take everything I have
You can break everything I am
Like I’m made of glass
Like I’m made of paper
Go on and try to tear me down
I will be rising from the ground
Like a skyscraper
Like a skyscraper
(age-appropriate rating: 9)

Figure 3: Snippet of “Skyscraper”, from Unbro-
ken - Demi Lovato

In Section 2 we discuss related work, before
presenting our work on constructing the corpus
(Section 3) and carrying out text classification ex-
periments (Section 4). Finally, we present a tenta-
tive summary in Section 5.

2 Related Work

To our knowledge, there is no previous work
that has attempted what is described in this pa-
per. There is some thematically related work,
such as automatic filtering of pornographic con-
tent (Polpinij et al., 2006; Sood et al., 2012; Xiang
et al., 2012; Su et al., 2004), but we believe the na-
ture of the task is significantly different such that
a different approach is required.

However, text or document classification, the
general technique employed in this paper, is a very
common task (Manning et al., 2008). In text clas-
sification, given a document d, the task is to assign
it a class, or label, c, from a fixed, human-defined
set of possible classesC = {c1, c2, . . . , cn}. In or-
der to achieve this, a training set of labelled doc-
uments 〈d, c〉 is given to a learning algorithm to
learn a classifier that maps documents to classes.

Documents are typically represented as a vec-
tor in a high-dimensional space, such as term-
document matrices, or results of dimensional-
ity reduction techniques such as Latent Semantic

Analysis (Landauer et al., 1998), or more recently,
using vector representations of words produced by
neural networks (Pennington et al., 2014).

Text classification has many applications,
among others spam filtering (Androutsopoulos et
al., 2000) and sentiment analysis (Pang and Lee,
2008).

One particular application that could be deemed
of relevance with respect to our work is that of
readability assessment (Pitler and Nenkova, 2008;
Feng et al., 2010), i.e. determining the ease with
which a written text can be understood by a reader,
since age is certainly a dimension along which
readability varies. However, our literature re-
view of this area suggested that the aspects be-
ing considered in readability assessment are suf-
ficiently different from the dimensions that seem
to be most relevant for media age appropriatness
ratings. Following Manurung et al. (2008), we hy-
pothesize that utilizing resources such as the MRC
Psycholinguistic Database (Coltheart, 1981) could
be valuable in determining age appropriateness, in
particular various features such as familiarity, im-
ageability, age-of-acquisition, and concreteness.

3 Corpus Construction

There are three steps in obtaining the data required
for our corpus: obtaining album details and age-
appropriateness ratings, searching for the track-
listing of each album, and obtaining the lyrics for
each song. Each step is carried out by querying a
different website. To achieve this, a Java applica-
tion that utilizes the jsoup library4 was developed.

3.1 Obtaining album details and
age-appropriateness ratings

The Common Sense Media website provides re-
views for various music albums. The reviews con-
sist of a textual review, the age-appropriate rating
for the album, which consists of an integer in the
interval [2,17] or the label ’Not For Kids’, and
metadata about the album such as title, artist, and
genre. Aside from that, there are also other an-
notations such as a quality rating (1-5 stars), and
specific aspectual ratings such as positive mes-
sages, role models, violence, sex, language, con-
sumerism, drinking, drugs & smoking. The web-
site also allows visitors to contribute user ratings
and reviews. In our experiments we only utilize

4http://www.jsoup.org
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the album metadata and integer indicating the age-
appropriate rating.

3.2 Tracklist searching

A tracklist is a list of all the songs, or tracks, con-
tained within an album. From the information pre-
viously obtained from Common Sense Media, the
next step is to obtain the tracklist of each album.
For this we query the MusicBrainz website5, an
open music encyclopedia that makes music meta-
data available to the public. To obtain the tracklists
we employed the advanced query search mode that
allows the use of boolean operators. We tried sev-
eral combinations of queries involving album ti-
tle, singer, and label information, and it turned out
that queries consisting of album title and singer
produced the highest recall. When MusicBrainz
returns multiple results for a given query, we sim-
ply select the first result. For special cases where
the tracks on an album are performed by vari-
ous artists, e.g. a compilation album, or a sound-
track album, it is during this stage that we also ex-
tract information regarding the track-specific artist
name. Finally, we assume that if the album title
contains the string ‘CD Single’ then it only con-
tains one track and we skip forward to the next
step.

3.3 Lyrics searching

For this step, we consulted two websites as the
source reference for song lyrics, songlyrics.com
and lyricsmode.com. The former is first consulted,
and only if it fails to yield any results is the latter
consulted. If a track is not found on both websites,
we discard it from our data set. Similar to the pre-
vious step, we perform a query to obtain results,
however during this step the query consists of the
song title and singer. Once again, given multiple
results we simply choose the first result. In to-
tal, we were able to retrieve lyrics from 12,242
songs across 1,798 albums. Table 1 provides an
overview of the number of tracks and albums ob-
tained per age rating.

4 Experimentation

Since the constructed data set is imbalanced, we
use the SMOTE oversampling technique to over-
come this problem (Chawla et al., 2002). This re-
sults in a balanced dataset with the same number
of samples in each class.

5http://www.musicbrainz.org

Group Age #Tracks #Albums

Toddler
2 696 119
3 130 23

Pre-schooler
4 251 46
5 204 31

Middle childhood 1
6 281 41
7 358 71
8 654 118

Middle childhood 2
9 237 50

10 1,590 253
11 580 105

Young teen
12 1,849 253
13 1,767 242
14 1,453 177

Teenager
15 653 116
16 521 64
17 180 16

Adult >17 838 73
Total 12,242 1,798

Table 1: Statistics of the dataset

Once the dataset is complete, classifiers were
trained and used to carry out experiment scenarios
that vary along several factors. For the class labels,
two scenarios are considered: one where each age
rating from 2 to 17 and ’Not For Kids’ is a sepa-
rate class, and another where the data is clustered
together based on some conventional developmen-
tal age groupings6, i.e. toddlers (ages 2 & 3), pre-
schoolers (ages 4 & 5), middle-childhood 1 (ages
6 to 8), middle-childhood 2 (ages 9 to 11), young-
teens (ages 12 to 14), and teenagers (ages 15 to
17), with an additional category for ages beyond
17 using the ’Not For Kids’ labelled data.

For the instance data, two scenarios are also
considered: one where classification is done on a
per-track basis, and one on a per-album basis (i.e.
where lyrics from all its constituent tracks are con-
catenated).

As for the feature representation, three primary
variations are considered:

Vector Space Model. This is a baseline method
where each word appearing in the dataset becomes
a feature, and a vector representing an instance
consists of the tf.idf values of all words. Addi-
tionally, stemming is first performed on the words,
and information gain-based attribute selection is
applied.

MRC Psycholinguistic data. For this feature

6http://www.cdc.gov/ncbddd/childdevelopment/positiveparenting/
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representation, given each distinct word appear-
ing in the lyrics of a track (or album), a lookup is
performed on the MRC psycholinguistic database,
and if appropriate values exist, they are added to
the tally for the familiarity, imageability, age-of-
acquisition, and concreteness scores. Thus, an in-
stance is represented by a vector with four real val-
ues. The vectors are normalized with respect to the
number of words contributing to the values.

GloVe vectors. GloVe7 is a tool that produces
vector representations of words trained on very
large corpora (Pennington et al., 2014). It is sim-
ilar to dimensionality reduction approaches such
as latent semantic analysis. For this experiment,
the 50-dimensional pre-trained vectors trained on
Wikipedia and Gigaword corpora were used.

When combining feature representations, we
simply concatenate their vectors.

Finally, for the classification itself, the Weka
toolkit is used. Given the ordinal nature of the
class labels, classification is carried out via regres-
sion (Frank et al., 1998), using the M5P-based
classifier (Wang and Witten, 1997). The experi-
ments were run using 4-fold cross validation.

For the initial experiment, only the baseline
VSM feature representation was used, and the
treatment of class labels and instance granularity
was varied. The results can be seen in Table 2,
which shows the average accuracy, i.e. the per-
centage of test instances that were correctly la-
belled, across 4 folds.

Age group Year
Per-track 69.77% 58.58%
Per-album 70.60% 57.15%

Table 2: Initial experiment varying class and in-
stance granularity

For the follow-up experiment, we focus on the
task of classifying at the per-album level of gran-
ularity, as ultimately this is the level at which
the original annotations are obtained. For the
class labels, both age groups and separate ages are
used. The feature representation was varied rang-
ing from VSM, VSM + MRC, VSM + GloVe, and
VSM + GloVe + MRC. The results can be seen in
Table 3.

7http://nlp.stanford.edu/projects/glove/

Features Age group Year
VSM 70.60% 57.15%
VSM + MRC 71.02% 56.80%
VSM + GloVe 70.58% 57.68%
VSM + GloVe + MRC 70.47% 57.85%

Table 3: Results varying feature representations

5 Discussion & Summary

From the initial experiment, it appears that distin-
guishing tracks at the level of granularity of spe-
cific year/age (e.g. “is this song more appropriate
for a 4 or 5 year old?”) is very difficult, as indi-
cated by an accuracy of only 57% to 58%. Bear in
mind, however, that this is a seventeen-way clas-
sification task. Shifting the level of granularity to
that of age groups transforms the task into a more
feasible one, with an accuracy around the 70%
mark. It is surprising to note that the per-track
performance is better than the per-album perfor-
mance when tracks are distinguished by specific
age/year rather than age groups. We had initially
hypothesized that classifying albums would be a
more consistent task given the increased context
and evidence available.

As for the various feature representations, we
note that the addition of the MRC psycholinguis-
tic features of familiarity, imageability, concrete-
ness, and age-of-acquisition does provide a small
accuracy increase in certain cases, as evidenced by
the highest accuracy of 71.02% when classifying
albums by age group using the VSM + MRC fea-
tures. The use of the GloVe vectors gives a slight
contribution in the case of classifying albums by
specific age/year, where the highest accuracy of
57.85% is obtained when combining VSM with
both the MRC and GloVe features.

There are many other features and contexts that
can also be utilized. For instance, given the meta-
data of artist, album, and genre, additional infor-
mation may be extracted from the web, e.g. the
artist’s biography, general-purpose album reviews,
genre tendencies, etc., all of which may contribute
to discerning age-appropriateness. Another set of
features that can be utilized are readability met-
rics, as they are often correlated with the age of
the reader.

To summarize, this paper has introduced a novel
task with clear practical applications in the form of
automatically identifying age-appropriate ratings
of songs and albums based on lyrics. The work
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reported is still in its very early stages, neverthe-
less we believe the findings are of interest to NLP
researchers.

Another question that needs to be addressed
is what sort of competence and agreement hu-
mans achieve on this task. To that end, we plan
to conduct a manual annotation experiment in-
volving several human subjects, themselves varied
across different age groups, and to measure inter-
annotator reliability (Passonneau et al., 2006).
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Abstract

How do we know which grammatical error
correction (GEC) system is best? A num-
ber of metrics have been proposed over
the years, each motivated by weaknesses
of previous metrics; however, the metrics
themselves have not been compared to an
empirical gold standard grounded in hu-
man judgments. We conducted the first
human evaluation of GEC system outputs,
and show that the rankings produced by
metrics such as MaxMatch and I-measure
do not correlate well with this ground
truth. As a step towards better metrics,
we also propose GLEU, a simple variant
of BLEU, modified to account for both the
source and the reference, and show that it
hews much more closely to human judg-
ments.

1 Introduction

Automatic metrics are a critical component for all
tasks in natural language processing. For many
tasks, such as parsing and part-of-speech tagging,
there is a single correct answer, and thus a sin-
gle metric to compute it. For other tasks, such
as machine translation or summarization, there is
no effective limit to the size of the set of correct
answers. For such tasks, metrics proliferate and
compete with each other for the role of the domi-
nant metric. In such cases, an important question
to answer is by what means such metrics should
be compared. That is, what is the metric metric?

The answer is that it should be rooted in the
end-use case for the task under consideration. This
could be some other metric further downstream of
the task, or something simpler like direct human
evaluation. This latter approach is the one often
taken in machine translation; for example, the or-
ganizers of the Workshop on Statistical Machine

Translation have long argued that human evalua-
tion is the ultimate ground truth, and have there-
fore conducted an extensive human evaluation to
produce a system ranking, which is then used to
compare metrics (Bojar et al., 2014).

Unfortunately, for the subjective task of gram-
matical error correction (GEC), no such ground
truth has ever been established. Instead, the rank-
ings produced by new metrics are justified by their
correlation with explicitly-corrected errors in one
or more references, and by appeals to intuition for
the resulting rankings. However, arguably even
more so than for machine translation, the use case
for grammatical error correction is human con-
sumption, and therefore, the ground truth ranking
should be rooted in human judgments.

We establish a ground truth for GEC by con-
ducting a human evaluation and producing a hu-
man ranking of the systems entered into the
CoNLL-2014 Shared Task on GEC. We find that
existing GEC metrics correlate very poorly with
the ranking produced by this human evaluation.
As a step in the direction of better metrics, we de-
velop the Generalized Language Evaluation Un-
derstanding metric (GLEU) inspired by BLEU,
which correlates much better with the human rank-
ing than current GEC metrics.1

2 Grammatical error correction metrics

GEC is often viewed as a matter of correcting iso-
lated grammatical errors, but is much more com-
plicated, nuanced, and subjective than that. As dis-
cussed in Chodorow et al. (2012), there is often
no single correction for an error (e.g., whether to
correct a subject-verb agreement error by chang-
ing the number of the subject or the verb), and er-
rors cover a range of factors including style, reg-
ister, venue, audience, and usage questions, about

1Our code and rankings of the CoNLL-2014 Shared Task
system outputs can be downloaded from github.com/
cnap/gec-ranking/.
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which there can be much disagreement. In addi-
tion, errors are not always errors, as can be seen
from the existence of different style manuals at
newspapers, and questions about the legitimacy of
prescriptivist grammar conventions.

Several automatic metrics have been used for
evaluating GEC systems. F-score, the harmonic
mean of precision and recall, is one of the most
commonly used metrics. It was used as an official
evaluation metric for several shared tasks (Dale et
al., 2012; Dale and Kilgarriff, 2011), where par-
ticipants were asked to detect and correct closed-
class errors (i.e., determiners and prepositions).

One of the issues with F-score is that it fails to
capture phrase-level edits. Thus Dahlmeier and
Ng (2012) proposed the MaxMatch (M2) scorer,
which calculates the F-score over an edit lattice
that captures phrase-level edits. For GEC, M2

is the standard, having been used to rank error
correction systems in the 2013 and 2014 CoNLL
shared tasks, where the error types to be corrected
were not limited to closed-class errors. (Ng et al.,
2013; Ng et al., 2014). M2 was assessed by com-
paring its output against that of the official Help-
ing Our Own (HOO) scorer (Dale and Kilgarriff,
2011), itself based on the GNU wdiff utility.2 In
other words, it was evaluated under the assump-
tion that evaluating GEC can be reduced to check-
ing whether a set of predefined errors have been
changed into a set of associated corrections.

M2 is not without its own issues. First, phrase-
level edits can be gamed because the lattice treats
a long phrase deletion as one edit.3 Second, the
F-score does not capture the difference between
“no change” and “wrong edits” made by systems.
Chodorow et al. (2012) also list other complica-
tions arising from using F-score or M2, depending
on the application of GEC.

Considering these problems, Felice and Briscoe
(2015) proposed a new metric, I-measure, which
is based on accuracy computed by edit distance
between the source, reference, and system output.
Their results are striking: there is a negative corre-
lation between the M2 and I-measure scores (Pear-
son’s r = −0.694).

A difficulty with all these metrics is that they
require detailed annotations of the location and er-

2http://www.gnu.org/s/wdiff/
3For example, when we put a single character ‘X’ as sys-

tem output for each sentence, we obtain P = 0.27, R =
0.29,M2 = 0.28, which would be ranked 6/13 systems in
the 2014 CoNLL shared task.
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Figure 1: Correlation among M2, I-measure, and
BLEU scores: M2 score shows negative correla-
tions to other metrics.

ror type of each correction in response to an ex-
plicit error annotation scheme. Due to the inherent
subjectivity and poor definition of the task, men-
tioned above, it is difficult for annotators to reli-
ably produce these annotations (Bryant and Ng,
2015). However, this requirement can be relin-
quished by treating GEC as a text-to-text rewriting
task and borrowing metrics from machine trans-
lation, as Park and Levy (2011) did with BLEU
(Papineni et al., 2002) and METEOR (Lavie and
Agarwal, 2007).

As we will show in more detail in Section 5,
taking the twelve publicly released system out-
puts from the CoNLL-2014 Shared Task,4 we ac-
tually find a negative correlation between the M2

and BLEU scores (r = −0.772) and positive
correlation between I-measure and BLEU scores
(r = 0.949) (Figure 1). With the earlier-reported
negative correlation between I-measure and M2,
we have a troubling picture: which of these met-
rics is best? Which one actually captures and re-
wards the behaviors we would like our systems
to report? Despite these many proposed metrics,
no prior work has attempted to answer these ques-
tions by comparing them to human judgments. We
propose to answer these questions by producing a
definitive human ranking, against which the rank-
ings of different metrics can be compared.

3 The human ranking

The Workshop on Statistical Machine Translation
(WMT) faces the same question each year as part

4www.comp.nus.edu.sg/˜nlp/conll14st.
html
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Figure 2: The Appraise evaluation system.

of its metrics shared task. Arguing that humans
are the ultimate judge of quality, they gather hu-
man judgments and use them to produce a ranking
of the systems for each task. Machine translation
metrics are then evaluated based on how closely
they match this ranking, using Pearson’s r (prior
to 2014) or Spearman’s ρ (2014).

We borrow their approach to conduct a human
evaluation. We used Appraise (Federmann, 2012)5

to collect pairwise judgments among 14 systems:
the output of 12 systems entered in the CoNLL-14
Shared Task, plus the source and a reference sen-
tence. Appraise presents the judge with the source
and reference sentence6 and asks her to rank four
randomly selected systems from best to worst, ties
allowed (Figure 2). The four-way ranking is trans-
formed into a set of pairwise judgments.

We collected data from three native English
speakers, resulting in 28,146 pairwise system
judgements. Each system’s quality was estimated
and the total ranking was produced on this dataset
using the TrueSkill model (Sakaguchi et al., 2014),
as done in WMT 2014. The annotators had strong
correlations in terms of the total system ranking
and estimated quality, with the reference being
ranked at the top (Table 1).

4 Generalized BLEU

Current metrics for GEC rely on references with
explicitly labeled error annotations, the type and
form of which vary from task to task and can

5github.com/cfedermann/Appraise
6CoNLL-14 has two references. For each sentence, we

randomly chose one to present as the answer and one to be
among the systems to be ranked.

Judges r ρ

1 and 2 0.80 0.69
1 and 3 0.73 0.80
2 and 3 0.81 0.71

Table 1: Pearson’s r and Spearman’s ρ correla-
tions among judges (excluding the reference).

be difficult to convert. Recognizing the inher-
ent ambiguity in the error-correction task, a better
metric might be independent of such an annota-
tion scheme and only require corrected references.
This is the view of GEC as a generic text-rewriting
task, and it is natural to apply standard metrics
from machine translation. However, applied off-
the-shelf, these metrics yield unintuitive results.
For example, BLEU ranks the source sentence as
second place in the CoNLL-2014 shared task.7

The problem is partially due to the subtle but
important difference between machine translation
and monolingual text-rewriting tasks. In MT, an
untranslated word or phrase is almost always an
error, but in grammatical error correction, this is
not the case. Some, but not all, regions of the
source sentence should be changed. This obser-
vation motivates a small change to BLEU that
computes n-gram precisions over the reference but
assigns more weight to n-grams that have been
correctly changed from the source. This revised
metric, Generalized Language Evaluation Under-
standing (GLEU), rewards corrections while also
correctly crediting unchanged source text.

Recall that BLEU(C,R) (Papineni et al., 2002)
is computed as the geometric mean of the modified
precision scores of the test sentences C relative to
the references R, multiplied by a brevity penalty
to control for recall. The precisions are computed
over bags of n-grams derived from the candidate
translation and the references. Each n-gram in the
candidate sentence is “clipped” to the maximum
count of that n-gram in any of the references, en-
suring that no precision is greater than 1.

Similar to I-measure, which calculates a
weighted accuracy of edits, we calculate a
weighted precision of n-grams. In our adaptation,
we modify the precision calculation to assign ex-
tra weight to n-grams present in the candidate that
overlap with the reference but not the source (the
set of n-grams R \S). The precision is also penal-

7Of course, it could be the case that the source sentence
is actually the second best, but our human evaluation (§5)
confirms that this is not the case.
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p′n =

∑
n-gram∈C

CountR\S(n-gram)− λ (CountS\R(n-gram)
)

+ CountR(n-gram)∑
n-gram′∈C′

CountS(n-gram′) +
∑

n-gram∈R\S
CountR\S(n-gram)

(1)

ized by a weighted count of n-grams in the can-
didate that are in the source but not the reference
(false negatives, S \R). For a correction candidate
C with a corresponding source S and reference R,
the modified n-gram precision for GLEU(C,R,S)
is shown in Equation 1. The weight λ determines
by how much incorrectly changed n-grams are pe-
nalized. Equations 2–3 describe how the counts
are collected given a bag of n-grams B.

CountB(n-gram) =
∑

n-gram′∈B

d(n-gram, n-gram′) (2)

d(n-gram, n-gram′) =

{
1 if n-gram = n-gram′

0 otherwise
(3)

BP =

{
1 if c > r

e(1−c/r) if c ≤ r (4)

GLEU (C,R, S) = BP · exp

(
N∑

n=1

wn log p′n

)
(5)

In our experiments, we used N = 4 and wn =
1
N , which are standard parameters for MT, the
same brevity penalty as BLEU (Equation 4), and
report results on λ = {0.1, 0} (GLEU0.1 and
GLEU0, respectively). For this task, not penal-
izing false negatives correlates best with human
judgments, but the weight can be tuned for dif-
ferent tasks and datasets. GLEU can be easily ex-
tended to additionally punish false positives (in-
correctly editing grammatical text) as well.

5 Results

The respective system rankings of each metric are
presented in Table 2. The human ranking is con-
siderably different from those of most of the met-
rics, a fact that is also captured in correlation co-
efficients (Table 3).8 From the human evaluation,
we learn that the source falls near the middle of
the rankings, even though the BLEU, I-measure
and M2 rank it among the best or worst systems.

M2, the metric that has been used for the
CoNLL shared tasks, only correlates moderately
with human rankings, suggesting that it is not an
ideal metric for judging the results of a competi-
tion. Even though I-measure perceptively aims to

8Pearson’s measure assumes the scores are normally dis-
tributed, which may not be true here.

Metric r ρ

GLEU0 0.542 0.555
M2 0.358 0.429

GLEU0.1 0.200 0.412
I-measure -0.051 -0.005

BLEU -0.125 -0.225

Table 3: Correlation of metrics with the human
ranking (excluding the reference), as calculated
with Pearson’s r and Spearman’s ρ.

predict whether an output is better or worse than
the input, it actually has a slight negative correla-
tion with human rankings. GLEU0 is the only met-
ric that strongly correlates with the human ranks,
and performs closest to the range of human-to-
human correlation (0.73 ≤ r ≤ 0.81) GLEU0

correctly ranks four out of five of the top human-
ranked systems at the top of its list, while the other
metrics rank at most three of these systems in the
top five.

All metrics deviate from the human rankings,
which may in part be because automatic metrics
equally weight all error types, when some errors
may be more tolerable to human judges than oth-
ers. For example, inserting a missing token is re-
warded the same by automatic metrics, whether it
is a comma or a verb, while a human would much
more strongly prefer the insertion of the latter. An
example of system outputs with their automatic
scores and human rankings is included in Table 4.

This example illustrates some challenges faced
when using automatic metrics to evaluate GEC.
The automatic metrics weight all corrections
equally and are limited to the gold-standard refer-
ences provided. Both automatic metrics, M2 and
GLEU, prefer the AMU output in this example,
even though it corrects one error and introduces
another. The human judges rank the UMC out-
put as the best for correcting the main verb even
though it ignored the spelling error. The UMC and
NTHU sentences both receive M2 = 0 because
they make none of the gold-standard edits, even
though UMC correctly inserts be into the sentence.
M2 does not recognize this since it is in a differ-
ent location from where the annotators placed it.
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Human BLEU I-measure M2 GLEU0 GLEU0.1

CAMB UFC UFC CUUI CUUI CUUI
AMU source source CAMB AMU AMU
RAC IITB IITB AMU UFC CAMB
CUUI SJTU SJTU POST CAMB UFC
source UMC CUUI UMC source IITB
POST CUUI PKU NTHU IITB SJTU
UFC PKU AMU PKU SJTU PKU
SJTU AMU UMC RAC PKU UMC
IITB IPN IPN SJTU UMC NTHU
PKU NTHU POST UFC NTHU POST
UMC CAMB RAC IPN POST RAC
NTHU RAC CAMB IITB RAC IPN

IPN POST NTHU source IPN source

Table 2: System outputs scored by different metrics, ranked best to worst.

System Sentence Scores
Original
sentence

We may in actual fact communicating with a hoax Facebook acccount of a cyber
friend , which we assume to be real but in reality , it is a fake account .

–

Reference 1 We may in actual fact be communicating with a hoax Facebook acccount of a
cyber friend , which we assume to be real but in reality , it is a fake account .

–

Reference 2 We may in actual fact be communicating with a fake Facebook account of an
online friend , which we assume to be real but , in reality , it is a fake account .

–

UMC We may be in actual fact communicating with a hoax Facebook acccount of a
cyber friend , we assume to be real but in reality , it is a fake account .

GLEU = 0.62
M2 = 0.00

Human rank= 1
AMU We may in actual fact communicating with a hoax Facebook account of a cyber

friend , which we assume to be real but in reality , it is a fake accounts .
GLEU = 0.64

M2 = 0.39
Human rank= 2

NTHU We may of actual fact communicating with a hoax Facebook acccount of a cyber
friend , which we assumed to be real but in reality , it is a fake account .

GLEU = 0.60
M2 = 0.00

Human rank= 4

Table 4: Examples of system output (changes are in bold) and the sentence-level scores assigned by
different metrics.

However, GLEU awards UMC partial credit for
adding the correct unigram, and further assigns all
sentences a real score.

6 Summary

As with other metrics used in natural language
processing tasks, grammatical error correction
metrics must be evaluated against ground truth.
The inherent subjectivity in what constitutes a
grammatical correction, together with the fact that
the use case for grammatically-corrected output is
human readers, argue for grounding metric evalu-
ations in a human evaluation, which we produced
following procedures established by the Workshop
on Statistical Machine Translation. This human
ranking shows us that the metric commonly used
for GEC is not appropriate, since it does not cor-
relate strongly; newly proposed alternatives fare
little better.

Attending to how humans perceive the quality
of the sentences, we developed GLEU by making
a simple variation to an existing metric. GLEU
more closely models human judgments than previ-

ous metrics because it rewards correct edits while
penalizing ungrammatical edits, while capturing
fluency and grammatical constraints by virtue of
using n-grams. While this simple modification to
BLEU accounts for crucial differences in a mono-
lingual setting, fares well, and could take the place
of existing metrics, especially for rapid system de-
velopment as in machine translation, there is still
room for further work as there is a gap in how well
it correlates with human judgments.

Most importantly, the results and data from this
paper establish a method for objectively evaluating
future metric proposals, which is crucial to yearly
incremental improvements to the GEC task.
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Abstract

Languages using Chinese characters
are mostly processed at word level. In-
spired by recent success of deep learn-
ing, we delve deeper to character and
radical levels for Chinese language pro-
cessing. We propose a new deep learn-
ing technique, called “radical embed-
ding”, with justifications based on Chi-
nese linguistics, and validate its fea-
sibility and utility through a set of
three experiments: two in-house stan-
dard experiments on short-text catego-
rization (STC) and Chinese word seg-
mentation (CWS), and one in-field ex-
periment on search ranking. We show
that radical embedding achieves com-
parable, and sometimes even better, re-
sults than competing methods.

1 Introduction

Chinese is one of the oldest written languages
in the world, but it does not attract much at-
tention in top NLP research forums, proba-
bly because of its peculiarities and drastic dif-
ferences from English. There are sentences,
words, characters in Chinese, as illustrated in
Figure 1. The top row is a Chinese sentence,
whose English translation is at the bottom. In
between is the pronunciation of the sentence
in Chinese, called PinYin, which is a form of
Romanian phonetic representation of Chinese,
similar to the International Phonetic Alpha-
bet (IPA) for English. Each squared symbol
is a distinct Chinese character, and there are
no separators between characters calls for Chi-
nese Word Segmentation (CWS) techniques to
group adjacent characters into words.

In most current applications (e.g., catego-
rization and recommendation etc.), Chinese is

English:    It is a nice day today.

Pinyin:      jīn tiān/ tiān qì/ zhēn/ hǎo!

Chinese:   !"#"##"$"#%"#&!

a word a character

Figure 1: Illustration of Chinese Language

represented at the word level. Inspired by re-
cent success of delving deep (Szegedy et al.,
2014; Zhang and LeCun, 2015; Collobert et
al., 2011), an interesting question arises then:
can we delve deeper than word level represen-
tation for better Chinese language processing?
If the answer is yes, how deep can it be done
for fun and for profit?

Intuitively, the answer should be positive.
Nevertheless, each Chinese character is seman-
tically meaningful, thanks to its pictographic
root from ancient Chinese as depicted in Fig-
ure 2. We could delve deeper by decomposing
each character into character radicals.

The right part of Figure 2 illustrates the de-
composition. This Chinese character (mean-
ing “morning”) is decomposed into 4 radicals
that consists of 12 strokes in total. In Chi-
nese linguistics, each Chinese character can be
decomposed into no more than four radicals
based on a set of preset rules1. As depicted by
the pictograms in the right part of Figure 2,
the 1st radical (and the 3rd that happens to
be the same) means “grass”, and the 2nd and
the 4th mean the “sun” and the “moon”, re-
spectively. These four radicals altogether con-
vey the meaning that “the moment when sun
arises from the grass while the moon wanes
away”, which is exactly “morning”. On the
other hand, it is hard to decipher the seman-
tics of strokes, and radicals are the minimum
semantic unit for Chinese. Building deep mod-

1http://en.wikipedia.org/wiki/Wubi_method
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character

pictogram

! " ! #

stroker

Oracle Bone Script 

ca. 1200-1050 BCE

Bronze Script

ca. 800 BCE

Small Seal Script

ca. 220 BCE

Clerical Script

ca. 50 BCE

Regular Script

ca. 200 CE

1
radical

2 3 4

Figure 2: Decomposition of Chinese Character

els from radicals could lead to interesting re-
sults.

In sum, this paper makes the following
three-fold contributions: (1) we propose a
new deep learning technique, called “radical
embedding”, for Chinese language processing
with proper justifications based on Chinese
linguistics; (2) we validate the feasibility and
utility of radical embedding through a set of
three experiments, which include not only two
in-house standard experiments on short-text
categorization (STC) and Chinese word seg-
mentation (CWS), but an in-field experiment
on search ranking as well; (3) this initial suc-
cess of radical embedding could shed some
light on new approaches to better language
processing for Chinese and other languages
alike.

The rest of this paper is organized as fol-
lows. Section 2 presents the radical embed-
ding technique and the accompanying deep
neural network components, which are com-
bined and stacked to solve three application
problems. Section 3 elaborates on the three
applications and reports on the experiment re-
sults. With related work briefly discussed in
Section 4, Section 5 concludes this study. For
clarity, we limit the study to Simplified Chi-
nese in this paper.

2 Deep Networks with Radical
Embeddings

This section presents the radical embedding
technique, and the accompanying deep neu-
ral network components. These components
are combined to solve the three applications
in Section 3.

Word embedding is a popular technique in
NLP (Collobert et al., 2011). It maps words to
vectors of real numbers in a relatively low di-
mensional space. It is shown that the proxim-
ity in this numeric space actually embodies al-
gebraic semantic relationship, such as “Queen

input output

Convolution
f ∈ Rm

k ∈ Rn

y ∈ Rm+n−1

yi =
∑i+n−1

s=i fs · ks−i
0 ≤ i ≤ m− n + 1

Max-pooling x ∈ Rd y = max(x) ∈ R
Lookup
Table

M ∈ Rd×|D|

Ii ∈ R|D|×1 vi = MIi ∈ Rd

Tanh x ∈ Rd

y ∈ Rd

yi = exi−e−xi

exi+e−xi

0 ≤ i ≤ d− 1

Linear x ∈ Rd y = x ∈ Rd

ReLU x ∈ Rd

y ∈ Rd

yi = 0 if xi ≤ 0
yi = xi if xi > 0

0 ≤ i ≤ d− 1

Softmax x ∈ Rd

y ∈ Rd

yi = exi∑d
j=1 e

xj

0 ≤ i ≤ d− 1

Concatenate
xi ∈ Rd

0 ≤ i ≤ n− 1

y = (x0, x1, ..., xn−1)

∈ Rd×n

D: radical vocabulary
M : a matrix containing |D| columns, each column
is a d-dimensional vector represent radical in D.
Ii: a one hot vector stands for the ith radical in vocabulary

Table 1: Neural Network Components

− Woman + Man ≈ King” (Mikolov et al.,
2013). As demonstrated in previous work,
this numeric representation of words has led to
big improvements in many NLP tasks such as
machine translation (Sutskever et al., 2014),
question answering (Iyyer et al., 2014) and
document ranking (Shen et al., 2014).

Radical embedding is similar to word em-
bedding except that the embedding is at rad-
ical level. There are two ways of embedding:
CBOW and skip-gram (Mikolov et al., 2013).
We here use CBOW for radical embedding be-
cause the two methods exhibit few differences,
and CBOW is slightly faster in experiments.
Specifically, a sequence of Chinese characters
is decomposed into a sequence of radicals, to
which CBOW is applied. We use the word2vec
package (Mikolov et al., 2013) to train radical
vectors, and then initialize the lookup table
with these radical vectors.

We list the network components in Table 1,
which are combined and stacked in Figure 3
to solve different problems in Section 3. Each
component is a function, the input column of
Table 1 demonstrates input parameters and
their dimensions of these functions, the out-
put column shows the formulas and outputs.

3 Applications and Experiments

In this section, we explain how to stack the
components in Table 1 to solve three prob-
lems: short-text categorization, Chinese word
segmentation and search ranking, respectively.
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Convolution 1×3

ReLU 256

Lookup Table 30K

Max-Pooling

Short Text

ReLU 256

Linear 128

Softmax 3

LossCal

Input Text

Lookup Table 30K

Concatenate

Tanh 256

ReLU 256

Softmax 2

LossCal

Label 3

Label 2

Query Titlea Titleb

Lookup Table 30K

Convolution 1×3 Convolution 1×3 Convolution 1×3

Linear 100 Linear 100 Linear 100

ReLU 512 ReLU 512 ReLU 512

ReLU 512 ReLU 512 ReLU 512

Linear 256 Linear 256 Linear 256

Max-Pooling Max-Pooling Max-Pooling

LossCal

300

(a) STC (b) CWS (c) Search Ranking

Figure 3: Application Models using Radical Embedding

Accuracy(%)
Competing Methods Deep Neural Networks with Embedding
LR SVM wrd chr rdc wrd+rdc chr+rdc

Finance 93.52 94.06 94.89 95.85 94.75 95.70 95.74
Sports 92.40 92.83 95.10 95.01 92.24 95.87 95.91
Entertainment 91.72 92.24 94.32 94.77 93.21 95.11 94.78

Average 92.55 93.04 94.77 95.21 93.40 95.56 95.46

Table 2: Short Text Categorization Results

3.1 Short-Text Categorization

Figure 3(a) presents the network structure of
the model for short-text categorization, where
the width of each layer is marked out as well.
From the top down, a piece of short text,
e.g., the title of a URL, is fed into the net-
work, which goes through radical decomposi-
tion, table-lookup (i.e., locating the embed-
ding vector corresponding to each radical),
convolution, max pooling, two ReLU layers
and one fully connected layer, all the way to
the final softmax layer, where the loss is cal-
culated against the given label. The stan-
dard back-propagation algorithm is used to
fine tune all the parameters.

The experiment uses the top-3 categories
of the SogouCA and SogouCS news corpus
(Wang et al., 2008). 100,000 samples of each
category are randomly selected for training
and 10,000 for testing. Hyper-parameters
for SVM and LR are selected through cross-
validation. Table 2 presents the accuracy of
different methods, where “wrd”, “chr”, and
“rdc” denote word, character, and radical em-
bedding, respectively. As can be seen, embed-
ding methods outperform competing LR and
SVM algorithms uniformly, and the fusion of
radicals with words and characters improves
both.

3.2 Chinese Word Segmentation

Figure 3(b) presents the CWS network ar-
chitecture. It uses softmax as well because
it essentially classifies whether each charac-
ter should be a segmentation boundary. The
input is firstly decomposed into a radical se-
quence, on which a sliding window of size
3 is applied to extract features, which are
pipelined to downstream levels of the network.

We evaluate the performance using two
standard datasets: PKU and MSR, as pro-
vided by (Emerson, 2005). The PKU dataset
contains 1.1M training words and 104K test
words, and the MSR dataset contains 2.37M
training words and 107K test words. We use
the first 90% sentences for training and the
rest 10% sentences for testing. We compare
radical embedding with the CRF method2,
FNLM (Mansur et al., 2013) and PSA (Zheng
et al., 2013), and present the results in Table
3. Note that no dictionary is used in any of
these algorithms.

We see that the radical embedding (RdE)
method, as the first attempt to segment words
at radical level, actually achieves very compet-
itive results. It outperforms both CRF and
FNLM on both datasets, and is comparable
with PSA.

2http://crfpp.googlecode.com/svn/trunk/doc/
index.html?source=navbar
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Data Approach Precision Recall F1

PKU
CRF 88.1 86.2 87.1
FNLM 87.1 87.9 87.5
PSA 92.8 92.0 92.4
RdE 92.6 92.1 92.3

MSR
CRF 89.3 87.5 88.4
FNLM 92.3 92.2 92.2
PSA 92.9 93.6 93.3
RdE 93.4 93.3 93.3

Table 3: CWS Result Comparison

3.3 Web Search Ranking

Finally, we report on an in-field experiment
with Web search ranking. Web search lever-
ages many kinds of ranking signals, an impor-
tant one of which is the preference signals ex-
tracted from click-through logs. Given a set of
triplets {query, titlea, titleb} discovered from
click logs, where the URL titlea is preferred
to titleb for the query. The goal of learning is
to produce a matching model between query
and title that maximally agrees with the pref-
erence triplets. This learnt matching model is
combined with other signals, e.g., PageRank,
BM25F, etc. in the general ranking. The deep
network model for this task is depicted in Fig-
ure 3(c), where each triplet goes through seven
layers to compute the loss using Equation (1),
where qi, ai, bi are the output vectors for the
query and two titles right before computing
the loss. The calculated loss is then back prop-
agated to fine tune all the parameters.

m∑
i=1

log

(
1 + exp

(
−c ∗

(
qT

i ai

|qi||ai|
− qT

i bi

|qi||bi|

)))
(1)

The evaluation is carried out on a propri-
etary data set provided by a leading Chi-
nese search engine company. It contains
95,640,311 triplets, which involve 14,919,928
distinct queries and 65,125,732 distinct titles.
95,502,506 triplets are used for training, with
the rest 137,805 triplets as testing. It is worth
noting that the testing triplets are hard cases,
mostly involving long queries and short title
texts.

Figure 4 presents the results, where we vary
the amount of training data to see how the per-
formance varies. The x-axis lists the percent-
age of training dataset used, and 100% means
using the entire training dataset, and the y-
axis is the accuracy of the predicted prefer-
ences. We see that word embedding is over-
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Figure 4: Search Ranking Results

all superior to radical embedding, but it is
interesting to see that word embedding sat-
urates using half of the data, while ranking
with radical embedding catches up using the
entire dataset, getting very close in accuracy
(60.78% vs. 60.47%). Because no more data
is available beyond the 95,640,311 triplets, un-
fortunately we cannot tell if radical embed-
ding would eventually surpass word embed-
ding with more data.

4 Related Work

This paper presents the first piece of work on
embedding radicals for fun and for profit, and
we are mostly inspired by fellow researchers
delving deeper in various domains (Zheng et
al., 2013; Zhang and LeCun, 2015; Collobert
et al., 2011; Kim, 2014; Johnson and Zhang,
2014; dos Santos and Gatti, 2014). For exam-
ple, Huang et al.’s work (Huang et al., 2013) on
DSSM uses letter trigram as the basic repre-
sentation, which somehow resembles radicals.
Zhang and Yann’s recent work (Zhang and Le-
Cun, 2015) represents Chinese at PinYin level,
thus taking Chinese as a western language.
Although working at PinYin level might be
a viable approach, using radicals should be
more reasonable from a linguistic point of
view. Nevertheless, PinYin only represents the
pronunciation, which is arguably further away
from semantics than radicals.

5 Conclusion

This study presents the first piece of evidence
on the feasibility and utility of radical embed-
ding for Chinese language processing. It is in-
spired by recent success of delving deep in var-
ious domains, and roots on the rationale that
radicals, as the minimum semantic unit, could
be appropriate for deep learning. We demon-
strate the utility of radical embedding through
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two standard in-house and one in-field exper-
iments. While some promising results are ob-
tained, there are still many problems to be ex-
plored further, e.g., how to leverage the lay-
out code in radical decomposition that is cur-
rently neglected to improve performance. An
even more exciting topic could be to train rad-
ical, character and word embedding in a uni-
fied hierarchical model as they are naturally
hierarchical. In sum, we hope this preliminary
work could shed some light on new approaches
to Chinese language processing and other lan-
guages alike.
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Abstract

We present and evaluate a method for au-
tomatically detecting sentence fragments
in English texts written by non-native
speakers. Our method combines syntactic
parse tree patterns and parts-of-speech in-
formation produced by a tagger to detect
this phenomenon. When evaluated on a
corpus of authentic learner texts, our best
model achieved a precision of 0.84 and a
recall of 0.62, a statistically significant im-
provement over baselines using non-parse
features, as well as a popular grammar
checker.

1 Introduction

It is challenging to detect and correct sentence-
level grammatical errors because it involves au-
tomatic syntactic analysis on noisy, learner sen-
tences. Indeed, none of the teams achieved any re-
call for comma splices in the most recent CoNLL
shared task (Ng et al., 2014). Sentence fragments
fared hardly better: of the thirteen teams, two
scored a recall of 0.25 for correction and another
scored 0.2; the rest did not achieve any recall.

Although parser performance degrades on
learner text (Foster, 2007), parsers can still be use-
ful for identifying grammatical errors if they pro-
duce consistent patterns that indicate these errors.
We show that parse tree patterns, automatically de-
rived from training data, significantly improve sys-
tem performance on detecting sentence fragments.

The rest of the paper is organized as follows.
The next section defines the types of sentence frag-
ments treated in this paper. Section 3 reviews re-
lated work. Section 4 describes the features used
in our model. Section 5 discusses the datasets and
section 6 analyzes the experiment results. Our best
model significantly outperforms baselines that do
not consider syntactic information and a widely
used grammar checker.

2 Sentence Fragment

Every English sentence must have a main or in-
dependent clause. Most linguists require a clause
to contain a subject and a finite verb (Hunt, 1965;
Polio, 1997); otherwise, it is considered a sentence
fragment. Following Bram (1995), we classify
sentence fragments into the following four cate-
gories:

No Subject. Fragments that lack a subject,1

such as “According to the board, is $100.”
No finite verb. Fragments that lack a finite

verb. These may be a nonfinite verb phrase, or
a noun phrase, such as “Mrs. Kern in a show.”

No subject and finite verb. Fragments lacking
both a subject and a finite verb; a typical example
is a prepositional phrase, such as “Up through the
ranks.”

Subordinate clause. These fragments consist
of a stand-alone subordinate clause; the clause
typically begins with a relative pronoun or a sub-
ordinating conjunction, such as “While they take
pains to hide their assets.”

3 Related Work

Using parse tree patterns to judge the grammati-
cality of a sentence is not new. Wong and Dras
(2011) exploited probabilistic context-free gram-
mar (PCFG) rules as features for native language
identification. In addition to production rules, Post
(2011) incorporated parse fragment features com-
puted from derivations of tree substitution gram-
mars. Heilman et al. (2014) used the parse scores
and syntactic features to classify the comprehensi-
bility of learner text, though they made no attempt
to correct the errors.

In current grammatical error correction sys-
tems, parser output is used mainly to locate

1Our evaluation data distinguishes between imperatives
and fragments. Our automatic classifier, however, makes no
such attempt because it would require analysis of the context
and significant real-world knowledge.
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relevant information involved in long-distance
grammatical constructions (Tetreault et al., 2010;
Yoshimoto et al., 2013; Zhang and Wang, 2014).
To the best of our knowledge, the only previous
work that used distinctive parse patterns to detect
specific grammatical errors was concerned with
comma splices. Lee et al. (2014) manually identi-
fied distinctive production rules which, when used
as features in a CRF, significantly improved the
precision and recall in locating comma splices in
learner text. Our method will similarly leverage
parse tree patterns, but with the goal of detecting
sentence fragment errors. More importantly, our
approach is fully automatic, and can thus poten-
tially be broadly applied on other syntax-related
learner errors.

Many commercial systems, such as the Cri-
terion Online Writing Service (Burstein et al.,
2004), Grammarly2, and WhiteSmoke3, give feed-
back about sentence fragments. To the best of our
knowledge, these systems do not explicitly con-
sider parse tree patterns. The grammar checker
embedded in Microsoft Word also gives feedback
about sentence fragments, and will serve as one of
our baselines.

Aside from the CoNLL-2014 shared task (see
Section 1), the only other reported evaluation on
detecting or correcting sentence fragments has
been performed on Microsoft ESL Assistant and
the NTNU Grammar Checker (Chen, 2009). Nei-
ther tool detected any of the sentence fragments in
the test set.

4 Fragment Detection

We cast the problem of sentence fragment detec-
tion as a multiclass classification task. Given a
sentence, the system would mark it either as false,
if it is not a fragment, or as one of the four frag-
ment categories described in Section 2. Rather
than a binary decision on whether a sentence is a
fragment, this categorisation provides more useful
feedback to the learner, since each of the four frag-
ment categories requires its own correction strat-
egy.

4.1 Models

Baseline Models. We trained three baseline mod-
els with features that incorporate an increasing
amount of information about sentence structure.

2www.grammarly.com
3www.whitesmoke.com

The first baseline model was trained on the word
trigrams of the sentences, the second model on
part-of-speech unigrams, and the third on part-of-
speech trigrams. All of these features can be ob-
tained without syntactic parsing. To reduce the
number of features, we filtered out the word tri-
grams that occur less than twenty times and the
POS trigrams that occur less than a hundred times
in the training data.

Parse Models. Our approach uses parse tree
patterns as features. Although any arbitrary sub-
tree structure can potentially serve as a feature, the
children of the root of the tree tend to be most
salient. These nodes usually denote the syntac-
tic constituents of the sentence, and so often re-
veal differences between well-formed sentences
and fragments. Consider the sentence “While Pe-
ter was a good boy.”, shown in the parse tree in
Figure 1. The child of the root of the tree is SBAR.
When the subordinating conjunction “while” is re-
moved to yield a well-formed sentence, the chil-
dren nodes change accordingly into the expected
NP and VP. In contrast, the POS tags, used in the
baseline models, tend to remain the same.

We use the label of the root and the trigrams of
its children nodes as features, similar to Sjöbergh
(2005) and Lin et al. (2011). We also extend our
patterns to grandchildren in some cases. When
analyzing an ill-formed sentence, the parser can
sometimes group words into constituents to which
they do not belong, such as forming a VP that does
not contain a verb. For example, the phrase “up the
hill” was analyzed as a VP in the fragment “A new
challenger up the hill” when in fact the sentence is
missing a verb. To take into account such misanal-
yses, we also include the POS tag of the first child
of all NP, VP, PP, ADVP, and ADJP as features.
The first child is chosen because it often exposes
the parsing error, as is the case with the preposi-
tion “up” in the purported VP “up the hill” in the
above example.

We trained two models for experiments: the
“Parse” model used the parser’s POS tags and the
“Parse + Tag” model used the tags produced by
the POS tagger, which was trained on local fea-
tures and tends to be less affected by ill-formed
sentence structures. For example, in the sentence
“Certainly was not true.”, the word “certainly” was
tagged as a plural noun by the parser while the tag-
ger correctly identified it as an adverb. The NP
construction in the fragment was encoded as “NP-
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NNP” in the “Parse” model and “NP-RB” in the
“Parse + Tag” model. To reduce the number of
features, we filtered out the node trigrams that oc-
cur less than ten times in the training data.

While/IN Peter/NNP was/VBD a/DT good/JJ
boy/NN

FRAG

SBAR

While Peter was a good boy
Peter/NNP was/VBD a/DT good/JJ boy/NN

S

NP

Peter

VP

was a good boy

Figure 1: The POS-tagged words and parse trees
of the fragment “While Peter was a good boy.” and
the well-formed sentence “Peter was a good boy.”.

5 Data

5.1 Training Data

We automatically produced training data from the
New York Times portion of the AQUAINT Cor-
pus of English News Text (Graff, 2002). Similar
to Foster and Andersen (2009), we artificially gen-
erate fragments that correspond to the four cate-
gories (Section 2) by removing different compo-
nents from well-formed English sentences. For
the “no subject” category, the NP immediately un-
der the topmost S was removed. For the “no finite
verb” category, we removed the finite verb in the
VP immediately under the topmost S. For the “no
subject and finite verb” category, we removed both
the NP and the finite verb in the VP immediately
under the topmost S. For the “subordinate clause”
category, we looked for any SBAR in the sentence
that is preceded by a comma and consists of an
IN child followed by an S. The words under the
SBAR are extracted as the fragment. Using this
method, we created a total of 60,000 fragments,
with 15,000 sentences in each category. Together
with the original sentences, our training data con-
sists of 120,000 sentences, half of which are frag-
ments.

5.2 Evaluation Data

Fragment was among the 28 error types introduced
in the CoNLL-2014 shared task (Ng et al., 2014),
but the test set used in the task only contained 16
such errors and is too small for our purpose. In-
stead, we evaluated our system on the NUCLE
corpus (Dahlmeier et al., 2013), which was used
as the training data in the shared task. The error
label “SFrag” in the NUCLE corpus was used for
sentence fragments in a wider sense than the four
categories defined by Bram (1995) (see Section
2). For example, “SFrag” also labels sentences
with stylistic issues, such as those beginning with
“therefore” or “hence”, and sentences that, though
well-formed, should be merged with its neighbor,
such as “In Singapore, we can see that this prob-
lem is occurring. This is so as there is a huge dis-
crepancy in the education levels.”.

We asked two human annotators to classify the
fragments into the different categories described
in Section 2. The kappa was 0.84. Most of
the disagreements involved sentences that con-
tain a semi-colon which, when replaced with a
comma, would become well-formed. One anno-
tator flagged these cases as fragments while the
other did not, considering them to be punctua-
tion errors. Another source of disagreements was
whether a sentence should be considered an im-
perative.

Among the 249 sentences marked as fragments,
86 were classified as one of the Bram (1995) cat-
egories by at least one of the annotators. Most of
the fragments belong to categories “no finite verb”
and “subordinate clause”, accounting for 43.0%
and 31.4% of the cases respectively. The cate-
gories “no subject and finite verb” and “no sub-
ject” both account for 12.8% of the cases. We
left all errors in the sentences in place so as to re-
flect our models’ performance on authentic learner
data.

6 Results

We obtained the POS tags and parse trees of the
sentences in our datasets with the Stanford POS
tagger (Toutanova et al., 2003) and the Stanford
parser (Manning et al., 2014). We used the logis-
tic regression implementation in scikit-learn (Pe-
dregosa et al., 2011) for the maximum entropy
models in our experiments. In addition to the
three baseline models described in Section 4.1,
we computed a fourth baseline using the grammar
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checker in Microsoft Word 2013 by configuring
the checker to capture “Fragments and Run-ons”
and “Fragment - stylistic suggestions”.

6.1 Fragment detection

We first evaluated the systems’ ability to detect
fragments. The fragment categories are disre-
garded in this evaluation and the system’s result
is considered correct even if its output category
does not match the one marked by the annota-
tors. We adopted the metric used in the CoNLL-
2014 shared task, F0.5, which emphasizes preci-
sion twice as much as recall because it is important
to minimize false alarms for language learners4.

The results are shown in Table 1. The “Parse”
model achieved a precision of 0.82, a recall of
0.57 and an F0.5 of 0.75. Using the POS tags
produced by the POS tagger instead of the ones
produced by the parser, the “Parse + Tag” model
achieved a precision of 0.84, a recall of 0.62 and
an F0.5 of 0.78, improving upon the results of the
“Parse” model and significantly outperforming all
four baselines5.

Most of the false negatives are in the “no fi-
nite verb” category and many of them involve
fragments with subordinate clauses, such as “The
increased of longevity as the elderly are leading
longer lives.”. In order to create parse trees that fit
those of complete sentences, the parser tended to
interpret the verbs in the subordinate clauses (e.g.,
“are” in the above example) as the fragments’
main verbs, causing the errors. For false positives,
the errors were caused mostly by the presence of
introductory phrases. The parse trees of these sen-
tences usually contain a PP or an ADVP immedi-
ately under the root, which is a pattern shared by
fragments. The system also flagged some impera-
tive sentences as fragments.

6.2 Fragment classification

For the fragments that the system has correctly
identified, we evaluated their classification accu-
racy6. Table 2 shows the confusion matrix of the
system’s results.

The largest source of error is the system
wrongly classifying ‘no finite verb” and “subor-

4F0.5 is calculated by F0.5 = (1 + 0.52) x R x P / (R + 0.52

x P) for recall R and precision P.
5At p ≤ 0.002 by McNemar’s test.
6The grammar checker in Microsoft Word is excluded

from this evaluation because it does not provide any correc-
tion suggestions for fragments.

System P/R/F0.5
Word Trigrams 0.20/0.03/0.09
POS Tags 0.56/0.33/0.47
POS Trigrams 0.55/0.42/0.52
MS Word 0.80/0.15/0.43
Parse 0.82/0.57/0.75
Parse + Tag 0.84/0.62/0.78

Table 1: System precision, recall and F-measure
for fragment detection.

dinate clause” fragments as “no subject and finite
verb”. Most of these involve fragments that begin
with a prepositional phrase, such as “for example”,
followed by a comma. The annotators treated the
prepositional phrase as introductory phrase and fo-
cused on the segment after the comma. In con-
trast, based on the parser output, the system often
treated the entire fragment as a PP, which should
then belong to “no subject and finite verb”. It can
be argued that both interpretations are valid. For
instance, the fragment “For example, apples and
oranges” can be corrected as “For example, apples
and oranges are fruits” or, alternatively, “I love
fruits, for example, apples and oranges”.

→ Expected S V SV C↓ System
S [6] 4 1 1
V 0 [12] 2 0

SV 0 5 [2] 11
C 0 0 0 [9]

Table 2: The confusion matrix of the system for
classifying the detected sentence fragments into
the categories no subject (S), no finite verb (V), no
subject and finite verb (SV) and subordinate clause
(C).

7 Conclusion

We have presented a data-driven method for auto-
matically detecting sentence fragments. We have
shown that our method, which uses syntactic parse
tree patterns and POS tagger output, significantly
improves accuracy in detecting fragments in En-
glish learner texts.
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Abstract

Alcohol abuse may lead to unsociable
behavior such as crime, drunk driving,
or privacy leaks. We introduce auto-
matic drunk-texting prediction as the task
of identifying whether a text was writ-
ten when under the influence of alcohol.
We experiment with tweets labeled using
hashtags as distant supervision. Our clas-
sifiers use a set of N-gram and stylistic fea-
tures to detect drunk tweets. Our observa-
tions present the first quantitative evidence
that text contains signals that can be ex-
ploited to detect drunk-texting.

1 Introduction

The ubiquity of communication devices has made
social media highly accessible. The content on
these media reflects a user’s day-to-day activities.
This includes content created under the influence
of alcohol. In popular culture, this has been re-
ferred to as ‘drunk-texting’1. In this paper, we in-
troduce automatic ‘drunk-texting prediction’ as a
computational task. Given a tweet, the goal is to
automatically identify if it was written by a drunk
user. We refer to tweets written under the influ-
ence of alcohol as ‘drunk tweets’, and the opposite
as ‘sober tweets’.

A key challenge is to obtain an annotated
dataset. We use hashtag-based supervision so that
the authors of the tweets mention if they were
drunk at the time of posting a tweet. We create
three datasets by using different strategies that are
related to the use of hashtags. We then present
SVM-based classifiers that use N-gram and stylis-
tic features such as capitalisation, spelling errors,
etc. Through our experiments, we make subtle
points related to: (a) the performance of our fea-
tures, (b) how our approach compares against

1Source: http://www.urbandictionary.com

human ability to detect drunk-texting, (c) most
discriminative stylistic features, and (d) an error
analysis that points to future work. To the best of
our knowledge, this is a first study that shows the
feasibility of text-based analysis for drunk-texting
prediction.

2 Motivation

Past studies show the relation between alcohol
abuse and unsociable behaviour such as aggres-
sion (Bushman and Cooper, 1990), crime (Carpen-
ter, 2007), suicide attempts (Merrill et al., 1992),
drunk driving (Loomis and West, 1958), and risky
sexual behaviour (Bryan et al., 2005). Merrill et
al. (1992) state that “those responsible for assess-
ing cases of attempted suicide should be adept at
detecting alcohol misuse”. Thus, a drunk-texting
prediction system can be used to identify individ-
uals susceptible to these behaviours, or for inves-
tigative purposes after an incident.

Drunk-texting may also cause regret. Mail
Goggles2 prompts a user to solve math questions
before sending an email on weekend evenings.
Some Android applications3 avoid drunk-texting
by blocking outgoing texts at the click of a button.
However, to the best of our knowledge, these tools
require a user command to begin blocking. An on-
going text-based analysis will be more helpful, es-
pecially since it offers a more natural setting by
monitoring stream of social media text and not ex-
plicitly seeking user input. Thus, automatic drunk-
texting prediction will improve systems aimed to
avoid regrettable drunk-texting. To the best of
our knowledge, ours is the first study that does a
quantitative analysis, in terms of prediction of the
drunk state by using textual clues.

Several studies have studied linguistic traits
associated with emotion expression and mental

2http://gmailblog.blogspot.in/2008/10/new-in-labs-stop-
sending-mail-you-later.html

3https://play.google.com/store/apps/details?id=com.oopsapp
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health issues, suicidal nature, criminal status, etc.
(Pennebaker, 1993; Pennebaker, 1997). NLP tech-
niques have been used in the past to address so-
cial safety and mental health issues (Resnik et al.,
2013).

3 Definition and Challenges

Drunk-texting prediction is the task of classifying
a text as drunk or sober. For example, a tweet
‘Feeling buzzed. Can’t remember how the evening
went’ must be predicted as ‘drunk’, whereas, ‘Re-
turned from work late today, the traffic was bad’
must be predicted as ‘sober’. The challenges are:

1. More than topic categorisation: Drunk-
texting prediction is similar to topic cate-
gorisation (that is, classification of docu-
ments into a set of categories such as ‘news’,
‘sports’, etc.). However, Borrill et al. (1987)
show that alcohol abusers have more pro-
nounced emotions, specifically, anger. In this
respect, drunk-texting prediction lies at the
confluence of topic categorisation and emo-
tion classification.

2. Identification of labeled examples: It is dif-
ficult to obtain a set of sober tweets. The
ideal label can be possibly given only by the
author. For example, whether a tweet such
as ‘I am feeling lonely tonight’ is a drunk
tweet is ambiguous. This is similar to sar-
casm expressed as an exaggeration (for ex-
ample, ‘This is the best film ever!), where the
context beyond the text needs to be consid-
ered.

3. Precision/Recall trade-off: The goal that a
drunk-texting prediction system must chase
depends on the application. An application
that identifies potential crimes must work
with high precision, since the target popula-
tion to be monitored will be large. On the
other hand, when being used to avoid regret-
table drunk-texting, a prediction system must
produce high recall in order to ensure that a
drunk message does not pass through.

4 Dataset Creation

We use hashtag-based supervision to create our
datasets, similar to tasks like emotion classifica-
tion (Purver and Battersby, 2012). The tweets are
downloaded using Twitter API (https://dev.

twitter.com/). We remove non-Unicode
characters, and eliminate tweets that contain hy-
perlinks4 and also tweets that are shorter than 6
words in length. Finally, hashtags used to indi-
cate drunk or sober tweets are removed so that
they provide labels, but do not act as features. The
dataset is available on request. As a result, we cre-
ate three datasets, each using a different strategy
for sober tweets, as follows:

Figure 1: Word cloud for drunk tweets

1. Dataset 1 (2435 drunk, 762 sober): We col-
lect tweets that are marked as drunk and
sober, using hashtags. Tweets containing
hashtags #drunk, #drank and #imdrunk are
considered to be drunk tweets, while those
with #notdrunk, #imnotdrunk and #sober are
considered to be sober tweets.

2. Dataset 2 (2435 drunk, 5644 sober): The
drunk tweets are downloaded using drunk
hashtags, as above. The list of users who cre-
ated these tweets is extracted. For the nega-
tive class, we download tweets by these users,
which do not contain the hashtags that corre-
spond to drunk tweets.

3. Dataset H (193 drunk, 317 sober): A sepa-
rate dataset is created where drunk tweets are
downloaded using drunk hashtags, as above.
The set of sober tweets is collected using both
the approaches above. The resultant is the
held-out test set Dataset-H that contains no
tweets in common with Datasets 1 and 2.

The drunk tweets for Datasets 1 and 2 are
the same. Figure 1 shows a word-cloud for
these drunk tweets (with stop words and forms
of the word ‘drunk’ removed), created using

4This is a rigid criterion, but we observe that tweets with
hyperlinks are likely to be promotional in nature.
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Feature Description
N-gram Features

Unigram & Bigram (Presence) Boolean features indicating unigrams and bigrams
Unigram & Bigram (Count) Real-valued features indicating unigrams and bigrams

Stylistic Features
LDA unigrams (Presence/Count) Boolean & real-valued features indicating unigrams from LDA
POS Ratio Ratios of nouns, adjectives, adverbs in the tweet
#Named Entity Mentions Number of named entity mentions
#Discourse Connectors Number of discourse connectors
Spelling errors Boolean feature indicating presence of spelling mistakes
Repeated characters Boolean feature indicating whether a character is repeated three

times consecutively
Capitalisation Number of capital letters in the tweet
Length Number of words
Emoticon (Presence/Count) Boolean & real-valued features indicating unigrams
Sentiment Ratio Positive and negative word ratios

Table 1: Our Feature Set for Drunk-texting Prediction

WordItOut5. The size of a word indicates its fre-
quency. In addition to topical words such as ‘bar’,
‘bottle’ and ‘wine’, the word-cloud shows senti-
ment words such as ‘love’ or ‘damn’, along with
profane words.

Heuristics other than these hashtags could have
been used for dataset creation. For example,
timestamps were a good option to account for time
at which a tweet was posted. However, this could
not be used because user’s local times was not
available, since very few users had geolocation en-
abled.

5 Feature Design

The complete set of features is shown in Table 1.
There are two sets of features: (a) N-gram fea-
tures, and (b) Stylistic features. We use unigrams
and bigrams as N-gram features- considering both
presence and count.

Table 1 shows the complete set of stylistic fea-
tures of our prediction system. POS ratios are a set
of features that record the proportion of each POS
tag in the dataset (for example, the proportion of
nouns/adjectives, etc.). The POS tags and named
entity mentions are obtained from NLTK (Bird,
2006). Discourse connectors are identified based
on a manually created list. Spelling errors are
identified using a spell checker by Aby (2014).
The repeated characters feature captures a situ-
ation in which a word contains a letter that is
repeated three or more times, as in the case of

5www.worditout.com

happpy. Since drunk-texting is often associated
with emotional expression, we also incorporate a
set of sentiment-based features. These features in-
clude: count/presence of emoticons and sentiment
ratio. Sentiment ratio is the proportion of posi-
tive and negative words in the tweet. To deter-
mine positive and negative words, we use the sen-
timent lexicon in Wilson et al. (2005). To identify
a more refined set of words that correspond to the
two classes, we also estimated 20 topics for the
dataset by estimating an LDA model (Blei et al.,
2003). We then consider top 10 words per topic,
for both classes. This results in 400 LDA-specific
unigrams that are then used as features.

A
(%)

NP
(%)

PP
(%)

NR
(%)

PR
(%)

Dataset 1
N-gram 85.5 72.8 88.8 63.4 92.5
Stylistic 75.6 32.5 76.2 3.2 98.6
All 85.4 71.9 89.1 64.6 91.9

Dataset 2
N-gram 77.9 82.3 65.5 87.2 56.5
Stylistic 70.3 70.8 56.7 97.9 6.01
All 78.1 82.6 65.3 86.9 57.5

Table 2: Performance of our features on Datasets
1 and 2

606



6 Evaluation

Using the two sets of features, we train SVM clas-
sifiers (Chang and Lin, 2011)6. We show the
five-fold cross-validation performance of our fea-
tures on Datasets 1 and 2, in Section 6.1, and on
Dataset H in Section 6.2. Section 6.3 presents an
error analysis. Accuracy, positive/negative preci-
sion and positive/negative recall are shown as A,
PP/NP and PR/NR respectively. ‘Drunk’ forms
the positive class, while ‘Sober’ forms the nega-
tive class.

Top features
# Dataset 1 Dataset 2
1 POS NOUN Spelling error
2 Capitalization LDA drinking
3 Spelling error POS NOUN
4 POS PREPOSITION Length
5 Length LDA tonight
6 LDA Llife Sentiment Ratio
7 POS VERB Char repeat
8 LDA today LDA today
9 POS ADV LDA drunken
10 Sentiment Ratio LDA lmao

Table 3: Top stylistic features for Datasets 1 and 2
obtained using Chi-squared test-based ranking

6.1 Performance for Datasets 1 and 2

Table 2 shows the performance for five-fold cross-
validation for Datasets 1 and 2. In case of Dataset
1, we observe that N-gram features achieve an ac-
curacy of 85.5%. We see that our stylistic features
alone exhibit degraded performance, with an ac-
curacy of 75.6%, in the case of Dataset 1. Ta-
ble 3 shows top stylistic features, when trained
on the two datasets. Spelling errors, POS ratios
for nouns (POS NOUN)7, length and sentiment
ratios appear in both lists, in addition to LDA-
based unigrams. However, negative recall reduces
to a mere 3.2%. This degradation implies that
our features capture a subset of drunk tweets and
that there are properties of drunk tweets that may
be more subtle. When both N-gram and stylis-
tic features are used, there is negligible improve-
ment. The accuracy for Dataset 2 increases from

6We also repeated all experiments for Naı̈ve Bayes. They
do not perform as well as SVM, and have poor recall.

7POS ratios for nouns, adjectives and adverbs were nearly
similar in drunk and sober tweets - with the maximum differ-
ence being 0.03%

77.9% to 78.1%. Precision/Recall metrics do not
change significantly either. The best accuracy of
our classifier is 78.1% for all features, and 75.6%
for stylistic features. This shows that text-based
clues can indeed be used for drunk-texting predic-
tion.

A1 A2 A3
A1 - 0.42 0.36
A2 0.42 - 0.30
A3 0.36 0.30 -

Table 4: Cohen’s Kappa for three annotators (A1-
A3)

A
(%)

NP
(%)

PP
(%)

NR
(%)

PR
(%)

Annotators 68.8 71.7 61.7 83.9 43.5
Training
Dataset

Our classifiers

Dataset 1 47.3 70 40 26 81
Dataset 2 64 70 53 72 50

Table 5: Performance of human evaluators and our
classifiers (trained on all features), for Dataset-H
as the test set

6.2 Performance for Held-out Dataset H

Using held-out dataset H, we evaluate how our
system performs in comparison to humans. Three
annotators, A1-A3, mark each tweet in the Dataset
H as drunk or sober. Table 4 shows a moderate
agreement between our annotators (for example,
it is 0.42 for A1 and A2). Table 5 compares our
classifier with humans. Our human annotators per-
form the task with an average accuracy of 68.8%,
while our classifier (with all features) trained on
Dataset 2 reaches 64%. The classifier trained on
Dataset 2 is better than which is trained on Dataset
1.

6.3 Error Analysis

Some categories of errors that occur are:

1. Incorrect hashtag supervision: The tweet
‘Can’t believe I lost my bag last night, lit-
erally had everything in! Thanks god the
bar man found it’ was marked with‘#Drunk’.
However, this tweet is not likely to be a drunk
tweet, but describes a drunk episode in retro-
spective. Our classifier predicts it as sober.
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2. Seemingly sober tweets: Human annotators
as well as our classifier could not identify
whether ‘Will you take her on a date? But
really she does like you’ was drunk, although
the author of the tweet had marked it so.
This example also highlights the difficulty of
drunk-texting prediction.

3. Pragmatic difficulty: The tweet ‘National
dress of Ireland is one’s one vomit.. my fam-
ily is lovely’ was correctly identified by our
human annotators as a drunk tweet. This
tweet contains an element of humour and
topic change, but our classifier could not cap-
ture it.

7 Conclusion & Future Work

In this paper, we introduce automatic drunk-
texting prediction as the task of predicting a tweet
as drunk or sober. First, we justify the need for
drunk-texting prediction as means of identifying
risky social behavior arising out of alcohol abuse,
and the need to build tools that avoid privacy leaks
due to drunk-texting. We then highlight the chal-
lenges of drunk-texting prediction: one of the
challenges is selection of negative examples (sober
tweets). Using hashtag-based supervision, we cre-
ate three datasets annotated with drunk or sober
labels. We then present SVM-based classifiers
which use two sets of features: N-gram and stylis-
tic features. Our drunk prediction system obtains
a best accuracy of 78.1%. We observe that our
stylistic features add negligible value to N-gram
features. We use our heldout dataset to compare
how our system performs against human annota-
tors. While human annotators achieve an accuracy
of 68.8%, our system reaches reasonably close and
performs with a best accuracy of 64%.

Our analysis of the task and experimental find-
ings make a case for drunk-texting prediction as a
useful and feasible NLP application.
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Abstract
Recurrent neural network (RNN) is recog-
nized as a powerful language model (LM).
We investigate deeper into its performance
portfolio, which performs well on frequent
grammatical patterns but much less so on
less frequent terms. Such portfolio is ex-
pected and desirable in applications like
autocomplete, but is less useful in social
content analysis where many creative, un-
expected usages occur (e.g., URL inser-
tion). We adapt a generic RNN model and
show that, with variational training cor-
pora and epoch unfolding, the model im-
proves its performance for the task of URL
insertion suggestions.

1 Introduction

Just 135 most frequent words account for 50% text
of the entire Brown corpus (Francis and Kucera,
1979). But over 44% (22,010 out of 49,815) of
Brown’s vocabulary are hapax legomena1. The in-
tricate relationship between vocabulary words and
their utterance frequency results in some impor-
tant advancements in natural language process-
ing (NLP). For example, tf-idf results from rules
applied to word frequencies in global and local
context (Manning and Schütze, 1999). A com-
mon preprocessing step for tf-idf is filtering rare
words, which is usually justified for two reasons.
First, low frequency cutoff promises computa-
tional speedup due to Zipf’s law (1935). Second,
many believe that most NLP and machine learning
algorithms demand repetitive patterns and reoc-
currences, which are by definition missing in low
frequency words.

1.1 Should infrequent words be filtered?
Infrequent words have high probability of becom-
ing frequent as we consider them in a larger con-

1Words appear only once in corpus.

text (e.g., Ishmael, the protagonist name in Moby-
Dick, appears merely once in the novel’s dialogues
but is a highly referenced word in the discus-
sions/critiques around the novel). In many modern
NLP applications, context grows constantly: fresh
news articles come out on CNN and New York
Times everyday; conversations on Twitter are up-
dated in real time. In processing online social me-
dia text, it would seem premature to filter words
simply due to infrequency, the kind of infrequency
that can be eliminated by taking a larger corpus
available from the same source.

To further undermine the conventional justifica-
tion, computational speedup is attenuated in RNN-
based LMs (compared to n-gram LMs), thanks to
modern GPU architecture. We train a large RNN-
LSTM (long short-term memory unit) (Hochreiter
and Schmidhuber, 1997) model as our LM on two
versions of Jane Austen’s complete works. Deal-
ing with 33% less vocabulary in the filtered ver-
sion, the model only gains marginally on running
time or memory usage. In Table 1.1, “Filtered cor-
pus” filters out all the hapax legomena in “Full cor-
pus”.

Full corpus Filtered corpus
corpus length 756,273 751,325
vocab. size 15,125 10,177
running time 1,446 sec 1,224 sec
GPU memory 959 MB 804 MB

Table 1: Filtered corpus gains little in running time
or memory usage when using a RNN LM.

Since RNN LMs suffer only small penalty in
keeping the full corpus, can we take advantage of
this situation to improve the LM?

1.2 Improving performance portfolio of LM

One improvement is LM’s performance portfo-
lio. A LM’s performance is usually quantified as
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perplexity, which is exponentialized negative log-
likelihood in predictions.

For our notation, let VX denote the vocabu-
lary of words that appear in a text corpus X =
{x1, x2, . . .}. Given a sequence x1, x2, . . . , xm−1,
where each x ∈ VX , the LM predicts the next
in sequence, xm ∈ VX , as a probability distribu-
tion over the entire vocabulary V (its prediction
denoted as p). If vm ∈ VX is the true token at
position m, the model’s perplexity at index m is
quantified as exp(− ln(p[vm])). The training goal
is to minimize average perplexity across X .

However, a deeper look into perplexity beyond
corpus-wide average reveals interesting findings.
Using the same model setting as for Table 1.1,
Figure 1 illustrates the relationship between word-
level perplexity and its frequency in corpus. In
general, the less frequent a word appears, the
more unpredictable it becomes. In Table 1.2, the
trained model achieves an average perplexity of
78 on filtered corpus. But also shown in Table
1.2, many common words register with perplexity
over 1,000, which means they are practically un-
predictable. More details are summarized in Table
1.2. The LM achieves exceptionally low perplex-
ity on words such as <apostr.>s (’s, the posses-
sive case), <comma> (, the comma). And these
tokens’ high frequencies in corpus have promised
the model’s average performance. Meanwhile, the
LM has bafflingly high perplexity on common-
place words such as read and considering.
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Figure 1: (best viewed in color) We look at word
level perplexity with respect to the word frequency
in corpus. The less frequent a word appears, the
more unpredictable it becomes.

2 Methodology

We describe a novel approach of constructing and
utilizing pre-training corpus that eventually reduce
LMs’s high perplexity on rare tokens. The stan-
dard way to utilize a pre-training corpus W is to

Token Freq. Perplexity 1 Perplexity 2
corpus avg. N/A 78 82
<apostr.>s 4,443 1.1 1.1
of 23,046 4.9 5.0
<comma> 57,552 5.2 5.1
been 3,452 5.4 5.7
read 224 3,658 3,999
quiet 108 6,807 6,090
returning 89 7,764 6,268
considering 80 9,573 8,451

Table 2: A close look at RNN-LSTM’s perplexity
at word level. “Perplexity 1” is model perplexity
based on filtered corpus (c.f., Table 1.1) and “Per-
plexity 2” is based on full corpus.

first train the model on W then fine-tune it on tar-
get corpus X . Thanks to availability of text, W
can be orders of magnitude larger than X , which
makes pre-training on W challenging.

A more efficient way to utilizeW is to construct
variational corpora based on X and W . In the fol-
lowing subsections, we first describe how replace-
ment tokens are selected from a probability mass
function (pmf), which is built from W ; then ex-
plain how the variational corpora variates with re-
placement tokens through epochs.

2.1 Learn from pre-training corpus

One way to alleviate the impact from infrequent
vocabulary is to expose the model to a larger
and overarching pre-training corpus (Erhan et al.,
2010), if available. Let W be a larger corpus
than X and assume that VX ⊆ VW . For exam-
ple, if X is Herman Melville’s Moby-Dick, W
can be Melville’s complete works. Further, we
use VX,1 to denote the subset of VX that are ha-
pax legonema in corpus X; similarly, VX,n (for
n = 2, 3, . . .) denotes the subset of VX that occur
n times in X . Many hapax legomena in VX,1 are
likely to become more frequent tokens in VW .

Suppose that x ∈ VX,1. Denoted by
ReplacePMF(W,VW , x) in Algorithm 1, we rep-
resent x as a probability mass function (pmf) over
{x′1, x′2, . . .}, where each x′i is selected from VW ∩
VX,n for n > 1 using one of the two methods be-
low. For illustration purpose, suppose the hapax
legomenon, x, in question is matrimonial:

1) e.g., matrimony. Words that have very high
literal similarity with x. We measure literal sim-
ilarity using Jaro-Winkler measure, which is an
empirical, weighted measure based on string edit
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distance. We set the measure threshold very high
(> 0.93), which minimizes false positives as well
as captures many hapax legonema due to adv./adj.,
pl./singular (e.g, -y/-ily and -y/-ies).

2) e.g., marital Words that are direct syno/hypo-
nyms to x in the WordNet (Miller, 1995).

getContextAround(x′) function in Algorithm 1
simply extracts symmetric context words from
both left and right sides of x′. Although the in-
vestigated LM only uses left context in predicting
word x′, context right of x′ is still useful informa-
tion in general. Given a context word c right of x′,
the LM can learn x′’s predictability over c, which
is beneficial to the corpus-wide perplexity reduc-
tion.

In practice, we select no more than 5 substitu-
tion words from each method above. The prob-
ability mass on each x′i is proportional to its fre-
quency in W and then normalized by softmax:
pmf(x′i) = freq(x′i)/

∑5
k=1 freq(x′k). This sub-

stitution can help LMs learn better because we re-
place the un-trainable VX,1 tokens with tokens that
can be trained from the larger corpus W . In con-
cept, it is like explaining a new word to school kids
by defining it using vocabulary words in their ex-
isting knowledge.

2.2 Unfold training epochs

Epoch in machine learning terminology usually
means a complete pass of the training dataset.
many iterative algorithms take dozens of epochs
on the same training data as they update the
model’s weights with smaller and smaller adjust-
ments through the epochs.

We refer to the the training process proposed
in Figure 2 (b) as “variational corpora”. Com-
pared to the traditional structure in Figure 2 (a),
the main advantage of using variational corpora is
the ability to freely adjust the corpus at each ver-
sion. Effectively, we unfold the training into sep-
arate epochs. This allows us to gradually incorpo-
rate the replacement tokens without severely dis-
torting the target corpus X , which is the learning
goal. In addition, variational corpora can further
regularize the training of LM in batch mode (Sri-
vastava et al., 2014).

Algorithm 1 constructs variational corpora
X(s) at epoch s. Assuming X(s+ 1) being avail-
able, Algorithm 1 appends snippets, which are
sampled fromW , intoX(s) for the sth epoch. For
the last epoch s = S, X(S) = X . As the epoch

model&

same&text&&
corpus&

Load&in&batch&

update&
parameters&

epoch&1&

model&

same&text&&
corpus&

update&
parameters&

epoch&2&

&…….&

Load&in&batch&

epoch&…&

same&text&&
corpus&

Load&in&batch&

(a)

model&

text&&
corpus&S1&

randomized&batch&

update&
parameters&

epoch&1&

&…….&

epoch&…&

model&

text&&
corpus&S2&

randomized&batch&

update&
parameters&

epoch&2&

text&&
corpus&S3&

randomized&batch&

overwrite&
VX,n&weights&

overwrite&
VX,n&weights&

(b)

Figure 2: Unfold the training process in units of
epochs. (a) Typical flow where model parses the
same corpus at each epoch. (b) The proposed
training architecture with variational corpora to in-
corporate the substitution algorithm.

Algorithm 1: Randomly constructs varia-
tional corpus at epoch s.
Input: W,X, VW , VX , VX,n, n, as defined in

Section 1.2&2.1,
s, S, current and max epoch number.
Output: X(s), variational corpus at epoch s

1 X(s)← X(s+ 1)
2 for each x ∈ VX,n do
3 p← ReplacePMF(W,VW , x)
4 i← Dirichlet(p).generate()
5 while i← X .getNextIdxOf(x) do
6 x′ ← i.draw()
7 c←W .getContextAround(x′)
8 c.substr(

[
0, uniformRnd

(
0, S−s

S |c|
)]

)
9 X(s).append(c)

10 return X(s)

number increases, fewer and shorter snippets are
appended, which alleviates training stress. By fix-
ing an n value, the algorithm applies to all words
in VX,n.

In addition, as a regularization trick (Mikolov
et al., 2013; Pascanu et al., 2013) , we use a uni-
form random context window (line 8) when inject-
ing snippets from W into X(s).
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Freq. nofilter 3filter ptw vc
10 28,542 (668.1) 23,649 (641.2) 27,986 (1,067.2) 20,994 (950.9)
100 1,180.3 (21.7) 1,158.2 (19.2) 735.8 (29.8) 755.8 (31.5)
1K 163.2 (12.9) 163.9 (12.2) 138.5 (14.1) 137.7 (15.7)
5K 47.5 (3.3) 47.2 (3.1) 40.2 (3.2) 40.2 (3.3)
10K 16.4 (0.31) 16.7 (0.29) 14.4 (0.42) 14.1 (0.41)
40K 7.6 (0.09) 7.6 (0.09) 7.0 (0.09) 7.0 (0.10)
all tokens 82.1 (2.0) 77.9 (1.9) 68.6 (2.1) 68.9 (2.1)
GPU memory 959MB 783MB 1.8GB 971MB
running time 1,446 sec 1,181 sec 9,061 sec 6,960 sec

Table 3: Experiments compare average perplexity produced by the proposed variational corpora approach
and other methods on a same test corpus. Bold fonts indicate best. “Freq.” indicates the average corpus-
frequency (e.g., Freq.=1K means that words in this group, on average, appear 1,000 times in corpus).
Perplexity numbers are averaged over 5 runs with standard deviation reported in parentheses. GPU
memory usage and running time are also reported for each method.

Err. type Context before True token LM prediction
False neg. <unk>, via, <unk>, banana, muffin, chocolate, URL to a cooking blog recipe
False neg. sewing, ideas, <unk>, inspiring, picture, on, URL to favim.com esty
False neg. nike, sports, fashion, <unk>, women, <unk>, URL to nelly.com macy
False pos. new, york, yankees, endless, summer, tee, <unk>, shop <url>
False pos. take, a, rest, from, your, #harrodssale, shopping <url>

Table 4: False positives and false negatives predicted by the model in the Pinterest application. The
context words preceding to token in questions are provided for easier analysis3.

3 Experiments

3.1 Perplexity reduction
We validate our method in Table 3 by showing per-
plexity reduction on infrequent words. We split
Jane Austen’s novels (0.7 million words) as tar-
get corpus X and test corpus, and her contem-
poraries’ novels4 as pre-training corpus W (2.7
million words). In Table 3, nofilter is the unfil-
tered corpus; 3filter replaces all tokens in VX,3

by<unk>; ptw performs naive pre-training onW
then onX; vc performs training with the proposed
variational corpora. Our LM implements the RNN
training as described in (Zaremba et al., 2014). Ta-
ble 3 also illustrates the GPU memory usage and
running time of the compared methods and shows
that vc is more efficient than simply ptw.

vc has the best performance on low-frequency
words by some margin. ptw is the best on frequent
words because of its access to a large pre-training

3Favim.com is a website for sharing crafts, creativity
ideas. Esty.com is a e-commerce website for trading hand-
made crafts. Nelly.com is Scandinavia’s largest online fash-
ion store. Macy’s a US-based department store. Harrod’s is a
luxury department store in London.

4Dickens and the Bronte sisters

corpus. But somewhat to our surprise, ptw per-
forms badly on low-frequency words, which we
reckon is due to the rare words introduced in W :
while pre-training on W helps reduce perplexity
of words in VX,1 but also introduces additional ha-
pax legomena in VW,1 \ VX,1.
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Figure 3: Accuracy of suggested URL positions
across different categories of Pinterest captions.

3.2 Locating URLs in Pinterest captions

Beyond evaluations in Table 3. We apply our
method to locate URLs in over 400,000 Pinterest
captions. Unlike Facebook, Twitter, Pinterest is
not a “social hub” but rather an interest-discovery
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site (Linder et al., 2014; Zhong et al., 2014). To
maximally preserve user experience, postings on
Pinterest embed URLs in a natural, nonintrusive
manner and a very small portion of the posts con-
tain URLs.

In Figure 3, we ask the LM to suggest a po-
sition for the URL in the context and verify the
suggest with test data in each category. For ex-
ample, the model is presented with a sequence
of tokens: find, more, top, dresses, at, afford-
able, prices,<punctuation>, visit, and is asked
to predict if the next token is an URL link. In
the given example, plausible tokens after visit can
be either <http://macys.com> or nearest, Macy,
<apostr.>s, store. The proposed vc mechanism
outperforms others in 5 of the 6 categories. In
Figure 3, accuracy is measured as the percentage
of correctly suggested positions. Any prediction
next to or close to the correct position is counted
as incorrect.

In Table 4, we list some of the false nega-
tive and false positive errors made by the LM.
Many URLs on Pinterest are e-commerce URLs
and the vendors often also have physical stores. So
in predicting such e-commerce URLs, some mis-
takes are “excusable” because the LM is confused
whether the upcoming token should be an URL
(web store) or the brand name (physical store)
(e.g, http://macys.com vs. Macy’s).

4 Related work

Recurrent neural network (RNN) is a type of neu-
ral sequence model that have high capacity across
various sequence tasks such as language model-
ing (Bengio et al., 2000), machine translation (Liu
et al., 2014), speech recognition (Graves et al.,
2013). Like other neural network models (e.g.,
feed-forward), RNNs can be trained using back-
propogation algorithm (Sutskever et al., 2011).
Recently, the authors in (Zaremba et al., 2014)
successfully apply dropout, an effective regular-
ization method for feed-forward neural networks,
to RNNs and achieve strong empirical improve-
ments.

Reducing perplexity on text corpus is proba-
bly the most demonstrated benchmark for mod-
ern language models (n-gram based and neural
models alike) (Chelba et al., 2013; Church et al.,
2007; Goodman and Gao, 2000; Gao and Zhang,
2002). Based on Zipf’s law (Zipf, 1935), a fil-
tered corpus greatly reduces the vocabulary size

and computation complexity. Recently, a rigor-
ous study (Kobayashi, 2014) looks at how per-
plexity can be manipulated by simply supplying
the model with the same corpus reduced to vary-
ing degrees. Kobayashi (2014) describes his study
from a macro point of view (i.e., the overall corpus
level perplexity). In this work, we present, at word
level, the correlation between perplexity and word
frequency.

Token rarity is a long-standing issue with n-
gram language models (Manning and Schütze,
1999). Katz smoothing (Katz, 1987) and Kneser-
Ney based smoothing methods (Teh, 2006) are
well known techniques for addressing sparsity in
n-gram models. However, they are not directly
used to resolve unigram sparsity.

Using word morphology information is another
way of dealing with rare tokens (Botha and Blun-
som, 2014). By decomposing words into mor-
phemes, the authors in (Botha and Blunsom, 2014)
are able to learn representations on the morpheme
level and therefore scale the language modeling to
unseen words as long as they are made of previ-
ously seen morphemes. Shown in their work, this
technique works with character-based language in
addition to English.
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6 Conclusions & future work

This paper investigates the performance portfolio
of popular neural language models. We propose
a variational training scheme that has the advan-
tage of a large pre-training corpus but without us-
ing as much computing resources. On low fre-
quency words, our proposed scheme also outper-
forms naive pre-training.

In the future, we want to incorporate WordNet
knowledge to further reduce perplexity on infre-
quent words.
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Abstract

Expert finding on social media benefits
both individuals and commercial services.
In this paper, we exploit a 5-level tree rep-
resentation to model the posts on social
media and cast the expert finding prob-
lem to the matching problem between the
learned user tree and domain tree. We
enhance the traditional approximate tree
matching algorithm and incorporate word
embeddings to improve the matching re-
sult. The experiments conducted on Sina
Microblog demonstrate the effectiveness
of our work.

1 Introduction

Expert finding has been arousing great interests
among social media researchers after its success-
ful applications on traditional media like academic
publications. As already observed, social media
users tend to follow others for professional inter-
ests and knowledge (Ramage et al, 2010). This
builds the basis for mining expertise and find-
ing experts on social media, which facilitates the
services of user recommendation and question-
answering, etc.

Despite the demand to access expertise, the
challenges of identifying domain experts on social
media exist. Social media often contains plenty of
noises such as the tags with which users describe
themselves. Noises impose the inherent drawback
on the feature-based learning methods (Krishna-
murthy et al, 2008). Data imbalance and sparse-
ness also limits the performance of the promis-
ing latent semantic analysis methods such as the
LDA-like topic models (Blei et al, 2003; Ram-
age et al, 2009). When some topics co-occur
more frequently than others, the strict assump-
tion of these topic models cannot be met and con-
sequently many nonsensical topics will be gen-
erated (Zhao and Jiang, 2011; Pal et al, 2011;

Quercia et al, 2012). Furthermore, not as simple
as celebrities, the definition of experts introduces
additional difficulties. Experts cannot be simply
judged by the number of followers. The knowl-
edge conveyed in what they say is essential. This
leads to the failures of the network-based meth-
ods (Java et al, 2007; Weng et al, 2010; Pal et al,
2011).

The challenges mentioned above inherently
come from insufficient representations. They mo-
tivate us to propose a more flexible domain expert
finding framework to explore effective representa-
tions that are able to tackle the complexity lies in
the social media data. The basic idea is as follows.
Experts talk about the professional knowledge in
their posts and these posts are supposed to contain
more domain knowledge than the posts from the
other ordinary users. We determine whether or not
users are experts on specific domains by matching
their professional knowledge and domain knowl-
edge. The key is how to capture such information
for both users and domains with the appropriate
representation, which is, in our view, the reason
why most of previous work fails.

To go beyond the feature-based classification
methods and the vector representation inference in
expert finding, a potential solution is to incorpo-
rate the semantic information for knowledge mod-
eling. We achieve this goal by representing user
posts using a hierarchical tree structure to capture
correlations among words and topics. To tackle
the data sparseness problem, we apply word em-
beddings to tree-nodes to further enhance seman-
tic representation and to support semantic match-
ing. Expert finding is then cast to the problem of
determining the edit distance between the user tree
and the domain tree, which is computed with an
approximate tree matching algorithm.

The main contribution of this work is to inte-
grate the hierarchical tree representation and struc-
ture matching together to profile users’ and do-
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mains’ knowledge. Using such trees allows us to
flexibly incorporate more information into the data
representation, such as the relations between la-
tent topics and the semantic similarities between
words. The experiments conducted on Sina Mi-
croblog demonstrate the effectiveness of the pro-
posed framework and the corresponding methods.

2 Knowledge Representation
with Hierarchical Tree

To capture correlations between topics, Pachinko
Allocation Model (PAM) (Li and McCallum,
2006) uses a directed acyclic graph (DAG) with
leaves representing individual words in the vocab-
ulary and each interior node representing a corre-
lation among its children. In particular, multi-level
PAM is capable of revealing interconnection be-
tween sub-level nodes by inferencing correspond-
ing super-level nodes. It is a desired property that
enables us to capture hierarchical relations among
both inner-level and inter-level nodes and thereby
enhance the representation of users’ posts. More
important, the inter-level hierarchy benefits to dis-
tribute words from super-level generic topics to
sub-level specific topics.

In this work, we exploit a 5-level PAM to learn
the hierarchical knowledge representation for each
individual user and domain. As shown in Figure 1,
the 5-level hierarchy consists of one root topic r, I
topics at the second level X = {x1, x2, . . . , xI},
J topics at the third level Y = {y1, y2, . . . , yJ},
K topics at the fourth level Z = {z1, z2, . . . , zK}
and words at the bottom. The whole hierarchy is
fully connected.
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Figure 1: 5-level PAM

Each topic in 5-level PAM is associated with
a distribution g(·) over its children. In general,
g(·) can be any distribution over discrete vari-
ables. Here, we use a set of Dirichlet com-

pound multinomial distributions associated with
the root, the second-level and the third-level top-
ics. These distributions are {gr(α)}, {gi(γi)}I

i=1

and {gi(δj)}J
j=1. They are used to sample the

multinomial distributions θx, θy and θz over the
corresponding sub-level topics. As to the fourth-
level topics, we use a fixed multinomial distribu-
tion {ϕzk

}K
k=1 sampled once for the whole data

from a single Dirichlet distribution g(β). Figure 2
illustrates the plate notation of this 5-level PAM.
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Figure 2: Plate Notation of 5-level PAM

By integrating out the sampled multinomial dis-
tributions θx, θy, θz , ϕ and summing over x,y, z,
we obtain the Gibbs sampling distribution for
word w = wm in document d as:

P (xw=xi, yw=yj , zw=zk|D,x−w,y−w, z−w, α, γ, δ, β)

∝P (w, xw, yw, zw|D−w,x−w,y−w, z−w, α, γ, δ, β)

=
P (D,x,y, z|α, γ, δ, β)

P (D−w,x−w,y−w, z−w|α, γ, δ, β)

=
n

(d)
i + αi

n
(d)
r +

∑K
i′=1 αi′

× n
(d)
ij + γij

n
(d)
i +

∑L
j′=1 γij′

× n
(d)
jk + δjk

n
(d)
j +

∑J
k′=1 δjk′

× n
(d)
km + βm

nk +
∑n

m′=1 βm′

where n
(d)
r is the number of occurrences of the

root r in document d, which is equivalent to the
number of tokens in the document. n

(d)
i , n

(d)
ij and

n
(d)
jk are respectively the number of occurrences of

xi, yj and zk sampled from their upper-level top-
ics. nk is the number of occurrences of the fourth-
level topics zk in the whole dataset and nkm is the
number of occurrences of word wm in zk. −w
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indicates all observations or topic assignments ex-
cept word w.

With the fixed Dirichlet parameter α for the root
and β as the prior, what’s left is to estimate (learn
from data) γ and δ to capture the different corre-
lations among topics. To avoid the use of iterative
methods which are often computationally exten-
sive, instead we approximate these two Dirichlet
parameters using the moment matching algorithm,
the same as (Minka, 2000; Casella and Berger,
2001; Shafiei and Milios, 2006). With smoothing
techniques, in each iteration of Gibbs sampling we
update:

meanij =
1

Ni + 1
×
(∑

d

n
(d)
ij

n
(d)
i

+
1

L

)

varij =
1

Ni + 1
×
(∑

d

(
n

(d)
ij

n
(d)
i

−meanij)
2

+ (
1

L
−meanij)

2

)
mij =

meanij × (1−meanij)

varij
− 1

γij =
meanij

exp
(∑

j log(mij)

L−1

)
where Ni is the number of documents with non-
zero counts of super-level topic xi. Parameter es-
timation of δ is the same as γ.

3 Expert Finding
with Approximate Tree Matching

Once the hierarchical representations of users and
domains have been generated, we can determine
whether or not a user is an expert on a domain
based on their matching degree, which is a prob-
lem analogous to tree-to-tree correction using edit
distance (Selkow, 1977; Shasha and Zhang, 1990;
Wagner, 1975; Wagner and Fischer, 1974; Zhang
and Shasha, 1989). Given two trees T1 and T2,
a typical edit distance-based correction approach
is to transform T1 to T2 with a sequence of edit-
ing operations S =< s1, s2, . . . , sk > such that
sk (sk−1 (. . . (s1 (T1)) . . .)) = T2. Each operation
is assigned a cost σ(si) that represents the diffi-
culty of making that operation. By summing up
the costs of all necessary operations, the total cost
σ(S) =

∑k
i=1 σ(si) defines the matching degree

of T1 and T2.
We assume that an expert could only master a

part of professional domain knowledge rather than
the whole and thereby revise a traditional approxi-
mate tree matching algorithm (Zhang and Shasha,

1989) to calculate the matching degree. This as-
sumption especially makes sense when the domain
we are concerned with is quite general. Let Td and
Tu denote the learned domain knowledge tree and
the user knowledge tree, we match Td to the re-
maining trees resulting from cutting all possible
sets of disjoint sub-trees of Tu. We specifically
penalize no cost if some sub-trees are missing in
matching process. We define two types of oper-
ations. The substitution operations edit the dis-
similar words on tree-nodes, while the insertion
and deletion operations perform on tree-structures.
Expert finding is then to calculate the minimum
matching cost on Td and Tu. If the cost is smaller
than an empirically defined threshold λd, we iden-
tify user u as an expert on domain d.

To alleviate the sparseness problem caused by
direct letter-to-letter matching in tree-node map-
ping, we embed word embeddings (Bengio et al,
2003) into the substitution operation. We apply
the word2vec skip-gram model (Mikolov et al,
2013(a); Mikolov et al, 2013(b)) to encode each
word in our vocabulary with a probability vec-
tor and directly use the similarity generated by
word2vec as the tree-node similarity. The costs
of insertion and deletion operations will be ex-
plained in Section 4. Actually all these three costs
can be defined in accordance with applicant needs.
In brief, by combining both hierarchical represen-
tation of tree-structure and word embeddings of
tree-nodes, we achieve our goal to enhance seman-
tics.

4 Experiments

The experiments are conducted on 5 domains (i.e.,
Beauty Blogger, Beauty Doctor, Parenting, E-
Commerce, and Data Science) in Sina Microblog,
a Twitter-like microblog in China. To learn PAM,
we manually select 40 users in each domain
from the official expert lists released by Sina Mi-
croblog1, and crawl all of their posts. In average,
there are 113,924 posts in each domain. Notice
that the expert lists are not of high quality. We
have to do manual verification to filter out noises.
For evaluation, we select another 80 users in each
domain from the expert list, with 40 verified as ex-
perts and the other 40 as non-experts.

Since there is no state-of-art Chinese word em-
beddings publicly available, we use another Sina

1http://d.weibo.com/1087030002_558_3_
2014#
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Table 1: Classification Results

Approach
Precision Recall F-Score

Macro Micro Macro Micro Macro Micro
unigram 0.380 0.484 0.615 0.380 0.469 0.432

bigram 0.435 0.537 0.615 0.435 0.507 0.486
LDA 0.430 0.473 0.540 0.430 0.474 0.451

Twitter-LDA 0.675 0.763 0.680 0.430 0.675 0.451
PAM 0.720 0.818 0.720 0.720 0.714 0.769

Microblog dataset provided by pennyliang2,
which contains 25 million posts and nearly 100
million tokens in total, to learn the word embed-
dings of 50-dimension. We pre-process the data
with the Rwordseg segmentation package3 and
discard nonsensical words with the pullword
package4.

When learning 5-level PAM, we set fixed pa-
rameters α = 0.25, β = 0.25 and from top to down,
I = 10, J = 20, K = 20 for the number of second,
third and fourth levels of topics, respectively. And
we initialize γ and δ with 0.25. For tree match-
ing, we define the cost of tree-node substitution
operation between word a and b as Eq (1). The
costs of insertion and deletion operations for tree-
structure matching are MAX VALUE. Here we set
MAX VALUE as 100 experimentally. The thresh-
old λd used to determine the expert is set to be 12
times of MAX VALUE.

σ(a→b)=


0, a = b

sim (a, b) , sim(a, b) >0.55
MAX VALUE, otherwise

(1)

We compare PAM with n-gram (unigram and
bigram), LDA (Blei et al, 2003) and Twitter-
LDA (Zhao and Jiang, 2011). We set β in LDA
and Twitter-LDA to 0.01, γ in Twiitter-LDA to 20.
For α, we adopt the commonly used 50/T heuris-
tics where the number of topics T = 50. To be fair,
we all use the tokens after pullword preprocessing
as the input to extract features for classification.
Following Zhao and Jiang (2011), we train four
ℓ2-regularized logistic regression classifiers using
the LIBLINEAR package (Fan et al, 2008) on the
top 200 unigrams and bigrams ranked according to
Chi-squared and 100-dimensional topic vectors in-
duced by LDA and Twitter-LDA, respectively. We

2http://chuansong.me/account/pennyjob
3http://jliblog.com/app/rwordseg
4http://pullword.com/

also compare our model with/without word em-
beddings to demonstrate the effectiveness of this
semantic enhancement. The results are presented
in Table 1.

In general, LDA, Twitter-LDA and PAM
outperform unigram and bigram, showing the
strength of latent semantic modeling. Within the
first two models, Twitter-LDA yields better preci-
sions than LDA because of its ability to overcome
the difficulty of modeling short posts on social me-
dia. It designs an additional background word dis-
tribution to remove the noisy words and assumes
that a single post can belong to several topics.

Our 5-level PAM gains observed improvement
over Twitter-LDA. We attribute this to the ad-
vantages of tree representations over vector fea-
ture representations, the effective approximate tree
matching algorithm and the complementary word
embeddings. As mentioned in Section 1, LDA
and other topic models like Twitter-LDA share the
same assumption that each topic should be inde-
pendent with each other. This assumption however
is too strict for the real world data. Our tree-like 5-
level PAM relaxes such assumption with two addi-
tional layers of super-topics modeled with Dirich-
let compound multinomial distributions, which is
the key to capture topic correlations. Furthermore,
by allowing partial matching and incorporating
word embeddings, we successfully overcome the
sparseness problem.

While macro-averages give equal weight to
each domain, micro-averages give equal weight
to each user. The significant difference between
the macro- and micro- scores in Table 1 is caused
by the different nature of 5 domains. In fact, the
posts of experts on the domain E-Commerce are
to some extent noisy and contain lots of words
irrelevant to the domain knowledge. Meanwhile,
the posts of experts on the domain Data Science
are less distinguishable. The higher micro-recalls
of PAM demonstrate its generalization ability over
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LDA and Twitter-LDA.

5 Conclusion

In this paper, we formulate the expert finding task
as a tree matching problem with the hierarchical
knowledge representation. The experimental re-
sults demonstrate the advantage of using 5-level
PAM and semantic enhancement against n-gram
models and LDA-like models. To further improve
the work, we will incorporate more information to
enrich the hierarchical representation in the future.
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Abstract

Online social networks nowadays have the
worldwide prosperity, as they have revo-
lutionized the way for people to discover,
to share, and to diffuse information. So-
cial networks are powerful, yet they still
have Achilles Heel: extreme data sparsi-
ty. Individual posting documents, (e.g., a
microblog less than 140 characters), seem
to be too sparse to make a difference un-
der various scenarios, while in fact they
are quite different. We propose to tackle
this specific weakness of social networks
by smoothing the posting document lan-
guage model based on social regulariza-
tion. We formulate an optimization frame-
work with a social regularizer. Experimen-
tal results on the Twitter dataset validate
the effectiveness and efficiency of our pro-
posed model.

1 Introduction

Along with Web 2.0 online social networks have
revolutionized the way for people to discover, to
share and to propagate information via peer-to-
peer interactions (Kwak et al., 2010). Although
powerful as social networks are, they still suffer
from a severe weakness: extreme sparsity. Due
to the special characteristics of real-time propa-
gation, the postings on social networks are either
officially limited within a limit length (140 char-
acters on Twitter), or generally quite short due to
user preference. Given limited text data sampling,
a language model estimation usually encounters
with zero count problem when facing with data s-
parsity, which is not reliable. Therefore, sparsity
is regarded as the Achilles Heel of social networks
and now we aim at tackling the bottleneck (Yan et
al., 2015).

Statistical language models have attracted much
attention in research communities. Till now much

Figure 1: 2 different sources to smooth document
language models: texts (colored in yellow) and so-
cial contacts (colored in blue). Each piece of texts
is authored by a particular social network user.

work on language model smoothing has been in-
vestigated based on textual characteristics (Laffer-
ty and Zhai, 2001; Yan et al., 2013; Liu and Croft,
2004; Tao et al., 2006; Lavrenko and Croft, 2001;
Song and Croft, 1999). However, for social net-
works, texts are actually associated with users (as
illustrated in Figure 1). We propose that social fac-
tors should be utilized as an augmentation to better
smooth language models.

Here we propose an optimization framework
with regularization for language model smoothing
on social networks, using both textual informa-
tion and the social structure. We believe the social
factor is fundamental to smooth language models
on social networks. Our framework optimizes the
smoothed language model to be closer to social
neighbors in the online network, while avoid de-
viating too much from the original user language
models. Our contributions are as follows:
• We have proposed a balanced language mod-

el smoothing framework with optimization, using
text information with social structure as a regular-
izer;
• We have investigated an effective and efficien-

t strategy to model the social information among
social network users.
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We evaluate the effect of our proposed language
model smoothing model using datasets from Twit-
ter. Experimental results show that language mod-
el smoothing with social regularization is effec-
tive and efficient in terms of intrinsic evaluation
by perplexity and running time: we show that the
Achilles Heel of social networks could be to some
extent tackled.

The rest of the paper is organized as follows.
We start by reviewing previous works. Then we
introduce the language model smoothing with so-
cial regularization and its optimization. We de-
scribe the experiments and evaluation in the next
section and finally draw the conclusions.

2 Related Work

Language models have been paid high attention
to during recent years (Ponte and Croft, 1998).
Many different ways of language modeling have
been proposed to solve different tasks. Better es-
timation of query language models (Lafferty and
Zhai, 2001; Lavrenko and Croft, 2001) and more
accurate estimation of document language mod-
els (Liu and Croft, 2004; Tao et al., 2006) have
long been proved to be of great significance in
information retrieval and text mining, etc. Lan-
guage models are typically implemented based on
retrieval models, e.g., text weighting and normal-
ization (Zhai and Lafferty, 2001), but with more
elegant mathematical and statistical foundations
(Song and Croft, 1999).

There is one problem for language models.
Given limited data sampling, a language mod-
el estimation sometimes encounters with the zero
count problem: the maximum likelihood estima-
tor would assign unseen terms a zero probability,
which is not reliable. Language model enrichment
is proposed to address this problem, and has been
demonstrated to be of great significance (Zhai and
Lafferty, 2001; Lafferty and Zhai, 2001).

There are many ways to enrich the original lan-
guage model. The information of background cor-
pus has been incorporated using linear combina-
tion (Ponte and Croft, 1998; Zhai and Lafferty,
2001). In contrast to the simple strategy which s-
mooths all documents with the same background,
recently corpus structures have been exploited for
more accurate smoothing. The basic idea is to s-
mooth a document language model with the docu-
ments similar to the document under consideration
through clustering (Liu and Croft, 2004; Tao et al.,

2006). Position information has also been used to
enrich language model smoothing (Zhao and Yun,
2009; Lv and Zhai, 2009) and has been used in the
combination of both enrichment of position and
semantic (Yan et al., 2013). Beyond the semantic
and/or position related smoothing intuitions, doc-
ument structure based language model smoothing
is another direction to investigate (Duan and Zhai,
2011). Mei et al. have proposed to smooth lan-
guage model utilizing structural adjacency (2008).
None of these methods incorporates social factors
in language model smoothing.

There is a study in (Lin et al., 2011) which s-
mooths document language models of tweets for
topic tracking in online text streams. Basically, it
applies general smoothing strategies (e.g., Jelinek-
Mercer, Dirichlet, Absolute Discounting, etc.) on
the specific tracking task. Social information is
incorporated into a factor graph model as features
(Huang et al., 2014; Yan et al., 2015). These fac-
tor graph model based methods are less efficien-
t so as to better handle cold-start situations with
little training data. In contrast with these work-
s, we have proposed a language model smoothing
framework which incorporates social factors as a
regularizer. According to the experimental result-
s, our method is effective with social information
and as well much more efficient.

3 Smoothing with Social Regularization

To motivate the model, we briefly discuss the in-
tuitions of proposed language model smoothing.
Generally, given a non-smoothed document lan-
guage model P (w|d), which indicates a word dis-
tribution for a term w in document d, we attempt
to generate a smoothed language model P (w|d+)
that could better estimate the text contents of a
document d as d+ to avoid zero probabilities for
those words not seen in d. Arbitrary assignmen-
t of pseudo word counts such as add-λ to every
unseen words once was a major improvement for
language model smoothing (Chen and Goodman,
1996). However, the purpose of smoothing is to
estimate language model more accurately. One of
the most useful resources to smooth is the docu-
ments similar to d: documents with the larger tex-
tual similarity indicate the smaller distance and the
better smoothing effects.

Moreover, the author information of the posting
documents is easily accessible on social networks.
We hence have information related to social fac-
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tors, which could be used to better estimate the
document language model. Through our obser-
vation, people are more likely to inherit language
habits and usages from their contacts on the social
networks. This social factor is important and u-
nique for language model smoothing on social net-
works. It should be not surprising that smoothing
with social factors will be a better optimum. Pre-
viously, the pure similarity based smoothing with-
out social factors indicates equal distance for every
document from any user on the networks, which is
not a fair assumption and presumably leads to a
weaker performance.

Yet, with the objective of textual similarity
based smoothing with social factors, the smoothed
language model might possibly deviate from the
original posting documents of a specific user dra-
matically. It is intuitive that we ought to keep
the original representation of document language
models of the particular user, and in the mean-
while the postings could be distinguished from one
another. Therefore, the combination of the orig-
inal language model with the social factor as a
regularizer ensures the optimum smoothing effects
with proper optimization to balance both the tex-
tual and social components.

3.1 Problem Formulation

Now we give a formal definition as follows:

Input. Given the entire document set D, and the
social network of users U , we aim to smooth the
language model of the target document, denoted
as P (w|d0), based on the influence from all other
documents d where {d|d ∈ D}, and d is authored
by ud ∈ U .

Output. The smoothed language model of
P (w|d+

0 ) for the original document d0.

3.2 Methodology Framework

We frame social language smoothing as the inter-
polation of document representation from the o-
riginal user and the social factor regularization.
Regularization has been cast as an optimization
problem in machine learning literature (Zhou and
Schölkopf, 2005), and we could form the language
model smoothing under this optimization frame-
work. Formally, we propose the smoothing frame-
work for language models with the regularized so-
cial factor as follows:

O(d0) = λ
∑

udi
=u0

ϕdi
|P (w|d+

0 )− P (w|di)|2+

(1− λ)
∑

u∈U\u0

πu

∑
udj

̸=u0

ϕdj
|P (w|d+

0 )− P (w|dj)|2

(1)
where u0 = ud0 , which means the author of d0 to
smooth. Function πu indicates the social relation-
ship between user u and u0. Function ϕd mea-
sures the textual similarity between document d
and the document d0 to smooth. The smoothed
document language model is denoted as P (w|d+

0 ),
and the unsmoothed document language model for
d is written as P (w|d).

The objective function of O(.) implement two
intuitions: 1) the first component guarantees the
smoothed language model would not deviate too
much from the language habits of the user of u0,
controlled by the similarity between all the doc-
uments from the author of d0; 2) the second ter-
m, namely a harmonic function in semi-supervised
learning, incorporating the influence from contacts
on the social networks. The framework is general
since the functions could be initiated in different
instances. Different initiations of functions indi-
cate different features or factors to be taken into
account. In this paper, we formulate the textu-
al similarity of ϕd, and the social relationship πu

based on the social network dimension. Eventu-
ally, we can find the flexibility to extend features
and factors in future work.

Firstly, we will define the correlation ϕd be-
tween document pairs. It is intuitive to measure
the relationship among documents based on the
textual similarity. In this paper, we utilize the
standard cosine metric to measure the similarity
between posting document in vector space model
representations (Salton et al., 1975). Vector com-
ponents are set to their tf.idf values (Manning et
al., 2008). tf is the term frequency and idf is the
inverse document frequency. Next we continue to
define the social factor among users.

For πu, the most intuitive way is to calculate
the contacts similarity of the social network user-
s, i.e., friends or followees in common. We first
apply the Jaccard distance (Jaccard, 1912; Pang-
Ning et al., 2006) on the social contact sets for the
two network users (i.e., between u0 and another
particular user u) as follows:

πu =
|{nb(u0)} ∩ {nb(u)}|
|{nb(u0)} ∪ {nb(u)}| (2)
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#User #Docs #Link

9,449,542 364,287,744 596,777,491

Clusters #Docs Notes
1. apple 42,528 Tech: apple products
2. nfl 40,340 Sport: American football
3. travel 38,345 General interst

Table 1: Statistics of dataset and topic clusters.

where {nb(u)} indicates the set of all neighbor
contacts of node u, each of which shares an edge
to u.

Now we have finished modeling the language
model smoothing with social factors as regular-
ization, and have defined the context correlation
between documents and user social relationship-
s. By plugging in Equation (2) into Equation (1),
we could compute the smoothed language model
of P (w|d+

0 ). All the definitions for π(.) result in
a range which varies from 0 to 1. Particularly, the
ego user similarity πu0 = 1, which would be a nat-
ural and intuitive answer.

4 Experiments and Evaluation

4.1 Datasets and Experimental Setups

Utilizing the data in (Yan et al., 2012), we estab-
lish the dataset of microblogs and the correspond-
ing users from 9/29/2012 to 11/30/2012. We use
roughly one month as the training set and the rest
as testing set. Based on this dataset, we group the
posting documents with the same hashtag ‘#’ in-
to clusters as different datasets to evaluate (Lin et
al., 2011; Yan et al., 2015; Yan et al., 2011). We
manually selected top-3 topics based on populari-
ty (measured in the number of postings within the
cluster) and to obtain broad coverage of different
types: sports, technology, and general interests, as
listed in Table 1.

Pre-processing. Basically, the social network
graph can be established from all posting docu-
ments and all users. However, the data is noisy.
We first pre-filter the pointless babbles (Analytics,
2009) by applying the linguistic quality judgments
(e.g., OOV ratio) (Pitler et al., 2010), and then re-
move inactive users that have less than one follow-
er or followee and remove the users without any
linkage to the remaining posting documents. We
remove stopwords and URLs, perform stemming,
and build the graph after filtering. We establish the

language model smoothed with both text informa-
tion and social factors.

4.2 Algorithms for Comparison

The first baseline is based on the traditional lan-
guage model: LM is the language model without
smoothing at all. We include the plain smooth-
ing of Additive (also known as Add-δ) smoothing
and Absolute Discounting decrease the probabil-
ity of seen words by subtracting a constant (Ney
et al., 1995). We also implement several classic
strategies smoothed from the whole collection as
background information: Jelinek-Mercer (J-M)
applies a linear interpolation, and Dirichlet em-
ploys a prior on collection influence (Zhai and Laf-
ferty, 2001; Lafferty and Zhai, 2001).

Beyond these simple heuristics, we also exam-
ine a series of semantic based language model s-
moothing. The most representative two semantic
smoothing methods are the Cluster-Based Docu-
ment Model (CBDM) proposed in (Liu and Croft,
2004), and the Document Expansion Language
Model (DELM) in (Tao et al., 2006). Both meth-
ods use semantically similar documents as a s-
moothing corpus for a particular document. We
also include Positional Language Model (PLM)
proposed in (Lv and Zhai, 2009), which is the
state-of-art positional proximity based language s-
moothing. PLM mainly utilizes positional infor-
mation without semantic information. We im-
plemented the best reported PLM configuration.
We also include the Factor Graph Model (FGM)
method to make a full comparison with our pro-
posed social regularized smoothing (SRS).

4.3 Evaluation Metric

We apply language perplexity to evaluate the s-
moothed language models. The experimental pro-
cedure is as follows: given the topic clusters
shown in Table 1, we remove the hashtags and
compute its perplexity with respect to the current
topic cluster, defined as a power function:

pow
[
2,− 1

N

∑
wi∈V

log P (wi)
]

Perplexity is actually an entropy based evaluation.
In this sense, the lower perplexity within the same
topic cluster, the better performance in purity the
topic cluster would have.
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Topic #apple #nfl #travel
LM 15851 11356 10676

Additive 15195 10035 10342
Absolute 15323 10123 10379

J-M 14115 10011 10185
Dirichlet 13892 9516 10138

PLM 13730 9925 10426
CBDM 12931 9845 9311
DELM 11853 9820 9513
FGM 10788 9539 8408
SRS 11808 9888 9403

Table 2: Perplexity in hashtag clusters.

4.4 Overall Performance

We compare the performance of all methods of
language model smoothing on the Twitter dataset-
s. In Table 2 we list the overall results against all
baseline methods. We have an average of -7.28%
improvement in terms of language perplexity in
hashtag topic clusters against all baselines without
social information.

The language model without any smoothing s-
trategy performs worst as expected, and once a-
gain demonstrates the Achilles Heel of data spar-
sity on social networks! Simple intuition based
methods such as additive smoothing does not help
a lot, since it only arbitrarily modifies the given
term counts straightforward to avoid zero occur-
rence, which is proved to be insufficient. Absolute
smoothing performs slightly better, due to the idea
to incorporate the collection information by term
counts. Jelinek-Mercer (J-M) and Dirichlet meth-
ods are more useful since they include the infor-
mation from the whole collection as background
language models, but they fail to distinguish docu-
ments from documents and use all of them equally
into smoothing. PLM offers a strengthened lan-
guage model smoothing strategy within each post-
ing document based on positions, and smooth the
terms outside of the posting document formulating
the background collection into a Dirichlet prior.
The performance of CBDM and DELM indicates
a prominent improvement, and proves that seman-
tic attributes included into the smoothing process
really make a difference. Both of the smoothing
methods cluster documents, and use the clustered
documents as a better background. However, none
of these methods has made use of the social factors
during the language model smoothing, while both
FGM and SRS suggests social factors do have an

impact on language model smoothing.
We make a further comparison between FGM

and SRS: both are using social information. An
interesting phenomenon is that FGM slightly out-
performs SRS. The proposed SRS has more effi-
ciency than FGM. It is quite intuitive that FGM
is a complicated model based on propagation via
linkage while our proposed SRS is a lightweight
model using linear combination. Hence SRS is
proved to be both effective due to the comparable
performance with FGM, and more efficient as the
result of simple interpolation.

5 Conclusions

We present a language model smoothing method
based on text correlation with social factors as reg-
ularization to solve the zero count phenomenon
(sparsity!) for short postings on social networks.
We smooth the extremely sparse language model
based on texts and social connections in optimiza-
tion. We evaluate the performance of our proposed
smoothing method. In general, the social factor
is proved to have a meaningful contribution. Our
model outperforms all baseline smoothing meth-
ods without social information while takes less
time to run: the lightweight method balances ef-
fectiveness and efficiency best.
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Abstract

We propose a label propagation approach
to geolocation prediction based on Modi-
fied Adsorption, with two enhancements:
(1) the removal of “celebrity” nodes to
increase location homophily and boost
tractability; and (2) the incorporation
of text-based geolocation priors for test
users. Experiments over three Twitter
benchmark datasets achieve state-of-the-
art results, and demonstrate the effective-
ness of the enhancements.

1 Introduction

Geolocation of social media users is essential
in applications ranging from rapid disaster re-
sponse (Earle et al., 2010; Ashktorab et al.,
2014; Morstatter et al., 2013a) and opinion anal-
ysis (Mostafa, 2013; Kirilenko and Stepchenkova,
2014), to recommender systems (Noulas et al.,
2012; Schedl and Schnitzer, 2014). Social media
platforms like Twitter provide support for users to
declare their location manually in their text pro-
file or automatically with GPS-based geotagging.
However, the text-based profile locations are noisy
and only 1–3% of tweets are geotagged (Cheng et
al., 2010; Morstatter et al., 2013b), meaning that
geolocation needs to be inferred from other infor-
mation sources such as the tweet text and network
relationships.

User geolocation is the task of inferring the pri-
mary (or “home”) location of a user from avail-
able sources of information, such as text posted
by that individual, or network relationships with
other individuals (Han et al., 2014). Geolocation
models are usually trained on the small set of users
whose location is known (e.g. through GPS-based
geotagging), and other users are geolocated using
the resulting model. These models broadly fall
into two categories: text-based and network-based

methods. Orthogonally, the geolocation task can
be viewed as a regression task over real-valued
geographical coordinates, or a classification task
over discretised region-based locations.

Most previous research on user geolocation
has focused either on text-based classification
approaches (Eisenstein et al., 2010; Wing and
Baldridge, 2011; Roller et al., 2012; Han et al.,
2014) or, to a lesser extent, network-based regres-
sion approaches (Jurgens, 2013; Compton et al.,
2014; Rahimi et al., 2015). Methods which com-
bine the two, however, are rare.

In this paper, we present our work on Twit-
ter user geolocation using both text and net-
work information. Our contributions are as fol-
lows: (1) we propose the use of Modified Ad-
sorption (Talukdar and Crammer, 2009) as a base-
line network-based geolocation model, and show
that it outperforms previous network-based ap-
proaches (Jurgens, 2013; Rahimi et al., 2015); (2)
we demonstrate that removing “celebrity” nodes
(nodes with high in-degrees) from the network in-
creases geolocation accuracy and dramatically de-
creases network edge size; and (3) we integrate
text-based geolocation priors into Modified Ad-
sorption, and show that our unified geolocation
model outperforms both text-only and network-
only approaches, and achieves state-of-the-art re-
sults over three standard datasets.

2 Related Work

A recent spike in interest on user geolocation over
social media data has resulted in the development
of a range of approaches to automatic geolocation
prediction, based on information sources such as
the text of messages, social networks, user pro-
file data, and temporal data. Text-based methods
model the geographical bias of language use in so-
cial media, and use it to geolocate non-geotagged
users. Gazetted expressions (Leidner and Lieber-
man, 2011) and geographical names (Quercini et
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al., 2010) were used as feature in early work,
but were shown to be sparse in coverage. Han
et al. (2014) used information-theoretic methods
to automatically extract location-indicative words
for location classification. Wing and Baldridge
(2014) reported that discriminative approaches
(based on hierarchical classification over adap-
tive grids), when optimised properly, are superior
to explicit feature selection. Cha et al. (2015)
showed that sparse coding can be used to effec-
tively learn a latent representation of tweet text to
use in user geolocation. Eisenstein et al. (2010)
and Ahmed et al. (2013) proposed topic model-
based approaches to geolocation, based on the as-
sumption that words are generated from hidden
topics and geographical regions. Similarly, Yuan
et al. (2013) used graphical models to jointly learn
spatio-temporal topics for users. The advantage of
these generative approaches is that they are able to
work with the continuous geographical space di-
rectly without any pre-discretisation, but they are
algorithmically complex and don’t scale well to
larger datasets. Hulden et al. (2015) used kernel-
based methods to smooth linguistic features over
very small grid sizes to alleviate data sparseness.

Network-based geolocation models, on the
other hand, utilise the fact that social media users
interact more with people who live nearby. Ju-
rgens (2013) and Compton et al. (2014) used a
Twitter reciprocal mention network, and geolo-
cated users based on the geographical coordinates
of their friends, by minimising the weighted dis-
tance of a given user to their friends. For a recip-
rocal mention network to be effective, however, a
huge amount of Twitter data is required. Rahimi
et al. (2015) showed that this assumption could
be relaxed to use an undirected mention network
for smaller datasets, and still attain state-of-the-
art results. The greatest shortcoming of network-
based models is that they completely fail to ge-
olocate users who are not connected to geolocated
components of the graph. As shown by Rahimi et
al. (2015), geolocation predictions from text can
be used as a backoff for disconnected users, but
there has been little work that has investigated a
more integrated text- and network-based approach
to user geolocation.

3 Data

We evaluate our models over three pre-existing
geotagged Twitter datasets: (1) GEOTEXT (Eisen-

stein et al., 2010), (2) TWITTER-US (Roller et
al., 2012), and (3) TWITTER-WORLD (Han et al.,
2012). In each dataset, users are represented by
a single meta-document, generated by concatenat-
ing their tweets. The datasets are pre-partitioned
into training, development and test sets, and re-
built from the original version to include men-
tion information. The first two datasets were con-
structed to contain mostly English messages.

GEOTEXT consists of tweets from 9.5K users:
1895 users are held out for each of development
and test data. The primary location of each user is
set to the coordinates of their first tweet.

TWITTER-US consists of 449K users, of which
10K users are held out for each of development
and test data. The primary location of each user
is, once again, set to the coordinates of their first
tweet.

TWITTER-WORLD consists of 1.3M users, of
which 10000 each are held out for development
and test. Unlike the other two datasets, the primary
location of users is mapped to the geographic cen-
tre of the city where the majority of their tweets
were posted.

4 Methods

We use label propagation over an @-mention
graph in our models. We use k-d tree descre-
tised adaptive grids as class labels for users and
learn a label distribution for each user by label
propagation over the @-mention network using
labelled nodes as seeds. For k-d tree discretisa-
tion, we set the number of users in each region to
50, 2400, 2400 for GEOTEXT, TWITTER-US and
TWITTER-WORLD respectively, based on tuning
over the development data.

Social Network: We used the @-mention infor-
mation to build an undirected graph between users.
In order to make the inference more tractable,
we removed all nodes that were not a member
of the training/test set, and connected all pairings
of training/test users if there was any path be-
tween them (including paths through non train-
ing/test users). We call this network a “collapsed
network”, as illustrated in Figure 1. Note that a
celebrity node with n mentions connects n(n− 1)
nodes in the collapsed network. We experiment
with both binary and weighted edge (based on the
number of mentions connecting the given users)
networks.
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Figure 1: A collapsed network is built from the @-mention network. Each mention is shown by a
directed arrow, noting that as it is based exclusively on the tweets from the training and test users, it
will always be directed from a training or test user to a mentioned node. All mentioned nodes which are
not a member of either training or test users are removed and the corresponding training and test users,
previously connected through that node, are connected directly by an edge, as indicated by the dashed
lines. Mentioned nodes with more than T unique mentions (celebrities, such as m3) are removed from
the graph. To each test node, a dongle node that carries the label from another learner (here, text-based
LR) is added in MADCEL-B-LR and MADCEL-W-LR.

Baseline: Our baseline geolocation model
(“MAD-B”) is formulated as label propagation
over a binary collapsed network, based on Modi-
fied Adsorption (Talukdar and Crammer, 2009). It
applies to a graph G = (V,E,W ) where V is the
set of nodes with |V | = n = nl + nu (where nl

nodes are labelled and nu nodes are unlabelled),
E is the set of edges, and W is an edge weight
matrix. Assume C is the set of labels where
|C| = m is the total number of labels. Y is an
n×m matrix storing the training node labels, and
Ŷ is the estimated label distribution for the nodes.
The goal is to estimate Ŷ for all nodes (including
training nodes) so that the following objective
function is minimised:

C(Ŷ ) =
∑

l

[
µ1(Yl − Ŷl)TS(Yl − Ŷl)+

µ2Ŷ
T
l LŶl

]
where µ1 and µ2 are hyperparameters;1 L is the
Laplacian of an undirected graph derived from
G; and S is a diagonal binary matrix indicating
if a node is labelled or not. The first term of
the equation forces the labelled nodes to keep
their label (prior term), while the second term
pulls a node’s label toward that of its neighbours

1In the base formulation of MAD-B, there is also a regu-
larisation term with weight µ3, but in all our experiments, we
found that the best results were achieved over development
data with µ3 = 0, i.e. with no regularisation; the term is thus
omitted from our description.

(smoothness term). For the first term, the label
confidence for training and test users is set to 1.0
and 0.0, respectively. Based on the development
data, we set µ1 and µ2 to 1.0 and 0.1, respectively,
for all the experiments. For TWITTER-US and
TWITTER-WORLD, the inference was intractable
for the default network, as it was too large.

There are two immediate issues with the base-
line graph propagation method: (1) it doesn’t scale
to large datasets with high edge counts, related to
which, it tends to be biased by highly-connected
nodes; and (2) it can’t predict the geolocation of
test users who aren’t connected to any training
user (MAD-B returns Unknown, which we rewrite
with the centre of the map). We redress these two
issues as follows.

Celebrity Removal To address the first issue,
we target “celebrity” users, i.e. highly-mentioned
Twitter users. Edges involving these users often
carry little or no geolocation information (e.g. the
majority of people who mention Barack Obama
don’t live in Washington D.C.). Additionally,
these users tend to be highly connected to other
users and generate a disproportionately high num-
ber of edges in the graph, leading in large part to
the baseline MAD-B not scaling over large datasets
such as TWITTER-US and TWITTER-WORLD.
We identify and filter out celebrity nodes sim-
ply by assuming that a celebrity is mentioned by
more than T users, where T is tuned over develop-
ment data. Based on tuning over the development
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GEOTEXT TWITTER-US TWITTER-WORLD

Acc@161 Mean Median Acc@161 Mean Median Acc@161 Mean Median
MAD-B 50 683 146 ××× ××× ××× ××× ××× ×××
MADCEL-B 56 609 76 54 709 117 70 936 0
MADCEL-W 58 586 60 54 705 116 71 976 0
MADCEL-B-LR 57 608 65 60 533 77 72 786 0
MADCEL-W-LR 59 581 57 60 529 78 72 802 0

LR (Rahimi et al., 2015) 38 880 397 50 686 159 63 866 19
LP (Rahimi et al., 2015) 45 676 255 37 747 431 56 1026 79
LP-LR (Rahimi et al., 2015) 50 653 151 50 620 157 59 903 53
Wing and Baldridge (2014) (uniform) — — — 49 703 170 32 1714 490
Wing and Baldridge (2014) (k-d) — — — 48 686 191 31 1669 509
Han et al. (2012) — — — 45 814 260 24 1953 646
Ahmed et al. (2013) ??? ??? 298 — — — — — —
Cha et al. (2015) ??? 581 425 — — — — — —

Table 1: Geolocation results over the three Twitter corpora, comparing baseline Modified Adsorp-
tion (MAD-B), with Modified Adsorption with celebrity removal (MADCEL-B and MADCEL-W, over
binary and weighted networks, resp.) or celebrity removal plus text priors (MADCEL-B-LR and
MADCEL-W-LR, over binary and weighted networks, resp.); the table also includes state-of-the-art re-
sults for each dataset (“—” signifies that no results were published for the given dataset; “???” signifies
that no results were reported for the given metric; and “×××” signifies that results could not be generated,
due to the intractability of the training data).

set of GEOTEXT and TWITTER-US, T was set
to 5 and 15 respectively. For TWITTER-WORLD

tuning was very resource intensive so T was set
to 5 based on GEOTEXT, to make the inference
faster. Celebrity removal dramatically reduced the
edge count in all three datasets (from 1 × 109 to
5 × 106 for TWITTER-US and from 4 × 1010 to
1 × 107 for TWITTER-WORLD), and made infer-
ence tractable for TWITTER-US and TWITTER-
WORLD. Jurgens et al. (2015) report that the time
complexity of most network-based geolocation
methods is O(k2) for each node where k is the
average number of vertex neighbours. In the case
of the collapsed network of TWITTER-WORLD, k
is decreased by a factor of 4000 after setting the
celebrity threshold T to 5. We apply celebrity
removal over both binary (“MADCEL-B”) and
weighted (“MADCEL-W”) networks (using the re-
spective T for each dataset). The effect of
celebrity removal over the development set of
TWITTER-US is shown in Figure 2 where it dra-
matically reduces the graph edge size and simulta-
neously leads to an improvement in the mean er-
ror.

A Unified Geolocation Model To address the
issue of disconnected test users, we incorporate
text information into the model by attaching a la-
belled dongle node to every test node (Zhu and
Ghahramani, 2002; Goldberg and Zhu, 2006).
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Figure 2: Effect of celebrity removal on geoloca-
tion performance and graph size. For each T per-
formance is measured over the development set of
TWITTER-US by MADCEL-W.

The label for the dongle node is based on a text-
based l1 regularised logistic regression model, us-
ing the method of Rahimi et al. (2015). The don-
gle nodes with their corresponding label confi-
dences are added to the seed set, and are treated
in the same way as other labelled nodes (i.e.
the training nodes). Once again, we experi-
ment with text-based labelled dongle nodes over
both binary (“MADCEL-B-LR”) and weighted
(“MADCEL-W-LR”) networks.
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5 Evaluation

Following Cheng et al. (2010) and Eisenstein et
al. (2010), we evaluate using the mean and me-
dian error (in km) over all test users (“Mean”
and “Median”, resp.), and also accuracy within
161km of the actual location (“Acc@161”). Note
that higher numbers are better for Acc@161, but
lower numbers are better for mean and median er-
ror, with a lower bound of 0 and no (theoretical)
upper bound.

To generate a continuous-valued lati-
tude/longitude coordinate for a given user
from the k-d tree cell, we use the median co-
ordinates of all training points in the predicted
region.

6 Results

Table 1 shows the performance of MAD-B,
MADCEL-B, MADCEL-W, MADCEL-B-LR and
MADCEL-W-LR over the GEOTEXT, TWITTER-
US and TWITTER-WORLD datasets. The re-
sults are also compared with prior work on
network-based geolocation using label propaga-
tion (LP) (Rahimi et al., 2015), text-based clas-
sification models (Han et al., 2012; Wing and
Baldridge, 2011; Wing and Baldridge, 2014;
Rahimi et al., 2015; Cha et al., 2015), text-
based graphical models (Ahmed et al., 2013), and
network–text hybrid models (LP-LR) (Rahimi et
al., 2015).

Our baseline network-based model of MAD-B
outperforms the text-based models and also previ-
ous network-based models (Jurgens, 2013; Comp-
ton et al., 2014; Rahimi et al., 2015). The in-
ference, however, is intractable for TWITTER-US
and TWITTER-WORLD due to the size of the net-
work.

Celebrity removal in MADCEL-B and
MADCEL-W has a positive effect on geoloca-
tion accuracy, and results in a 47% reduction in
Median over GEOTEXT. It also makes graph
inference over TWITTER-US and TWITTER-
WORLD tractable, and results in superior
Acc@161 and Median, but slightly inferior
Mean, compared to the state-of-the-art results of
LR, based on text-based classification (Rahimi et
al., 2015).
MADCEL-W (weighted graph) outperforms

MADCEL-B (binary graph) over the smaller
GEOTEXT dataset where it compensates for the
sparsity of network information, but doesn’t

improve the results for the two larger datasets
where network information is denser.

Adding text to the network-based geolocation
models in the form of MADCEL-B-LR (binary
edges) and MADCEL-W-LR (weighted edges),
we achieve state-of-the-art results over all three
datasets. The inclusion of text-based priors has
the greatest impact on Mean, resulting in an
additional 26% and 23% error reduction over
TWITTER-US and TWITTER-WORLD, respec-
tively. The reason for this is that it provides a
user-specific geolocation prior for (relatively) dis-
connected users.

7 Conclusions and Future Work

We proposed a label propagation method over
adaptive grids based on collapsed @-mention net-
works using Modified Adsorption, and success-
fully supplemented the baseline algorithm by: (a)
removing “celebrity” nodes (improving the results
and also making inference more tractable); and (b)
incorporating text-based geolocation priors into
the model.

As future work, we plan to use temporal data
and also look at improving the text-based geoloca-
tion model using sparse coding (Cha et al., 2015).
We also plan to investigate more nuanced meth-
ods for differentiating between global and local
celebrity nodes, to be able to filter out global
celebrity nodes but preserve local nodes that can
have high geolocation utility.
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Abstract
In this paper, we build a corpus of tweets
from Twitter annotated with keywords us-
ing crowdsourcing methods. We iden-
tify key differences between this domain
and the work performed on other domains,
such as news, which makes existing ap-
proaches for automatic keyword extraction
not generalize well on Twitter datasets.
These datasets include the small amount of
content in each tweet, the frequent usage
of lexical variants and the high variance of
the cardinality of keywords present in each
tweet. We propose methods for addressing
these issues, which leads to solid improve-
ments on this dataset for this task.

1 Introduction

Keywords are frequently used in many occasions
as indicators of important information contained
in documents. These can be used by human read-
ers to search for their desired documents, but also
in many Natural Language Processing (NLP) ap-
plications, such as Text Summarization (Pal et al.,
2013), Text Categorization (Özgür et al., 2005),
Information Retrieval (Marujo et al., 2011a; Yang
and Nyberg, 2015) and Question Answering (Liu
and Nyberg, 2013). Many automatic frame-
works for extracting keywords have been pro-
posed (Riloff and Lehnert, 1994; Witten et al.,
1999; Turney, 2000; Medelyan et al., 2010; Lit-
vak and Last, 2008). These systems were built for
more formal domains, such as news data or Web
data, where the content is still produced in a con-
trolled fashion.

The emergence of social media environments,
such as Twitter and Facebook, has created a frame-
work for more casual data to be posted online.

These messages tend to be shorter than web pages,
especially on Twitter, where the content has to be
limited to 140 characters. The language is also
more casual with many messages containing or-
thographical errors, slang (e.g., cday), abbrevia-
tions among domain specific artifacts. In many ap-
plications, that existing datasets and models tend
to perform significantly worse on these domains,
namely in Part-of-Speech (POS) Tagging (Gim-
pel et al., 2011), Machine Translation (Jelh et al.,
2012; Ling et al., 2013), Named Entity Recogni-
tion (Ritter et al., 2011; Liu et al., 2013), Infor-
mation Retrieval (Efron, 2011) and Summariza-
tion (Duan et al., 2012; Chang et al., 2013).

As automatic keyword extraction plays an im-
portant role in many NLP tasks, building an accu-
rate extractor for the Twitter domain is a valuable
asset in many of these applications. In this pa-
per, we propose an automatic keyword extraction
system for this end and our contributions are the
following ones:

1. Provide a annotated keyword annotated
dataset consisting of 1827 tweets. These
tweets are obtained from (Gimpel et al.,
2011), and also contain POS annotations.

2. Improve a state-of-the-art keyword extraction
system (Marujo et al., 2011b; Marujo et al.,
2013) for this domain by learning additional
features in an unsupervised fashion.

The paper is organized as follows: Section 2
describes the related work; Section 3 presents the
annotation process; Section 4 details the architec-
ture of our keyword extraction system; Section 5
presents experiments using our models and we
conclude in Section 6.
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2 Related Work

Both supervised and unsupervised approaches
have been explored to perform key word extrac-
tion. Most of the automatic keyword/keyphrase
extraction methods proposed for social media
data, such as tweets, are unsupervised meth-
ods (Wu et al., 2010; Zhao et al., 2011;
Bellaachia and Al-Dhelaan, 2012). However,
the TF-IDF across different methods remains
a strong unsupervised baseline (Hasan and Ng,
2010). These methods include adaptations to
the PageRank method (Brin and Page, 1998) in-
cluding TextRank (Mihalcea and Tarau, 2004),
LexRank (Erkan and Radev, 2004), and Topic
PageRank (Liu et al., 2010).

Supervised keyword extraction methods for-
malize this problem as a binary classification prob-
lem of two steps (Riloff and Lehnert, 1994; Wit-
ten et al., 1999; Turney, 2000; Medelyan et al.,
2010; Wang and Li, 2011): candidate generation
and filtering of the phrases selected before. MAUI
toolkit-indexer (Medelyan et al., 2010), an im-
proved version of the KEA (Witten et al., 1999)
toolkit including new set of features and more ro-
bust classifier, remains the state-of-the-art system
in the news domain (Marujo et al., 2012).

To the best of our knowledge, only (Li et
al., 2010) used a supervised keyword extraction
framework (based on KEA) with additional fea-
tures, such as POS tags to performed keyword ex-
traction on Facebook posts. However, at that time
Facebook status updates or posts did not contained
either hashtags or user mentions. The size of Face-
book posts is frequently longer than tweets and has
less abbreviations since it is not limited by number
of character as in tweets.

3 Dataset

The dataset 1 contains 1827 tweets, which are POS
tagged in (Gimpel et al., 2011). We used Ama-
zon Mechanical turk, an crowdsourcing market,
to recruit eleven annotators to identify keywords
in each tweet. Each annotator highlighted words
that he would consider a keyword. No specific
instructions about what words can be keywords
(e.g., “urls are not keywords”), as we wish to learn
what users find important in a tweet. It is also
acceptable for tweets to not contain keywords, as
some tweets simply do not contain important in-

1The corpus is submitted as supplementary material.

formation (e.g., retweet). The annotations of each
annotator are combined by selecting keywords that
are chosen by at least three annotators. We also di-
vided the 1827 tweets into 1000 training samples,
327 development samples and 500 test samples,
using the splits as in (Gimpel et al., 2011).

4 Automatic Keyword Extraction

There are many methods that have been proposed
for keyword extraction. TF-IDF is one of the sim-
plest approaches for this end (Salton et al., 1975).
The k words with the highest TF-IDF value are
chosen as keywords, where k is optimized on the
development set. This works quite well in text
documents, such as news articles, as we wish to
find terms that occur frequently within that docu-
ment, but are not common in the other documents
in that domain. However, we found that this ap-
proach does not work well in Twitter as tweets
tend to be short and generally most terms occur
only once, including their keywords. This means
that the term frequency component is not very in-
formative as the TF-IDF measure will simply ben-
efit words that rarely occur, as these have a very
low inverse document frequency component.

A strong baseline for Automatic Key-
word Extraction is the MAUI toolkit-indexer
toolkit (Medelyan et al., 2010). The system
extracts a list of candidate keywords from a
document and trains a decision tree over a large
set of hand engineered features, also including
TF-IDF, in order to predict the correct keywords
on the training set. Once trained, the toolkit
extracts a list of keyword candidates from a tweet
and returns a ranked list of candidates. The top k
keywords are selected as answers. The parameter
k is maximized on the development set.

From this point, we present two extensions to
the MAUI system to address many challenges
found in this domain.

4.1 Unsupervised Feature Extraction

The first problem is the existence of many lexical
variants in Twitter (e.g., “cats vs. catz”). While
variants tend to have the same meaning as their
standardized form, the proposed model does not
have this information and will not be able to gen-
eralize properly. For instance, if the term ”John” is
labelled as keyword in the training set, the model
would not be able to extract ”Jooohn” as keyword
as it is in a different word form. One way to ad-
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dress this would be using a normalization system
either built using hand engineered rules (Gouws
et al., 2011) or trained using labelled data (Han
and Baldwin, 2011; Chrupała, 2014). However,
these systems are generally limited as these need
supervision and cannot scale to new data or data
in other languages. Instead, we will used unsu-
pervised methods that leverage large amounts of
unannotated data. We used two popular methods
for this purpose: Brown Clustering and Continu-
ous Word Vectors.

4.1.1 Brown Clustering
It has been shown in (Owoputi et al., 2013) that
Brown clusters are effective for clustering lexi-
cal variants. The algorithm attempts to find a
clusters distribution to maximize the likelihood
of each cluster predicting the next one, under the
HMM assumption. Thus, words ”yes”, ”yep” and
”yesss” are generally inserted into the same clus-
ter as these tend occur in similar contexts. It also
builds an hierarchical structure of clusters. For in-
stance, the clusters 11001 and 11010, share the
first three nodes in the hierarchically 110. Sharing
more tree nodes tends to translate into better sim-
ilarity between words within the clusters. Thus,
a word a 11001 cluster is simultaneously in clus-
ters 1, 11, 110, 1100 and 11001, and a feature
can be extracted for each cluster. In our experi-
ments, we used the dataset with 1,000 Brown clus-
ters made available by Owoputi et al. (Owoputi et
al., 2013)2.

4.1.2 Continuous Word Vectors
Word representations learned from neural lan-
guage models are another way to learn more gen-
eralizable features for words (Collobert et al.,
2011; Huang et al., 2012). In these models, a
hidden layer is defined that maps words into a
continuous vector. The parameters of this hidden
layer are estimated by maximizing a goal func-
tion, such as the likelihood of each word predict-
ing surrounding words (Mikolov et al., 2013; Ling
et al., 2015). In our work, we used the structured
skip-ngram goal function proposed in (Ling et al.,
2015) and for each word we extracted its respec-
tive word vector as features.

4.2 Keyword Length Prediction
The second problem is the high variance in terms
of number of keywords per tweet. In larger doc-

2http://www.ark.cs.cmu.edu/TweetNLP/clusters/50mpaths2

uments, such as a news article, contain approx-
imately 3-5 keywords, so extracting 3 keywords
per document is a reasonable option. However,
this would not work in Twitter, since the number
of keywords can be arbitrary small. In fact, many
tweets contain less than three words, in which case
the extractor would simply extract all words as
keywords, which would be incorrect. One alter-
native is to choose a ratio between the number of
words and number of keywords. That is, we define
the number of keywords in a tweet as the ratio be-
tween number of words in the tweet and k, which
is maximized on the development set. That is, if
we set k = 3, then we extract one keyword for
every three words.

Finally, a better approach is to learn a model to
predict the number of keywords using the training
set. Thus, we introduced a model that attempts
to predict the number of keywords in each tweet
based on a set of features. This is done using lin-
ear regression, which extracts a feature set from an
input tweet f1, ..., fn and returns y, the expected
number of keywords in the tweet. As features we
selected the number of words in the input tweet
with the intuition that the number of keywords
tends to depend on the size of the tweet. Further-
more, (2) we count the number of function words
and non-function words in the tweet, emphasizing
the fact that some types of words tend to contribute
more to the number of keywords in the tweet. The
same is done for (3) hashtags and at mentions. Fi-
nally, (4) we also count the number of words in
each cluster using the trained Brown clusters.

5 Experiments

Experiments are performed on the annotated
dataset using the train, development and test splits
defined in Section 3. As baselines, we reported
results using a TF-IDF, the default MAUI toolkit,
and our own implementation of (Li et al., 2010)
framework. In all cases the IDF component was
computed over a collection of 52 million tweets.
Results are reported on rows 1 and 2 in Table 1,
respectively. The parameter k (column Nr. Key-
words) defines the number of keywords extracted
for each tweet and is maximized on the devel-
opment set. Evaluation is performed using F-
measure (column F1), where the precision (col-
umn P) is defined as the ratio of extracted key-
words that are correct and the number of ex-
tracted keywords, and the recall (column R) is de-
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Dev Test
System Nr. Keywords P R F1 P R F1

1 TF-IDF 15 19.31 83.58 29.97 20.21 85.17 31.16
2 (Li et al., 2010) 4 48.81 50.05 49.42 51.78 50.92 51.35
3 MAUI (Default) 4 51.31 52.47 51.88 53.97 53.15 53.56
4 MAUI (Word Vectors) 4 52.70 53.50 53.10 55.80 54.45 55.12
5 MAUI (Brown) 4 68.08 74.11 70.97 71.95 75.01 73.45
6 MAUI (Brown+Word Vectors) 4 68.46 75.05 71.61 72.05 75.16 73.57
7 MAUI (Trained on News) 4 49.12 49.71 49.41 52.40 51.19 51.79

Table 1: F-measure, precision and recall results on the Twitter keyword dataset using different feature
sets.

Dev Test
Selection Nr. Keywords P R F1 P R F1

1 Fixed 4 68.46 75.05 71.61 72.05 75.16 73.57
2 Ratio N//3 65.70 82.69 73.22 69.48 83.8 75.97
3 Regression y + k 67.55 80.9 73.62 71.81 82.55 76.81

Table 2: F-measure, precision and recall results on the Twitter keyword dataset using different keyword
selection methods.

fined as the ratio between the number of keywords
correctly extracted and the total number of key-
words in the dataset. We can see that the TF-
IDF, which tends to be a strong baseline for key-
word/keyphrase extraction (Hasan and Ng, 2010),
yields poor results. In fact, the best value for k is
15, which means that the system simply retrieves
all words as keywords in order to maximize re-
call. This is because most keywords only occur
once3, which makes the TF component not very
informative. On the other hand, the MAUI base-
line performs significantly better, this is because of
the usage of many hand engineered features using
lists of words and Wikipedia, rather than simply
relying on word counts.

Next, we introduce features learnt using an un-
supervised setup, namely, word vectors and brown
clusters in rows 3 and 4, respectively. These were
trained on the same 52 million tweets used for
computing the IDF component. Due to the large
size of the vocabulary, word types with less than
40 occurrences were removed. We observe that
while both features yield improvements over the
baseline model in row 2, the improvements ob-
tained using Brown clustering are far more sig-
nificant. Combining both features yields slightly
higher results, reported on row 5. Finally, we also
test training the system with all features on an out-

36856 out of 7045 keywords are singletons

of-domain keyword extraction corpus composed
by news documents (Marujo et al., 2012). Results
are reported on row 6, where we can observe a sig-
nificant domain mismatch problem between these
two domains as results drop significantly.

We explored different methods for choosing the
number of keywords to be extracted in Table 2.
The simplest way is choosing a fixed number of
keywords k and tune this value in the development
set. Next, we can also define the number of key-
words as the ratio N

k , where N is the number of
words in the tweet, and k is the parameter that we
wish to optimize. Finally, the number of keywords
can also be estimated using a linear regressor as
y = f1w1, ..., fnwn, where f1, ..., fn denote the
feature set andw1, ..., wn are the parameters of the
model trained on the training set. Once the model
is trained, the number of keywords selected for
each tweet is defined as y + k, where k is inserted
to adjust y to maximize F-measure on the devel-
opment set. Results using the best system using
Brown clusters and word vectors are described in
Table 2. We can observe that defining the number
of keywords as a fraction of the number of words
in the tweet, yields better results (row 2) yields
better overall results than fixing the number of ex-
tracted keywords (row 1). Finally, training a pre-
dictor for the number of keywords yields further
improvements (row 3) over a simple ratio of the
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number of input words.

6 Conclusions

In this work, we built a corpus of tweets annotated
with keywords, which was used to built and evalu-
ate a system to automatically extract keywords on
Twitter. A baseline system is defined using exist-
ing methods applied to our dataset and improve-
ment significantly using unsupervised feature ex-
traction methods. Furthermore, an additional com-
ponent to predict the number of keywords in a
tweet is also built. In future work, we plan to
use the keyword extraction to perform numerous
NLP tasks on the Twitter domain, such as Docu-
ment Summarization.
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Abstract

This paper proposes an approach to capture
the pragmatic context needed to infer irony in
tweets. We aim to test the validity of two main
hypotheses: (1) the presence of negations, as
an internal propriety of an utterance, can help
to detect the disparity between the literal and
the intended meaning of an utterance, (2) a
tweet containing an asserted fact of the form
Not(P1) is ironic if and only if one can assess
the absurdity of P1. Our first results are en-
couraging and show that deriving a pragmatic
contextual model is feasible.

1 Motivation
Irony is a complex linguistic phenomenon widely stud-
ied in philosophy and linguistics (Grice et al., 1975;
Sperber and Wilson, 1981; Utsumi, 1996). Despite the-
ories differ on how to define irony, they all commonly
agree that it involves an incongruity between the literal
meaning of an utterance and what is expected about the
speaker and/or the environment. For many researchers,
irony overlaps with a variety of other figurative devices
such as satire, parody, and sarcasm (Clark and Gerrig,
1984; Gibbs, 2000). In this paper, we use irony as an
umbrella term that covers these devices focusing for the
first time on the automatic detection of irony in French
tweets.

According to (Grice et al., 1975; Searle, 1979; At-
tardo, 2000), the search for a non-literal meaning starts
when the hearer realizes that the speaker’s utterance
is context-inappropriate, that is an utterance fails to
make sense against the context. For example, the tweet:
“Congratulation #lesbleus for your great match!” is
ironic if the French soccer team has lost the match. An
analysis of a corpus of French tweets shows that there
are two ways to infer such a context: (a) rely exclu-
sively on the lexical clues internal to the utterance, or
(b) combine these clues with an additional pragmatic
context external to the utterance. In (a), the speaker in-
tentionally creates an explicit juxtaposition of incom-
patible actions or words that can either have opposite
polarities, or can be semantically unrelated, as in “The

Voice is more important than Fukushima tonight”. Ex-
plicit opposition can also arise from an explicit posi-
tive/negative contrast between a subjective proposition
and a situation that describes an undesirable activity or
state. For instance, in “ I love when my phone turns the
volume down automatically” the writer assumes that
every one expects its cell phone to ring loud enough
to be heard. In (b), irony is due to an implicit opposi-
tion between a lexicalized proposition P describing an
event or state and a pragmatic context external to the
utterance in which P is false or is not likely to happen.
In other words, the writer asserts or affirms P while
he intends to convey P ′ such that P ′ = Not(P ) or
P ′ 6= P . The irony occurs because the writer believes
that his audience can detect the disparity between P
and P ′ on the basis of contextual knowledge or com-
mon background shared with the writer. For example,
in “#Hollande is really a good diplomat #Algeria.”, the
writer critics the foreign policy of the French president
Hollande in Algeria, whereas in ”The #NSA wiretapped
a whole country. No worries for #Belgium: it is not a
whole country.“, the irony occurs because the fact in
bold font is not true.

Irony detection is quite a hot topic in the research
community also due to its importance for efficient
sentiment analysis (Ghosh et al., 2015). Several ap-
proaches have been proposed to detect irony casting
the problem into a binary classification task relying
on a variety of features. Most of them are gleaned
from the utterance internal context going from n-grams
models, stylistic (punctuation, emoticons, quotations,
etc.), to dictionary-based features (sentiment and af-
fect dictionaries, slang languages, etc.). These fea-
tures have shown to be useful to learn whether a text
span is ironic/sarcastic or not (Burfoot and Baldwin,
2009; Davidov et al., 2010; Tsur et al., 2010; Gonzalez-
Ibanez et al., 2011; Reyes et al., 2013; Barbieri and
Saggion, 2014). However, many authors pointed out
the necessity of additional pragmatic features: (Ut-
sumi, 2004) showed that opposition, rhetorical ques-
tions and the politeness level are relevant. (Burfoot
and Baldwin, 2009) focused on satire detection in
newswire articles and introduced the notion of valid-
ity which models absurdity by identifying a conjunc-
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tion of named entities present in a given document and
queries the web for the conjunction of those entities.
(Gonzalez-Ibanez et al., 2011) exploited the common
ground between speaker and hearer by looking if a
tweet is a reply to another tweet. (Reyes et al., 2013)
employed opposition in time (adverbs of time such as
now and suddenly) and context imbalance to estimate
the semantic similarity of concepts in a text to each
other. (Barbieri and Saggion, 2014) captured the gap
between rare and common words as well as the use of
common vs. rare synonyms. Finally, (Buschmeier et
al., 2014) measured the imbalance between the overall
polarity of words in a review and the star-rating. Most
of these pragmatic features rely on linguistic aspects of
the tweet by using only the text of the tweet. We aim
here to go further by proposing a novel computational
model able to capture the “outside of the utterance”
context needed to infer irony in implicit oppositions.

2 Methodology

An analysis of a corpus of French ironic tweets ran-
domly chosen from various topics shows that more
than 62.75% of tweets contain explicit negation mark-
ers such as “ne...pas” (not) or negative polarity items
like “jamais” (never) or “personne” (nobody). Nega-
tion seems thus to be an important clue in ironic state-
ments, at least in French. This rises the following hy-
potheses: (H1) the presence of negations, as an internal
propriety of an utterance, can help to detect the dis-
parity between the literal and the intended meaning of
an utterance, and (H2) a tweet containing an asserted
fact of the form Not(P ) is ironic if and only if one
can prove P on the basis of some external common
knowledge to the utterance shared by the author and
the reader.

To test the validity of the above hypotheses, we pro-
pose a novel three-step model involving three succes-
sive stages: (1) detect if a tweet is ironic or not relying
exclusively on the information internal to the tweet. We
use a supervised learning method relying on both state
of the art features whose efficiency has been empiri-
cally proved and new groups of features. (2) Test this
internal context against the “outside of the utterance”
context. We design an algorithm that takes the clas-
sifier’s outputs and corrects the misclassified ironic in-
stances of the formNot(P ) by looking forP in reliable
external sources of information on the Web, such as
Wikipedia or online newspapers. We experiment when
labels are given by gold standard annotations and when
they are predicted by the classifier. (3) If the literal
meaning fails to make sense, i.e. P is found, then the
tweet is likely to convey a non-literal meaning.

To this end, we collected a corpus of 6,742 French
tweets using the Tweeter API focusing on tweets rel-
ative to a set of topics discussed in the media during
Spring 2014. Our intuition behind choosing such top-
ics is that a media-friendly topic is more likely to be
found in external sources of information. We chose

184 topics split into 9 categories (politics, sport, etc.).
For each topic, we selected a set of keywords with
and without hashtag: politics (e.g. Sarkozy, Hollande,
UMP), health (e.g. cancer, flu), sport (e.g. #Zlatan,
#FIFAworldcup), social media (e.g. #Facebook, Skype,
MSN), artists (e.g. Rihanna, Beyoncé), TV shows (e.g.
TheVoice, XFactor), countries or cities (e.g. NorthKo-
rea, Brasil), the Arab Spring (e.g. Marzouki, Ben
Ali) and some other generic topics (e.g. pollution,
racism). Then we selected ironic tweets containing the
topic keywords, the #ironie or #sarcasme hashtag and a
negation word as well as ironic tweets containing only
the topic keywords with #ironie or #sarcasme hashtag
but no negation word. Finally, we selected non ironic
tweets that contained either the topic keywords and a
negation word, or only the topic keywords. We re-
moved duplicates, retweets and tweets containing pic-
tures which would need to be interpreted to understand
the ironic content. Irony hashtags (#ironie or #sar-
casme) are removed from the tweets for the following
experiments. To guarantee that tweets with negation
words contain true negations, we automatically identi-
fied negation usage of a given word using a French syn-
tactic dependency parser1. We then designed dedicated
rules to correct the parser’s decisions if necessary. At
the end, we got a total of 4,231 tweets with negation
and 2,511 without negation, among them, 30.42% are
ironic with negation and 72.36% are non ironic with
negation. At the end, we got a total of 4,231 tweets with
negation and 2,511 without negation: among them,
30.42% are ironic with negation and 72.36% are non
ironic with negation. To capture the effect of nega-
tion on our task, we split these tweets in three cor-
pora: tweets with negation only (NegOnly), tweets with
no negation (NoNeg), and a corpus that gathers all the
tweets of the previous 2 corpora (All). Table 1 shows
the repartition of tweets in our corpora.

Corpus Ironic Non ironic TOTAL
NegOnly 470 3,761 4,231
NoNeg 1,075 1,436 2,511
All 1,545 5,197 6,742

Table 1: Tweet repartition.

3 Binary classifier

We experiment with SMO under the Weka toolkit with
standard parameters. We also evaluated other learning
algorithms (naive bayes, decision trees, logistic regres-
sion) but the results were not as good as those obtained
with SMO. We have built three classifiers, one for each
corpus, namely CNeg , CNoNeg , and CAll. Since the
number of ironic instances in the first corpus is rela-
tively small, we learnCNeg with 10-cross validation on
a balanced subset of 940 tweets. For the second and the
last classifiers, we used 80% of the corpus for training

1We have used Malt as a syntactic parser.
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and 20% for test, with an equal distribution between
the ironic (henceforth IR) and non ironic (henceforth
NIR) instances2. The results presented in this paper
have been obtained when training CNoNeg on 1,720
and testing on 430 tweets. CAll has been trained on
2,472 tweets (1432 contain negation –404 IR and 1028
NIR) and tested on 618 tweets (360 contain negation –
66 IR and 294 NIR). For each classifier, we represent
each tweet with a vector composed of six groups of fea-
tures. Most of them are state of the art features, others,
in italic font are new.

Surface features include tweet length in words
(Tsur et al., 2010), the presence or absence of punc-
tuation marks (Gonzalez-Ibanez et al., 2011), words
in capital letters (Reyes et al., 2013), interjections
(Gonzalez-Ibanez et al., 2011), emoticons (Buschmeier
et al., 2014), quotations (Tsur et al., 2010), slang words
(Burfoot and Baldwin, 2009), opposition words such as
“but” and “although” (Utsumi, 2004), a sequence of ex-
clamation or a sequence of question marks (Carvalho et
al., 2009), a combination of both exclamation and ques-
tion marks (Buschmeier et al., 2014) and finally, the
presence of discourse connectives that do not convey
opposition such as “hence, therefore, as a result” since
we assume that non ironic tweets are likely to be more
verbose. To implement these features, we rely on man-
ually built French lexicons to deal with interjections,
emoticons, slang language, and discourse connectives
(Roze et al., 2012).

Sentiment features consist of features that check for
the presence of positive/negative opinion words (Reyes
and Rosso, 2012) and the number of positive and neg-
ative opinion words (Barbieri and Saggion, 2014). We
add three new features: the presence of words that ex-
press surprise or astonishment, and the presence and
the number of neutral opinions. To get these features
we use two lexicons: CASOAR, a French opinion lexi-
con (Benamara et al., 2014) and EMOTAIX, a publicly
available French emotion and affect lexicon.

Sentiment shifter features group checks if a given
tweet contains an opinion word which is in the scope of
an intensifier adverb or a modality.

Shifter features tests if a tweet contains an intensi-
fier (Liebrecht et al., 2013), a negation word (Reyes et
al., 2013), or reporting speech verbs.

Opposition features are new and check for the pres-
ence of specific lexico-syntactic patterns that verify
whether a tweet contains a sentiment opposition or an
explicit positive/negative contrast between a subjective
proposition and an objective one. These features have
been partly inspired from (Riloff et al., 2013) who
proposed a bootstrapping algorithm to detect sarcas-
tic tweets of the form [P+].[P ′obj ] which corresponds
to a contrast between positive sentiment and an ob-
jective negative situation. We extended this pattern to

2For CNoNeg and CAll, we also tested 10-cross valida-
tion with a balanced distribution between the ironic and non-
ironic instances but results were not conclusive.

capture additional types of explicit oppositions. Some
of our patterns include: [Neg(P+)].[P ′+], [P−].[P ′+],
[Neg(P+)].[P ′obj ], [P ′obj ].[P−]. We consider that an
opinion expression is under the scope of a negation if it
is separated by a maximum of two tokens.

Finally, internal contextual deals with the pres-
ence/absence of personal pronouns, topic keywords and
named entities, as predicted by the parser’s outputs.

For each classifier, we investigated how each group
of features contributes to the learning process. We
applied to each training set a feature selection algo-
rithm (Chi2 and GainRatio), then trained the classifiers
over all relevant features of each group3. In all experi-
ments, we used all surface features as baseline. Table 2
presents the result in terms of precision (P), recall (R),
macro-averaged F-score (MAF) and accuracy (A). We
can see that CAll achieves better results. An analysis
of the best features combination for each classifier sug-
gests four main conclusions: (1) surface features are
primordial for irony detection. This is more salient for
NoNeg. (2) Negation is an important feature for our
task. However, having it alone is not enough to find
ironic instances. Indeed, among the 76 misclassified in-
stances inCAll, 60% contain negation clues (37 IR and
9 NIR). (3) When negation is concerned, opposition
features are among the most productive. (4) Explicit
opinion words (i.e sentiment and sentiment shifter) are
likely to be used in tweets with no negation. More im-
portantly, these results empirically validate hypothesis
(H1), i.e. negation is a good clue to detect irony.

Ironic (IR) Not ironic (NIR)
P R F P R F

CNeg 88.9 56.0 68.7 67.9 93.3 78.5
CNoNeg 71.1 65.1 68.0 67.80 73.50 70.50
CAll 93.0 81.6 86.9 83.6 93.9 88.4

Overall Results
MAF A

CNeg 73.6 74.5
CNoNeg 69.2 69.3
CAll 87.6 87.7

Table 2: Results for the best features combination.

Error analysis shows that misclassification of ironic
instances is mainly due to four factors: presence of sim-
iles (ironic comparison)4, absence of context within the
utterance (most frequent case), humor and satire5, and
wrong #ironie or #sarcasme tags. The absence of con-
text can manifest itself in several ways: (1) there is
no pointer that helps to identify the main topic of the
tweet, as in “I’ve been missing her, damn!”. Even if the
topic is present, it is often lexicalized in several col-
lapsed words or funny hashtags (#baddays, #aprilfoll),

3Results with all features are lower.
4e.g. “Benzema in the French team is like Sunday. He is

of no use.. :D”
5e.g. “I propose that we send Hollande instead of the

space probes on the next comet, it will save time and money
;) #HUMOUR”
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which are hard to automatically analyze. (2) The irony
is about specific situations (Shelley, 2001). (3) False
assertions about hot topics, like in “Don’t worry. Sene-
gal is the world champion soccer”. (4) Oppositions that
involve a contradiction between two words that are se-
mantically unrelated, a named entity and a given event
(e.g. “Tchad and “democratic election”), etc. Case (4)
is more frequent in the NoNeg corpus.

Knowing that tweets with negation represent 62.75%
of our corpus, and given that irony can focus on the
negation of a word or a proposition (Haverkate, 1990),
we propose to improve the classification of these tweets
by identifying the absurdity of their content, follow-
ing Attardo’s relevant inappropriateness model of irony
(Attardo, 2000) in which a violation of contextual ap-
propriateness signals ironical intent.

4 Deriving the pragmatic context

The proposed model included two parts: binary classi-
fiers trained with tweet features, and an algorithm that
corrects the outputs of the classifiers which are likely
to be misclassified. These two phases can be applied
successively or together. In this latter case, the algo-
rithm outputs are integrated into the classifiers and the
corrected instances are used in the training process of
the binary classifier. In this paper, we only present re-
sults of the two phases applied successively because it
achieved better results.

Our approach is to query Google via its API to check
the veracity of tweets with negation that have been
classified as non ironic by the binary classifier in or-
der to correct the misclassified tweets (if a tweet say-
ing Not(P ) has been classified as non-ironic but P is
found online, then we assume that the opposite content
is checked so the tweet class is changed into ironic).
Let WordsT be the set of words excluding stop words
that belong to a tweet t, and let kw be the topic key-
word used to collect t. Let N ⊂WordsT be the set of
negation words of t. The algorithm is as follows:
1. Segment t into a set of sentences S.
2. For each s ∈ S such that ∃neg ∈ N and neg ∈ s:

2.1 Remove # and @ symbols, emoticons, and neg,
then extract the set of tokens P ⊂ s that are on the
scope of neg (in a distance of 2 tokens).

2.2 Generate a query Q1 = P ∪ kw and submit it to
Google which will return 20 results (title+snippet) or
less.

2.3 Among the returned results, keep only the reliable
ones (Wikipedia, online newspapers, web sites that do
not contain ”blog” or ”twitter” in their URL). Then,
for each result, if the query keywords are found in the
title or in the snippet, then t is considered as ironic.
STOP.
3. Generate a second queryQ2 = (WordsT−N)∪kw
and submit it again to Google and follow the procedure
in 2.3. If Q2 is found, then t is considered as ironic.
Otherwise, the class predicted by the classifier does not
change.

Let us illustrate our algorithm with the topic Valls
and the tweet: #Valls has learnt that Sarkozy was
wiretapped in newspapers. Fortunately he is not
the interior minister. The first step leads to two
sentences s1 (#Valls has learnt that Sarkozy was
wiretapped in newspapers.) and s2 (Fortunately
he is not the interior minister). From s2, we re-
move the negation word “not”, isolate the negation
scope P = {interior, minister} and generate
the query Q1 = {V alls interior minister}.
The step 2.3 allows to retrieve the result:
<Title>Manuel Valls - Wikipedia, the free encyclope-
dia</Title>
<Snippet>... French politician. For the Spanish com-
poser, see Manuel Valls (composer). .... Valls was ap-
pointed Minister of the Interior in the Ayrault Cabinet
in May 2012.</Snippet>.

All query keywords were found in this snippet (in bold
font), we can then conclude that the tweet is ironic.

We made several experiments to evaluate how the
query-based method improves tweet classification. For
this purpose, we have applied the method on both cor-
pora All and Neg: ¬ A first experiment evaluates the
method on tweets with negation classified as NIR but
which are ironic according to gold annotations. This
experiment represents an ideal case which we try to
achieve or improve through other ones. ­: A sec-
ond experiment consists in applying the method on all
tweets with negation that have been classified as NIR
by the classifier, no matter if the predicted class is cor-
rect or not. Table 3 shows the results for both experi-
ments.

¬ ­
NIR tweets for which: All Neg All Neg
Query applied 37 207 327 644
Results on Google 25 102 166 331
Class changed into IR 5 35 69 178
Classifier Accuracy 87.7 74.46 87.7 74.46
Query-based Accuracy 88.51 78.19 78.15 62.98

Table 3: Results for the query-based method.

All scores for the query-based method are statis-
tically significant compared to the classifier’s scores
(p value < 0, 0001 when calculated with the McNe-
mar’s test.). An error analysis shows that 65% of tweets
that are still misclassified with this method are tweets
for which finding their content online is almost impos-
sible because they are personal tweets or lack internal
context. A conclusion that can be drawn is that this
method should not be applied on this type of tweets.
For this purpose, we made the same experiments only
on tweets with different combinations of relevant fea-
tures. The best results are obtained when the method is
applied only on NIR tweets with negation selected via
the internal context features, more precisely on tweets
which do not contain a personal pronoun and which
contain named entities: these results are coherent with
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the fact that tweets containing personal pronouns and
no named entity are likely to relate personal content im-
possible to validate on the Web (e.g. I’ve been missing
her, damn! #ironie). Table 4 shows the results for these
experiments. All scores for the query-based method are
also statistically significant compared to the classifier’s
scores.

¬ ­
NIR tweets for which: All Neg All Neg

Query applied 0 18 40 18
Results on Google - 12 17 12
Class changed into IR - 4 7 4
Classifier Accuracy 87.7 74.46 87.7 74.46
Query-based Accuracy 87.7 74.89 86.57 74.89

Table 4: Results when applied on “non-personal”
tweets.

For experiment ¬, on All, the method is not applied
because all misclassified tweets contain a personal pro-
noun and no named entity. The query-based method
outperforms the classifier in all cases, except on All
where results on Google were found for only 42.5%
of queries whereas more than 50% of queries found
results in all other experiments (maximum is 66.6%
in NegOnly). Tweets for which no result is found are
tweets with named entities but which do not relate an
event or a statement (e.g. AHAHAHAHAHA! NO RE-
SPECT #Legorafi, where “Legorafi” is a satirical news-
paper). To evaluate the task difficulty, two annotators
were also asked to label as ironic or not the 50 tweets
(40+18) for which the method is applied. The inter-
annotator score (Cohen’s Kappa) between both anno-
tators is only κ = 0.41. Among the 12 reclassifica-
tions into IR, both annotators disagree with each other
for 5 of them. Even if this experiment is not strong
enough to lead to a formal conclusion because of the
small number of tweets, this tends to show that human
beings would not do it better.

It is interesting to note that even if internal context
features were not relevant for automatic tweet classifi-
cation, our results show that they are useful for classifi-
cation improvement. As shown by ¬, the query-based
method is more effective when applied on misclassi-
fied tweets. We can then consider that using internal
contextual features (presence of personal pronouns and
named entities) can be a way to automatically detect
tweets that are likely to be misclassified.

5 Discussion and conclusions

This paper proposed a model to identify irony in im-
plicit oppositions in French. As far as we know, this
is the first work on irony detection in French on Twit-
ter data. Comparing to other languages, our results
are very encouraging. For example, sarcasm detection
achieved 30% precision in Dutch tweets (Liebrecht et
al., 2013) while irony detection in English data resulted
in 79% precision (Reyes et al., 2013).

We treat French irony as an overall term that covers
other figurative language devices such as sarcasm, hu-
mor, etc. This is a first step before moving to a more
fine-grained automatic identification of figurative lan-
guage in French. For interesting discussions on the dis-
tinction/similarity between irony and sarcasm hastags,
see (Wang, 2013).

One of the main contribution of this study is that the
proposed model does not rely only on the lexical clues
of a tweet, but also on its pragmatic context. Our in-
tuition is that a tweet containing an asserted fact of the
form Not(P1) is ironic if and only if one can prove P1

on the basis of some external information. This form of
tweets is quite frequent in French (more than 62.75% of
our data contain explicit negation words), which sug-
gests two hypotheses: (H1) negation can be a good in-
dicator to detect irony, and (H2) external context can
help to detect the absurdity of ironic content.

To validate if negation helps, we built binary clas-
sifiers using both state of the art features and new
features (explicit and implicit opposition, sentiment
shifter, discourse connectives). Overall accuracies
were good when the data contain both tweets with
negation and no negation but lower when tweets con-
tain only negation or no negation at all. Error anal-
ysis show that major errors come from the presence
of implicit oppositions, particularly in CNeg and CAll.
These results empirically validate hypothesis (H1).
Negation has been shown to be very helpful in many
NLP tasks, such as sentiment analysis (Wiegand et al.,
2010). It has also been used as a feature to detect irony
(Reyes et al., 2013). However, no one has empirically
measured how irony classification behaves in the pres-
ence or absence of negation in the data.

To test (H2), we proposed a query-based method that
corrects the classifier’s outputs in order to retrieve false
assertions. Our experiments show that the classification
after applying Google searches in reliable web sites sig-
nificantly improves the classifier accuracy when tested
on CNeg . In addition, we show that internal context
features are useful to improve classification. These re-
sults empirically validate (H2). However, even though
the algorithm improves the classifier performance, the
number of queries is small which suggests that a much
larger dataset is needed. As for negation, querying ex-
ternal source of information has been shown to give
an improvement over the basic features for many NLP
tasks (for example, in question-answering (Moldovan
et al., 2002)). However, as far as we know, this ap-
proach has not been used for irony classification.

This study is a first step towards improving irony de-
tection relying on external context. We plan to study
other ways to retrieve such a context like the conversa-
tion thread.
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Abstract

This paper presents an email importance
corpus annotated through Amazon Me-
chanical Turk (AMT). Annotators anno-
tate the email content type and email im-
portance for three levels of hierarchy (se-
nior manager, middle manager and em-
ployee). Each email is annotated by
5 turkers. Agreement study shows that
the agreed AMT annotations are close to
the expert annotations. The annotated
dataset demonstrates difference in propor-
tions of content type between different lev-
els. An email importance prediction sys-
tem is trained on the dataset and identifies
the unimportant emails at minimum 0.55
precision with only text-based features.

1 Introduction

It is common that people receive tens or hundreds
of emails everyday. Reading and managing all
these emails consume significant time and atten-
tion. Many efforts have been made to address the
email overload problem. There are studies mod-
eling the email importance and the recipients’ ac-
tions in order to help with the user’s interaction
with emails (Dabbish and Kraut, 2006; Dabbish
et al., 2005). Meanwhile, there are NLP studies
on spam message filtering, email intention classi-
fication, and priority email selection to reduce the
number of emails to read (Schneider, 2003; Co-
hen et al., 2004; Jeong et al., 2009; Dredze et
al., 2009). In our project, we intend to build an
email briefing system which extracts and summa-
rizes important email information for the users.

However, we believe there are critical com-
ponents missing from the current research work.
First, to the extent of our knowledge, there is lit-
tle public email corpus with email importance la-
beled. Most of the prior works were either based

on surveys or private commercial data (Dabbish
and Kraut, 2006; Aberdeen et al., 2010). Second,
little attention has been paid to study the difference
of emails received by people at different levels of
hierarchy. Third, most of the prior works chose
the user’s action to the email (e.g. replies, opens)
as the indicator of email importance. However, we
argue that the user action does not necessarily in-
dicate the importance of the email. For example,
a work-related reminder email can be more impor-
tant than a regular social greeting email. However,
a user is more likely to reply to the later and keep
the information of the former in mind. Specifically
for the goal of our email briefing system, impor-
tance decided upon the user’s action is insufficient.

This paper proposes to annotate email impor-
tance on the Enron email corpus (Klimt and Yang,
2004). Emails are grouped according to the re-
cipient’s levels of hierarchy. The importance of
an email is annotated not only according to the
user’s action but also according to the importance
of the information contained in the email. The
content type of the emails are also annotated for
the email importance study. Section 3 describe the
annotation and analysis of the dataset. Section 4
describes our email importance prediction system
trained on the annotated corpus.

2 Related work

The most relevant work is the email corpus an-
notated by Dredze et al. (Dredze et al., 2008a;
Dredze et al., 2008b). 2391 emails from inboxes
of 4 volunteers were included. Each volunteer
manually annotated whether their own emails need
to be replied or not. The annotations are reliable
as they come from the emails’ owners. However, it
lacks diversity in the user distribution with only 4
volunteers. Also, whether an email gets response
or not does not always indicate its importance.
While commercial products such as Gmail Priority
Inbox (Aberdeen et al., 2010) has a better cover-
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age of users and decides the importance of emails
upon more factors1, it is unlikely to have their data
accessible to public due to user privacy concerns.

The Enron corpus is a public email corpus
widely researched (Klimt and Yang, 2004). Lam-
pert et al. (2010) annotated whether an email con-
tains action request or not based on the agreed an-
notations of three annotators. We followed sim-
ilar ideas and labeled the email importance and
content type with the agreed Amazon Mechanical
Turk annotations. Emails are selected from En-
ron employees at different levels of hierarchy and
their importance are labeled according to the im-
portance of their content. While our corpus can
be less reliable without the annotations from the
emails’ real recipients, it is more diverse and has
better descriptions of email importance.

3 Data annotation

3.1 Annotation scheme

Annotators are required to select the importance of
the email from three levels: Not important, Nor-
mal and Important. Not important emails con-
tain little useful information and require no action
from the recipient. It can be junk emails missed
by the spam filter or social greeting emails that do
not require response from the recipient. Important
emails either contain very important information
to the recipient or contain urgent issues that re-
quire immediate action (e.g. change of meeting
time/place). Normal emails contain less impor-
tant information or contain less urgent issues than
Important emails. For example, emails discussing
about plans of social events after work would typ-
ically be categorized as Normal.

We also annotate the email content type as it
reveals the semantic information contained in the
emails. There are a variety of email content type
definitions (Jabbari et al., 2006; Goldstein et al.,
2006; Dabbish et al., 2005). We choose Dabbish et
al.’s definition for our work. Eight categories are
included: Action Request, Info Request, Info At-
tachment, Status Update, Scheduling, Reminder,
Social, and Other. While an email can contain
more than one type of content, annotators are re-
quired to select one primary type.

1Including user actions and action time, the user actions
not only include the Reply action but also includes actions
such as opens, manual corrections, etc.

3.2 Annotation with AMT
Amazon Mechanical Turk is widely used in data
annotation (Lawson et al., 2010; Marge et al.,
2010). It is typically reliable for simple tasks. Ob-
serving the fact that it takes little time for a user to
decide an email’s importance, we choose AMT to
do the annotations and manage to reduce the an-
notation noise through redundant annotation.

Creamer et al. categorized the employees of the
Enron dataset to 4 groups: senior managers, mid-
dle managers, traders and employees2 (Creamer
et al., 2009). We hypothesized that the types of
emails received by different groups were different
and annotated different groups separately. Based
on Creamer et al’s work, we identified 23 senior
managers with a total of 21728 emails, 20 middle
managers with 13779 emails and 17 regular em-
ployees with 12137 emails. The trader group was
not annotated as it was more specific to Enron. For
each group, one batch of 750 assignments (email)
was released. The emails were randomly selected
from all the group members’ received emails (to
or cc’ed). Turkers were presented with all de-
tails available in the Enron dataset, including sub-
ject, sender, recipients, cclist, date and the con-
tent (with history of forwards and replies). Turkers
were required to make their choices as they were
in the position.3 Each assignment was annotated
by 5 turkers at the rate of $0.06 per Turker assign-
ment. The email type and the email importance
are decided according to the majority votes. If an
email has 3 agreed votes or higher, we call this
email agreed. Table 1 demonstrates the average
time per assignment (Time), the effectively hourly
rate (Ehr), the number of emails with message type
agreed (#TypeAgreed), importance agreed (#Im-
poAgreed) and both agreed (#AllAgreed). We find
that #AllAgreed is close to #TypeAgreed, which
indicates a major overlap between the agreed type
annotation and the agreed importance annotation.

3.3 Data discussion
In this paper we focus on the AllAgreed emails to
mitigate the effects of annotation noise. Table 2
demonstrates the contingency table of the corpus.

2Senior managers include CEO, presidents, vice presi-
dents, chief risk officer, chief operating officer and manag-
ing directors. The other employees at management level are
categorized to middle managers

3E.g. instruction of the senior manager batch: Imagine
you were the CEO/president/vice president/managing direc-
tor of the company, categorize the emails into the three cate-
gories [Not Important], [Normal], [Important].
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Level Time (s) Ehr ($) #All #TypeAgreed #ImpoAgreed #AllAgreed
Senior (23) 40 5.400 750 589 656 574
Middle (20) 33 6.545 750 556 622 550
Employee (17) 31 6.968 750 593 643 586

Table 1: AMT annotation results, notice that #AllAgreed is close to #TypeAgreed

Act.Req Info.Req Info Status Schedule Reminder Social Other All
Senior 60 49 255 57 43 4 68 38 574
Not 0 0 0 0 0 0 33 30 63
Normal 38 37 231 51 37 4 35 8 441
Important 22 12 24 6 6 0 0 0 70
Middle 82 53 261 22 49 0 37 46 550
Not 0 0 1 0 0 0 10 32 43
Normal 64 47 247 22 49 0 27 14 470
Important 18 6 13 0 0 0 0 0 37
Employee 61 65 326 22 29 1 52 30 586
Not 0 0 1 0 0 0 8 26 35
Normal 43 62 315 22 27 1 44 4 518
Important 18 3 10 0 2 0 0 0 33

Table 2: Contingency table of content type and importance of AllAgreed emails; bold indicates the
proportions of this category is significantly different between groups (p<0.05)

A potential issue of the corpus is that the impor-
tance of the email is not decided by the real email
recipient. To address this concern, we compared
the AllAgreed results with the annotations from
an expert annotator. 50 emails were randomly se-
lected from AllAgreed emails for each level. The
annotator was required to check the background
of each recipient (e.g. the recipient’s position in
the company at the time, his/her department infor-
mation and the projects he/she was involved in if
these information were available online) and judge
the relationship between the email’s contacts be-
fore annotation (e.g. if the contact is a family
member or a close friend of the recipient). Agree-
ment study shows a Kappa score of 0.7970 for the
senior manager level, 0.6420 for the middle man-
ager level and 0.7845 for the employee level. It
demonstrates that the agreed Turker annotations
are as reliable as well-prepared expert annotations.

We first tested whether the content type pro-
portions were significantly different between dif-
ferent levels of hierarchy. Recipients with more
than 20 emails sampled were selected. A vector of
content type proportions was built for each recipi-
ent on his/her sampled emails. Then we applied
multivariate analysis of variance (MANOVA) to
test the difference in the means of the vectors

between levels4. We found that there were sig-
nificant differences in proportions of status up-
date (p=0.042) and social emails (p=0.035). This
agrees with the impression that the senior man-
agers spend more time on project management and
social relationship development. Following the
same approach, we tested whether there were sig-
nificant differences in importance proportions be-
tween levels. However, no significant difference
was found while we can observe a higher portion
of Important emails in the Senior group in Table 2.
In the next section, we further investigate the rela-
tionship between content type and message impor-
tance using the content type as a baseline feature
in email importance prediction.

4 Email importance prediction

In this section we present a preliminary study of
automatic email importance prediction. Two base-
lines are compared, including a Majority baseline
where the most frequent class is chosen and a Type
baseline where the only feature used for classifica-
tion is the email content type.

4We cannot use Chi-square to test the difference between
groups directly on Table 2 as the emails sampled do not sat-
isfy the independence consumption if they come from the
same recipient
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Features Acc Kappa P(U) R(I)
Sr. Mgrs
Majority 76.83 0 0 0
Type 68.78 37.93 58.76 44.81
Text 76.34 26.96 71.83∗ 14.67†
Text+Type 78.43 33.80 75.99∗ 12.13†
Mgrs
Majority 85.45 0 0 0
Type 69.81 32.75 50.47 49.80
Text 87.09 26.64 54.67 4.17†
Text+Type 88.55 36.42 63.80∗ 7.59†
Emp
Majority 88.39 0 0 0
Type 80.34 38.63 40.21 45.12
Text 88.83 30.98 63.83∗ 1.67†
Text+Type 89.16 36.71 72.50∗ 1.67†

Table 3: Results of Experiment 1; ∗ indicates sig-
nificantly better than the Type baseline; † indicates
significantly worse than the Type baseline; bold
indicates better than all other methods. With only
text-based features, the system achieves at least
54.67 precision in identifying unimportant emails.

Groups Acc Kappa P(U) R(I)
Sr. Mgrs 77.70 19.24 65.22 10.00
Mgrs 83.27 30.03 61.90 2.70
Emp 83.10 33.89 46.94 33.33

Table 4: Cross-group results of Experiment 2

4.1 Feature extraction
While prior works have pointed out that the so-
cial features such as contacting frequency are re-
lated to the user’s action on emails (Lampert et al.,
2010; Dredze et al., 2008a), in this paper we only
focus on features that can be extracted from text.

N-gram features Binary unigram features are
extracted from the email subject and the email
content separately. Stop words are not filtered as
they might also hint the email importance.

Part-of-speech tags According to our observa-
tion, the work-related emails have more content
words than greeting emails. Thus, POS tag fea-
tures are extracted from the email content, includ-
ing the total numbers of POS tags in the text and
the average numbers of tags in each sentence. 5

5The Part-of-speech (POS) tags are tagged with the Stan-
ford CoreNLP toolkit (Manning et al., 2014; Toutanova et al.,
2003), containing 36 POS tags as defined in the Penn Tree-
bank annotation.

Length features We observe that work-related
emails tend to be more succinct than unimpor-
tant emails such as advertisements. Thus, length
features are extracted including the length of the
email subject and email content, and the average
length of sentences in the email content.

Content features Inspired by prior works
(Lampert et al., 2010; Dredze et al., 2008a), fea-
tures that provide hints of the email content are ex-
tracted, including the number of question marks,
date information and capitalized words, etc.

4.2 Experiments

We treat our task as a multi-class classification
problem. We test classifications within-level and
cross-level with only text-based features.

Experiment 1 Each level is tested with 10-fold
cross-validation. SVM of the Weka toolkit (Hall et
al., 2009) is chosen as the classifier. To address the
data imbalance problem, the minority classes of
the training data are oversampled with the Weka
SMOTE package (Chawla et al., 2002). The pa-
rameters of SMOTE are decided according to the
class distribution of the training data.

Experiment 2 The classifiers are trained on two
levels and tested on the other level. Again, SVM is
chosen as the model and SMOTE is used to over-
sample the training data.

4.3 Evaluation

Kappa6 and accuracy are chosen to evaluate the
overall performance in prediction. For our email
briefing task specifically, precision in unimpor-
tant email prediction P(U) (avoid the false recog-
nition of unimportant emails) and recall in impor-
tant email prediction R(I) (cover as many impor-
tant emails as possible) are evaluated. Paired t-
tests are utilized to compare whether there are sig-
nificant differences in performance (p < 0.05).

As demonstrated in Table 3, the text-based fea-
tures are useful for the prediction of unimportant
email classification but not as useful for the recog-
nition of important emails. It also shows that
the content type is an important indicator of the
email’s importance. While the content type is not
always accessible in real life settings, the results
demonstrate the necessity of extracting semantic
information for email importance prediction. In
Table 4, precision of unimportant email prediction

6The agreement between the system and the majority la-
bels from the Mechanical Turk
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is higher on the manager levels but lower on the
employee level. This indicates a potential differ-
ence of email features between the manager levels
and the employee level.

5 Conclusion and future work

In this paper we present an email importance cor-
pus collected through AMT. The dataset focuses
on the importance of the information contained in
the email instead of the email recipient’s action.
The content type of the email is also annotated and
we find differences in content type proportions be-
tween different levels of hierarchy. Experiments
demonstrate that the content type is an important
indicator of email importance. The system based
on only text-based features identifies unimportant
emails at minimum 0.5467 precision.

Agreement study shows that the agreed Turker
annotations are as good as annotations of well-
prepared expert annotators. We plan to increase
the size of our dataset through AMT. We expect
the dataset to be helpful for studies on email over-
load problems. Meanwhile, we are aware that the
current corpus lacks social and personal informa-
tion. We believe features regarding such informa-
tion (e.g. the recipient’s email history with the
contact, the recipient’s personal preference in cat-
egorizing emails, etc.) should also be incorporated
for importance prediction.
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Abstract

Compared with carefully edited prose, the
language of social media is informal in the
extreme. The application of NLP tech-
niques in this context may require a better
understanding of word usage within social
media. In this paper, we compute a word
embedding for a corpus of tweets, compar-
ing it to a word embedding for Wikipedia.
After learning a transformation of one vec-
tor space to the other, and adjusting simi-
larity values according to term frequency,
we identify words whose usage differs
greatly between the two corpora. For any
given word, the set of words closest to it in
a particular embedding provides a charac-
terization for that word’s usage within the
corresponding corpora.

1 Introduction

Users of social media typically employ highly
informal language, including slang, acronyms,
typos, deliberate misspellings, and interjec-
tions (Han and Baldwin, 2011). This heavy use
of nonstandard language, as well as the overall
level of noise on social media, creates substantial
problems when applying standard NLP tools and
techniques (Eisenstein, 2013). For example, Kauf-
mann and Kalita (2010) apply machine translation
methods to convert tweets to standard English in
an attempt to ameliorate this problem. Similarly,
Baldwin et al. (2013) and Han et al. (2012) address
this problem by generating corrections for irregu-
larly spelled words in social media.

In this short paper, we continue this line of re-
search, applying word embedding to the problem
of translating between the informal English of so-
cial media, specifically Twitter, and the formal En-
glish of carefully edited texts, such as those found

∗Luchen Tan and Haotian Zhang contributed equally to
this work.

in Wikipedia. Starting with a large collection of
tweets and a copy of Wikipedia, we construct word
embeddings for both corpora. We then gener-
ate a transformation matrix, mapping one vector
space into another. After applying a normalization
based on term frequency, we use distances in the
transformed space as an indicator of differences in
word usage between the two corpora. The method
identifies differences in usage due to jargon, con-
tractions, abbreviations, hashtags, and the influ-
ence of popular culture, as well as other factors.
As a method of validation, we examine the over-
lap in closely related words, showing that distance
after transformation and normalization correlates
with the degree of overlap.

2 Related Work

Mikolov et al. (2013b) proposed a novel neural
network model to train continuous vector repre-
sentation for words. The high-quality word vec-
tors obtained from large data sets achieve high
accuracy in both semantic and syntactic relation-
ships (Goldberg and Levy, 2014).

Some probabilistic similarity measures, based
on Kullback-Leibler (KL) divergence (or relative
entropy), give an inspection of relative divergence
between two probability distributions of corpus
(Kullback and Leibler, 1951; Tan and Clarke,
2014). For a given token, KL divergence measures
the distribution divergence of this word in different
corpora according to its corresponding probability.
Intuitively, the value for KL divergence increases
as two distributions become more different. Ver-
spoor et al. (2009) found that KL divergence could
be applied to analyze text in terms of two charac-
teristics: the magnitude of the differences, and the
semantic nature of the characteristic words.

Subašić and Berendt (2011) applied a sym-
metrical variant of KL divergence, the Jensen-
Shannon (JS) divergence (Lin, 1991), to compare
various aspects of the corpora such as language
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divergence, headline divergence, named-entity di-
vergence and sentiment divergence. As for the ap-
plications derived from above methods, Tang et al.
(2011) studied the lexical semantics and sentiment
tendency of high frequency terms in each corpus
by comparing microblog texts with general arti-
cles. Baldwin et al. (2013) analyzed non-standard
language on social media in the aspects of lexi-
cal variants, acronyms, grammaticality and corpus
similarity. Their results revealed that social media
text is less grammatical than edited text.

3 Methods of Lexical Comparison

Mikolov et al. (2013a) construct vector spaces for
various languages, including English and Spanish,
finding that the relative positions of semantically
related words are preserved across languages. We
adapt this result to explore differences between
corpora written in a single language, specifically
to explore the contrast between the highly in-
formal language used in English-language social
media with the more formal language used in
Wikipedia. We assume that there exists a lin-
ear transformation relationship between the vec-
tors for the most frequent words from each cor-
pus. Working with these frequent terms, we learn
a linear projection matrix that maps source to tar-
get spaces. We hypothesize that usage of those
words appearing far apart after this transformation
differs substantially between the two corpora.

Let a ∈ R1×d and b ∈ R1×d be the corre-
sponding source and target word vector represen-
tation with dimension d. We construct a source
matrix A = [aT

1 , a
T
2 , ..., a

T
c ]T and a target matrix

B = [bT1 , b
T
2 , ..., b

T
c ]T , composed of vector pairs

{ai, bi}ci=1, where c is the size of the vocabulary
common between the source and target corpora.
We order these vectors according to frequency in
the target corpus, so that ai and bi correspond to
the i-th most common word in the target corpus.

These vectors are used to learn a linear transfor-
mation matrix M ∈ Rd×d. Once this transforma-
tion matrix M is obtained, we can transform any
ai to a′i = aiM in order to approximate bi. The
linear transformation can be depicted as:

AM = B (1)

Following the solution provided by (Mikolov et
al., 2013a), M can be approximately computed by

using stochastic gradient descent:

min
M

n∑
i=1

‖ aiM − bi ‖2 (2)

where we limit the training process to the top n
terms.

After the generation of M , we calculate a′i =
aiM for each word. For each ai where i > n, we
determine the distance between a′i and bi:

Sim(a′i, bi), n ≤ i ≤ c. (3)

Let Z be the set of these words ordered by dis-
tance, so that zj is the word with the j-th greatest
distance between the corresponding a′ and b vec-
tors. For the experiments reported in this paper, we
used cosine distance to calculate this Sim metric.

4 Experiments

In this section, we describe the results of applying
our method to Twitter and Wikipedia.

4.1 Experimental Settings

The Wikipedia dataset for our experiments con-
sists of all English Wikipedia articles downloaded
from MediaWiki data dumps1. The Twitter dataset
was collected through the Twitter Streaming API
from November 2013 to March 2015. We re-
stricted the dataset to English-language tweets on
the basis of the language field contained in each
tweet. To obtain distributed word representation
for both corpora, we trained word vectors sep-
arately by applying the word2vec2 tool, a well-
known implementation of word embedding.

Before applying the tool, we cleaned Wikipedia
and Twitter corpora. The clean version of
Wikipedia retains only normally visible article
text on Wikipedia web pages. The Twitter clean
version removes HTML code, URLs, user men-
tions(@), the # symbol of hashtags, and all the
retweeted tweets. The sizes of document and vo-
cabulary in both corpora are listed in Table 1.

Corpora # Documents # Vocabulary
Wikipedia 3,776,418 7,267,802
Twitter 263,572,856 13,622,411

Table 1: Corpora sizes

1https://dumps.wikimedia.org/enwiki/20150304/
2https://code.google.com/p/word2vec/
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There are two major parameters that affect
word2vec training quality: the dimensionality of
word vectors, and the size of the surrounding
words window. We choose 300 for our word vec-
tor dimensionality, which is typical for training
large dataset with word2vec. We choose 10 words
for the window, since tweet sentence length is
9.2± 6.4 (Baldwin et al., 2013).

4.2 Visualization
In Figure 1, we visualize the vectors of some
most common English words by applying prin-
cipal component analysis (PCA) to the vector
spaces. The words “and”, “is”, “was” and “by”
have similar geometric arrangements in Wikipedia
and in Twitter, since these common words are not
key differentiators for these corpora. On the other
hand, the pronouns “I” and “you”, are heavily used
in Twitter but rarely used in Wikipedia. Despite
this difference in term frequency, after transfor-
mation, the vectors for these terms appear close
together.

Figure 1: Word representations in Wikipedia,
Twitter and transformed vectors after mapping
from Wikipedia to Twitter.

4.3 Results
As our primary goal, we hope to demonstrate
that our transformation method reflects meaning-
ful lexical usage differences between Wikipedia
and Twitter. To train our space transformation ma-
trix, we used the top n = 1, 000 most frequent
words from the 505,121 words that appear in both
corpora. The transformation can be either from
Twitter to Wikipedia (T2W) or the opposite direc-
tion W2T. We observed that the two transforma-
tion matrices are not exactly the same, but they
produce similar results. Mikolov et al. (2013c)
suggest that a simple vector offset method based

on cosine distance was remarkably effective to
search both syntactic and semantic similar words.
They also report that cosine similarity preformed
well, given that the embedding vectors are all nor-
malized to unit norm.

Figure 2 illustrates how T2W word vectors are
similar to their original word vectors. For the
purpose of explaining Figure 2, we define new
notation as follows: Let T and W be the word
sets of Twitter and Wikipedia respectively, and let
C = T ∩ W . Denote the document frequency of
a word t in the Twitter corpus as df(t). Sorting
the whole set C by df(t) in an ascending order,
we obtain a sequence S̄ = {c0, · · · , cm−1}, where
ci ∈ C; m = 505, 121; and df(ci) ≤ df(cj),
∀i < j. We partition the sequence S̄ into 506
buckets, with a bucket size b = 1000. Bi =
{ci∗b, · · · , c(i+1)∗b−1} represents the i-th bucket.
We number the curves in Figure 2 from the top to
the bottom. The points on the i-th curve demon-
strates the cosine similarity of the (i− 1) ∗ 100-th
word in each bucket. From this figure, it is appar-
ent that words with higher frequencies have higher
average cosine similarity than those words with
lower frequencies. Since our goal is to find words
with lower than average similar, we apply the me-
dian curve of Figure 2 to adjust word distances.
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Figure 2: T2W transformated similarity curves.

Defining adjusted distance as Dadjusted(t) of
a given word t, we calculate the cosine distance
between t and the median point cmedian from its
corresponding bucket Bi.

Dadjusted(t) = Sim(cmedian)− Sim(t) (4)

where the index of median point should be i ∗ b+
b/2. A negative adjusted distance value means
the word is more similar than at least half of
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Word Twitter Most Similar Wikipedia Most Similar
bc because bcus bcuz cuz cos bce macedon hellenistic euthydemus ptolemaic
ill ll imma ima will youll unwell sick frail fated bedridden

cameron cam nash followmecam camerons callmecam gillies duncan mckay mitchell bryce
mentions unfollow reply respond strangerswelcomed offend mentions mentioned mentioning reference attested

miss misss love missss missssss imiss pageant pageants titlehoder titlehoders pageantopolis
yup yep yupp yeah yea yepp chevak yupik gwaii tlingit nunivak

taurus capricorn sagittarius pisces gemini scorpio poniatovii scorpio subcompact sagittarius chevette

Table 2: Characteristic Words in Twitter Corpora

words in its bucket. On the other hand, the words
that are less similar than at least half of words in
their buckets have positive adjusted distance val-
ues. The larger an adjusted distance, the less sim-
ilar the word is between the corpora.

4.4 Examples

Table 2 provides some examples of common
words with large adjusted distance, suggesting that
their usage in the two corpora are quite differ-
ent. For each of these words, the example shows
the closest terms to that word in the two corpora.
In Twitter, “bc” is frequently an abbreviation for
“because”, while in Wikipedia “bc” is more com-
monly used as part of dates, e.g. 900 BC. Simi-
larly, in Twitter “ill” is often a misspelling of the
contraction “I’ll”, rather than a synonym for sick-
ness, as in Wikipedia. In Twitter, the most similar
words to “cameron” relate to a YouTube person-
ality, whereas in Wikipedia they relate to notable
Scotish persons. In Wikipedia, “miss” is related
to beauty pageants, while in Twitter it is related
to expressions of affection (“I misssss you”). The
other examples also have explanations related to
popular culture, jargon, slang, and other factors.

5 Validation

To validate our method of comparing lexical dis-
tinctions in the two corpora, we employ a ranking
similarity measurement. Within a single corpus,
the most similar words to a word t can be gen-
erated by ranking cosine distance to t. We then
determine the overlap between the most similar
words to t from Twitter and Wikipedia. The more
the two lists overlap, the greater the similarity be-
tween the words in the two corpora. Our hypoth-
esis is that larger rank similarity correlates with
smaller adjusted distance.

Rank biased overlap (RBO) provides a rank
similarity measure designed for comparisons be-
tween top-weighted, incomplete and indefinite
rankings. Given two ranked lists, A and B, let

A1:k and B1:k denote the top k items in A and
B (Webber et al., 2010). RBO defines the overlap
betweenA andB at depth k as the size of the inter-
section between these lists at depth k and defines
the agreement between A and B at depth k as the
overlap divided by the depth. Webber et al. (2010)
define RBO as a weighted average of agreement
across depths, where the weights decay geometri-
cally with depth, reflecting the requirement for top
weighting:

RBO = (1− ϕ)
∞∑

k=1

ϕk−1 |A1:k ∩B1:k|
k

(5)

Here, ϕ is a persistence parameter. As suggested
by Webber et al., we set ϕ = 0.9. In practice, RBO
is computed down to some fixed depth K. We se-
lect K = 50 for our experiments. For a word t,
we compute RBO value between its top 50 simi-
lar words in Wikipedia and top 50 similar words
in Twitter.

In Figure 3, we validate consistency between
results of our space transformation method and
RBO. For the top 5,000 terms in the Twitter cor-
pus, we sort them by their adjusted distance value.
Due to properties of RBO, there are many zero
RBO values. To illustrate the density of these zero
overlaps, we smooth our plot by sliding a 100-
word window with a step of 10 words. As shown
sharply in the figure, RBO and adjusted distance
is negatively correlated.

6 Conclusion

This paper analyzed the lexical usage difference
between Twitter microblog corpus and Wikipedia
corpus. A word-level comparison method based
on word embedding is employed to find the char-
acterisic words that particularly discriminating
corpora. In future work, we plan to introduce this
method to normalize the nonstandard language
used in Twitter, applying the methods to problems
in search and other areas.

660



0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5
Average T2W adjusted distance(Top 5000 in Twitter)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Av

er
ag

e 
RB

O

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Average W2T adjusted distance(Top 5000 in Twitter)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Av
er

ag
e 

RB
O

Figure 3: T2W and W2T negative correlation between adjusted distance and RBO.
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Abstract 

Human labeled corpus is indispensable for 

the training of supervised word segmenters. 

However, it is time-consuming and labor-

intensive to label corpus manually. During 

the process of typing Chinese text by Pingyin, 

people usually need to type "space" or nu-

meric keys to choose the words due to homo-

phones, which can be viewed as a cue for 

segmentation. We argue that such a process 

can be used to build a labeled corpus in a 

more natural way. Thus, in this paper, we in-

vestigate Natural Typing Annotations (NTAs) 

that are potential word delimiters produced 

by users while typing Chinese. A detailed 

analysis on over three hundred user-produced 

texts containing NTAs reveals that high-

quality NTAs mostly agree with gold seg-

mentation and, consequently, can be used for 

improving the performance of supervised 

word segmentation model in out-of-domain. 

Experiments show that a classification model 

combined with a voting mechanism can reli-

ably identify the high-quality NTAs texts that 

are more readily available labeled corpus. 

Furthermore, the NTAs might be particularly 

useful to deal with out-of-vocabulary (OOV) 

words such as proper names and neo-logisms. 

1 Introduction 

Unlike English text in which sentences are se-

quences of words delimited by white spaces, in 

Chinese text, sentences are usually represented 

and stored as strings of Chinese characters with-

out similar natural delimiters. To find the basic 

language units, i.e. words, segmentation is a nec-

essary initial step for Chinese language pro-

cessing.  

Currently most of state-of-the-art methods for 

Chinese word segmentation (CWS) are based on 

supervised learning, which depend on large scale 

annotated corpus. These supervised methods ob-

tain high accuracies on newswire (Xue and Shen, 

2003; Zhang and Clark, 2007; Jiang et al., 2009; 

Zhao et al., 2010; Sun and Xu, 2011). However, 

manually annotated training data mostly come 

from the news domain, and the performance can 

drop severely when the test data shift from 

newswire to blogs, computer forums, and Inter-

net literature (Liu and Zhang, 2012;).Supervised 

approaches often have a high requirement on the 

quality and quantity of annotated corpus, which 

is always not easy to build. As a result, many 

previous methods utilize the information of free 

data which contain limited but useful segmenta-

tion information over the Internet, including 

large-scale unlabeled data, domain-specific lexi-

cons and semi-annotated web pages such as Wik-

ipedia. There has been work on making use of 

both unlabeled data (Li and Sun, 2009; Sun and 

Xu, 2011; Wang et al., 2011; Qiu et al., 2014) 

and Wikipedia (Jiang et al., 2013; Liu et al., 

2014;) to improve segmentation. But none of 

them notice the segmentation information pro-

duced by users while typing Chinese. 

Chinese is unique due to its logographic writ-

ing system. Chinese users cannot directly type in 

Chinese words using a QWERTY keyboard. In-

put methods have been proposed to assist users 

to type in Chinese words (Chen, 1997). Substan-

tial information has been produced, but not rec-

orded and stored during text typing process. 

 
Figure 1: Typical Chinese Pinyin input  

method (Sogou-Pinyin). 

The typical way to type in Chinese words is in 

a sequential manner (Wang et al., 2001). iRearch 

(2009) showed that Pinyin input methods have 

the biggest share of Chinese speakers. We take 

one of them for example. Suppose users want to 

type in Chinese word “今天 (today)”. Firstly, 

they mentally generate and physically type in 

corresponding Pinyin “jintian”. Then, a Chinese 

Pinyin input method displays a list of Chinese 

homophones, as shown in Figure 1. Finally, users 

visually search the target word from candidates 

and select numeric key, e.g. '1'-'9'(<NUM#1>-

<NUM#9>) or space key (<SPACE>, a shortcut 
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for numeric key '1') to get the target word (Zheng 

et al., 2011). Other Chinese input methods, like 

Wubi, also take these three steps. Typing English 

words does not involve the last two steps, which 

indicates that it is on one side more complicated 

for Chinese users to type in Chinese words than 

English, but on the other side more convenient 

for us to obtain additional information produced 

by users in typing process. We define numeric 

keys and the space key as selection keys for 

choosing the target word. For sentence “今天天

气不错。(Nice weather today.)”，one general 

sequence with selection keys is like “ 今天

(today)<SPACE>天气(weather)<NUM#2>不错

(not bad)<SPACE>。” or “今天 (today) <SPA- 

CE>天气不错 (weather is not bad) <SPACE>。” 

In a certain sense, these user-produced selection 

keys play a role of word delimiters in a very nat-

ural way. 

In this paper, we propose the concept of Natu-

ral Typing Annotations (NTAs) that are potential 

word delimiters produced by users while typing 

Chinese words, and verify that it is plausible to 

automatically generate labeled data for CWS by 

exploiting NTAs. According to the principle of 

statistical sampling, texts with NTAs are gath-

ered from 384 users.  Specifically, since the ul-

timate goal is to exploit NTAs to automatically 

generate labeled data for word segmentation, the 

main task is to select high-quality NTAs, which 

largely overlap with gold segmentation. We do 

this by 1) training a classifier to distinguish ac-

ceptable-quality NTAs from low-quality ones, 

and then 2) using a voting mechanism to further 

locate the high-quality NTAs among those iden-

tified by the classifier in the first step. Experi-

ments show that Support Vector Machine (SVM) 

and voting mechanism are effective for this work 

and the high-quality NTAs texts can be used as 

the training data for improving the performance 

of supervised word segmentation model in out-

of-domain. In addition, some evidence is provid-

ed that user-produced NTAs might be particular-

ly useful to deal with out-of-vocabulary (OOV) 

words. 

In the rest of the paper, we briefly introduce 

the gold standard and baseline segmenter of our 

work in section 2, then describe the definition 

and characteristic of natural typing annotations 

(NTAs) in section 3, and finally elaborate on the 

strategy of locating high-quality NTAs texts in 

section 4.After giving the experimental results 

and analysis in section 5, we come to the conclu-

sion and the implication of future work. 

2 Gold Standard and Baseline segment-

er 

There are many different standards for word 

segmentation, and different tasks usually need 

different standards. The Sighan Bakeoff uses 

four well-known standards made by four differ-

ent organizations: Academia Sinica (AS), City 

University of Hong Kong (CU), Peking Univer-

sity (PKU), and Microsoft Research (MSR). In 

this study, we take MSR segmentation standard 

as gold standard. Following the work of Zhao et 

al. (2010) and Sun and Xu (2011), a Conditional 

Random Fields (CRF) model (Lafferty et al., 

2001) is trained with the training corpus of MSR 

from Sighan Bakeoff-2, to be a baseline seg-

menter. This general-purpose segmenter is called 

as CRF+MSR in this paper. 

3 Natural Typing Annotations Texts 

3.1 Formulation 

A Chinese sentence is represented as  

1 2... NS c c c (
ic stands for a Chinese character, 

N is the length of sentence S ). One of the possi-

ble sequences with selection keys is defined as  

1 1 2 11 1 1( ) | ... | ... | ... | ... |i i i n NS c c c c c c   .Here, we 

use the symbol “|” instead of each selection key. 

“|” is the “Natural Typing Annotation (NTA)”,   

which is naturally annotated by users when typ-

ing Chinese words. Between the two neighboring 

“|”s is a segment. Then the user-produced  

1 2
( ) | | | ... | |

M
segment segment segmentS   

 ( M N , M is the number of segments in sen-

tence S ) is called as NTAs text or NTAs corpus. 

3.2 Collection of NTAs Texts 

We need to collect user-produced NTAs texts 

independently because there are no similar or 

alternative open corpora. We posted a public no-

tice on the Internet to gather volunteer partici-

pants. For comparison, they were told to type in 

the same assigned test text while our software 

recorded the character sequence with NTAs. 

Two explanations are given as followed. First, to 

get more users’ feedback and keep the signifi-

cance level of the experiment, we only have 365 

Chinese characters in the test text, which con-

tains words with ambiguous meaning, named 

entities (NEs), neo-logisms and typo-prone 

words. Even the state-of-the-art segmenters can-

not handle this test text very well. Second, ac-

cording to statistical sampling theory, if we want 
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a 95% confidence interval to have a margin of 

error less than 5%, the sample size should be no 

less than 384. Therefore, we randomly accept 

384 volunteers to join our typing experiment and 

get user-produced NTAs texts from them. 

3.3 Analysis of Collected NTAs Texts 

Users’ overall typing habit can be drawn through 

the analysis of the collected NTAs texts. We 

firstly focus on segment, because it is the basic 

unit in our texts. A total of 66,232 segments are 

obtained from all texts, but only 883 of them are 

not repeated. Using ( )Length seg to represent the 

length of a segment is easy to get a frequency 

distribution of different ( )Length seg and find that 

the length of frequent segments is largely con-

centrated during 1 to 4. The same statistics can 

be conducted separately with the word segmenta-

tion results by gold standard and CRF+MSR. We 

use relative frequencies to illustrate the overall 

trend of three results, as shown in Figure 2.  

 
Figure 2: Relative frequencies of segment length 

from three segmentation. 

The results suggest that most Chinese speakers 

are reluctant to put a long text string into one 

segment, which is roughly consistent with behav-

ioral economics and psycho-linguistic. Users 

consciously avoid the mistakes that might be 

brought by typing in long sequence at a time. 

Besides, people seldom put illogical sequence of 

characters into one segment. Taking “主人公严

守一把手机给扔了。 (The leading character 

Yan Shouyi has thrown his cellphone away.) ” 

for example, when participants input “给扔了
(have thrown) ”, they choose to type in the mate-

rial as “|给|扔|了|”, “|给|扔了|” or “|给扔了|”. No 

one types in the material as “|给扔|了|”, because 

“|给扔 |” has no logical meaning in Chinese. 

Consequently, the constitution of segment is a 

reflection of natural language logic. 

4 High-quality NTAs Texts 

4.1 User’s Typing Patterns 

In this section, we investigate the collected 

NTAs texts at the sentence level. Direct visual 

impression is that different users use different 

typing patterns to input Chinese. 
1S = “不过评价

在三星级以上的这几款电脑(However, these 

several computers are assessed with more than 3 

stars) ” is taken as an example to explain the dif-

ferent situations. Just as what is shown in the 

following, 1( )gold S is the gold segmentation of 

1S , and others are representative sequences from 

different users. 

1( )gold S  = “|不过|评价|在|三星级|以上|的|这|几|款|电脑|” 

1 1( )S  = “|不过|评价|在|三星级|以上|的|这几款|电脑|” 

2 1( )S  = “|不过|评价|在|三|星|级|以上|的|这几|款|电脑|” 

3 1( )S  = “|不过评价|在|三星级以上|的|这几款电脑|” 

4 1( )S  = “|不过评价在三星级以上的|这几款电脑|” 

5 1( )S  = “|不|过|评价|在|三|星|级|以|上|的|这|几|款|电|脑|” 

We discover three typing patterns of users. 

The first one is Discrete Pattern, where the 

characters belonging to one segment in the light 

of gold standard are separated into several seg-

ments, such as
5 1( )S . The second is Adhesive 

Pattern, which suggests that two or more adja-

cent individual words by gold standard come 

together to form one segment, like 
3 1( )S and

4 1( )S . The third is Acceptable Pattern, where 

user-produced segmentation is largely or exactly 

the same with the gold standard, such as
1 1( )S

and
2 1( )S . We find that discrete pattern and 

adhesive pattern are useless for word segmenta-

tion. So we call those NTAs texts that follow 

acceptable pattern acceptable-quality NTAs 

texts, and others low-quality ones. Furthermore, 

among acceptable-quality NTAs texts, some of 

them are more close to gold standard, which is 

called as high-quality NTAs texts. Our strategy 

is 1) to use a classifier to find all acceptable-

quality NTAs texts, and then 2) to further locate 

the high-quality NTAs texts among those identi-

fied by the classifier in the previous step.  

4.2 The Classification Approach 

Identification of acceptable-quality NTAs texts is 

a typical binary classification problem. Effective 

and logical features should be identified to model 

a classifier. We select the following five features 

because they are simple but outstanding against 

other alternatives for this work. 
Len,

SegNum,

SingleSegNum,

MaxConSingleSegNum,

MaxSegLen

Features

 
 
  

  
 
 
  
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Len is the abbreviation for length of a sen-

tence, and SegNum(SN) stands for the number 

of the segments in a sentence. These two features 

can be used to determine whether the percentage 

of character number of a sentence and the seg-

ment number of a sentence is in a proper range.  

SingleSegNum(SSN) stands for the number of 

the segments whose length equals 1 in a sentence. 

MaxConSingleSegNum(MCSSN) is the maxi-

mum number of continuous segments whose 

length is 1. MaxSegLen(MSL) means the length 

of segment with most characters. These three 

features can be used to identify whether discrete 

or adhesive phenomena prevail in a sentence. 

4.3 The Voting Mechanism 

As the classification approach brings lots of ac-

ceptable-quality NTAs texts, voting mechanism 

is introduced to further locate the high-quality 

NTAs texts. For a sentence
iS , there possibly 

exist different user-produced segmentations

1( )iS ,
2 ( )iS , … , ( )k iS  (k is the total 

number of these segmentations). If ( )j iS ap-

pears in different users’ texts, these texts practi-

cally vote for ( )j iS . Different users’ texts prac-

tically vote for ( )j iS , which appears in these 

texts. Thus every sentence
iS in a text can get a 

score: 

( ) 2log ( ( ))
j iS j iSCORE count S   (1) 

( ( ))j icount S calculates how many users input 

iS  with segmentation ( )j iS . A text (namely a 

user) also has a score: 

2

( )

( )

log ( ( ))
j i

j i

j i

S text

text

S text

count S

SCORE
num













 (2)

( )j iS textnum  is the number of sentences in this 

text.  

This score helps us to identify high-quality 

NTAs texts from all acceptable-quality ones. 

5 Experiments 

5.1 Identification of High-quality NTAs 

Texts 

In this experiment, we verify the effectiveness of 

classifier and voting mechanism on locating 

high-quality NTAs texts from 384 collected ones. 

You can download part of our collected texts 

from https://github.com/dakuiz/NTAs. 

5.1.1 The Classification Experiment 

We randomly select 32 NTAs texts that contain 

1,089 sentences, and then manually label them to 

form training set. Taking
1S mentioned in 4.1 as 

an example, the manual-labeled training data are 

shown in table 1. The label 1 and 0 represent ac-

ceptable-quality and low-quality NTAs sentence 

separately. 

 Len SN SSN MCSSN MSL label 

1 1( )S  16 8 2 1 3 1 

2 1( )S  16 11 6 3 2 1 

3 1( )S  16 5 2 1 5 0 

4 1( )S  16 2 0 0 11 0 

5 1( )S  16 15 14 12 2 0 

Table 1: examples of training data for classifier. 

Package of libSVM (Chang and Lin, 2011) is 

used here. Radial basis function is adopted as the 

kernel function where gamma value is set to 

1/num_features and cost value is 1. 

10-fold cross validation is used to validate the 

results. The 1,089 sentences are partitioned into 

ten parts randomly. Ten runs are performed with 

each run using a different part as the testing set. 

It is conducted ten times and every part should 

be testing set once. Classification accuracy of the 

experiment is listed in the table 2. 

Num Accuracy(%) 

1 96.33 

2 97.22 

3 97.25 

4 97.25 

5 89.91 

6 98.17 

7 94.50 

8 94.59 

9 94.55 

10 98.11 

Average 95.79 

Table 2: 10-fold cross validation results. 

Since the results indicate the validity of our 

classification approach, we use this classifier to 

handle collected NTAs texts. If 85% of sentences 

in a text are acceptable-quality, we select this 

text as acceptable-quality NTAs text. Finally, we 

obtain 211 acceptable-quality NTAs texts from 

all 384 collected ones. 

5.1.2 The Voting Experiment 

According to voting mechanism in section 4.3, 

every acceptable-quality NTAs text can get a 

score to rank itself. Table3 shows top three high-

quality NTAs texts with their user-produced 

word segmentation results compared with that of 

CRF+MSR. Because CRF+MSR is a general-
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purpose segmenter and test data does not come 

from news wire, its performance drops signifi-

cantly in out-of-domain. 

Table 3 suggests that high-quality NTAs texts 

are very close to gold standard of word segmen-

tation. To discover the causes of errors, we man-

ually inspected these three texts and found the 

major error is adhesive phenomenon between 

simple words. For example, gold segmentation   

“|这|几|款|” is formed as “|这几款|” by users. 

This is an error in word segmentation competi-

tion, but in some application scenarios, like ma-

chine translation, “|这几款|”is better than “|这|几

|款 |”. Similar phenomena shed light on under-

standing what a "word" really is. 

Word seg-

mentation 

from 

p r f rOOV 

CRF+MSR 90.86 92.02 91.43 50.00 

Text#top1 92.82 90.19 91.49 100.00 

Text#top2 91.50 88.29 89.87 100.00 

Text#top3 90.38 87.33 88.83 100.00 

Table 3: Test text word segmentation results 

from general-purpose segmenter and top 3 texts. 

5.2 Effectiveness of High-quality NTAs 

Corpus on Improving Word Segmenta-

tion 

It is generally agreed among researchers that us-

ers’ behavioral patterns maintain consistent over 

a long period of time (Zhang et al., 2013; 

Stephane, 2009). In table 3, we listed top 3 high-

quality NTAs texts. Users who generated these 

three NTAs texts are stable sources to provide 

more well-segmented texts. 

To evaluate the effectiveness of high-quality 

NTAs corpus on building training data for seg-

menter, we use a web crawler to get 40k Micro-

blog (weibo.com) corpus and randomly divided 

it into 4 equal shares, i.e. A, B, C, T text. The 

provider of top1 text is invited to retype A text to 

produce A NTAs text. B and C NTAs texts are 

separately obtained from other two providers. 

We use A, B, C NTAs texts as training data to 

get a CRF segmentation model, which is called 

as CRF+NTAs. Then we train anther CRF seg-

menter with a combination of A, B, C NTAs 

texts and the training corpus of MSR from 

Bakeoff-2, called as CRF+MSR+NTAs. We 

select 1,000 sentences from T text to manually 

segment by gold standard, and use them to form 

our test set that contains 6528 characters. The 

results of the three segmenters on this Micro-

blog test set is shown in table 4. 

The model directly trained by Micro-blog 

high-quality NTAs corpus is better than general-

purpose segmenter but far from the model 

trained by the combination of MSR and Micro-

blog high-quality NTAs corpus. This is the most 

compelling evidence to show that high-quality 

NTAs corpus can be used for improving word 

segmentation model in out-of-domain. 

Word segmenta-

tion from 
p r f 

CRF+MSR 88.95 90.63 89.78 

CRF+NTAs 92.38 89.76 91.05 

CRF+MSR+NTAs 96.27 94.83 95.54 

Table 4: Segmenters’ results on test data. 

We also find out that the NTAs might be par-

ticularly useful to identify OOV words, such as 

proper names and neo-logisms. If users frequent-

ly put some characters in one segment, this seg-

ment may be some new word or the new internet 

slang, such as “白富美(white, rich and pretty) ”, 

“萌萌哒 (very cute)”, “十动然拒 (someone is 

moved but refuses to become girl/boyfriend)”, 

etc. 

6 Conclusion and Future Work 

In this paper, we investigate Natural Typing An-

notations (NTAs) that are potential word delimit-

ers generated by Chinese speakers while typing 

Chinese words. The effectiveness of high-quality 

NTAs corpus on improving word segmentation is 

evaluated.  

Though it is convenient for users to read, se-

quence of pure characters, namely without any 

recorded delimiters produced by inputters, loses 

lots of valuable information, e.g. NTAs. We 

strongly recommend that NTAs can be recorded 

in an invisible manner for normal users by domi-

nant text editors, such as MS Word, Notepad, vi, 

emacs, etc.  

In future, we will: 1) collect more NTAs texts 

from various users; 2) do further work on how to 

fully leverage NTAs to improve word segmenta-

tion; 3) call for dominant text editors to record 

NTAs. 
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Abstract

We study the problem of predicting tense
in Chinese conversations. The unique
challenges include: (1) Chinese verbs do
not have explicit lexical or grammatical
forms to indicate tense; (2) Tense in-
formation is often implicitly hidden out-
side of the target sentence. To tackle
these challenges, we first propose a set
of novel sentence-level (local) features us-
ing rich linguistic resources and then pro-
pose a new hypothesis of “One tense per
scene” to incorporate scene-level (global)
evidence to enhance the performance. Ex-
perimental results demonstrate the power
of this hybrid approach, which can serve
as a new and promising benchmark.

1 Introduction

In natural languages, tense is important to indicate
the time at which an action or event takes place.
In some languages such as Chinese, verbs do not
have explicit morphological or grammatical forms
to indicate their tense information. Therefore, au-
tomatic tense prediction is important for both hu-
man’s deep understanding of these languages as
well as downstream natural language processing
tasks (e.g., machine translation (Liu et al., 2011)).

In this paper, we concern “semantic” tense (time
of the event relative to speech time) as opposed
to morphosyntactic tense systems found in many
languages. Our goal is to predict the tense (past,
present or future) of the main predicate1 of each
sentence in a Chinese conversation, which has
never been thoroughly studied before but is ex-
tremely important for conversation understanding.

Some recent work (Ye et al., 2006; Xue and
Zhang, 2014; Zhang and Xue, 2014) on Chinese

1The main predicate of a sentence can be considered equal
to the root of a dependency parse

tense prediction found that tense in written lan-
guage can be effectively predicted by some fea-
tures in local contexts such as aspectual markers
(e.g. 着 (zhe), 了 (le), 过 (guo)) and time ex-
pressions (e.g., 昨天 (yesterday)). However, it is
much more challenging to predict tense in Chinese
conversations and there has not been an effective
set of rules to predict Chinese tense so far due to
the complexity of language-specific phenomena.
Let’s look at the examples shown in Table 1.

In general, there are three unique challenges for
tense prediction in Chinese conversations:
(1) Informal verbal expressions: sentences in
a conversation are often grammatically incorrect,
which makes aspectual marker based evidence un-
reliable. Moreover, sentences in a conversation
often omit important sentence components. For
example, in conversation 1 in Table 1, “如果(if)”
which is a very important cue to predict tense of
verb “废(destroy)” is omitted.
(2) Effects of interactions on tense: In contrast to
other genres, conversations are interactive, which
may have an effect on tense: in some cases, tense
can only be inferred by understanding the interac-
tions. For example, we can see from conversations
2, 3 and 4 in Table 1 that when the second person
(你(you)) is used as the object of the predicate “告
诉(tell)”, the predicate describes the action during
the conversation and thus its tense is present. In
contrast, when the third person is used in a sen-
tence, it is unlikely that the tense of the predicate
is present because it does not describe an action
during the conversation. This challenge is unique
to Chinese conversations.
(3) Tense ambiguity in a single sentence:
Sentence-level analysis is often inadequate to dis-
ambiguate tense. For example, it is impossible to
determine whether “告诉(tell)” in conversations 3
and 4 in Table 1 is a past action (the speaker al-
ready told) or a future action (the speaker hasn’t
told yet) only based on sentence-level contexts.
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1 a: [如果(if)]你(you)动(touch)我(my)儿子(son)一下(once)，我(I)先(first)废(destroy)了你(you)。 (If you touch my
son, I’ll destroy you.)

2 b: 我(I)告诉(tell)你(you)一声，航班(flight)取消(cancel)了。(I’m telling you: the flight is canceled.)

3 c:你 (you)刚刚 (just now)和他(to him)说(say)什么(what)了？ (What did you say to him just now?)
d: 我(I)[刚才(just now)]告诉(tell)他(him)一声，航班(flight)取消(cancel)了。(I told him the flight is canceled.)

4 e: 你(you)要(will)干(do)吗(what)去(go)？ (What are you going to do?)
f: 我(I)[要(will)]告诉(tell)他(him)一声，航班(fight)取消(cancel)了。(I’ll tell him the flight is canceled.)

5 a: 发生(happen)了什么(what)事情(event)？ (What happened?)
b: 我(I)跟吴清(Wu Qing)一起(with) (I was with Wu Qing)
b: 我们(We)在(keep)监视(surveilance)一批货(a cargo) (We were keeping surveillance on a cargo...)
b: 我们(We)怀疑(suspect)那些(thoses)是(are)偷来的(stolen)文物(antiques) (We suspected those were stolen an-
tiques)
b: 那些人(those guys)，突然(suddenly)就走(walk)出来(out)打(beat)我们(us) (Suddenly, all those guys walked out
to beat us up!)
b: 我(I)要(want)报警(call the police)他们(they)才停手(stop) (They stopped only when I tried to call the police)

Table 1: Five sample conversations that show the challenges in tense prediction in Chinese conversations.
a,b,c,d at the beginning of each sentence denote various speakers. The words in square brackets are
omitted content in the original sentences and the underlined words are main predicates.

In fact, the sentence in conversation 3 omits “刚
才(just now)” which indicates past tense and the
sentence in the conversation 4 omits “要(will)”
which indicates future tense. If we add the omitted
word back to the original sentence, there will not
be tense ambiguity.

To tackle the above challenges, we propose
to predict tense in Chinese conversations from
two views – sentence-level (local) and scene-
level (global). We first develop a local classifier
with linguistic knowledge and new conversation-
specific features (Section 2.1). Then we propose
a novel framework to exploit the global contexts
of the entire scene to infer tense, based on a new
“One tense per scene” hypothesis (Section 2.2).
We created a new a benchmark data set2, which
contains 294 conversations (1,857 sentences) and
demonstrated the effectiveness of our approach.

ble

2 Method

2.1 Local Predictor
We develop a Maximum Entropy (MaxEnt) clas-
sifier (Zhang, 2004) as the local predictor.
Basic features: The unigrams, bigrams and tri-
grams of a sentence.
Dependency parsing features: We use the Stan-
ford parser (Chen and Manning, 2014) to conduct
dependency parsing3 on the target sentences and
use dependency paths associated with the main
predicate of a sentence as well as their dependency
types as features. By using the parsing features,

2http://nlp.cs.rpi.edu/data/chinesetense.zip
3We use CCProcessed dependencies.

we can not only find aspectual markers (e.g., “了”)
but also capture the effect of sentence structures on
the tense.
Linguistic knowledge features: We also ex-
ploit the following linguistic knowledge from the
Grammatical Knowledge-base of Contemporary
Chinese (Yu et al., 1998) (also known as GKB):

• Tense of time expressions: GKB lists all
common time expressions and their associ-
ated tense. For example, GKB can tell us “往
年 (previous years)” and “中世纪 (Middle
Ages)” can only be associated with the past
tense.

• Function of conjunction words: Some con-
junction words may have an effect on tense.
For example, the conjunction word “如
果(if)” indicates a conditional clause and the
main predicate of this sentence is likely to be
future tense. GKB can tell us the function of
common Chinese conjunction words.

Conversation-specific features: As mentioned in
Section 1, different person roles being the subject
or the object of a predicate may have an effect on
the tense in a conversation. We analyze the person
roles of the subject and the object of the main pred-
icate and encode them as features, which helps our
model understand effects of interactions on tense.

2.2 Global Predictor
As we discussed before, tense ambiguity in a sen-
tence arises from the omissions of sentence com-
ponents. According to the principle of efficient
information transmission (Jaeger and Levy, 2006;
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Jaeger, 2010) and Gricean Maxims (Grice et al.,
1975) in cooperative theory, the omitted elements
can be predicted by considering contextual infor-
mation and the tense can be further disambiguated.
In order to better predict tense, we propose a new
hypothesis:
One tense per scene: Within a scene, tense in sen-
tences tends to be consistent and coherent.

During a conversation, a speaker/listener can
know the tense of a predicate by either a tense in-
dicator in the target sentence or scene-level tense
analysis. A scene is a subdivision of a conversa-
tion in which the time is continuous and the topic
is highly coherent and which does not usually in-
volve a change of tense. For example, for the con-
versation 3 in Table 1, we can learn the scene is
about the past from the word “刚刚 (just now)” in
the first sentence. Therefore, we can exploit this
clue to determine the tense of “告诉(tell)” as past.

Therefore, when we are not sure which tense
of the main predicate in a sentence should be,
we can consider the tense of the entire scene.
For example, the conversation 5 in Table 1 is
about a past scene because the whole conver-
sation is about a past event. For the sen-
tence “我们(We)在(keep)监视(surveillance)一批
货(a cargo)” where the tense of the predicate is
ambiguous (past tense and present tense are both
reasonable), we can exploit the tense of the scene
(past) to determine its tense as past.

Global tense prediction
Inspired by the burst detection algorithm proposed
by Kleinberg (2003), we use a 3-state automaton
sequence model to globally predict tense based on
the above hypothesis. In a conversation with n
sentences, each sentence is one element in the se-
quence. The sentence’s tense can be seen as the
hidden state and the sentence’s features are the ob-
servation. Formally, we define the tense in the ith

sentence as ti and the observations (i.e., features)
in the sentence as oi. The goal of this model is to
output an optimal sequence t∗ = {t∗1, t∗2, ..., t∗n}
that minimizes the cost function defined as fol-
lows:

Cost(t,o) = λ

n∑
i=1

−lnP (ti|oi)+(1−λ)

n−1∑
i=1

1(ti+1 6= ti)

(1)

where 1(·) is an indicator function.
As we can see in (1), the cost function consists

of two parts. The first part is the negative log like-
lihood of the local prediction, allowing the model

to incorporate the results from the local predic-
tor. The second part is the cost of tense inconsis-
tency between adjacent sentences, which enables
the model to take into account tense consistency
in a scene. Finding the optimal sequence is a de-
coding process, which can be done using Viterbi
algorithm in O(n) time. The parameter λ is used
for adjusting weights of these two parts. If λ = 1,
the predictor will not consider global tense consis-
tency and thus the optimal sequence t∗ will be the
same as the output of the local predictor.

Figure 1 shows how the global predictor works
for predicting the tense in the conversation 5 in
Table 1. The global predictor can correct wrong
local predictions, especially less confident ones.

p ppp pp

p p c p p p

correct tense

local prediction

global prediction p p p p p p

sentences

Figure 1: Global tense prediction for the conver-
sation 5 in Table 1.

3 Experiments

3.1 Data and Scoring Metric
To the best of our knowledge, tense prediction in
Chinese conversations has never been studied be-
fore and there is no existing benchmark for evalu-
ation. We collected 294 conversations (including
1,857 sentences) from 25 popular Chinese movies,
dramas and TV shows. Each conversation con-
tains 2-18 sentences. We manually annotate the
main predicate and its tense in each sentence. We
use ICTCLAS (Zhang et al., 2003) to do word seg-
mentation as preprocessing.

Since tense prediction can be seen as a multi-
class classification problem, we use accuracy as
the metric to evaluate the performance. We ran-
domly split our dataset into three sets: training set
(244 conversations), development set (25 conver-
sations) and test set (25 conversations) for eval-
uation. In evaluation, we ignore imperative sen-
tences and sentences without predicates.

3.2 Experimental Results
We compare our approach with the following
baselines:

• Majority: We label every instance with the
majority tense (present tense).
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• Local predictor with basic features (Local(b))

• Local predictor with basic features + depen-
dency parsing features (Local(b+p))

• Local predictor with basic features + depen-
dency parsing features + linguistic knowl-
edge features (Local(b+p+l))

• Local predictor + all features introduced in
Section 2.1 (Local(all))

• Conditional Random Fields (CRFs): We
model a conversation as a sequence of sen-
tences and predict tense using CRFs (Laf-
ferty et al., 2001). We implement CRFs using
CRFsuite (Okazaki, 2007) with all features
introduced in Section 2.1.

Among the baselines, Local(b+p) is the most
similar model to the approaches in previous work
on Chinese tense prediction in written languages
(Ye et al., 2006; Xue, 2008; Liu et al., 2011). Re-
cent work (Zhang and Xue, 2014) used eventuality
and modality labels as features that derived from
a classifier trained on an annotated corpus. How-
ever, the annotated corpus for training the eventu-
ality and modality classifier is not publicly avail-
able, we cannot duplicate their approaches.

Dev Test
Majority 65.13% 54.01%
Local(b) 69.74% 66.42%

Local(b+p) 70.39% 67.15%
Local(b+p+l) 71.05% 69.34%

Local(all) 71.05% 69.34%
CRFs 69.74% 64.96%
Global 72.37% 72.26%

Table 2: Tense prediction accuracy.

Table 2 shows the results of various models. For
our global predictor, the optimal λ (0.4) is tuned
on the development set and used on the test set.

According to Table 2, n-grams and depen-
dency parsing features4 are useful to predict
tense, and linguistic knowledge can further im-
prove the accuracy of tense prediction. However,
adding conversation-specific features (interaction
features) does not benefit Local(b+p+l). The first

4We also tried adding POS tags to dependency paths but
didn’t see improvements because POS information has been
implicitly indicated by dependency types and thus becomes
redundant.

reason is that the subject and the object of the
predicates in many sentences are omitted, which
is common in Chinese conversations. The other
reason, also the main reason, is that simply using
the person roles of the subject and the object is
not sufficient to depict the interaction. For exam-
ple, the subject and the object of the following sen-
tences have the same person role but have different
tenses because “警告(warn)” is the current action
of the speaker but “教(teach)” is not. Therefore,
to exploit the interaction features of a conversa-
tion, we must deeply understand the meanings of
action verbs.

我(I)警告(warn)你(you)。 (I’m warn-
ing you.)

我(I)教(teach)你(you)。 (I’ll teach
you.)

The global predictor significantly improves the
local predictor’s performance (at 95% confidence
level according to Wilcoxon Signed-Rank Test),
which verifies the effectiveness of “One tense per
scene” hypothesis for tense prediction. It is no-
table that CRFs do not work well on our dataset.
The reason is that the transition pattern of tenses
in a sequence of sentences is not easy to learn, es-
pecially when the size of training data is not very
large. In many cases, the tense of a verb in a
sentence is determined by features within the sen-
tence, which has nothing to do with tense tran-
sition. In these cases, learning tense transition
patterns will mislead the model and accordingly
affect the performance. In contrast, our global
model is more robust because it is based on our
“One tense per scene” hypothesis which can be
seen as prior linguistic knowledge, thus achieves
good performance even when the training data is
not sufficient.

3.3 Discussion
There are still many remaining challenges for
tense prediction in Chinese conversations:
Omission detection: The biggest challenge for
this task is the omission of sentence components.
As shown in Table 1, if omitted words can be re-
covered, it will be less likely to make a wrong pre-
diction.
Word Sense Disambiguation: Some function
words which can indicate tense are ambiguous.
For example, the function word “要” has many
senses. It can mean将要(will),想要(want) and需
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要(need), and also it is sometimes used to present
an option. It is difficult for a system to correctly
predict tense unless it can disambiguate the sense
of such function words:

• 一会儿(later)他(he)要要要 (will)过来 (come)。
(He’ll come here later.)

• 我 (I)要要要 (want) 吃 (eat) 苹果 (apples)。 (I
want to eat apples)

• 你(you)要要要(need)多多(much)锻炼(exercise)
(You need to take more exercises.)

• 为什么(why)你(you)要要要(opt)救(save)我(me)？
(Why did you save me?)

Verb Tense Preference: Different verbs may have
different tense preferences. For example, “以
为(think)” is often used in the past tense while “认
为(think)” is usually in the present tense:

• 我(I)以以以 为为为(think)他(he)不 会(won’t)来(co-
me) (I thought he would not come.)

• 我(I)认认认 为为为(think)他(he)不 会(won’t)来(co-
me) (I think he won’t come.)

Generic and specific subject/object: Whether
the subject/object is generic or specific has an ef-
fect on tense. For example, in the sentence “那
场(that)战 争(war)太(very)残 酷(brutal)了”, the
predicate “残酷(brutal)” is in the past tense
while in the sentence “战 争(war)太(very)残
酷(brutal)了”, the predicate “残酷(brutal)” is in
the present tense.

4 Related Work

Early work on Chinese tense prediction (Ye et
al., 2006; Xue, 2008) modeled this task as a
multi-class classification problem and used ma-
chine learning approaches to solve the problem.
Recent work (Liu et al., 2011; Xue and Zhang,
2014; Zhang and Xue, 2014) studied distant an-
notation of tense from a bilingual parallel cor-
pus. Among them, Xue and Zhang (2014) and
Zhang and Xue (2014) improved tense prediction
by using eventuality and modality labels. How-
ever, none of the previous work focused on the
specific challenge of the tense prediction in oral
languages although the dataset used by Liu et al.
(2011) includes conversations. In contrast, this
paper presents the unique challenges and corre-
sponding solutions to tense prediction in conver-
sations.

5 Conclusions and Future Work

This paper presents the importance and challenges
of tense prediction in Chinese conversations and
proposes a novel solution to the challenges.

In the future, we plan to further study this
problem by focusing on omission detection, verb
tense preference from the view of pragmatics, and
jointly learning the local and global predictors. In
addition, we will study predicting the tense of mul-
tiple predicates in a sentence and identifying im-
perative sentences in a conversation, which is also
a challenge of tense prediction.
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Abstract

This paper presents a universal morphological fea-
ture schema that represents the finest distinctions in
meaning that are expressed by overt, affixal inflec-
tional morphology across languages. This schema
is used to universalize data extracted from Wik-
tionary via a robust multidimensional table parsing
algorithm and feature mapping algorithms, yielding
883,965 instantiated paradigms in 352 languages.
These data are shown to be effective for training
morphological analyzers, yielding significant accu-
racy gains when applied to Durrett and DeNero’s
(2013) paradigm learning framework.

1 Introduction

Semantically detailed and typologically-informed
morphological analysis that is broadly cross-
linguistically applicable and interoperable has the
potential to improve many NLP applications, in-
cluding machine translation (particularly of mor-
phologically rich languages), parsing (Choi et al.,
2015; Zeman, 2008; Mikulová et al., 2006), n-
gram language models, information extraction,
and co-reference resolution.

To do large-scale cross-linguistic analysis and
translation, it is necessary to be able to compare
the meanings of morphemes using a single, well-
defined framework. Haspelmath (2010) notes that
while morphological categories will never map
with perfect precision across languages and can
only be exhaustively defined within a single lan-
guage, practitioners of linguistic typology have
typically recognized that there is sufficient simi-
larity in these categories across languages to do
meaningful comparison. For this purpose, Haspel-
math (2010) proposes that typologists precisely
define dedicated language-independent compara-
tive concepts and identify the presence of these
concepts in specific languages. In this spirit, we
present a universal morphological feature schema,
in which features that have a status akin to those

of comparative concepts are used to represent the
finest distinctions in meaning that are expressed
by inflectional morphology across languages. This
schema can in turn be used to universalize mor-
phological data from the world’s languages, which
allows for direct comparison and translation of
morphological material across languages. This
greatly increases the amount of data available to
morphological analysis tools, since data from any
language can be specified in a common format
with the same features.

Wiktionary constitutes one of the largest
available sources of complete morphological
paradigms across diverse languages, with sub-
stantial ongoing growth in language and lemma
coverage, and hence forms a natural source of
data for broadly multilingual supervised learn-
ing. Wiktionary paradigm table formats, how-
ever, are often complex, nested, 2-3 dimensional
structures intended for human readability rather
than machine parsing, and are broadly inconsistent
across languages and Wiktionary editions. This
paper presents an original, robust multidimen-
sional table parsing system that generalizes effec-
tively across these languages, collectively yield-
ing significant gains in supervised morphological
paradigm learning in Durrett and DeNero’s (2013)
framework.

2 Universal Morphological Feature
Schema

The purpose of the universal morphological fea-
ture schema is to allow any given overt, affixal
(non-root) inflectional morpheme in any language
to be given a precise, language-independent def-
inition. The schema is composed of a set of
features that represent semantic “atoms” that are
never decomposed into more finely differentiated
meanings in any natural language. This ensures
that the meanings of all inflectional morphemes
are able to be represented either through single
features or through multiple features in combina-
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tion. These features capture only the semantic
content of morphemes, but can be integrated into
existing frameworks that precisely indicate mor-
pheme form (Sagot and Walther, 2013) or auto-
matically discover it (Dreyer and Eisner, 2011;
Hammarström, 2006; Goldsmith, 2001). The fact
that the schema is meant to capture only the mean-
ings of overt, non-root affixal morphemes restricts
the semantic-conceptual space that must be cap-
tured by its features and renders an interlingual
approach to representing inflectional morphology
feasible.

The universal morphological feature schema
is most similar to tagset systematization efforts
across multiple languages, such as the Univer-
sal Dependencies Project (Choi et al., 2015) and
Interset (Zeman, 2008). While these efforts en-
code similar morphological features to the cur-
rent schema, their goal is different, namely to sys-
tematize pre-existing tagsets, which include lex-
ical and syntactic information, for 30 specific
languages. The goal of the schema presented
here is to capture the most basic meanings en-
coded by inflectional morphology across all the
world’s languages and to define those meanings
in a language-independent manner. Because of its
wide-scope, our universal morphological feature
schema will likely need to include other features
and even other dimensions of meaning, for which
the authors invite suggestions.

2.1 Construction Methodology
The first step in constructing the universal mor-
phological feature schema was to identify the di-
mensions of meaning (e.g. case, number, tense,
mood, etc.) that are expressed by inflectional mor-
phology in the world’s languages. These were
identified by surveying the linguistic typology lit-
erature on parts of speech and then identifying the
kinds of inflectional morphology that are typically
associated with each part of speech.

For each dimension, we identified the finest dis-
tinctions in meaning made within that dimension
by a natural language. Some higher-level ‘cover
features’ representing common cross-linguistic
groupings were also included. For example, fea-
tures such as indicative (IND) and subjunctive
(SBJV) represent groupings of basic modality fea-
tures which occur in multiple languages and show
similar usage patterns (Palmer, 2001).

Each dimension has an underlying semantic ba-
sis used to define its features. To determine the
underlying semantic basis for each dimension, the

literature in linguistic typology and in description-
oriented linguistic theory was surveyed for expla-
nations of each dimension that offered ways to
precisely define the observed features.

2.2 Contents of the Schema

The universal morphological feature schema rep-
resents 23 dimensions of meaning with 212 fea-
tures. Because space limitations preclude a de-
tailed discussion of the semantic basis of each di-
mension and the definitions of each feature, Ta-
ble 1 presents each dimension of meaning, the
labels of its features, and citations for the main
sources for the semantic bases of each dimension.
To the extent possible, feature labels conform to
the Leipzig Glossing Rules (Comrie et al., 2008)
and to the labels in the sources used to define the
semantic basis for each dimension of meaning. A
substantially expanded exploration and analysis of
these dimensions and schema framework may be
found in Sylak-Glassman et al. (To appear).

Note that because gender categories are not nec-
essarily defined by semantic criteria and rarely
map neatly across languages, this schema treats
gender features as open-class.1

3 Wiktionary Data Extraction and
Mapping

Wiktionary contains a wealth of training data for
morphological analysis, most notably inflectional
paradigm tables. Since its pages are primar-
ily written by human authors for human readers,
and there are no overarching standards for how
paradigms should be presented, these tables con-
tain many inconsistencies and are at best semi-
structured. Layouts differ depending on the edi-
tion language in which a word is being defined
and within an edition depending on the word’s lan-
guage and part of speech. The textual descriptors
used for morphological features are also not sys-
tematically defined. These idiosyncrasies cause
numerous difficulties for automatic paradigm ex-
traction, but the redundancy of having data pre-
sented in multiple ways across different editions
gives us an opportunity to arrive at a consensus
description of an inflected form, and to fill in gaps
when the coverage of one edition diverges from

1To limit feature proliferation, the schema encodes gender
categories as features that may be shared across languages
within a phylogenetic stock or family, in order to capture
identical gender category definitions and assignments that re-
sult from common ancestry, as may be possible for the 25
historical noun classes in the Bantu stock (Demuth, 2000).
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Dimension Features Semantic Basis
Aktionsart ACCMP, ACH, ACTY, ATEL, DUR, DYN, PCT, SEMEL, STAT, TEL Cable (2008), Vendler (1957), Comrie (1976a)
Animacy ANIM, HUM, INAN, NHUM Yamamoto (1999), Comrie (1989)
Aspect HAB, IPFV, ITER, PFV, PRF, PROG, PROSP Klein (1994)
Case ABL, ABS, ACC, ALL, ANTE, APPRX, APUD, AT, AVR, BEN, CIRC, COM, COMPV, DAT, EQU,

ERG, ESS, FRML, GEN, INS, IN, INTER, NOM, NOMS, ON, ONHR, ONVR, POST, PRIV, PROL,
PROPR, PROX, PRP, PRT, REM, SUB, TERM, VERS, VOC

Blake (2001), Radkevich (2010)

Comparison AB, CMPR, EQT, RL, SPRL Cuzzolin and Lehmann (2004)
Definiteness DEF, INDEF, NSPEC, SPEC Lyons (1999)
Deixis ABV, BEL, DIST, EVEN, MED, NVIS, PROX, REF1, REF2, REM, VIS Bhat (2004), Bliss and Ritter (2001)
Evidentiality ASSUM, AUD, DRCT, FH, HRSY, INFER, NFH , NVSEN, QUOT, RPRT, SEN Aikhenvald (2004)
Finiteness FIN, NFIN Binary finite vs. nonfinite
Gender+ BANTU1-23, FEM, MASC, NAKH1-8, NEUT Corbett (1991)
Info. Structure FOC, TOP Lambrecht (1994)
Interrogativity DECL, INT Binary declarative vs. interrogative
Mood ADM, AUNPRP, AUPRP, COND, DEB, IMP, IND, INTEN, IRR, LKLY, OBLIG, OPT,

PERM, POT, PURP, REAL, SBJV, SIM
Palmer (2001)

Number DU, GPAUC, GRPL, INVN, PAUC, PL, SG, TRI Corbett (2000)
Parts of Speech ADJ, ADP, ADV, ART, AUX, CLF, COMP, CONJ, DET, INTJ, N, NUM, PART, PRO,

V, V.CVB, V.MSDR, V.PTCP
Croft (2000), Haspelmath (1995)

Person 0, 1, 2, 3, 4, EXCL, INCL, OBV, PRX Conventional person, obviation and clusivity
Polarity NEG, POS Binary positive vs. negative
Politeness AVOID, COL, FOREG, FORM, FORM.ELEV, FORM.HUMB, HIGH, HIGH.ELEV,

HIGH.SUPR, INFM, LIT, LOW, POL
Brown and Levinson (1987), Comrie (1976b)

Possession ALN, NALN, PSSD, PSSPNO+ Type of possession, characteristics of possessor
Switch-Reference CN-R-MN+, DS, DSADV, LOG, OR, SEQMA, SIMMA, SS, SSADV Stirling (1993)
Tense 1DAY, FUT, HOD, IMMED, PRS, PST, RCT, RMT Klein (1994), ?)
Valency DITR, IMPRS, INTR, TR Number of verbal arguments from zero to three
Voice ACFOC, ACT, AGFOC, ANTIP, APPL, BFOC, CAUS, CFOC, DIR, IFOC, INV, LFOC,

MID, PASS, PFOC, RECP, REFL
Klaiman (1991)

Table 1: Dimensions of meaning and their features, both sorted alphabetically

that of another.
To make these data available for morphologi-

cal analysis, we developed a novel multidimen-
sional table parser for Wiktionary to extract in-
flected forms with their associated descriptors. Al-
though we describe its function in Wiktionary-
specific terms, this strategy can be generalized to
extract data tuples from any HTML table with cor-
rectly marked-up header and content cells. We ex-
tracted additional descriptors from HTML head-
ings and table captions, then mapped all descrip-
tors to features in the universal schema.

3.1 Extraction from HTML Tables

In its base form, the table parser takes advantage
of HTML’s distinction between header and content
cells to identify descriptors and potential inflected
forms, respectively, in an arbitrary inflection ta-
ble. Each content cell is matched with the head-
ers immediately up the column, to the left of the
row, and in the “corners” located at the row and
column intersection of the previous two types of
headers. Matching headers are stored in a list or-
dered by their distance from the content cell. Fig-
ure 1 shows an example where prenais is assigned
the following descriptors:

– Directly up the column: tu, second, singu-
lar, simple.

– Directly to the left of the row: imperfect,
simple tenses.

– In corners located at the row and column in-
tersection of any headers identified by the previous

two methods: indicative, person.
– Important structured fields found outside the

table, including French and Verb.

Lang: French, POS: Verb

Figure 1: A portion of the English-edition Wik-
tionary conjugation table for the French verb pren-
dre ‘take.’ The inflected form prenais and its row,
column, and corner headers are highlighted.

Further, when additional content cells intervene
between headers, as they do between simple and
singular, the more distant header is marked as
“distal.” This labeling is important for proper han-
dling of the column header simple in this exam-
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ple: It only applies to the top half of the table, and
should be left out of any labeling of the inflected
forms in the lower half. This distance information,
and a hierarchy of positional precedence, is used
in Section 3.4 to discount these and other poten-
tially irrelevant descriptors in the case of conflicts
during the subsequent mapping of descriptors to
features in the universal schema. In general, the
positionally highest ranking header value for each
schema dimension are utilized and lower-ranking
conflicting values are discarded.

3.2 Extraction from Parenthetical Lists
For some languages, inflected forms are presented
inline next to the headword, instead of in a sep-
arate table, as shown for the German noun Haus
‘house’:

Haus n (genitive Hauses, plural Häuser, diminu-
tive Häuschen n or Häuslein n)

Here, the italic n indicates a neuter noun. The in-
flection data inside the parentheses are extracted
as simple tuples containing the lemma, inflected
form, and inflectional relationship (e.g. Haus,
Häuser, plural).

3.3 Improving Extraction Accuracy
The approach described above is sufficient to parse
most Wiktionary data, but a large percentage of
Wiktionary inflection tables do not use the cor-
rect tags to distinguish between header and content
cells, an important component of the parsing pro-
cedure. In particular, table authors frequently use
only the content cell tag to mark up all of a table’s
cells, and create “soft” headers with a distinct vi-
sual appearance by changing their styling (as with
Czech verbs, such as spadat ‘to be included, fall
off’). This is indistinguishable to human viewers,
but a naı̈ve parse mistakes the soft headers for in-
flected forms with no descriptors. Hence we in-
vestigated several methods for robustly identifying
improperly marked-up table headers and overrid-
ing the HTML cell-type tags in a preprocessing
step.

Visual identification. Since most of the soft
headers on Wiktionary have a distinct background
color from the rest of their containing tables, we
initially added a rule that treated content cells that
defined a background color in HTML or inline
CSS as header cells. However, the mere pres-
ence of this attribute was not a reliable indicator
since some tables, such as those for Latin nouns
(e.g. aqua ‘water’), gave every cell a background

color. This caused them to be erroneously con-
sidered to consist entirely of headers, resulting in
missing data. Other tables used background color
for highlighting, as with Faroese nouns (e.g. vatn
‘water’) and the past historic row in Figure 1,
whose inflected forms were considered to be head-
ers. For these reasons, visual cues were assessed
as an unreliable method of identification.

Frequency-based methods. Another, more suc-
cessful strategy for header discrimination header
discrimination utilized the frequency characteris-
tics of cell text, regardless of the cell’s type. Al-
though Wiktionary’s inflection tables have many
different layouts, words with the same language
and part of speech pair often share a single tem-
plate with consistent descriptors. In addition,
many simple descriptors, such as singular, oc-
cur frequently throughout a single edition. Each
inflected form, however, can be expected to ap-
pear on only a few pages (and in most cases just
one). We exploited this tendency by counting the
number of pages where each distinct cell text in
a Wiktionary edition appeared, and, for each lan-
guage, manually determined a cutoff point above
which any cell with matching text was consid-
ered a header. Cells containing only punctuation
were excluded from consideration, to avoid prob-
lems with dashes that occurred in many tables as
a content cell indicating that no such form existed.
This strategy surmounted all the problems identi-
fied thus far, including both the improper tagging
of headers as content cells and the overspecifica-
tion of background colors.

3.4 Mapping Inflected Forms to Universal
Features

Using the results of the frequency-based prepro-
cessing step to the table parsing algorithm, the first
two authors manually inspected the list of parsed
cells and their frequencies within each language,
and then determined both a threshold for inclusion
as a header feature (descriptor) and a universal
representation for each header feature. When pos-
sible header features were above the threshold, but
judged not to be contentful, they were not given a
universal schema representation.

All inflected forms found by our scrape of Wik-
tionary were assigned complete universal repre-
sentation vectors by looking up each of their Wik-
tionary descriptors using the mapping described in
the above paragraph and then concatenating the re-
sults. Any conflicts within a dimension were re-
solved using a positional heuristic that favored de-
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scriptors nearer to the inflected form in its origi-
nal HTML table, with column headings assigned
higher precedence than row headings, which had
higher precedence to corner headings, based on
an empirical assessment of positional accuracy in
case of conflict.

Ultimately, the process of extraction and map-
ping yielded instantiated paradigms for 883,965
unique lemmas across 352 languages (of which
130 had more than 100 lemmas), with each in-
flected form of the lemma described by a vector
of features from the universal morphological fea-
ture schema.

4 Seeding Morphological Analyzers

To test the accuracy, consistency, and utility of
our Wiktionary extraction and feature mappings,
the fully mapped data from the English edition
of Wiktionary were used as input to Durrett and
DeNero’s (2013) morphological paradigm learner.
While the results were comparable to those ob-
tained by the hand-tooled and language-specific
table parsers of Durrett and DeNero (2013) given
an equivalent quantity of training data, the num-
ber of language and part of speech combinations
which could be subjected to analysis using data
from our general-purpose Wiktionary parser and
mapping to features in the universal schema was
far greater: 123 language-POS pairs (88 distinct
languages) versus Durrett and DeNero’s 5 pairs (3
languages).2 In addition, when the available train-
ing data were increased from 500 lemmas to the
full amount (a number that varied per language but
was always > 2000), χ2 tests demonstrated that
the gain in wordform generation accuracy was sta-
tistically significant (p < 0.05) for 44% (14/32) of
the tested language-POS pairs. In the language-
POS pairs without significant gains, wordforms
were predictable using smaller amounts of data.
For example, nearly half (8/18) of the language-
POS pairs in this category were nouns in Romance
languages, whose pluralization patterns typically
involve simply adding /-s/ or some similar variant.
Some of the language-POS pairs with significant
gains contained multiple inflection classes and/or
morpheme altering processes such as vowel har-
mony, umlaut, or vowel shortening. These lin-
guistic characteristics introduce complexity that
reduces the number of exemplars of any given

2Language-POS pairs were considered to be suitable for
analysis if they possessed 200 or more lemmas that exhibited
the maximal paradigm possible.
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Figure 2: Examples of significant improvements
in per-lemma paradigm and wordform generation
accuracy with varying amounts of training data

morpheme form, which increases the value of ad-
ditional data. Figure 2 shows the influence of
additional training data on paradigm and word-
form generation accuracy for the four languages in
which the addition of the full amount of training
data provided the most significant improvement
(all p < 0.001).

5 Conclusion

The proposed universal morphological feature
schema incorporates findings from research in lin-
guistic typology to provide a cross-linguistically
applicable method of labeling inflectional mor-
phemes according to their meaning. The schema
offers many potential benefits for NLP and ma-
chine translation by facilitating direct meaning-
to-meaning comparison and translation across lan-
guage pairs. We have also developed original, ro-
bust and general multidimensional table parsing
and feature mapping algorithms. We then applied
these algorithms and universal schema to Wik-
tionary to generate a significant sharable resource,
namely standardized universal feature representa-
tions for inflected wordforms from 883,965 instan-
tiated paradigms across 352 languages. We have
shown that these data can be used to successfully
train morphological analysis tools, and that the in-
creased amount of data available can significantly
improve their accuracy.
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Abstract 

Given a discourse tree for a text as a can-

didate answer to a compound query, we 

propose a rule system for valid and inva-

lid occurrence of the query keywords in 

this tree. To be a valid answer to a query, 

its keywords need to occur in a chain of 

elementary discourse unit of this answer 

so that these units are fully ordered and 

connected by nucleus – satellite relations. 

An answer might be invalid if the que-

ries’ keywords occur in the answer's sat-

ellite discourse units only. We build the 

rhetoric map of an answer to prevent it 

from firing by queries whose keywords 

occur in non-adjacent areas of the An-

swer Map. We evaluate the improvement 

of search relevance by filtering out 

search results not satisfying the proposed 

rule system, demonstrating a 4% increase 

of accuracy with respect to the nearest 

neighbor learning approach which does 

not use the discourse tree structure. 

1 Introduction 

Answering compound queries, where its key-

words are distributed through text of a candidate 

answer, is a sophisticated problem requiring deep 

linguistic analysis. If the query keywords occur 

in an answer text in a linguistically connected 

manner, this answer is most likely relevant. This 

is usually true when all these keywords occur in 

the same sentence: they should be connected 

syntactically. For the inter-sentence connections, 

these keywords need to be connected via anapho-

ra, refer to the same entity or sub-entity, or be 

linked via rhetoric discourse. 

If the query keywords occur in different sen-

tences, there should be linguistic cues for some 

sort of connections between these occurrences. If 

there is no connection, then different constraints 

for an object expressed by a query might be ap-

plied to different objects in the answer text, 

therefore, this answer is perhaps irrelevant.  

There are following possibilities of such connec-

tions. 

Anaphora. If two areas of keyword occurrenc-

es are connected with anaphoric relation, the an-

swer is most likely relevant. 

Communicative actions. If the text contains a 

dialogue, and some question keywords are in a 

request and other are in the reply to this request, 

then these keywords are connected and the an-

swer is relevant. To identify such situation, one 

needs to find a pair of communicative actions 

and to confirm that this pair is of request-reply 

kind. 

Rhetoric relations. They indicate the coher-

ence structure of a text (Mann and Thompson, 

1988). Rhetoric relations for text can be repre-

sented by a Discourse tree (DT) which is a la-

beled tree. The leaves of this tree correspond to 

contiguous units for clauses (elementary dis-

course units, EDU). Adjacent EDUs as well as 

higher-level (larger) discourse units are orga-

nized in a hierarchy by rhetoric relation (e.g., 

background, attribution). Anti-symmetric rela-

tion takes a pair of EDUs: nuclei, which are core 

parts of the relation, and satellites, the supportive 

parts of the rhetoric relation. 

The most important class of connections we 

focus in this study is rhetoric. Once an answer 

text is split into EDUs, and rhetoric relations are 

established between them, it is possible to estab-

lish rules for whether query keywords occurring 

in text are connected by rhetoric relations (and 

therefore, this answer is likely relevant) or not 

connected (and this answer is most likely irrele-

vant). Hence we use the DT as a base for an An-

swer Map of a text: certain sets of nodes in DT 

correspond to queries so that this text is a valid 

answer, and certain sets of nodes correspond to 

an invalid answer. Our definition of the Answer 

Map follows the methodology of inverse index 

for search: instead of taking queries and consid-

ering all valid answers for it from a set of text, 
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we take a text (answer) and consider the totality 

of valid and invalid queries consisting of the 

keywords from this text. 

Usually, the main clause of a compound query 

includes the main entity and some of its con-

straints, and the supplementary clause includes 

the other constraint. In the most straightforward 

way, the main clause of a query is mapped into a 

nucleus and the supplementary clause is mapped 

into a satellite of RST relation such as elabora-

tion. Connection by other RST relation, where a 

satellite introduces additional constraints for a 

nucleus, has the same meaning for answer validi-

ty. This validity still holds when two EDUs are 

connected with a symmetric relation such as 

joint. However, when the images of the main and 

supplementary clause of the query are satellites 

of different nucleus, it most likely means that 

they express constraints for different entities, and 

therefore constitute an irrelevant answer for this 

query.  

There is a number of recent studies employing 

RST features for passage re-ranking under ques-

tion answering (Joty and Moschitti, 2014; 

Surdeanu et al., 2014). In the former study, the 

feature space of subtrees of parse trees includes 

the RST relations to improve question answer 

accuracy. In the latter project, RST features con-

tributed to the totality of features learned to re-

rank the answers. In (Galitsky et al., 2014) rheto-

ric structure, in particular, was used to broaden 

the set of parse trees to enrich the feature space 

by taking into account overall discourse structure 

of candidate answers. Statistical learning in these 

studies demonstrated that rhetoric relation can be 

leveraged for better search relevance. In the cur-

rent study, we formulate the explicit rules for 

how a query can be mapped into the answer DT 

and the relevance of this map can be verified. 

2 Example of an Answer Map 

Ex. 1. DT including 6 nodes {e1...e6} is shown 

in Fig 1 (Joty and Moschitti, 2014). Text is split 

into six EDUs: 
[what’s more,]e1 [he be-

lieves]e2 [seasonal swings in 

the auto industry this year 

aren’t occurring at the same 

time in the past,]e3 [because 

of production and pricing dif-

ferences]e4 [that are curbing 

the accuracy of seasonal ad-

justments]e5 ] [built into the 

employment data.]e6  

 

Fig.1. Discourse tree for the Example 1 

Horizontal lines indicate text segments; satel-

lites are connected to their nuclei by curved ar-

rows. One can see that this text is a relevant an-

swer to the query 
Are seasonal swings in the auto 

industry due to pricing differ-

ences? 

but is an irrelevant answer to the query 
Are pricing differences built 

into employment data? 

 

Fig. 2. An Answer Map and its areas for valid 

and invalid answers 

A valid set of nodes of an Answer Map is de-

fined as the one closed under common ancestor 

relations in a DT. For example, the i-nodes on 

the bottom-left of DT in Fig. 2 constitute the in-

valid set, and the v-nodes on the right of DT con-

stitute the valid set. 

Ex. 2. 
I went to watch a movie because 

I had nothing else to do. I en-

joyed the movie which was about 

animals finding food in a de-

sert. To feed in a desert envi-

ronment, zebras run hundreds of 

miles in search of sources of 

water. 

This answer is valid for the following queries 

(phrases) since their keywords form v-set: 
- enjoy movie watched when 

nothing else to do 

- I went to watch a movie 

about feeding in desert en-

vironment 

- I went to watch a movie 

about zebras run hundreds of 

miles 
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- I went to watch a movie 

about searching sources of 

water 

And this text is not a correct answer for the 

following queries (phrases), since their keywords 

form i-sets: 
- animals find food in desert 

when have nothing else to do 

- I had nothing else except 

finding food in a desert 

- I had nothing else to do but 

run hundreds of miles in 

search of water 

- finding food in a desert - a 

good thing to do 

3 Definition and Construction Algo-

rithm 

Discourse tree includes directed arcs for anti-

symmetric rhetoric relation and undirected arcs 

for symmetric rhetoric relations such as joint, 

time sequence, and others. For two nodes of DT 

we define its directed common ancestor as a 

common ancestor node which is connected with 

these nodes via directed arcs.  

The valid set of EDUs which is a result of 

mapping of a query is closed under common di-

rected ancestor relation: it should contain the set 

of all directed common ancestor for all EDUs. 

Hence this constraint is applied for antisymmet-

ric RST relations; query terms can occur in 

symmetric EDU nodes in an arbitrary way. 

To construct an Answer Map from DT, firstly, 

we need to map keywords and phrases of a query 

into EDUs of an answer. For each noun phrase 

for a query, we find one or more EDUs which 

include noun phrases with the same head noun. 

Not each keyword has to be mapped, but there 

should be not more than a single EDU each key-

word is mapped under a given mapping. For ex-

ample, noun phrase from the query family do-

ing its taxes is mapped into the EDU in-
cluding how individuals and families 

file their taxes since they have the same 

head noun tax. If a multiple mapping exists for 

a query, we need to find at least one valid occur-

rence to conclude that this query is a valid one 

for the given map. 

For a query Q, if its keywords occur in candi-

date answer A and the set of EDUs 𝑄𝑒𝑑𝑢, then 

commonAncestorsDT(A)(𝑄𝑒𝑑𝑢)  𝑄𝑒𝑑𝑢. 

For a real-word search system, the enforce-

ment of RST rules occurs at indexing time, since 

RST parsing is rather slow. 

For answer text A, we produce a sequence of 

texts 𝐴𝑒 < {A directed common ancestor I} for 

all pairs of EDU nodes connected with their par-

ents by directed arcs. Then the match of the set 

of keyword occurs with the extended index in the 

regular manner: there is no element 𝐴𝑒  for inva-

lid mapping 𝑄 to 𝑄𝑒𝑑𝑢 . 

4 Approach Scalability 

In terms of search engineering, enforcing of the 

condition of the Rhetoric Map of an answer re-

quires additional part of the index besides the 

inverse one. Building this additional index re-

quires enumeration of all maximal sequences of 

keywords from Rhetoric Map for every docu-

ment (potential answer A). Once A is determined 

to be fired by query Q using the regular search 

index, there should be an entry in Rhetoric Map 

which is fired by a query formed as a conjunc-

tion of terms in Q. 

Since application of Rhetoric Map rules oc-

curs via an inverse index, the search time is con-

stant with respect to the size of the overall RM 

index and size of a given document. The index-

ing time is significantly higher due to rhetoric 

parsing, and the size of index is increased ap-

proximately by the number of average maximal 

paths in a DT graph, which is 3-5. Hence alt-

hough the performance of search will not signifi-

cantly change, the amount of infrastructure ef-

forts associated with RM technology is substan-

tial. 

5 Evaluation 

We used the TREC evaluation dataset as a list of 

topics: http://trec.nist.gov/data/qa/. Given a short 

factoid question for entity, person, organization, 

event, etc. such as #EVENT Pakistan earth-

quakes of October 2005# we ran a web 

search and automatically (using shallow parsing 

provided by Stanford NLP) extracted compound 

sentences from search expressions, such as A 
massive earthquake struck Pakistan 

and parts of India and Afghanistan 

on Saturday morning October 8, 2005. 

This was the strongest earthquake in 

the area during the last hundred 

years. 

Ten to twenty such queries were derived for a 

topic. Those portions of text were selected with 

obvious rhetoric relation between the clauses. 

We then fed Bing Search Engine API such que-

ries and built the Answer Map for each candidate 

answer. We then ran the Answer Map - based 
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filter. Finally, we manually verify that these fil-

tered answers are relevant to the initial questions 

and to the queries. 

We evaluated improvement of search rele-

vance for compound queries by applying the DT 

rules. These rules provide Boolean decisions for 

candidate answers, but we compare them with 

score-based answer re-ranking based on ML of 

baseline SVM tree kernel (Moschitti, 2006), dis-

course-based SVM (Ilvovsky, 2014) and nearest-

neighbor Parse Thicket-based approach (Galitsky 

et al., 2013). 

The approach based on SVM tree kernel takes 

question-answer pairs (also from TREC dataset) 

and forms the positive set from the correct pairs 

and negative set from the incorrect pairs. The 

tree kernel learning (Duffy and Collins, 2002) for 

the pairs of extended parse trees produces multi-

ple parse trees for each sentence, linking them by 

discourse relations of anaphora, communicative 

actions, “same entity” relation and rhetoric rela-

tions (Galitsky et al., 2014). 

In the Nearest Neighbor approach to question 

– answer classification one takes the same data 

of parse trees connected by discourse relations 

and instead of applying SVM learning to pairs, 

compare these data for question and answer di-

rectly, finding the highest similarity. 

To compare the score-based answer re-ranking 

approaches with the rule-based answer filtering 

one, we took first 20 Bing answers and classified 

them as valid (top 10) and invalid (bottom 10) 

under the former set of approaches and selected 

up to 10 acceptable (using the original ranking) 

under the latter approach. Hence the order of 

these selected set of 10 answers is irrelevant for 

our evaluation and we measured the percentage 

of valid answers among them (the focus of eval-

uation is search precision, not recall). 

Answer validity was assessed by Amazon Me-

chanical Turk. The assessors were asked to 

choose relevant answers from the randomly sort-

ed list of candidate answers. Table 1 shows the 

evaluation results. 

  

Table 1. Evaluation results 
Filtering method Baseline 

Bing search, 

% 

SVM TK 

learning of QA 

pairs (baseline 

improvement), 

% 

SVM TK 

learning for 

the pairs for 

extended parse 

trees, % 

Nearest 

neighbor for 

question – 

answer, % 

Answer 

Map, % 

Sources / 

Query 

types 

Source of 

discourse 

information 

- - Anaphora, same entity, selected 

discourse relations 

Discourse 

Tree 

Clauses connected with 

elaboration 

68.3 69.4 73.9 74.6 79.2 

Clauses connected with 

attribution 

67.5 70.1 72.7 75.1 78.8 

Clauses connected with 

summary  

64.9 66.3 70.2 74.0 78.0 

Clauses in 

joint/sequence relation 

64.1 65.2 68.1 72.3 76.3 

Average 66.2 67.8 71.2 74.0 78.0 

 

The top two rows show the answer filtering 

methods and sources of discourse information. 

Bottom rows show evaluation results for queries 

with various rhetoric relations between clauses. 

One can observe just a 1.5% improvement by 

using SVM tree kernel without discourse, further 

3.5% improvement by using discourse-enabled 

SVM tree kernel, and further improvement of 

2.8% by using nearest neighbor learning. The 

latter is still 4% lower than the Answer Map ap-

proach, which is the focus of this study. We ob-

serve that the baseline search improvement, 

SVM tree kernel approach has a limited capabil-

ity of filtering out irrelevant search results in our 

evaluation settings. Also, the role of discourse 

information in improving search results for que-

ries with symmetric rhetoric relation between 

clauses is lower than that of the anti-symmetric 

relations. 
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Code and examples are available at 

code.google.com/p/relevance-based-on-parse-

trees/ (package 

opennlp.tools.parse_thicket.external_rst). 

6 Discussion and Conclusion 

Overall, our evaluation settings are focused on 

compound queries where most answers correctly 

belong to the topic of interest in a query and 

there is usually sufficient number of keywords to 

assure this. However, in the selected search do-

main irrelevant answers are those based on for-

eign entities or mismatched attributes of these 

entities. Hence augmenting keyword statistics 

with the structured information of parse trees is 

not critical to search accuracy improvement. At 

the same time, discourse information for candi-

date answers is essential to properly form and 

interpret the constraints expressed in queries. 

Although there has been a substantial ad-

vancement in document-level RST parsing, in-

cluding the rich linguistic features-based of 

(Feng and Hirst, 2012) and powerful parsing 

models (Joty et al., 2013), document level dis-

course analysis has not found a broad range of 

applications such as search. The most valuable 

information from DT includes global discourse 

features and long range structural dependencies 

between DT constituents. 

Despite other studies (Surdeanu et al., 2014) 

showed that discourse information is beneficial 

for search via learning, we believe this is the first 

study demonstrating how Answer Map affects 

search directly. To be a valid answer for a ques-

tion, its keywords need to occur in adjacent EDU 

chain of this answer so that these EDUs are fully 

ordered and connected by nucleus – satellite rela-

tions. Note the difference between the proximity 

in text as a sequence of words and proximity in 

DT (Croft et al., 2009). An answer is expected to 

be invalid if the questions' keywords occur in the 

answer's satellite EDUs and not in their nucleus 

EDUs. The purpose of the rhetoric map of an 

answer is to prevent it from being fired by ques-

tions whose keywords occur in non-adjacent are-

as of this map. 
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Abstract
Community Question Answering (cQA) is
a new application of QA in social contexts
(e.g., fora). It presents new interesting
challenges and research directions, e.g.,
exploiting the dependencies between the
different comments of a thread to select
the best answer for a given question. In
this paper, we explored two ways of mod-
eling such dependencies: (i) by designing
specific features looking globally at the
thread; and (ii) by applying structure pre-
diction models. We trained and evaluated
our models on data from SemEval-2015
Task 3 on Answer Selection in cQA. Our
experiments show that: (i) the thread-level
features consistently improve the perfor-
mance for a variety of machine learning
models, yielding state-of-the-art results;
and (ii) sequential dependencies between
the answer labels captured by structured
prediction models are not enough to im-
prove the results, indicating that more in-
formation is needed in the joint model.

1 Introduction

Community Question Answering (cQA) is an evo-
lution of a typical QA setting put in a Web forum
context, where user interaction is enabled, without
much restrictions on who can post and who can
answer a question. This is a powerful mechanism,
which allows users to freely ask questions and ex-
pect some good, honest answers.

Unfortunately, a user has to go through all pos-
sible answers and to make sense of them. It is of-
ten the case that many answers are only loosely re-
lated to the actual question, and some even change
the topic. This is especially common for long
threads where, as the thread progresses, users start
talking to each other, instead of trying to answer
the initial question.

This is a real problem, as a question can have
hundreds of answers, the vast majority of which
would not satisfy the users’ information needs.
Thus, finding the desired information in a long list
of answers might be very time-consuming.

The problem of selecting the relevant text pas-
sages (i.e., those containing good answers) has
been tackled in QA research, either for non-factoid
QA or for passage reranking. Usually, automatic
classifiers are applied to the answer passages re-
trieved by a search engine to derive a relative or-
der; see (Radlinski and Joachims, 2005; Jeon et
al., 2005; Shen and Lapata, 2007; Moschitti et
al., 2007; Surdeanu et al., 2008; Heilman and
Smith, 2010; Wang and Manning, 2010; Severyn
and Moschitti, 2012; Yao et al., 2013; Severyn et
al., 2013; Severyn and Moschitti, 2013) for detail.

To the best of our knowledge, there is no
QA work that effectively identifies good answers
based on the selection of the other answers re-
trieved for a question. This is mainly due to the
loose dependencies between the different answer
passages in standard QA. In contrast, we postulate
that in a cQA setting, the answers from different
users in a common thread are strongly intercon-
nected and, thus, a joint answer selection model
should be adopted to achieve higher accuracy.

To test our hypothesis about the usefulness of
thread-level information, we used a publicly avail-
able dataset, recently developed for the SemEval-
2015 Task 3 (Nakov et al., 2015). Subtask A in
that challenge asks to identify the posts in the an-
swer thread that answer the question well vs. those
that can be potentially useful to the user vs. those
that are just bad or useless.

We model the thread-level dependencies in two
different ways: (i) by designing specific features
that are able to capture the dependencies between
the answers in the same thread; and (ii) by exploit-
ing the sequential organization of the output labels
for the complete thread.
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Q: Can I obtain Driving License my QID is written Em-
ployee

A1 the word employee is a general term that refers to all the
staff in your company either the manager, secretary up
to the lowest position or whatever positions they have.
you are all considered employees of your company.

A2 your qid should specify what is the actual profession you
have. i think for me, your chances to have a drivers
license is low.

A3 dear richard, his asking if he can obtain. means he have
the driver license

A4 Slim chance . . .

Figure 1: Simplified example from SemEval-2015
Task 3, English subtask A.

For the latter, we used the usual extensions
of Logistic Regression and SVM to linear-chain
models such as CRF and SVMhmm.

The results clearly show that the thread-level
features are important, providing consistent im-
provement for all our learning models. In contrast,
the linear-chain models fail to exploit the sequen-
tial dependencies between nearby answer labels to
improve the results significantly: although the la-
bels from the neighboring answers can affect the
label of the current answer, this dependency is too
loose to have impact on the selection accuracy. In
other words, labels should be used together with
answers’ content to account for stronger and more
effective dependencies.

2 The Task
We use the CQA-QL corpus, which was used for
Subtask A of SemEval-2015 Task 3 on Answer Se-
lection in cQA. The corpus contains data from
the Qatar Living forum,1 and is publicly avail-
able on the task’s website.2 The dataset consists of
questions and a list of the answers for each ques-
tion, i.e., the question-answer thread. Each ques-
tion, and also each answer, consists of a short title
and a more detailed description. Moreover, there
is some meta information associated with both,
e.g., ID of the user asking/answering the question,
timestamp, question category, etc.

The task asks to determine for each answer in
the thread whether it is good, bad, or potentially
useful. A simplified example is shown in Fig-
ure 1,3 where answers 2 and 4 are good, answer
1 is potentially useful, and answer 3 is bad.

1http://www.qatarliving.com/forum
2http://alt.qcri.org/semeval2015/task3/
3http://www.qatarliving.com/moving-qatar/posts/can-i-

obtain-driving-license-my-qid-written-employee

Below, we start with the original definition of
Subtask A, as described above. Then, we switch
to a binary classification setting (i.e., identifying
good vs. bad answers), which is much closer to a
real cQA application (see Section 4.3).

3 Basic and Thread-Level Features

Subsection 3.1 summarizes the basic features we
used to implement the baseline systems. More im-
portantly, Section 3.2 describes the set of thread-
level features we designed in order to test our
working hypothesis. Below we use the following
notation: q is a question posted by user uq, c is a
comment, and C is the comment thread.

3.1 Baseline Features
We measure lexical and syntactic similarity be-
tween q and c. We compute the similarity between
word n-grams (n = [1, . . . , 4]), after stopword
removal, using greedy string tiling (Wise, 1996),
longest common subsequences (Allison and Dix,
1986), Jaccard coefficient (Jaccard, 1901), word
containment (Lyon et al., 2001), and cosine sim-
ilarity. We also apply partial tree kernels (Mos-
chitti, 2006) on shallow syntactic trees.

We designed a set of heuristic features that
might suggest whether c is good or not. Forty-four
Boolean features express whether c (i) includes
URLs or emails (2 feats.); (ii) contains the word
“yes”, “sure”, “no”, “can”, “neither”, “okay”, and
“sorry”, as well as symbols ‘?’ and ‘@’ (9 feats.);
(iii) starts with “yes” (1 feat.); (iv) includes a se-
quence of three or more repeated characters or
a word longer than fifteen characters (2 feats.);
(v) belongs to one of the categories of the forum
(Socialising, Life in Qatar, etc.) (26 feats.); and
(vi) has been posted by the same uq, such a com-
ment can include a question (i.e., contain a ques-
tion mark), and acknowledgement (e.g., contain
thank*, acknowl*), or none of them (4 feats.). An
extra feature captures the length of c (as longer —
good— comments usually contain detailed infor-
mation to answer a question).

3.2 Thread-Level Global Features
Comments are organized sequentially according to
the time line of the comment thread.4 Our first
four features indicate whether c appears in the
proximity of a comment by uq.

4The task organizers report that some comments in the
threads were discarded due to disagreement in the annotation
process. The extent of discarded comments is unknown.
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Pca Rca F1,ca A
Baseline Features
SVM 52.96 53.14 52.87 67.61
OrdReg 53.33 51.54 51.87 65.38
Baseline+Thread-level Features
SVM 56.31 56.46 56.33 72.27
OrdReg 57.68 57.04 57.20 72.47
SemEval top three
JAIST 57.31 57.20 57.19 72.52
HITSZ 57.83 56.82 56.41 68.67
QCRI 54.34 53.57 53.74 70.50

Table 1: Macro-averaged precision, recall, F1-
measure, and accuracy on the multi-class (good,
bad, potential) setting on the official SemEval-
2015 Task 3 test set. The top-2 systems are in-
cluded for comparison. QCRI refers to our official
results, using an older version of our system.

The assumption is that an acknowledgment or
further questions by uq in the thread could sig-
nal a good answer. More specifically, they test
if among the comments following c there is one
by uq (i) containing an acknowledgment, (ii) not
containing an acknowledgment, (iii) containing a
question, and, (iv) if among the comments preced-
ing c there is one by uq containing a question. The
value of these four features —a propagation of the
information captured by some of the heuristics de-
scribed in Section 3.1— depends on the distance
k, in terms of the number of comments, between c
and the closest comment by uq:

f(c) =
{

max (0, 1.1− (k · 0.1))
0 if no comments by uq exist,

(1)

that is, the closer the comment to cq, the higher the
value assigned to this feature.

We try to model potential dialogues, which at
the end represent bad comments, by identifying
interlacing comments between two users. Our dia-
logue features are identifying conversation chains:
ui → . . . → uj → . . . → ui → . . . → [uj ].
Comments by other users can appear in between
the nodes of this “pseudo-conversation” chain. We
consider three features: whether a comment is at
the beginning, in the middle, or at the end of such
a chain. Three more features exist in those cases
in which uq is one of the participants of these
pseudo-conversations.

Another Boolean feature for cui is set to true if
ui wrote more than one comment in the current
thread. Three more features identify the first, the
middle and the last comments by ui. One extra
feature counts the total number of comments writ-
ten by ui in the thread up to that moment.

P R F1 A F1,ta Ata

Baseline Features
SVM 70.58 84.45 76.89 74.39 66.52 76.13
SVMhmm 72.57 85.46 78.49 76.37 68.55 77.58
LogReg 65.05 91.27 75.96 70.85 68.84 74.79
CRFmap 72.48 86.66 78.94 76.67 67.17 76.55
CRFmpm 71.55 84.25 77.38 75.15 66.54 75.42
Baseline+Thread-level Features
SVM 75.29 85.26 79.96 78.44 67.65 76.02
SVMhmm 74.84 83.25 78.82 77.43 66.61 77.06
LogReg 73.32 86.56 79.39 77.33 68.10 75.57
CRFmap 73.77 85.76 79.31 77.43 66.37 76.08
CRFmpm 74.35 85.46 79.51 77.78 67.36 76.63

Table 2: Performance of the binary (good vs. bad )
classifiers on the official SemEval-2015 Task 3 test
dataset. Precision, recall, F1-measure and accu-
racy are calculated at the comment level, while
F1,ta and Ata are averaged at the thread level.

Moreover, we empirically observed that the
likelihood of some comment being good decreases
with its position in the thread. Therefore,
we also included another real-valued feature:
max(20, i)/20, where i represents the position of
the comment in the thread.

Finally, we perform a pseudo-ranking of the
comments. The relevance of c is computed as its
similarity to q (using word n-grams), normalized
by the maximum similarity among all the com-
ments in the thread. The resulting relative scores
are mapped into three binary features depending
on the range they fall at: [0, 0.2], (0.2, 0.8), or
[0.8, 1] (intervals resemble the three-class setting
and were empirically set on the training data).

4 Experiments

Below we first describe the data we used, then we
introduce the experimental setup, and finally we
present and discuss the results of our experiments.

4.1 Data

The original CQA-QL corpus (Nakov et al., 2015)
consists of 3,229 questions: 2,600 for training,
300 for development, and 329 for testing. The
total number of comments is 20,162, with an
average of 6.24 comments per question. The
class labels for the comments are distributed
as follows: 9,941 good (49.31%), 2,013 poten-
tial (9.98%), and 8,208 bad (40.71%) comments.

Since a typical answer selection setting only
considers correct and incorrect answers, we also
experiment with potential labelled as bad.
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P R F1 A F1,ta Ata

Baseline Features
SVM 68.86±1.42 82.34±1.04 74.98±0.73 72.90±1.00 64.56±0.97 75.32±0.40
SVMhmm 70.34±1.57 81.00±1.98 75.28±1.05 73.75±1.56 65.25±1.16 74.68±1.05
LogReg 64.20±1.33 88.54±0.81 74.42±0.80 69.99±0.94 66.00±1.33 73.04±0.96
CRFmap 69.11±1.41 80.63±1.76 74.42±1.29 72.66±1.75 63.90±1.71 73.51±0.73
CRFmpm 69.60±1.65 81.17±1.28 74.93±1.19 73.20±1.77 64.53±1.37 74.32±0.92

Baseline+Thread-level Features
SVM 72.55±0.96 83.39±1.36 77.59±0.95 76.23±1.37 66.41±1.30 76.23±0.45
SVMhmm 73.24±1.66 81.66±1.21 77.21±1.18 76.20±1.81 65.33±1.12 76.43±0.92
LogReg 71.15±0.96 84.44±1.50 77.22±1.07 75.43±1.47 66.57±1.49 75.05±0.70
CRFmap 71.27±1.20 83.15±1.81 76.75±1.28 75.14±1.72 65.36±1.45 75.61±0.63
CRFmpm 71.56±1.31 83.34±1.84 77.00±1.35 75.43±1.84 65.57±1.54 75.71±0.71

Table 3: Precision, Recall, F1, Accuracy computed at the comment level; F1,ta and Ata are averaged at
the thread level. Precision, Recall, F1, F1,ta are computed with respect to the good classifier on 5-fold
cross-validation (mean±stand. dev.).

4.2 Experimental Setup

Our local classifiers are support vector machines
(SVM) with C = 1 (Joachims, 1999), logistic
regression with a Gaussian prior with variance 10,
and logistic ordinal regression (McCullagh, 1980).
In order to capture long-range sequential depen-
dencies, we use a second-order SVMhmm (Yu
and Joachims, 2008) (with C = 500 and
epsilon = 0.01) and a second-order linear-chain
CRF, which considers dependencies between
three neighboring labels in a sequence (Lafferty et
al., 2001; Cuong et al., 2014). In CRF, we perform
two kinds of inference to find the most probable
labels for the comments in a sequence. (i) We
compute the maximum a posterior (MAP) or the
(jointly) most probable sequence of labels using
the Viterbi algorithm. Specifically, it computes
y∗ = argmaxy1:T

P (y1:T |x1:T ), where T is the
number of comments in the thread. (ii) We use
the forward–backward algorithm to find the labels
by maximizing (individual) posterior marginals
(MPM). More formally, we compute ŷ =(
argmaxy1P (y1|x1:T ), · · · , argmaxyTP (yT |x1:T )

)
.

While MAP yields a globally consistent sequence
of labels, MPM can be more robust in many cases;
see (Murphy, 2012, p. 613) for details. CRF also
uses a Gaussian prior with variance 10.5

4.3 Experiment results

In order to compare the quality of our features to
the existing state of the art, we performed a first
experiment aligned to the multi-class setting of the
SemEval 2015 Task 3 competition. Table 1 shows
our results on the official test dataset.

5Varying regularization strength (variance of the prior)
did not make much difference.

As in the competition, the results are macro-
averaged at class level. The results of the top 3
systems are reported for comparison: JAIST (Tran
et al., 2015), HITSZ (Hou et al., 2015) and
QCRI (Nicosia et al., 2015), where the latter refers
to our old system that we used for the competition.
The two main observations are (i) using thread-
level features helps significantly; and (ii) the ordi-
nal regression model, which captures the idea that
potential lies between good and bad, achieves at
least as good results as the top system at SemEval,
namely JAIST.

For the remaining experiments, we reduce the
multi-class problem to a binary one (cf. Section 2).
Table 2 shows the results obtained on the official
test dataset. Note that ordinal regression is not ap-
plicable in this binary setting. The F1 values for
the baseline features suggest that using the labels
in the thread sequence yields better performance
with SVMhmm and CRF. When thread-level fea-
tures are used, the models using sequence labels
do not outperform SVM and logistic regression
anymore. Regarding the two variations of CRF,
the posterior marginals maximization is slightly
better: maximizing on each comment pays more
than on the entire thread.

Since the task consists in identifying good an-
swers for a given question, further figures at the
question level are necessary, i.e., we compute the
target performance measure for all comments of
each question and then we average the results over
all threads (ta). Table 2 shows such the result using
two measures: F1 and accuracy, i.e., F1,ta and Ata,
for which long threads have less impact on the fi-
nal outcome. The impact of the thread features is
not-so-high in terms of these measures, sometimes
even negatively affecting some of the models.
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Qu1 : Gymnastic world cup.
Does anyone know what time the competition
starts today?
Thanks

c1,u2 : sorry - is this being held here in
Doha? If so, I’d love to go.
Expat Sueo
P.S. Is that a labradoodle in your
avatar?

Bad→Bad

c2,u1 : No actually a Cockapoo!
Yes the comp. runs from today until
Wednesday at Aspire.

Bad→Bad

c3,u2 : Thanks for the info - maybe I’ll turn
up after the TableTop Sale is done
and dusted!
ES
P.S. Cute pup!

Good→Bad

Qu4 : Good Scissor.
Dears, anyone have an idea where to find a good
scissor for hair and beard trimming please???

c1,u5 : Visit Family food center Bad→Good

c2,u6 : Al rawnaq airport road...U’ll find all
types of scissors there...

Bad→Good

c3,u4 : Thank you all . . . I will try that. Bad→Bad

Figure 2: Two real question–comments threads
(simplified; ID in CQA-QL: Q770 and Q752). The
sub-indexes stand for the position in the thread and
the author of the comment. The class label corre-
sponds to the prediction before and after consider-
ing thread-level information. The right-hand label
matches with the gold one in all the cases.

Cross validation. In order to better understand
the mixed results obtained on the single official
test set, we performed 5-fold cross validation over
the entire dataset. The results are shown in Ta-
ble 3. When looking at the performance of the
different models with the same set of features, no
statistically significant differences are observed on
F1 or F1,ta (t-test with confidence level 95%). The
sequence of predicted labels in CRF or SVMhmm

does not impact the final result. In contrast, an im-
portant difference is observed when thread-level
features come into play: the performance of all the
models improves by approximately two F1 points
absolute, and statistically significant differences
are observed for SVM and logistic regression (t-
test, 95%). Moreover, while on the test dataset the
thread-level features do not always improve F1,ta

and Ata, on the 5-fold cross-validation using them
is always beneficial: for F1,ta statistically signifi-
cant difference is observed for SVM only (t-test,
90%).

Qualitative results. In order to get an intuition
about the effect of the thread-level features, we
show two example comment threads in Figure 2.
These comments are classified correctly when
thread features are used in the classifier, and in-
correctly when only basic features are used.

In the first case (Qu1), the third comment is clas-
sified as good by models that only use basic fea-
tures. In contrast, thanks to the thread-level fea-
tures, the classifier can consider that there is a di-
alogue between u1 and u2, causing all the com-
ments to be assigned to the correct class: bad.

In the second example (Qu4), the first two com-
ments are classified as bad when using the basic
features. However, the third comment —written
by the same user who asked Qu4— includes an
acknowledgment. The latter is propagated to the
previous comments in terms of a thread feature,
which indicates that such comments are more
likely to be good answers. This feature provides
the classifier with enough information to properly
label the first two comments as good.

5 Conclusions

We presented a study on using dependencies be-
tween the different answers in the same question
thread in the context of answer selection in cQA.
Our experiments with different classifiers, fea-
tures, and experimental conditions, reveal that an-
swer dependencies are helpful to improve results
on the task. Such dependencies are best exploited
by means of carefully designed thread-level fea-
tures, whereas sequence label information alone,
e.g., used in CRF or SVMhmm, is not effective.

In future work, we plan to (i) experiment with
more sophisticated thread-level features, as well
as with other features that model context in gen-
eral; (ii) try data from other cQA websites, e.g.,
where dialogue between users is marked explic-
itly; and finally, (iii) integrate sequence, prece-
dence, dependency information with global —
thread-level— features in a unified framework.
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Abstract

Retrieving similar questions in online
Q&A community sites is a difficult task
because different users may formulate the
same question in a variety of ways, us-
ing different vocabulary and structure.
In this work, we propose a new neural
network architecture to perform the task
of semantically equivalent question re-
trieval. The proposed architecture, which
we call BOW-CNN, combines a bag-of-
words (BOW) representation with a dis-
tributed vector representation created by a
convolutional neural network (CNN). We
perform experiments using data collected
from two Stack Exchange communities.
Our experimental results evidence that: (1)
BOW-CNN is more effective than BOW
based information retrieval methods such
as TFIDF; (2) BOW-CNN is more robust
than the pure CNN for long texts.

1 Introduction

Most Question-answering (Q&A) community
sites advise users before posting a new question
to search for similar questions. This is not always
an easy task because different users may formulate
the same question in a variety of ways.

We define two questions as semantically equiv-
alent if they can be adequately answered by the
exact same answer. Here is an example of a pair
of such questions from Ask Ubuntu community,
which is part of the Stack Exchange Q&A com-
munity site: (q1)“I have downloaded ISO files re-
cently. How do I burn it to a CD or DVD or mount
it?” and (q2)“I need to copy the iso file for Ubuntu
12.04 to a CD-R in Win8. How do I do so?”.
Retrieving semantically equivalent questions is a
challenging task due to two main factors: (1) the
same question can be rephrased in many different

ways; and (2) two questions may be different but
may refer implicitly to a common problem with
the same answer. Therefore, traditional similarity
measures based on word overlap such as shingling
and Jaccard coefficient (Broder, 1997) and its vari-
ations (Wu et al., 2011) are not able to capture
many cases of semantic equivalence. To capture
the semantic relationship between pair of ques-
tions, different strategies have been used such as
machine translation (Jeon et al., 2005; Xue et al.,
2008), knowledge graphs (Zhou et al., 2013) and
topic modelling (Cai et al., 2011; Ji et al., 2012).

Recent papers (Kim, 2014; Hu et al., 2014; Yih
et al., 2014; dos Santos and Gatti, 2014; Shen et
al., 2014) have shown the effectiveness of convo-
lutional neural networks (CNN) for sentence-level
analysis of short texts in a variety of different nat-
ural language processing and information retrieval
tasks. This motivated us to investigate CNNs for
the task of semantically equivalent question re-
trieval. However, given the fact that the size of a
question in an online community may vary from a
single sentence to a detailed problem description
with several sentences, it was not clear that the
CNN representation would be the most adequate.

In this paper, we propose a hybrid neural net-
work architecture, which we call BOW-CNN. It
combines a traditional bag-of-words (BOW) rep-
resentation with a distributed vector representa-
tion created by a CNN, to retrieve semantically
equivalent questions. Using a ranking loss func-
tion in the training, BOW-CNN learns to represent
questions while learning to rank them according to
their semantic similarity. We evaluate BOW-CNN
over two different Q&A communities in the Stack
Exchange site, comparing it against CNN and 6
well-established information retrieval algorithms
based on BOW. The results show that our proposed
solution outperforms BOW-based information re-
trieval methods such as the term frequency - in-
verse document frequency (TFIDF) in all evalu-
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Figure 1: Representing and scoring questions with
weighted bag-of-words.

ated scenarios. Moreover, we were able to show
that for short texts (title of the questions), an ap-
proach using only CNN obtains the best results,
whereas for long texts (title and body of the ques-
tions), our hybrid approach (BOW-CNN) is more
effective.

2 BOW-CNN

2.1 Feed Forward Processing

The goal of the feed forward processing is to cal-
culate the similarity between a pair of questions
(q1, q2). To perform this task, each question
q follows two parallel paths (BOW and CNN),
each one producing a distinct vector representa-
tions of q. The BOW path produces a weighted
bag-of-words representation of the question, rbowq ,
where the weight of each word in the vocabu-
lary V is learned by the neural network. The
CNN path, uses a convolutional approach to con-
struct a distributed vector representations, rconvq ,
of the question. After producing the BOW and
CNN representations for the two input questions,
the BOW-CNN computes two partial similarity
scores sbow(q1, q2), for the CNN representations,
and sconv(q1, q2), for the BOW representations.
Finally, it combines the two partial scores to create
the final score s(q1, q2).

2.2 BOW Path

The generation of the bag-of-words representation
for a given question q is quite straightforward. As
detailed in Figure 1, we first create a sparse vec-
tor qbow ∈ R|V | that contains the frequency in q of
each word of the vocabulary. Next, we compute
the weighted bag-of-words representation by per-

Figure 2: Representing and scoring questions with
a convolutional approach.

forming the element-wise vector multiplication:

rbowq = qbow ∗ t (1)

where the vector t ∈ R|V |, contains a weight for
each word in the vocabulary V . The vector t is a
parameter to be learned by the network. This is
closely related to the TFIDF text representation.
In fact, if we fix t to the vector of IDFs, this corre-
sponds to the exact TFIDF representation.

2.3 CNN Path
As detailed in Figure 2, the first layer of the
CNN path transforms words into representations
that capture syntactic and semantic information
about the words. Given a question consisting of
N words q = {w1, ..., wN}, every word wn is
converted into a real-valued vector rwn . There-
fore, for each question, the input to the next NN
layer is a sequence of real-valued vectors qemb =
{rw1 , ..., rwN }. Word representations are encoded
by column vectors in an embedding matrix W 0 ∈
Rd×|V |, where V is a fixed-sized vocabulary.

The next step in the CNN path consists in cre-
ating distributed vector representations rconvq1 and
rconvq2 from the word embedding sequencies qemb1

and qemb2 . We perform this by using a convolu-
tional layer in the same way as used in (dos Santos
and Gatti, 2014) to create sentence-level represen-
tations.

More specifically, given a question q1, the con-
volutional layer applies a matrix-vector operation
to each window of size k of successive windows
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in qemb1 = {rw1 , ..., rwN }. Let us define the vector
zn ∈ Rdk as the concatenation of a sequence of k
word embeddings, centralized in the n-th word:

zn = (rwn−(k−1)/2 , ..., rwn+(k−1)/2)T

The convolutional layer computes the j-th ele-
ment of the vector rconvq1 ∈ Rclu as follows:

[rconvq1 ]j = f

(
max

1<n<N

[
W 1zn + b1

]
j

)
(2)

where W 1 ∈ Rclu×dk is the weight matrix of the
convolutional layer and f is the hyperbolic tangent
function. Matrices W 0 and W 1, and the vector b1

are parameters to be learned. The word embedding
size d, the number of convolutional units clu, and
the size of the word context window k are hyper-
parameters to be chosen by the user.

2.4 Question Pair Scoring
After the bag-of-words and convolutional-based
representations are generated for the input pair (q1,
q2), the partial scores are computed as the cosine
similarity between the respective vectors:

sbow(q1, q2) =
rbowq1 .rbowq2
‖rbowq1 ‖‖rbowq2 ‖

sconv(q1, q2) =
rconvq1 .rconvq2

‖rconvq1 ‖‖rconvq2 ‖
The final score for the input questions (q1, q2) is

given by the following linear combination

s(q1, q2) = β1 ∗ sbow(q1, q2) + β2 ∗ sconv(q1, q2)

where β1 and β2 are parameters to be learned.

2.5 Training Procedure
Our network is trained by minimizing a ranking
loss function over the training set D. The input in
each round is two pairs of questions (q1, q2)+ and
(q1, qx)− where the questions in the first pair are
semantically equivalent (positive example), and
the ones in the second pair are not (negative ex-
ample). Let ∆ be the difference of their similarity
scores, ∆ = sθ(q1, q2) − sθ(q1, qx), generated by
the network with parameter set θ. As in (Yih et al.,
2011), we use a logistic loss over ∆

L(∆, θ) = log(1 + exp(−γ∆))

where γ is a scaling factor that magnifies ∆ from
[-2,2] (in the case of using cosine similarity) to a

larger range. This helps to penalize more on the
prediction errors. Following (Yih et al., 2011), in
our experiments we set γ to 10.

Sampling informative negative examples can
have a significant impact in the effectiveness of the
learned model. In our experiments, before train-
ing, we create 20 pairs of negative examples for
each positive pair (q1,q2)+. To create a negative
example we (1) randomly sample a question qx
that is not semantically equivalent to q1 or q2; (2)
then create negative pairs (q1,qx)− and (q2,qx)−.
During training, at each iteration we only use the
negative example x that produces the smallest dif-
ferent sθ(q1, q2)+ − sθ(q1, qx)−. Using this strat-
egy, we select more representative negative exam-
ples.

We use stochastic gradient descent (SGD) to
minimize the loss function with respect to θ.
The backpropagation algorithm is used to com-
pute the gradients of the network. In our exper-
iments, BOW-CNN architecture is implemented
using Theano (Bergstra et al., 2010).

3 Experimental Setup

3.1 Data

A well-structured source of semantically equiv-
alent questions is the Stack Exchange site. It
is composed by multiple Q&A communities,
whereby users can ask and answer questions, and
vote up and down both questions and answers.
Questions are composed by a title and a body.
Moderators can mark questions as duplicates, and
eventually a question can have multiple duplicates.

For this evaluation, we chose two highly-
accessed Q&A communities: Ask Ubuntu and En-
glish. They differ in terms of content and size.
Whereas Ask Ubuntu has 29510 duplicated ques-
tions, English has 6621. We performed exper-
iments using only the title of the questions as
well as title + body, which we call all for the
rest of this section. The average size of a title
is very small (about 10 words), which is at least
10 times smaller than the average size of all for
both datasets. The data was tokenized using the
tokenizer available with the Stanford POS Tag-
ger (Toutanova et al., 2003), and all links were re-
placed by a unique string. For Ask Ubuntu, we
did not consider the content inside the tag code,
which contains some specific Linux commands or
programming code.

For each community, we created training, vali-
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Community Training Validation Test
Ask Ubuntu 9802 1991 3800
English 2235 428 816

Table 1: Partition of training, validation and test
sets for the experiments.

dation and test sets. In Table 1, we inform the size
of each set. The number of instances in the train-
ing set corresponds to the number of positive pairs
of semantically equivalent questions. The number
of instances in the validation and the test sets cor-
respond to the number of questions which are used
as queries. All questions in the validation and test
set contain at least one duplicated question in the
set of all questions. In our experiments, given a
query question q, all questions in the Q&A com-
munity are evaluated when searching for a dupli-
cate of q.

3.2 Baselines and Neural Network Setup

In order to verify the impact of jointly using
BOW and CNN representations, we perform ex-
periments with two NN architectures: the BOW-
CNN and the CNN alone, which consists in us-
ing only the CNN path of BOW-CNN and, con-
sequently, computing the score for a pair of ques-
tions using s(q1, q2) = sconv(q1, q2).

Additionally, we compare BOW-CNN with six
well-established IR algorithms available on the
Lucene package (Hatcher et al., 2004). Here we
provide a brief overview of them. For further de-
tails, we refer the reader to the citation associated
with the algorithm.

• TFIDF (Manning et al., 2008) uses the tradi-
tional Vector Space Model to represent docu-
ments as vectors in a high-dimensional space.
Each position in the vector represents a word
and the weight of words are calculated using
TFIDF.

• BM25 (Robertson and Walker, 1994) is a
probabilistic weighting method that takes
into consideration term frequency, inverse
document frequency and document length.
Its has two free parameters: k1 to tune term-
frequency saturation; and b to calibrate the
document-length normalization.

• IB (Clinchant and Gaussier, 2010) uses
information-based models to capture the im-
portance of a term by measuring how much

Param. Name BOW-CNN CNN
Word Emb. Size 200 200
Context Winow Size 3 3
Convol. Units 400 1000
Learning Rate 0.01 0.05

Table 2: Neural Network Hyper-Parameters

its behavior in a document deviates from its
behavior in the whole collection.

• DFR (Amati and Van Rijsbergen, 2002) is
based on divergence from randomness frame-
work. The relevance of a term is measured by
the divergence between its actual distribution
and the distribution from a random process.

• LMDirichlet and LMJelinekMercer apply
probabilistic language model approaches for
retrieval (Zhai and Lafferty, 2004). They dif-
fer in the smoothing method: LMDirichlet
uses Dirichlet priors and LMJelinekMercer
uses the Jelinek-Mercer method.

The word embeddings used in our experiments
are initialized by means of unsupervised pre-
training. We perform pre-training using the skip-
gram NN architecture (Mikolov et al., 2013) avail-
able in the word2vec tool. We use the En-
glish Wikipedia to train word embeddings for
experiments with the English dataset. For the
AskUbuntu dataset, we use all available Ask-
Ubuntu community data to train word embed-
dings.

The hyper-parameters of the neural networks
and the baselines are tuned using the development
sets. In Table 2, we show the selected hyper-
parameter values. In our experiments, we initialize
each element [t]i of the bag-of-word weight vector
t with the IDF of i−th word wi computed over the
respective set of questions Q as follows

[t]i = IDF (wi, Q) = log
|Q|

|q ∈ Q : wi ∈ q|

4 Experimental Results

Comparison with Baselines. In Tables 3 and
4, we present the question retrieval performance
(Accuracy@k) of different algorithms over the
AskUbuntu and English datasets for the title and
all settings, respectively. For both datasets, BOW-
CNN outperforms the six IR algorithms for both
title and all settings. For the AskUbuntu all,
BOW-CNN is four absolute points larger than the
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AskUbuntu English
Algorithm @1 @5 @10 @1 @5 @10
TFIDF 8.3 17.5 22.5 10.0 18.1 21.6
BM25 7.3 17.1 21.8 10.0 18.9 23.2
IB 8.1 18.1 22.6 10.1 18.4 22.7
DFR 7.7 17.8 22.4 10.5 19.0 23.0
LMD 5.6 14.1 19.0 10.9 20.1 24.2
LMJ 8.3 17.5 22.5 10.3 18.5 22.1
CNN 11.5 24.8 31.4 11.6 23.0 26.9
BOW-CNN 10.9 22.6 28.7 11.3 21.4 26.0

Table 3: Question title retrieval performance (Ac-
curacy@k) for different algorithms.

AskUbuntu English
Algorithm @1 @5 @10 @1 @5 @10
TFIDF 16.9 31.3 38.3 25.9 42.0 48.1
BM25 18.2 33.1 39.8 29.4 45.7 52.5
IB 14.9 28.2 34.8 25.4 42.3 48.0
DFR 18.0 32.6 39.2 28.6 45.4 52.5
LMD 13.7 26.8 34.4 23.0 40.2 46.0
LMJ 18.3 33.4 40.7 28.5 45.7 52.3
CNN 20.0 33.8 40.1 17.2 29.6 33.8
BOW-CNN 22.3 39.7 46.4 30.8 47.7 54.9

Table 4: Question title + body (all) retrieval per-
formance for different algorithms.

best IR baseline (LMJ) in terms of Accuracy@1,
which represents an improvement of 21.9%. Since
the BOW representation we use is closely related
to TFIDF, an important comparison is the perfor-
mance of BOW-CNN vs. TFIDF. In Tables 3 and
4, we can see that BOW-CNN consistently outper-
forms the TFIDF model in the two datasets for
both cases title and all. These findings suggest
that BOW-CNN is indeed combining the strong
semantic representation power conveyed by the
convolutional-based representation to, jointly with
the BOW representation, construct a more effec-
tive model.

Another interesting finding is that CNN out-
performs BOW-CNN for short texts (Table 3)
and, conversely, BOW-CNN outperforms CNN for
long texts (Table 4). This demonstrates that, when
dealing with large input texts, BOW-CNN is an
effective approach to combine the strengths of
convolutional-based representation and BOW.

Impact of Initialization of BOW Weights. In
the BOW-CNN experiments whose results are pre-
sented in tables 3 and 4 we initialize the elements
of the BOW weight vector t with the IDF of each
word in V computed over the question set Q. In
this section we show some experimental results
that indicate the contribution of this initialization.

In Table 5, we present the performance of

BOW-CNN for the English dataset when differ-
ent configurations of the BOW weight vector t are
used. The first column of Table 5 indicates the
type of initialization, where ones means that t is
initialized with the value 1 (one) in all positions.
The second column informs whether t is allowed
to be updated (Yes) by the network or not (No).
The numbers suggest that letting BOW weights
free to be updated by the network produces better
results than fixing them to IDF values. In addition,
using IDF to initialize the BOW weight vector is
better than using the same weight (ones) to initial-
ize it. This is expected, since we are injecting a
prior knowledge known to be helpful in IR tasks.

Title All
t initial t updated @1 @10 @1 @10

IDF Yes 11.3 26.0 30.8 54.9
IDF No 10.6 25.3 29.7 54.9
Ones Yes 10.7 24.2 26.3 51.2

Table 5: BOW-CNN performance using different
methods to initialize the BOW weight vector t.

5 Conclusions

In this paper, we propose a hybrid neural network
architecture, BOW-CNN, that combines bag-of-
words with distributed vector representations cre-
ated by a CNN, to retrieve semantically equivalent
questions. Our experimental evaluation showed
that: our approach outperforms traditional bow ap-
proaches; for short texts, a pure CNN obtains the
best results, whereas for long texts, BOW-CNN is
more effective; and initializing the BOW weight
vector with IDF values is beneficial.
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Abstract

We demonstrate significant improvement
on the MCTest question answering task
(Richardson et al., 2013) by augmenting
baseline features with features based on
syntax, frame semantics, coreference, and
word embeddings, and combining them in
a max-margin learning framework. We
achieve the best results we are aware of on
this dataset, outperforming concurrently-
published results. These results demon-
strate a significant performance gradient
for the use of linguistic structure in ma-
chine comprehension.

1 Introduction

Recent question answering (QA) systems (Fer-
rucci et al., 2010; Berant et al., 2013; Bordes et
al., 2014) have focused on open-domain factoid
questions, relying on knowledge bases like Free-
base (Bollacker et al., 2008) or large corpora of
unstructured text. While clearly useful, this type
of QA may not be the best way to evaluate natu-
ral language understanding capability. Due to the
redundancy of facts expressed on the web, many
questions are answerable with shallow techniques
from information extraction (Yao et al., 2014).

There is also recent work on QA based on syn-
thetic text describing events in

adventure games (Weston et al., 2015;
Sukhbaatar et al., 2015). Synthetic text provides
a cleanroom environment for evaluating QA
systems, and has spurred development of power-
ful neural architectures for complex reasoning.
However, the formulaic semantics underlying
these synthetic texts allows for the construction
of perfect rule-based question answering sys-
tems, and may not reflect the patterns of natural
linguistic expression.

In this paper, we focus on machine compre-
hension, which is QA in which the answer is con-

tained within a provided passage. Several compre-
hension tasks have been developed, including Re-
media (Hirschman et al., 1999), CBC4kids (Breck
et al., 2001), and the QA4MRE textual question
answering tasks in the CLEF evaluations (Peñas et
al., 2011; Peñas et al., 2013; Clark et al., 2012;
Bhaskar et al., 2012).

We consider the Machine Comprehension of
Text dataset (MCTest; Richardson et al., 2013),
a set of human-authored fictional stories with as-
sociated multiple-choice questions. Knowledge
bases and web corpora are not useful for this task,
and answers are typically expressed just once in
each story. While simple baselines presented by
Richardson et al. answer over 60% of questions
correctly, many of the remaining questions require
deeper analysis.

In this paper, we explore the use of depen-
dency syntax, frame semantics, word embeddings,
and coreference for improving performance on
MCTest. Syntax, frame semantics, and coref-
erence are essential for understanding who did
what to whom. Word embeddings address varia-
tion in word choice between the stories and ques-
tions. Our added features achieve the best results
we are aware of on this dataset, outperforming
concurrently-published results (Narasimhan and
Barzilay, 2015; Sachan et al., 2015).

2 Model

We use a simple latent-variable classifier trained
with a max-margin criterion. Let P denote the
passage, q denote the question of interest, and A
denote the set of candidate answers for q, where
each a ∈ A denotes one candidate answer. We
want to learn a function h : (P, q)→ A that, given
a passage and a question, outputs a legal a ∈ A.
We use a linear model for h that uses a latent vari-
able w to identify the sentence in the passage in
which the answer can be found.

Let W denote the set of sentences within the
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passage, where a particular w ∈ W denotes one
sentence.

Given a feature vector f(P,w, q, a) and a
weight vector θ with an entry for each feature, the
prediction â for a new P and q is given by:

â = arg max
a∈A

max
w∈W

θ>f(P,w, q, a)

Given triples {〈P i, qi, ai〉}ni=1, we minimize an
`2-regularized max-margin loss function:

min
θ

λ||θ||2 +
n∑
i=1

{
−max
w∈W

θ>f(P i, w, qi, ai)

+ max
a∈A

{
max
w′∈W

θ>f(P i, w′, qi, a) + ∆(a, ai)
}}

where λ is the weight of the `2 term and
∆(a, ai) = 1 if a 6= ai and 0 otherwise. The latent
variable w makes the loss function non-convex.

3 Features

We start with two features from Richardson et al.
(2013). Our first feature corresponds to their slid-
ing window similarity baseline, which measures
weighted word overlap between the bag of words
constructed from the question/answer and the bag
of words in the window. We call this feature B.
The second feature corresponds to their word dis-
tance baseline, and is the minimal distance be-
tween two word occurrences in the passage that
are also contained in the question/answer pair. We
call this feature D. Space does not permit a de-
tailed description.

3.1 Frame Semantic Features
Frame semantic parsing (Das et al., 2014)
is the problem of extracting frame-specific
predicate-argument structures from sentences,
where the frames come from an inventory such as
FrameNet (Baker et al., 1998). This task can be
decomposed into three subproblems: target iden-
tification, in which frame-evoking predicates are
marked; frame label identification, in which the
evoked frame is selected for each predicate; and
argument identification, in which arguments to
each frame are identified and labeled with a role
from the frame. An example output of the SE-
MAFOR frame semantic parser (Das et al., 2014)
is given in Figure 1.
Three frames are identified. The target words
pulled, all, and shelves have respective frame la-
bels CAUSE MOTION, QUANTITY, and NATU-

Figure 1: Example output from SEMAFOR.

RAL FEATURES. Each frame has its own set of ar-
guments; e.g., the CAUSE MOTION frame has the
labeled Agent, Theme, and Goal arguments. Fea-
tures from these parses have been shown to be use-
ful for NLP tasks such as slot filling in spoken dia-
logue systems (Chen et al., 2013). We expect that
the passage sentence containing the answer will
overlap with the question and correct answer in
terms of predicates, frames evoked, and predicted
argument labels, and we design features to capture
this intuition. Given the frame semantic parse for a
sentence, let T be the bag of frame-evoking target
words/phrases.1 We define the bag of frame labels
in the parse as F . For each target t ∈ T , there is an
associated frame label denoted Ft ∈ F . Let R be
the bag of phrases assigned with an argument label
in the parse. We denote the bag of argument labels
in the parse by L. For each phrase r ∈ R, there is
an argument label denoted Lr ∈ L. We define a
frame semantic parse as a tuple 〈T, F,R, L〉. We
define six features based on two parsed sentences
〈T 1, F 1, R1, L1〉 and 〈T 2, F 2, R2, L2〉:
• f1: # frame label matches: |{〈s, t〉 : s ∈
F 1, t ∈ F 2, s = t}|
• f2: # argument label matches: |{〈s, t〉 : s ∈
L1, t ∈ L2, s = t}|.
• f3: # target matches, ignoring frame labels:
|{〈s, t〉 : s ∈ T 1, t ∈ T 2, s = t}|.
• f4: # argument matches, ignoring arg. labels:
|{〈s, t〉 : s ∈ R1, t ∈ R2, s = t}|.
• f5: # target matches, using frame labels:
|{〈s, t〉 : s ∈ T 1, t ∈ T 2, s = t, F 1

s = F 2
t }|.

• f6: # argument matches, using arg. labels:
|{〈s, t〉 : s ∈ R1, t ∈ R2, s = t, L1

s = L2
t }|.

We use two versions of each of these six features:
one version for the passage sentence w and the
question q, and an additional version for w and the
candidate answer a.

3.2 Syntactic Features
If two sentences refer to the same event, then it is
likely that they have some overlapping dependen-

1By bag, we mean here a set with possible replicates.
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Figure 2: Transforming the question to a statement.

cies. To compare a Q/A pair to a sentence in the
passage, we first use rules to transform the ques-
tion into a statement and insert the candidate an-
swer into the trace position. Our simple rule set
is inspired by the rich history of QA research into
modeling syntactic transformations between ques-
tions and answers (Moschitti et al., 2007; Wang et
al., 2007; Heilman and Smith, 2010). Given Stan-
ford dependency tree and part-of-speech (POS)
tags for the question, let arc(u, v) be the label of
the dependency between child word u and head
word v, let POS (u) be the POS tag of u, let c be
the wh-word in the question, let r be the root word
in the question’s dependency tree, and let a be the
candidate answer. We use the following rules:2

• c = what, POS (r) = VB, and arc(c, r) = dobj.
Insert a after word u where arc(u, r) = nsubj.
Delete c and the word after c.

• c = what, POS (r) = NN, and arc(c, r) =
nsubj. Replace c by a.

• c = where, POS (r) = VB, and arc(c, r) = ad-
vmod. Delete c and the word after c. If r has a
child u such that arc(u, r) = dobj, insert a after
u; else, insert a after r and delete r.

• c = where, r = is, POS(r) = VBZ, and arc(c,
r) = advmod. Delete c. Find r’s child u such
that arc(u, r) = nsubj, move r to be right after
u. Insert a after r.

• c = who, POS(r) = NN, and arc(c, r) =
nsubj. Replace c by a.

• c = who, POS(r) ∈ {VB, VBD}, and arc(c, r)
= nsubj. Replace c by a.

We use other rules in addition to those above:
change “why x?” to “the reason x is a”, and
change “how many x”, “how much x”, or “when
x” to “x a”.

Given each candidate answer, we attempt to
transform the question to a statement using the

2There are existing rule-based approaches to transforming
statements to questions (Heilman, 2011); our rules reverse
this process.

rules above.3 An example of the transformation
is given in Figure 2. In the parse, pull is the root
word and What is attached as a dobj. This matches
the first rule, so we delete did and insert the can-
didate answer pudding after pull, making the final
transformed sentence: James pull pudding off.

After this transformation of the question (and
a candidate answer) to a statement, we mea-
sure its similarity to the sentence in the window
using simple dependency-based similarity fea-
tures. Denoting a dependency as (u, v, arc(u, v)),
then two dependencies (u1, v1, arc(u1, v1)) and
(u2, v2, arc(u2, v2)) match if and only if u1 = u2,
v1 = v2, and arc(u1, v1) = arc(u2, v2). One
feature simply counts the number of dependency
matches between the transformed question and the
passage sentence. We include three additional
count features that each consider a subset of de-
pendencies from the following three categories:

(1) v = r and u = a; (2) v = r but u 6= a; and
(3) v 6= r. In Figure 2, the triples

(James, pull,nsubj) and (off, pull,prt) belong to
the second category while (pudding, pull,dobj)
belongs to the first.

3.3 Word Embeddings
Word embeddings (Mikolov et al., 2013) repre-
sent each word as a low-dimensional vector where
the similarity of vectors captures some aspect of
semantic similarity of words. They have been
used for many tasks, including semantic role label-
ing (Collobert et al., 2011), named entity recogni-
tion (Turian et al., 2010), parsing (Bansal et al.,
2014), and for the Facebook QA tasks (Weston et
al., 2015; Sukhbaatar et al., 2015). We first de-
fine the vector f+

w as the vector summation of all
words inside sentence w and f×w as the element-
wise multiplication of the vectors in w. To define
vectors for answer a for question q, we concate-
nate q and a, then calculate f+

qa and f×qa. For the
bag-of-words feature B, instead of merely count-
ing matches of the two bags of words, we also use
cos(f+

qa, f
+
w ) and cos(f×qa, f×w ) as features, where

cos is cosine similarity. For syntactic features,
where τw is the bag of dependencies of w and
τqa is the bag of dependencies for the transformed
question for candidate answer a, we use a feature
function that returns the following:∑

(u,v,`)∈τw

∑
(u′,v′,`′)∈τqa

1`=`′ cos(u, u′) cos(v, v′)

3If no rule applies, we return 0 for all syntactic features.
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where ` is short for arc(u, v).4

3.4 Coreference Resolution

Coreference resolution systems aim to identify
chains of mentions (within and across sentences)
that refer to the same entity. We integrate coref-
erence information into the bag-of-words, frame
semantic, and syntactic features. We run a coref-
erence resolution system on each passage, then for
these three sets of features, we replace exact string
match with a check for membership in the same
coreference chain.

When using features augmented by word em-
beddings or coreference, we create new versions
of the features that use the new information, con-
catenating them with the original features.

4 Experiments

MCTest splits its stories into train, development,
and test sets. The original MCtest DEV is too
small, to choose the best feature set, we merged
the train and development sets in MC160 and
MC500 and split them randomly into a 250-story
training set (TRAIN) and a 200-story development
set (DEV). We optimize the max-margin training
criteria on TRAIN and use DEV to tune the regular-
izer λ and choose the best feature set. We report
final performance on the original two test sets (for
comparability) from MCTest, named MC160 and
MC500.

We use SEMAFOR (Das et al., 2010; Das et
al., 2014) for frame semantic parsing and the lat-
est Stanford dependency parser (Chen and Man-
ning, 2014) as our dependency parser. We use
the Stanford rule-based system for coreference
resolution (Lee et al., 2013). We use the pre-
trained 300-dimensional word embeddings down-
loadable from the word2vec site.5 We denote
the frame semantic features by F and the syntac-
tic features by S. We use superscripts w and c to
indicate the use of embeddings and coreference
for a particular feature set. To minimize the loss,
we use the miniFunc package in MATLAB with
LBFGS (Nocedal, 1980; Liu and Nocedal, 1989).

The accuracy of different feature sets on DEV is
given in Table 1.6 The boldface results correspond

4Similar to the original syntactic features (see end of Sec-
tion 3.2), we also have 3 additional features for the three sub-
set categories.

5https://code.google.com/p/word2vec/
6All accuracies are computed with tie-breaking partial

credit (similar to previous work), i.e., if we have the same

to the best feature set combination chosen by eval-
uating on DEV. In this case, the feature dimen-
sionality is 29, which includes 4 bag-of-words fea-
tures, 1 distance feature, 12 frame semantic fea-
tures, and with the remaining being syntactic fea-
tures. After choosing the best feature set on DEV,
we then evaluate our system on TEST.

Negations: in preliminary experiments, we
found that our system suffered with negation ques-
tions, so we developed a simple heuristic to deal
with them. We identify a question as negation if it
contains “not” or “n’t” and does not begin with
“how” or “why”. If a question is identified as
negation, we then negate the final score for each
candidate answer.

Features DEV Accuracy (%)
B + D + F 64.18

B + D + F + S 66.24
Bwc + D + Fc + Swc 69.87

Table 1: Accuracy on DEV.

The final test results are shown in Table 2. We
first compare to results from prior work (Richard-
son et al., 2013). Their first result uses a slid-
ing window with the bag-of-words feature B de-
scribed in Sec. 3; this system is called “Base-
line 1” (B1). They then add the distance feature
D, also described in Sec. 3. The combined sys-
tem, which uses B and D, is called “Baseline 2”
(B2). Their third result adds a rich textual entail-
ment system to B2; it is referred to as B2+RTE.7

We also compare to concurrently-published re-
sults (Narasimhan and Barzilay, 2015; Sachan et
al., 2015).

We report accuracies for all questions as well
as separately for the two types: those that are
answerable with a single sentence from the pas-
sage (“Single”) and those that require multiple
sentences (“Multiple”). We see gains in accuracy
of 6% absolute compared to the B2+RTE base-
line and also outperform concurrently-published
results (Narasimhan and Barzilay, 2015; Sachan
et al., 2015). Even though our system only ex-
plicitly uses a single sentence from the passage
when choosing an answer, we improve baseline
accuracy for both single-sentence and multiple-
sentence questions. 8

score for all four candidate answers, then we get partial credit
of 0.25 for this question.

7These three results are obtained from files at
http://research.microsoft.com/en-us/
um/redmond/projects/mctest/results.html.

8However, we inspected these question annotations and
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System MC160 MC500
Single (112) Multiple (128) All Single (272) Multiple (328) All

B1 64.73 56.64 60.41 58.21 56.17 57.09
Richardson et al. (2013) B2 75.89 60.15 67.50 64.00 57.46 60.43

B2+RTE 76.78 62.50 69.16 68.01 59.45 63.33
Narasimhan and Barzilay (2015) 82.36 65.23 73.23 68.38 59.90 63.75
Sachan et al. (2015) - - - 67.65 67.99 67.83
our system 84.22 67.85 75.27 72.05 67.94 69.94

Table 2: Accuracy comparison of published results on test sets.

Features DEV Accuracy (%)
full (Bwc+D+Fc+Swc) 69.87
− Bwc (D + Fc+Swc) 58.46
− D (Bwc+Fc+Swc) 65.89
− Bwc, − D (Fc+Swc) 54.19
− embeddings (Bc+D+Fc+Sc) 68.28
− coreference (Bw+D+F+Sw) 68.43
− frame semantics (Bwc+D+Swc) 67.89
− syntax (Bwc+D+Fc) 67.64
− negation (Bwc+D+Fc+Swc) 68.72

Table 3: Ablation study of feature types on the dev set.

We also measure the contribution of each fea-
ture set by deleting it from the full feature set.
These ablation results are shown in Table 3. We
find that frame semantic and syntax features con-
tribute almost equally, and using word embed-
dings contributes slightly more than coreference
information. If we delete the bag-of-words and
distance features, then accuracy drops signifi-
cantly, which suggests that in MCTest, simple
surface-level similarity features suffice to answer
a large portion of questions.

5 Analysis

Successes To show the effects of different fea-
tures, we show cases where the full system gives
the correct prediction (marked with ∗) but ablat-
ing the named features causes the incorrect answer
(marked with †) to be predicted:
Ex. 1: effect of embeddings: we find the soft similarity

between ‘noodle’ and ‘spaghetti’.
clue: Marsha’s favorite dinner was spaghetti.
q: What is Marsha’s noodle made out of? ∗A) Spaghetti;
†C) mom;

Ex. 2: coreference resolves She to Hannah Harvey.
Hannah Harvey was a ten year old. She lived in New York.
q: Where does Hannah Harvey live? ∗A) New York; †C)
Kenya;

Ex. 4: effect of syntax: by inserting answer C, the trans-

formed statement is: Todd say there’s no place like home

when he got home from the city.

occasionally found them to be noisy, which may cloud these
comparisons.

When his mom asked him about his trip to the city Todd
said, “There’s no place like home.”
q: What did Todd say when he got home from the city? †B)
There were so many people in cars; ∗C) There’s no place
like home;

Errors To give insight into our system’s perfor-
mance and reveal future research directions, we
also analyzed the errors made by our system. We
found that many required inferential reasoning,
counting, set enumeration, multiple sentences,
time manipulation, and comparisons. Some ran-
domly sampled examples are given below, with the
correct answer starred (∗):
Ex. 1: requires inference across multiple sentences:
One day Fritz got a splinter in his foot. Stephen did not
believe him. Fritz showed him the picture. Then Stephen
believed him. q: What made Stephen believe Fritz? ∗A)
the picture of the splinter in his foot; †C) the picture of the
cereal with milk;

Ex. 2: requires temporal reasoning and world knowledge:
Ashley woke up bright and early on Friday morning. Her
birthday was only a day away. q: What day of the week was
Ashley’s birthday? ∗A) Saturday; †C) Friday;

Ex. 3: requires comparative reasoning:
Tommy has an old bicycle now. He is getting too big for
it. q: What’s wrong with Tommy’s old bicycle? ∗B) it’s too
small; †C) it’s old;

6 Conclusion

We proposed several novel features for machine
comprehension, including those based on frame
semantics, dependency syntax, word embeddings,
and coreference resolution. Empirical results
demonstrate substantial improvements over sev-
eral strong baselines, achieving new state-of-the-
art results on MCTest. Our error analysis sug-
gests that deeper linguistic analysis and inferential
reasoning can yield further improvements on this
task.
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Abstract

In this paper, we present an approach
that address the answer sentence selection
problem for question answering. The pro-
posed method uses a stacked bidirectional
Long-Short Term Memory (BLSTM) net-
work to sequentially read words from
question and answer sentences, and then
outputs their relevance scores. Unlike
prior work, this approach does not require
any syntactic parsing or external knowl-
edge resources such as WordNet which
may not be available in some domains
or languages. The full system is based
on a combination of the stacked BLSTM
relevance model and keywords matching.
The results of our experiments on a public
benchmark dataset from TREC show that
our system outperforms previous work
which requires syntactic features and ex-
ternal knowledge resources.

1 Introduction

A typical architecture of open-domain question
answering (QA) systems is composed of three
high level major steps: a) question analysis and
retrieval of candidate passages; b) ranking and se-
lecting of passages which contain the answer; and
optionally c) extracting and verifying the answer
(Prager, 2006; Ferrucci, 2012). In this paper, we
focus on the answer sentence selection. Being
considered as a key subtask of QA, the selection
is to identify the answer-bearing sentences from
all candidate sentences. The selected sentences
should be relevant to and answer the input ques-
tions.

The nature of this task is to match not only
the words but also the meaning between ques-
tion and answer sentences. For instance, although
both of the following sentences contain keywords

“Capriati” and “play”, only the first sentence an-
swers the question: “What sport does Jennifer
Capriati play?”

Positive Sentence: “Capriati, 19, who has not
played competitive tennis since November 1994,
has been given a wild card to take part in the Paris
tournament which starts on February 13.”

Negative Sentence: “Capriati also was playing
in the U.S. Open semifinals in ’91, one year be-
fore Davenport won the junior title on those same
courts.”

Besides its application in the automated factoid
QA system, another benefit of the answer sentence
selection is that it can be potentially used to pre-
dict answer quality in community QA sites. The
techniques developed from this task might also be
beneficial to the emerging real-time user-oriented
QA tasks such as TREC LiveQA. However, user-
generated content can be noisy and hard to parse
with off-the-shelf NLP tools. Therefore, methods
that requires less syntactic features are desirable.

Recently, neural network-based distributed sen-
tence modeling has been found successful in many
natural language processing tasks such as word
sense disambiguation (McCarthy et al., 2004), dis-
course parsing (Li et al., 2014), machine transla-
tion (Sutskever et al., 2014; Cho et al., 2014), and
paraphrase detection (Socher et al., 2011).

In this paper, we present an approach that lever-
ages the power of deep neural network to address
the answer sentence selection problem for ques-
tion answering. Our method employs stacked bidi-
rectional Long Short-Term Memory (BLSTM) to
sequentially read the words from question and an-
swer sentences, and then output their relevance
scores. The full system, when combined with key-
words matching, outperforms previous approaches
without using any syntactic parsing or external
knowledge resources.
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2 Related Work

Prior to this work there were other approaches
to address the sentence selection task. The ma-
jority of previous approaches focused on syn-
tactic matching between questions and answers.
Punyakanok et al. (2004) and Cui et al. (2005)
were among the earliest to propose the general
tree matching methods based on tree-edit distance.
Subsequent to these two papers, the approach in
(Wang et al., 2007) use quasi-synchronous gram-
mar to match each pair of question and sentence by
their dependency trees. Later, tree kernel function
together with a logistic regression model (Heilman
and Smith, 2010) or Conditional Random Fields
models (Wang and Manning, 2010; Yao et al.,
2013) with extracted feature were adopted to learn
the associations between question and answer. Re-
cently, discriminative tree-edit features extraction
and engineering over parsing trees are automated
in (Severyn and Moschitti, 2013).

Besides syntactic approaches, lexical semantic
model (Yih et al., 2013) is also used to select an-
swer sentences. This model is to pair semantically
related words based on word relations including
synonymy/antonymy, hypernymy/hyponymy and
general semantic word similarity.

There were also prior efforts in deep learning
neural networks to question answering. Yih et al.
(2014) focused on answering single-relation fac-
tual questions by a semantic similarity model us-
ing convolutional neural networks. Bordes et al.
(2014) jointly embedded words and knowledge
base constituents into same vector space to mea-
sure the relevance of question and answer sen-
tences in that space. Iyyer et al. (2014) worked
on the quiz bowl task, which is an application of
recursive neural networks for factoid question an-
swering over paragraphs. The correct answers are
identified from a relatively small fixed set of can-
didate answers which are in the form of entities
instead of sentences.

3 Approach

The goal of this system is to reduce as much as
possible the dependency on syntactic features and
external resources by leveraging the power of deep
recurrent neural network architecture. The pro-
posed network architecture is trained directly on
the word sequences of question and answer pas-
sages, and is actually not limited to sentences.

3.1 Network Architecture
Recurrent Neural Network RNN is an exten-
sion of conventional feed-forward neural network,
used to deal with variable-length sequence input.
It uses a recurrent hidden state whose activation
is dependent on that of the one immediate be-
fore. More formally, given an input sequence x =
(x1, x2, . . . , xT ), a conventional RNN updates the
hidden vector sequence h = (h1, h2, . . . , hT ) and
output vector sequence y = (y1, y2, . . . , yT ) from
t = 1 to T as follows:

ht = H(Wxhxt +Whhht−1 + bh) (1)

yt = Whyht + by (2)

where the W denotes weight matrices, the b de-
notes bias vectors andH(·) is the recurrent hidden
layer function.

Long Short-Term Memory (LSTM) Due to
the gradient vanishing problem, conventional
RNNs is found difficult to be trained to exploit
long-range dependencies. In order to mitigate this
weak point in conventional RNNs, specially de-
signed activation functions have been introduced.
LSTM is one of the earliest attempts and still
a popular option to tackle this problem. LSTM
cell was originally proposed by Hochreiter and
Schmidhuber (1997). Several minor modifications
have been made to the original LSTM cell since
then. In our approach, we adopted a slightly mod-
ified implementation of LSTM in (Graves, 2013).

In the LSTM architecture, there are three gates
(input i, forget f and output o), and a cell mem-
ory activation vector c. The vector formulas for
recurrent hidden layer function H in this version
of LSTM network are implemented as following:

it = σ(Wxixt +Whiht−1 + bi) (3)

ft = σ(Wxfxt +Whfht−1 + bf ) (4)

ct = ftct−1 + itτ(Wxcxt +Whcht−1 + bc) (5)

ot = σ(Wxoxt +Whoht−1 + bo) (6)

ht = otθ(ct) (7)

where, τ and θ are the cell input and cell output
non-linear activation functions which are stated as
tanh in this paper.

LSTM uses input and output gates to control the
flow of information through the cell. The input
gate should be kept sufficiently active to allow the
signals in. Same rule applies to the output gate.
The forget gate is used to reset the cell’s own state.
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Figure 1: An illustration of a stacked bidirectional
LSTM network

In (Graves, 2013), peephole connections are usu-
ally used to connect gates to the cell in tasks re-
quiring precise timing and counting of the inter-
nal states. In our approach, we don’t use peephole
connections because the precise timing does not
seem to be required.

Bidirectional RNNs Another weak point of
conventional RNNs is their utilization of only pre-
vious context with no exploitation of future con-
text. Unlike conventional RNNs, bidirectional
RNNs utilize both the previous and future context,
by processing the data from two directions with
two separate hidden layers. One layer processes
the input sequence in the forward direction, while
the other processes the input in the reverse direc-
tion. The output of current time step is then gen-
erated by combining both layers’ hidden vector

−→
ht

and
←−
ht by: yt = W−→

h y

−→
ht +W←−

h y

←−
ht + by.

Stacked RNNs In a stacked RNN, the output ht

from the lower layer becomes the input of the up-
per layer. Through the multi-layer stacked net-
work, it is possible to achieve different levels of
abstraction from multiple network layers. There
are theoretical supports indicating that a deep, hi-
erarchical model can be more efficient in repre-
senting some functions than a shallow one (Ben-
gio, 2009). Empirical performance improvement
is also observed in LSTM network compared with
the shallow network (Graves et al., 2013).

Figure 2: An illustration of our QA sentence rele-
vance model based on stacked BLSTM

3.2 Answer Sentence Selection with Stacked
BLSTM

As per analysis in section 3.1, we adopt multi-
layer stacked bidirectional LSTM RNNs (rather
than conventional RNNs) to model the answer sen-
tence selection problem as illustrated in Figure 2.
The words of input sentences are first converted
to vector representations learned from word2vec
tool (Mikolov et al., 2013). In order to differen-
tiate question q and answer a sentences, we in-
sert a special symbol, <S>, after the question se-
quence. Then, the question and answer sentences
word vectors are sequentially read by BLSTM
from both directions. In this way, the contextual
information across words in both question and an-
swer sentences is modeled by employing temporal
recurrence in BLSTM.

Since the LSTM in each direction carries a cell
memory while reading the input sequence, it is ca-
pable of aggregating the context information and
storing it into cell memory vector. For each time
step in the BLSTM layer, the hidden vector or the
output vector is generated by combining the cell
memory vectors from two LSTM of both sides. In
other words, all the contextual information across
the entire sequence (both question and answer sen-
tences) has been taken into consideration. The fi-
nal output of each time step is the label indicat-
ing whether the candidate answer sentence should
be selected as the correct answer sentence for
the input question. This objective encourages the
BLSTMs to learn a weight matrix that outputs a
positive label if there is overlapping context infor-
mation between two LSTM cell memories. Mean
pooling is applied to all time step outputs during
the training. During the test phase, we collect
mean, sum and max poolings as features.
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3.3 Incorporating Keywords Matching

In order to identify the correct candidate answer
sentences, it is crucial to match the cardinal num-
bers and proper nouns with those occurred in the
question. However, many cardinal numbers and
proper nouns are out of the vocabulary (OOV) of
our word embeddings. In addition, some proper
nouns’ embeddings may bring noise to the match-
ing process. For example, “Japan” and “China”
are two words very close in the embedding space.
It is critical to discriminate these two proper
nouns when matching question and answer sen-
tences. In order to mitigate this weak point of the
distributed representations, our full system com-
bined the stacked BLSTM relevance model and
exact keywords overlapping baseline by gradient
boosted regression tree (GBDT) method (Fried-
man, 2001).

4 Experiments

Dataset The answer sentence selection dataset
used in this paper was created by Wang et
al. (2007) based on Text REtrieval Conference
(TREC) QA track (8-13) data.1 Candidate answer
sentences were automatically retrieved for each
question which is on average associated with 33
candidate sentences. There are two sets of data
provided for training. One is the full training set
containing 1229 questions that are automatically
labeled by matching answer keys’ regular expres-
sions.2 However, the generated labels are noisy
and sometimes erroneously mark unrelated sen-
tences as the correct answers solely because those
sentences contain answer keys. Wang et al. (2007)
also provided one small training set contains 94
questions, which were manually corrected for er-
rors. In our experiments, we use the full training
set because it provides significantly more question
and answer sentences for learning, even though
some of its labels are noisy.

The development and test data sets have 82 and
100 questions, respectively. Following (Wang et
al., 2007), candidate answer sentences with over
40 words and questions with only positive or nega-
tive candidate answer sentences are removed from

1http://nlp.stanford.edu/mengqiu/data/
qg-emnlp07-data.tgz

2Because the original full training dataset is no longer
available from the website of the lead author of (Wang et
al., 2007), we obtained this data re-released from Yao et al.
(2013): http://cs.jhu.edu/˜xuchen/packages/
jacana-qa-naacl2013-data-results.tar.bz2

evaluation.3

Evaluation Metric Following previous works
on this task, we also use Mean Average Precision
(MAP) and Mean Reciprocal Rank (MRR) as eval-
uation metrics, which are calculated using the of-
ficial trec eval evaluation scripts.

Keywords Matching Baseline (BM25) As
noted by Yih et al. (2013), counting overlapped
keywords, especially when re-weighted by idf
value of the question word, is a fairly competi-
tive baseline. Following (Yih et al., 2013), our
keywords matching baseline also counts the words
that occurred in both questions and answer sen-
tences, after excluding stop words and lowering
the case. But, instead of the tf · idf formula used
in (Yih et al., 2013), word counts are re-weighted
by its idf value using the Okapi BM25 (Robertson
and Walker, 1997) formula (with constants values
K1 = 1.2 and B = 0.75).

Network Setup The network weights are ran-
domly initialized using a Gaussian distribution
(µ = 0 and σ = 0.1), and the network is trained
with the stochastic gradient descent (SGD) with
momentum 0.9. We experimented single-layer
unidirectional LSTM, single-layer BLSTM, and
three-layer stacked BLSTM. Each layer of LSTM
and BLSTM has a memory size of 500. We
use 300-dimensional vectors that were trained and
provided by word2vec tool (Mikolov et al., 2013)
using a part of the Google News dataset4 (around
100 billion tokens) .

5 Results

Table 1 surveys prior results on this task, and
places our models in the context of the current
state-of-the-art results. Table 2 summarizes the re-
sults of our model on the answer selection task.
According to Table 1 and 2, our combined system
outperforms prior works on MAP and MRR met-
rics.

As indicated in Table 2, the three-layer
stacked BLSTM alone shows better experiment re-
sults than single-layer BLSTM and unidirectional

3As mentioned in the footnote 7 of (Yih et al., 2013):
“Among the 72 questions in the test set, 4 of them would al-
ways be treated answered incorrectly by the evaluation script
used by previous work. This makes the upper bound of both
MAP and MRR become 0.9444 instead of 1.” In order to make
experiment results comparable with previous works, we also
use this experiment setting.

4https://code.google.com/p/word2vec/
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Reference MAP MRR
Yih et al. (2013) – Random 0.3965 0.4929
Wang et al. (2007) 0.6029 0.6852
Heilman and Smith (2010) 0.6091 0.6917
Wang and Manning (2010) 0.5951 0.6951
Yao et al. (2013) 0.6307 0.7477
Severyn and Moschitti (2013) 0.6781 0.7358
Yih et al. (2013) – BDT 0.6940 0.7894
Yih et al. (2013) – LCLR 0.7092 0.7700

Table 1: Overview of prior results on the answer
sentence selection task

Features MAP MRR
BM25 0.6370 0.7076
Single-Layer LSTM 0.5302 0.5956
Single-Layer BLSTM 0.5636 0.6304
Three-Layer BLSTM 0.5928 0.6721
Three-Layer BLSTM + BM25 0.7134 0.7913

Table 2: Overview of our results on the answer
sentence selection task. Features are keywords
matching baseline score (BM25), and pooling val-
ues of single-layer unidirectional LSTM (Single-
Layer LSTM), single-Layer bidirectional LSTM
(Single-Layer BLSTM) and three-Layer stacked
BLSTM’s (Three-Layer BLSTM) outputs. Gra-
dient boosted regression tree (GBDT) method is
used to combine features.

LSTM, and performs comparably to previous sys-
tems. In order to mitigate the weak point of the
distributed representations previously discussed in
section 3.3, we combine the stacked BLSTM out-
puts with a keywords matching baseline (BM25).
Our combined system’s results are statistically sig-
nificantly better than the keywords matching base-
line (using the Student’s t-test with p < 0.05) and
outperforms previous state-of-art results.

6 Conclusion

In this paper, we presented an approach to address
the answer sentence selection problem for ques-
tion answering, by a combination of the stacked
bidirectional LSTM model and keywords match-
ing. The experiments provide strong evidence
that distributed and symbolic representations en-
code complementary types of knowledge, which
are all helpful in identifying answer sentences.
Based on the experiment results, we found that
our model not only performs better than previous

work but most importantly does not require any
syntactic features or external resources. In the fu-
ture, we would like to further evaluate the models
presented in this paper for different tasks, such as
answer quality prediction in Community QA, rec-
ognizing textual entailment, and machine compre-
hension of text.
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Abstract

In this paper, the answer selection problem
in community question answering (CQA)
is regarded as an answer sequence label-
ing task, and a novel approach is proposed
based on the recurrent architecture for this
problem. Our approach applies convo-
lution neural networks (CNNs) to learn-
ing the joint representation of question-
answer pair firstly, and then uses the joint
representation as input of the long short-
term memory (LSTM) to learn the answer
sequence of a question for labeling the
matching quality of each answer. Experi-
ments conducted on the SemEval 2015 C-
QA dataset shows the effectiveness of our
approach.

1 Introduction

Answer selection in community question answer-
ing (CQA), which recognizes high-quality re-
sponses to obtain useful question-answer pairs,
is greatly valuable for knowledge base construc-
tion and information retrieval systems. To rec-
ognize matching answers for a question, typi-
cal approaches model semantic matching between
question and answer by exploring various fea-
tures (Wang et al., 2009a; Shah and Pomerantz,
2010). Some studies exploit syntactic tree struc-
tures (Wang et al., 2009b; Moschitti et al., 2007) to
measure the semantic matching between question
and answer. However, these approaches require
high-quality data and various external resources
which may be quite difficult to obtain. To take
advantage of a large quantity of raw data, deep
learning based approaches (Wang et al., 2010; Hu
et al., 2013) are proposed to learn the distribut-
ed representation of question-answer pair directly.
One disadvantage of these approaches lies in that

∗* Corresponding author

Hi. anyone can suggest a good tailor shop (preferably 
Philippine nationality) in Qatar? i heard there's one over at Al 
Saad. just not sure the details... thanks! 

There are a lot of tailor shops, it depends on what you want! 

Sterling Tailors in Barwa Village, it is run by indians and sri
lankans but service is good. I've seen some filipinos who are 
taking orders from them. Just Check it out... 

thanks. will def check 'em out... 

Oh my...they now sell Filipinos? Is there anything they don't 
sell? Well, apart from Guitar Hero... 

there's always a place for improvement. lol,.

Q

a1

a2

a3

a4

a5

Figure 1: An Example of the Answer Sequence for
a Question. The dashed arrows depict the relation-
ships of the answers in the sequence.

semantic correlations embedded in the answer se-
quence of a question are ignored, while they are
very important for answer selection. Figure 1 is a
example to show the relationship of answers in the
sequence for a given question. Intuitively, other
answers of the question are beneficial to judge the
quality of the current answer.

Recently, recurrent neural network (RNN),
especially Long Short-Term Memory (LST-
M) (Hochreiter et al., 2001), has been proved su-
periority in various tasks (Sutskever et al., 2014;
Srivastava et al., 2015) and it models long term
and short term information of the sequence. And
also, there are some works on using convolution-
al neural networks (CNNs) to learn the represen-
tations of sentence or short text, which achieve
state-of-the-art performance on sentiment classi-
fication (Kim, 2014) and short text matching (Hu
et al., 2014).

In this paper, we address the answer selection
problem as a sequence labeling task, which iden-
tifies the matching quality of each answer in the
answer sequence of a question. Firstly, CNNs are
used to learn the joint representation of question
answer (QA) pair. Then the learnt joint repre-
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sentations are used as inputs of LSTM to predic-
t the quality (e.g., Good, Bad and Potential) of
each answer in the answer sequence. Experiments
conducted on the CQA dataset of the answer se-
lection task in SemEval-20151 show that the pro-
posed approach outperforms other state-of-the-art
approaches.

2 Related Work

Prior studies on answer selection generally treat-
ed this challenge as a classification problem via
employing machine learning methods, which re-
ly on exploring various features to represent QA
pair. Huang et al. (2007) integrated textual fea-
tures with structural features of forum threads to
represent the candidate QA pairs, and used sup-
port vector machine (SVM) to classify the can-
didate pairs. Beyond typical features, Shah and
Pomerantz (2010) trained a logistic regression (L-
R) classifier with user metadata to predict the qual-
ity of answers in CQA. Ding et al. (2008) pro-
posed an approach based on conditional random
fields (CRF), which can capture contextual fea-
tures from the answer sequence for the semantic
matching between question and answer. Addition-
ally, the translation-based language model was al-
so used for QA matching by transferring the an-
swer to the corresponding question (Jeon et al.,
2005; Xue et al., 2008; Zhou et al., 2011). The
translation-based methods suffer from the infor-
mal words or phrases in Q&A archives, and per-
form less applicability in new domains.

In contrast to symbolic representation, Wang
et al. (2010) proposed a deep belief nets (DBN)
based semantic relevance model to learn the dis-
tributed representation of QA pair. Recently, the
convolutional neural networks (CNNs) based sen-
tence representation models have achieved suc-
cesses in neural language processing (NLP) tasks.
Yu et al. (2014) proposed a convolutional sentence
model to identify answer contents of a question
from Q&A archives via means of distributed rep-
resentations. The work in Hu et al. (2014) demon-
strated that 2-dimensional convolutional sentence
models can represent the hierarchical structures of
sentences and capture rich matching patterns be-
tween two language objects.

1http://alt.qcri.org/semeval2015/task3/
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Figure 2: The architecture of R-CNN

3 Approach

We consider the answer selection problem in CQA
as a sequence labeling task. To label the matching
quality of each answer for a given question, our
approach models the semantic links between suc-
cessive answers, as well as the semantic relevance
between question and answer. Figure 2 summa-
rizes the recurrent architecture of our model (R-
CNN). The motivation of R-CNN is to learn the
useful context to improve the performance of an-
swer selection. The answer sequence is modeled
to enrich semantic features.

At each step, our approach uses the pre-trained
word embeddings to encode the sentences of QA
pair, which then is used as the input vectors of
the model. Based on the joint representation of
QA pair learned from CNNs, the LSTM is applied
in our model for answer sequence learning, which
makes a prediction to each answer of the question
with softmax function.

3.1 Convolutional Neural Networks for QA
Joint Learning

Given a question-answer pair at the step t, we use
convolutional neural networks (CNNs) to learn the
joint representation pt for the pair. Figure 3 illus-
trates the process of QA joint learning, which in-
cludes two stages: summarizing the meaning of
the question and an answer, and generating the
joint representation of QA pair.

To obtain high-level sentence representations of
the question and answer, we set 3 hidden layers
in two convolutional sentence models respective-
ly. The output of each hidden layer is made up of a
set of 2-dimensional arrays called feature map pa-
rameters (wm, bm). Each feature map is the out-
come of one convolutional or pooling filter. Each
pooling layer is followed an activation function σ.
The output of themth hidden layer is computed as
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Figure 3: CNNs for QA joint learning

Eq. 1:

Hm = σ(pool(wmHm−1 + bm)) (1)

Here, H0 is one real-value matrix after sentence
semantic encoding by concatenating the word vec-
tors with sliding windows. It is the input of deep
convolution and pooling, which is similar to that
of traditional image input.

Finally, we combine the two sentence models
by adding an additional layer Ht on the top. The
learned joint representation pt for QA pair is for-
malized as Eq. 2:

pt = σ(wtHt + bt) (2)

where σ is an activation function, and the input
vector is constructed by concatenating the sen-
tence representations of question and answer.

3.2 LSTM for Answer Sequence Learning
Based on the joint representation of QA pair, the
LSTM unit of our model performs answer se-
quence learning to model semantic links between
continuous answers. Unlike the traditional recur-
rent unit, the LSTM unit modulates the memory
at each time step, instead of overwriting the states.
The key component of LSTM unit is the memo-
ry cell ct which has a state over time, and the L-
STM unit decides to modify and add the memory
in the cell via the sigmoidal gates: input gate it,
forget gate ft and output gate ot. The implemen-
tation of the LSTM unit in our study is close the
one discussed by Graves (2013). Given the joint
representation pt at time t, the memory cell ct is
updated by the input gate’s activation it and the
forget gate’s activation ft. The updating equation
is given by Eq. 3:

ct = ftct−1+ittanh(Wxcpt+Whcht−1+bc) (3)

Data #question #answer length
training 2600 16541 6.36
development 300 1645 5.48
test 329 1976 6.00
all 3229 21062 6.00

Table 1: Statistics of experimental dataset

The LSTM unit keeps to update the context by
discarding the useless context in forget gate ft and
adding new content from input gate it. The ex-
tents to modulate context for these two gates are
computed as Eq. 4 and Eq. 5:

it = σ(Wxipt +Whih(t−1) +Wcict−1 + bi) (4)

ft = σ(Wxfpt +Whfht−1 +Wcfct−1 + bf ) (5)

With the updated cell state ct, the final output
from LSTM unit ht is computed as Eq 6 and Eq 7:

ot = σ(Wxopt +Whoht−1 +Wcoct + bo) (6)

ht = ottanh(ct) (7)

Note that (W∗, b∗) is the parameters of LSTM
unit, in which Wcf ,Wci , and Wco are diagonal
matrices.

According to the output ht at each time step,
our approach estimates the conditional probability
of the answer sequence over answer classes, it is
given by Eq. 8:

P (y1, ..., yT |c, p1, ..., pt−1) =
T∏

t=1

p(yt|c, y1, ..., yt−1)
(8)

Here, (y1, ..., yT ) is the corresponding label se-
quence for the input sequence (p1, ..., pt−1), and
the class distribution p(yt|c, y1, ..., .yt−1) is repre-
sented by a softmax function.

4 Experiments

4.1 Experiment Setup

Experimental Dataset: We conduct experiments
on the public dataset of the answer selection chal-
lenge in SemEval 2015. This dataset consists of
three subsets: training, development, and test sets,
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and contains 3,229 questions with 21,062 answer-
s. The answers falls into three classes: Good, Bad,
and Potential, accounting for 51%, 39%, and 10%
respectively. The statistics of the dataset are sum-
marized in Table 1, where #question/answer de-
notes the number of questions/answers, and length
stands for the average number of answers for a
question.
Competitor Methods: We compare our approach
against the following competitor methods:

SVM (Huang et al., 2007): An SVM-based
method with bag-of-words (textual features), non-
textual features, and features based on topic model
(i.e., latent Dirichlet allocation, LDA).

CRF (Ding et al., 2008): A CRF-based method
using the same features as the SVM approach.

DBN (Wang et al., 2010): Taking bag-of-words
representation, the method applies deep belief net-
s to learning the distributed representation of QA
pair, and predicts the class of answers using a lo-
gistic regression classifier on the top layer.

mDBN (Hu et al., 2013): In contrast to DBN,
multimodal DBN learns the joint representations
of textual features and non-textual features rather
than bag-of-words.

CNN: Using word embedding, the CNNs based
model in Hu et al. (2014) is used to learn the rep-
resentations of questions and answers, and a logis-
tic regression classifier is used to predict the class
of answers.
Evaluation Metrics: The evaluation metric-
s include Macro − precision(P ), Macro −
recall(R), Macro − F1(F1), and F1 scores of
the individual classes. According to the evalua-
tion results on the development set, all the hyper-
parameters are optimized on the training set.
Model Architecture and Training Details: The
CNNs of our model for QA joint representation
learning have 3 hidden layers for modeling ques-
tion and answer sentence respectively, in which
each layer has 100 feature maps for convolution
and pooling operators. The window sizes of con-
volution for each layer are [1×1, 2×2, 2×2], the
window sizes of pooling are [2 × 2, 2 × 2, 1 × 1].
For the LSTM unit, the size of input gate is set
to 200, the sizes of forget gate, output gate, and
memory cell are all set to 360.

Stochastic gradient descent (SGD) algorithm vi-
a back-propagation through time is used to train
the model. To prevent serious overfitting, early
stopping and dropout (Hinton et al., 2012) are used

Methods P R F1
SVM 50.10 54.43 52.14
CRF 53.89 54.26 53.40
DBN 55.22 53.80 54.07
mDBN 56.11 53.95 54.29
CNN 55.33 54.73 54.42
R-CNN 56.41 56.16 56.14

Table 2: Macro-averaged results(%)

during the training procedure. The learning rate
λ is initialized to be 0.01 and is updated dynam-
ically according to the gradient descent using the
ADADELTA method (Zeiler, 2012). The activa-
tion functions (σ, γ) in our model adopt the rec-
tified linear unit (ReLU) (Dahl et al., 2013). In
addition, the word embeddings for encoding sen-
tences are pre-trained with the unsupervised neu-
ral language model (Mikolov et al., 2013) on the
Qatar Living data2.

4.2 Results and Analysis

Table 2 summarizes the Macro-averaged results.
The F1 scores of the individual classes are present-
ed in Table 3.

It is clear to see that the proposed R-CNN ap-
proach outperforms the competitor methods over
the Macro-averaged metrics as expected from Ta-
ble 2. The main reason lies in that R-CNN takes
advantages of the semantic correlations between
successive answers by LSTM, in addition to the
semantic relationships between question and an-
swer. The joint representation of QA pair learnt
by CNNs also captures richer matching patterns
between question and answer than other methods.

It is notable that the methods based on deep
learning perform more powerful than SVM and
CRF, especially for complicate answers (e.g., Po-
tential answers). In contrast, SVM and CRF using
a large amount of features perform better for the
answers that have obvious tendency (e.g., Good
and Bad answers). The main reason is that the
distributed representation learnt from deep learn-
ing architecture is able to capture the semantic re-
lationships between question and answer. On the
other hand, the feature-engineers in both SVM and
CRF suffer from noisy information of CQA and
the feature sparse problem for short questions and
answers.

2http://alt.qcri.org/semeval2015/task3/index.php?id=data-
and-tools
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Methods Good Bad Potential
SVM 79.78 76.65 0.00
CRF 79.32 75.50 5.38
DBN 76.99 71.33 13.89
mDBN 77.74 70.39 14.74
CNN 76.45 74.77 12.05
R-CNN 77.31 75.88 15.22

Table 3: F1 scores for the individual classes(%)

Compared to DBN and mDBN, CNN and R-
CNN show their superiority in modeling QA pair.
The convolutional sentence models, used in CN-
N and R-CNN, can learn the hierarchical struc-
ture of language object by deep convolution and
pooling operators. In addition, both R-CNN and
CNN encode the sentence into one tensor, which
makes sure the representation contains more se-
mantic features than the bag-of-words representa-
tion in DBN and mDBN.

The improvement achieved by R-CNN over C-
NN demonstrates that answer sequence learning is
able to improve the performance of the answer se-
lection in CQA. Because modeling the answer se-
quence can enjoy the advantage of the shared rep-
resentation between successive answers, and com-
plement the classification features with the learn-
t useful context from previous answers. Further-
more, memory cell and gates in LSTM unit modify
the valuable context to pass onwards by updating
the state of RNN during the learning procedure.

The main improvement of R-CNN against with
the competitor methods comes from the Potential
answers, which are much less than other two type
of answers. It demonstrates that R-CNN is able to
process the unbalance data. In fact, the Potential
answers are most difficult to identify among the
three types of answers as Potential is an intermedi-
ate category (Màrquez et al., 2015). Nevertheless,
R-CNN achieves the highest F1 score of 15.22%
on Potential answers. In CQA, Q&A archives usu-
ally form one multi-parties conversation when the
asker gives feedbacks (e.g., “ok” and “please”) to
users responses, indicating that the answers of one
question are sematic related. Thus, it is easy to un-
derstand that R-CNN performs better performance
than competitor methods, especially on the recal-
l. The reason is that R-CNN can model semantic
correlations between successive answers to learn
the context and the long range dependencies in the
answer sequence.

5 Conclusions and Future Work

In this paper, we propose an answer sequence
learning model R-CNN for the answer selection
task by integrating LSTM unit and CNNs. Based
on the recurrent architecture of our model, our ap-
proach is able to model the semantic link between
successive answers, in addition to the semantic rel-
evance between question and answer. Experimen-
tal results demonstrate that our approach can learn
the useful context from the answer sequence to im-
prove the performance of answer selection in C-
QA.

In the future, we plan to explore the method-
s on training the unbalance data to improve the
overall performances of our approach. Based on
this work, more research can be conducted on
topic recognition and semantic roles labeling for
human-human conversations in real-world.
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Ivan Vulić and Marie-Francine Moens
Department of Computer Science

KU Leuven, Belgium
{ivan.vulic|marie-francine.moens}@cs.kuleuven.be

Abstract

We propose a simple yet effective
approach to learning bilingual word
embeddings (BWEs) from non-parallel
document-aligned data (based on the
omnipresent skip-gram model), and its
application to bilingual lexicon induction
(BLI). We demonstrate the utility of
the induced BWEs in the BLI task by
reporting on benchmarking BLI datasets
for three language pairs: (1) We show
that our BWE-based BLI models signifi-
cantly outperform the MuPTM-based and
context-counting models in this setting,
and obtain the best reported BLI results
for all three tested language pairs; (2)
We also show that our BWE-based BLI
models outperform other BLI models
based on recently proposed BWEs that
require parallel data for bilingual training.

1 Introduction

Dense real-valued vectors known as distributed
representations of words or word embeddings
(WEs) (Bengio et al., 2003; Collobert and We-
ston, 2008; Mikolov et al., 2013a; Pennington
et al., 2014) have been introduced recently as
part of neural network architectures for statisti-
cal language modeling. Recent studies (Levy and
Goldberg, 2014; Levy et al., 2015) have show-
cased a direct link and comparable performance to
“more traditional” distributional models (Turney
and Pantel, 2010), but the skip-gram model with
negative sampling (SGNS) (Mikolov et al., 2013c)
is still established as the state-of-the-art word rep-
resentation model, due to its simplicity, fast train-
ing, as well as its solid and robust performance
across a wide variety of semantic tasks (Baroni et
al., 2014; Levy et al., 2015).

A natural extension of interest from monolin-
gual to multilingual word embeddings has oc-

curred recently (Klementiev et al., 2012; Zou et
al., 2013; Mikolov et al., 2013b; Hermann and
Blunsom, 2014a; Hermann and Blunsom, 2014b;
Gouws et al., 2014; Chandar et al., 2014; Soyer
et al., 2015; Luong et al., 2015). When operat-
ing in multilingual settings, it is highly desirable to
learn embeddings for words denoting similar con-
cepts that are very close in the shared inter-lingual
embedding space (e.g., the representations for the
English word school and the Spanish word es-
cuela should be very similar). These shared inter-
lingual embedding spaces may then be used in a
myriad of multilingual natural language process-
ing tasks, such as fundamental tasks of comput-
ing cross-lingual and multilingual semantic word
similarity and bilingual lexicon induction (BLI),
etc. However, all these models critically require at
least sentence-aligned parallel data and/or readily-
available translation dictionaries to induce bilin-
gual word embeddings (BWEs) that are consistent
and closely aligned over languages in the same se-
mantic space.

Contributions In this work, we alleviate the re-
quirements: (1) We present the first model that
is able to induce bilingual word embeddings from
non-parallel data without any other readily avail-
able translation resources such as pre-given bilin-
gual lexicons; (2) We demonstrate the utility of
BWEs induced by this simple yet effective model
in the BLI task from comparable Wikipedia data
on benchmarking datasets for three language pairs
(Vulić and Moens, 2013b). Our BLI model based
on our novel BWEs significantly outperforms a se-
ries of strong baselines that reported previous best
scores on these datasets in the same learning set-
ting, as well as other BLI models based on re-
cently proposed BWE induction models (Gouws
et al., 2014; Chandar et al., 2014). The focus of
the work is on learning lexicons from document-
aligned comparable corpora (e.g., Wikipedia arti-
cles aligned through inter-wiki links).
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Figure 1: The architecture of our BWE Skip-Gram model for learning bilingual word embeddings from
document-aligned comparable data. Source language words and documents are drawn as gray boxes,
while target language words and documents are drawn as blue boxes. The right side of the figure (sepa-
rated by a vertical dashed line) illustrates how a pseudo-bilingual document is constructed from a pair of
two aligned documents; two documents are first merged, and then words in the pseudo-bilingual docu-
ment are randomly shuffled to ensure that both source and target language words occur as context words.

2 Model Architecture

In the following architecture description, we as-
sume that the reader is familiar with the main
assumptions and training procedure of SGNS
(Mikolov et al., 2013a; Mikolov et al., 2013c).
We extend the SGNS model to work with bilingual
document-aligned comparable data. An overview
of our architecture for learning BWEs from such
comparable data is given in fig. 1.

Let us assume that we possess a document-
aligned comparable corpus which is defined as
C = {d1, d2, . . . , dN} = {(dS

1 , d
T
1 ), (dS

2 , d
T
2 ),

. . . , (dS
N , d

T
D)}, where dj = (dS

j , d
T
j ) denotes a

pair of aligned documents in the source language
LS and the target language LT , respectively, and
N is the number of documents in the corpus.
V S and V T are vocabularies associated with lan-
guages LS and LT . The goal is to learn word em-
beddings for all words in both V S and V T that will
be semantically coherent and closely aligned over
languages in a shared cross-lingual word embed-
ding space.

In the first step, we merge two documents dS
j

and dT
j from the aligned document pair dj into

a single “pseudo-bilingual” document d′j and re-
move sentence boundaries. Following that, we
randomly shuffle the newly constructed pseudo-
bilingual document. The intuition behind this pre-
training completely random shuffling step1 (see

1In this paper, we investigate only the random shuffling
procedure and show that the model is fairly robust to different

fig. 1) is to assure that each word w, regardless
of its actual language, obtains word collocates
from both vocabularies. The idea of having bilin-
gual contexts for each pivot word in each pseudo-
bilingual document will steer the final model to-
wards constructing a shared inter-lingual embed-
ding space. Since the model depends on the align-
ment at the document level, in order to ensure
the bilingual contexts instead of monolingual con-
texts, it is intuitive to assume that larger window
sizes will lead to better bilingual embeddings. We
test this hypothesis and the effect of window size
in sect. 4.

The final model called BWE Skip-Gram
(BWESG) then relies on the monolingual vari-
ant of skip-gram trained on the shuffled pseudo-
bilingual documents.2 The model learns word em-
beddings for source and target language words
that are aligned over the d embedding dimen-
sions and may be represented in the same shared
cross-lingual embedding space. The BWESG-
based representation of word w, regardless of its
actual language, is then a d-dimensional vector:
~w = [f1, . . . , fk, . . . , fd], where fk ∈ R denotes
the score for the k-th inter-lingual feature within
the d-dimensional shared embedding space. Since
all words share the embedding space, semantic
similarity between words may be computed both

outputs of the procedure if the window size is large enough.
As one line of future work, we plan to investigate other, more
systematic and deterministic shuffling algorithms.

2We were also experimenting with GloVe and CBOW, but
they were falling behind SGNS on average.
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monolingually and across languages. Given w,
the most similar word cross-lingually should be its
one-to-one translation, and we may use this intu-
ition to induce one-to-one bilingual lexicons from
comparable data.

In another interpretation, BWESG actually
builds BWEs based on (pseudo-bilingual) docu-
ment level co-occurrence. The window size pa-
rameter then just controls the amount of random
data dropout. With larger windows, the model
becomes prohibitively computationally expensive,
but in sect. 4 we show that the BLI performance
flattens out for “reasonably large” windows.

3 Experimental Setup

Training Data We use comparable Wikipedia data
introduced in (Vulić and Moens, 2013a; Vulić and
Moens, 2013b) available in three language pairs
to induce bilingual word embeddings: (i) a collec-
tion of 13, 696 Spanish-English Wikipedia article
pairs (ES-EN), (ii) a collection of 18, 898 Italian-
English Wikipedia article pairs (IT-EN), and (iii) a
collection of 7, 612 Dutch-English Wikipedia arti-
cle pairs (NL-EN). All corpora are theme-aligned
comparable corpora, that is, the aligned docu-
ment pairs discuss similar themes, but are in gen-
eral not direct translations. Following prior work
(Haghighi et al., 2008; Prochasson and Fung,
2011; Vulić and Moens, 2013b), we retain only
nouns that occur at least 5 times in the corpus.
Lemmatized word forms are recorded when avail-
able, and original forms otherwise. TreeTag-
ger (Schmid, 1994) is used for POS tagging and
lemmatization. After the preprocessing vocabular-
ies comprise between 7,000 and 13,000 noun types
for each language in each language pair. Exactly
the same training data and vocabularies are used to
induce bilingual lexicons with all other BLI mod-
els in comparison.
BWESG Training Setup We have trained the
BWESG model with random shuffling on 10 ran-
dom corpora shuffles for all three training cor-
pora with the following parameters from the
word2vec package (Mikolov et al., 2013c):
stochastic gradient descent with a default learning
rate of 0.025, negative sampling with 25 samples,
and a subsampling rate of value 1e−4. All models
are trained for 15 epochs. We have varied the num-
ber of embedding dimensions: d = 100, 200, 300,
and have also trained the model with d = 40 to
be directly comparable to pre-trained state-of-the-

art BWEs from (Gouws et al., 2014; Chandar et
al., 2014). Moreover, in order to test the effect of
window size on final results, we have varied the
maximum window size cs from 4 to 60 in steps of
4.3 Since cosine is used for all similarity compu-
tations in the BLI task, we call our new BLI model
BWESG+cos.
Baseline BLI Models We compare BWESG+cos
to a series of state-of-the-art BLI models from
document-aligned comparable data:
(1) BiLDA-BLI - A BLI model that relies on the
induction of latent cross-lingual topics (Mimno et
al., 2009) by the bilingual LDA model and repre-
sents words as probability distributions over these
topics (Vulić et al., 2011).
(2) Assoc-BLI - A BLI model that represents
words as vectors of association norms (Roller and
Schulte im Walde, 2013) over both vocabularies,
where these norms are computed using a multilin-
gual topic model (Vulić and Moens, 2013a).
(3) PPMI+cos - A standard distributional model
for BLI relying on positive pointwise mutual infor-
mation and cosine similarity (Bullinaria and Levy,
2007). The seed lexicon is bootstrapped using the
method from (Peirsman and Padó, 2011; Vulić and
Moens, 2013b).

All parameters of the baseline BLI models (i.e.,
topic models and their settings, the number of
dimensions K, feature pruning values, window
size) are set to their optimal values according to
suggestions in prior work (Steyvers and Griffiths,
2007; Vulić and Moens, 2013a; Vulić and Moens,
2013b; Kiela and Clark, 2014). Due to space con-
straints, for (much) more details about the base-
lines we point to the relevant literature (Peirsman
and Padó, 2011; Tamura et al., 2012; Vulić and
Moens, 2013a; Vulić and Moens, 2013b).
Test Data For each language pair, we evaluate on
standard 1,000 ground truth one-to-one translation
pairs built for the three language pairs (ES/IT/NL-
EN) (Vulić and Moens, 2013a; Vulić and Moens,
2013b). Translation direction is ES/IT/NL→ EN.
Evaluation Metrics Since we can build a one-
to-one bilingual lexicon by harvesting one-to-one
translation pairs, the lexicon qualiy is best re-
flected in the Acc1 score, that is, the number
of source language (ES/IT/NL) words wS

i from
ground truth translation pairs for which the top
ranked word cross-lingually is the correct trans-

3We will make all our BWESG BWEs available at:
http://people.cs.kuleuven.be/∼ivan.vulic/
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Spanish-English (ES-EN) Italian-English (IT-EN) Dutch-English (NL-EN)

(1) reina (2) reina (3) reina (1) madre (2) madre (3) madre (1) schilder (2) schilder (3) schilder

(Spanish) (English) (Combined) (Italian) (English) (Combined) (Dutch) (English) (Combined)

rey queen(+) queen(+) padre mother(+) mother(+) kunstschilder painter(+) painter(+)
trono heir rey moglie father padre schilderij painting kunstschilder
monarca throne trono sorella sister moglie kunstenaar portrait painting
heredero king heir figlia wife father olieverf artist schilderij
matrimonio royal throne figlio daughter sorella olieverfschilderij canvas kunstenaar
hijo reign monarca fratello son figlia schilderen impressionist portrait
reino succession heredero casa friend figlio frans cubism olieverf
reinado princess king amico childhood sister nederlands art olieverfschilderij
regencia marriage matrimonio marito family fratello componist poet schilderen
duque prince royal donna cousin wife beeldhouwer drawing artist

Table 1: Example lists of top 10 semantically similar words for all 3 language pairs obtained using
BWESG+cos; d = 200, cs = 48; (col 1.) only source language words (ES/IT/NL) are listed while target
language words are skipped (monolingual similarity); (2) only target language words (EN) are listed
(cross-lingual similarity); (3) words from both languages are listed (multilingual similarity). EN words
are given in italic. The correct one-to-one translation for each source word is marked by (+).

lation in the other language (EN) according to the
ground truth over the total number of ground truth
translation pairs (=1000) (Gaussier et al., 2004;
Tamura et al., 2012; Vulić and Moens, 2013b).

4 Results and Discussion

Exp 0: Qualitative Analysis Tab. 1 displays
top 10 semantically similar words monolingually,
across-languages and combined/multilingually for
one ES, IT and NL word. The BWESG+cos model
is able to find semantically coherent lists of words
for all three directions of similarity (i.e., mono-
lingual, cross-lingual, multilingual). In the com-
bined (multilingual) ranked lists, words from both
languages are represented as top similar words.
This initial qualitative analysis already demon-
strates the ability of BWESG to induce a shared
cross-lingual embedding space using only docu-
ment alignments as bilingual signals.
Exp I: BWESG+cos vs. Baseline Models In the
first experiment, we test whether our BWESG+cos
BLI model produces better results than the base-
line BLI models which obtain current state-of-the-
art results for BLI from comparable data on these
test sets. Tab. 2 summarizes the BLI results.

As the most striking finding, the results reveal
superior performance of the BWESG-cos model
for BLI which relies on our new framework for in-
ducing bilingual word embeddings over other BLI
models relying on previously used bilingual word
representations. The relative increase in Acc1
scores over the best scoring baseline BLI mod-
els from comparable data is 19.4% for the ES-EN
pair, 6.1% for IT-EN (significant at p < 0.05 us-
ing McNemar’s test) and 65.4% for NL-EN. For
large enough values for cs (cs ≥ 20) (see also

Pair: ES-EN IT-EN NL-EN

Model Acc1 Acc1 Acc1

BiLDA-BLI 0.441 0.575 0.237
Assoc-BLI 0.518 0.618 0.236
PPMI+cos 0.577 0.647 0.206

BWESG+cos
d:100,cs:16 0.617 0.599 0.300
d:100,cs:48 0.667 0.669 0.389
d:200,cs:16 0.613 0.601 0.254
d:200,cs:48 0.685 0.683 0.392
d:300,cs:16 0.596 0.583 0.224
d:300,cs:48 0.689 0.683 0.363

d: 40,cs:16 0.558 0.533 0.266
d: 40,cs:48 0.578 0.595 0.308

CHANDAR 0.432 - -
GOUWS 0.516 0.557 0.575

Table 2: BLI performance for all tested BLI
models for ES/IT/NL-EN, with all bilingual word
representations except CHANDAR and GOUWS

learned from comparable Wikipedia data. The
scores for BWESG+cos are computed as post-hoc
averages over 10 random shuffles.

fig. 2(a)-2(c)), almost all BWESG+cos models for
all language pairs outperform the highest baseline
results. We may also observe that the performance
of BWESG+cos is fairly stable for all models with
larger values for cs (cs ≥ 20). This finding re-
veals that even a coarse tuning of these parameters
might lead to optimal or near-optimal scores in the
BLI task with BWESG+cos.
Exp II: Shuffling and Window Size Since our
BWESG model relies on the pre-training random
shuffling procedure, we also test whether the shuf-
fling has significant or rather minor impact on the
induction of BWEs and final BLI scores. There-
fore, in fig. 2, we present maximum, minimum,
and average Acc1 scores for all three language
pairs obtained using 10 different random corpora
shuffles with d = 100, 200, 300 and varying val-
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Figure 2: Maximum (MAX), minimum (MIN) and average (AVG) Acc1 scores with BWESG+cos in
the BLI task over 10 different random corpora shuffles for all 3 language pairs, and varying values for
parameters cs and d. Solid horizontal lines denote the highest baseline Acc1 scores for each language
pair. NOS (thicker dotted lines) refers to BWESG+cos without random shuffling.

ues for cs. Results reveal that random shuffling
affects the overall BLI scores, but the variance of
results is minimal and often highly insignificant. It
is important to mark that even the minimum Acc1
scores over these 10 different random shuffles are
typically higher than the previous state-of-the-art
baseline scores for large enough values for d and
cs (compare the results in tab. 2 and fig. 2(a)-2(c)).
A comparison with the BWESG model without
shuffling (NOS on fig. 2) reveals that shuffling is
useful even for larger cs-s.
Exp III: BWESG+cos vs. BWE-Based BLI We
also compare our BWESG BLI model with two
other models that are most similar to ours in spirit,
as they also induce shared cross-lingual word em-
bedding spaces (Chandar et al., 2014; Gouws et
al., 2014), proven superior to or on a par with
the BLI model from (Mikolov et al., 2013b). We
use their pre-trained BWEs (obtained from the au-
thors) and report the BLI scores in tab. 2. To
make the comparison fair, we search for transla-
tions over the same vocabulary as with all other
models. The results clearly reveal that, although
both other BWE models critically rely on paral-
lel Europarl data for training, and Gouws et al.
(2014) in addition train on entire monolingual
Wikipedias in both languages, our simple BWE in-
duction model trained on much smaller amounts of
document-aligned non-parallel data produces sig-
nificantly higher BLI scores for IT-EN and ES-EN
with sufficiently large windows.

However, the results for NL-EN with all BLI
models from comparable data from tab. 2 are sig-
nificantly lower than with the GOUWS BWEs. We
attribute it to using less (and clearly insufficient)
document-aligned training data for NL-EN (i.e.,
training corpora for ES-EN and IT-EN are almost
double or triple the size of training corpora for NL-
EN, see sect. 3).

5 Conclusions and Future Work
We have proposed Bilingual Word Embeddings
Skip-Gram (BWESG), a simple yet effective
model that is able to learn bilingual word em-
beddings solely on the basis of document-aligned
comparable data. We have demonstrated its utility
in the task of bilingual lexicon induction from such
comparable data, where our new BWESG-based
BLI model outperforms state-of-the-art models for
BLI from document-aligned comparable data and
related BWE induction models.

The low-cost BWEs may be used in other (se-
mantic) tasks besides the ones discussed here, and
it would be interesting to experiment with other
types of context aggregation and selection beyond
random shuffling, and other objective functions.
Preliminary studies also demonstrate the utility of
the BWEs in monolingual and cross-lingual infor-
mation retrieval (Vulić and Moens, 2015).

Finally, we may use the knowledge of BWEs
obtained by BWESG from document-aligned data
to learn bilingual correspondences (e.g., word
translation pairs or lists of semantically simi-
lar words across languages) which may in turn
be used for representation learning from large
unaligned multilingual datasets as proposed in
(Haghighi et al., 2008; Mikolov et al., 2013b;
Vulić and Moens, 2013b). In the long run, this
idea may lead to large-scale fully data-driven rep-
resentation learning models from huge amounts of
multilingual data without any “pre-requirement”
for parallel data or manually built lexicons.
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Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. Journal of Machine Learning Re-
search, 3:1137–1155.

John A. Bullinaria and Joseph P. Levy. 2007. Ex-
tracting semantic representations from word co-
occurrence statistics: A computational study. Be-
havior Research Methods, 39(3):510–526.

Sarath Chandar, Stanislas Lauly, Hugo Larochelle,
Mitesh M. Khapra, Balaraman Ravindran, Vikas C.
Raykar, and Amrita Saha. 2014. An autoencoder
approach to learning bilingual word representations.
In NIPS, pages 1853–1861.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In ICML,
pages 160–167.
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Abstract

In recent years, distributional models
(DMs) have shown great success in repre-
senting lexical semantics. In this work we
show that the extent to which DMs rep-
resent semantic knowledge is highly de-
pendent on the type of knowledge. We
pose the task of predicting properties of
concrete nouns in a supervised setting,
and compare between learning taxonomic
properties (e.g., animacy) and attributive
properties (e.g., size, color). We employ
four state-of-the-art DMs as sources of
feature representation for this task, and
show that they all yield poor results when
tested on attributive properties, achieving
no more than an average F-score of 0.37 in
the binary property prediction task, com-
pared to 0.73 on taxonomic properties.
Our results suggest that the distributional
hypothesis may not be equally applicable
to all types of semantic information.

1 Introduction

The Distributional Hypothesis states that the
meaning of words can be inferred from their lin-
guistic environment (Harris, 1954). This hypothe-
sis lies at the heart of distributional models (DMs),
which approximate the meaning of words by con-
sidering the statistics of their co-occurrence with
other words in the lexicon.

DMs have shown impressive results in many
semantic tasks, such as predicting the similarity
of two words, grouping words into semantic cat-
egories, and solving analogy questions (see Ba-
roni et al. (2014) for a recent survey). They are
also used as a source of semantic information by
many downstream applications, including syntac-
tic parsing (Socher et al., 2013), image annotation
(Klein et al., 2014), and semantic frame identifica-
tion (Hermann et al., 2014).

However, the empirical success of DMs may
not be uniform across the full range of semantic
knowledge. It has been argued that DMs can never
grasp the full meaning of words, as many aspects
of meaning are grounded in the physical world
(Andrews et al., 2009). This claim relies chiefly on
cognitive theory (Louwerse, 2011), and is some-
what supported in empirical findings (Baroni and
Lenci, 2008; Andrews et al., 2009). Moreover, a
recent study by (Hill et al., 2014) has shown that
DMs may not model word similarity as well as
previously believed.

In this work, we seek to further study the capa-
bilities of DMs in capturing semantic information.
For our purposes, we assume that the meaning of
a word referring to a concrete object (henceforth
concept) is comprised of a list of properties (Ba-
roni and Lenci, 2008). For example, the mean-
ing of the concept an apple is comprised of such
properties as red, round, edible, a fruit, etc. We
distinguish between taxonomic properties (Wu and
Barsalou, 2001; McRae et al., 2005), which de-
fine the conceptual category that a concept belongs
to (e.g. an apple is a fruit), and all other types
of properties (henceforth referred to as attributive
properties). In this paper we employ DMs in the
task of learning properties of concepts, and show
a very large discrepancy in performance between
learning taxonomic and attributive properties.

Several previous works addressed semantic
property learning, but mostly in terms of automati-
cally extracting salient properties of concepts from
raw text (Almuhareb and Poesio, 2005; Barbu,
2008; Baroni and Lenci, 2008; Devereux et al.,
2009; Baroni et al., 2010; Kelly, 2013). Baroni
and Lenci (2008) is the only work we are aware
of that addressed different property types, while
utilizing a DM for property extraction. However,
their approach is simple, and includes defining the
properties of a concept to be the 10 neighboring
words of that concept in the DM space.
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In order to determine to what extent proper-
ties of concepts are captured by DMs, we define
the following task. The goal is to predict, for a
given concept, whether it holds a specific prop-
erty or not (e.g., whether or not the concept ele-
phant is considered large) . We model this task as
a learning problem, in which concepts have a fea-
ture representation based on a state-of-the-art DM.
A property-predictor is then trained to predict, for
any given concept, whether the property applies
to it or not (in a binary classification setup), or the
strength of affiliation between the property and the
concept (in a regression setup). By evaluating the
performance of these predictors, we assess the de-
gree to which the property is captured by the DM.

We experiment with four state-of-the-art DMs
(Baroni and Lenci, 2010; Mikolov et al., 2013;
Levy and Goldberg, 2014; Pennington et al.,
2014). Our results show that all DMs, quite suc-
cessful in many semantic tasks, fail when it comes
to predicting attributive properties of concepts.
For example, in the classification task, the best
performing DM achieves an averaged F-score of
only 0.37, contrasted with an average F-score of
0.73 achieved by the same model for taxonomic
properties. This result, which may be attributed
to an essential difference between taxonomic and
attributive properties, demonstrates possible limi-
tations of the distributional hypothesis, at least in
terms of the information captured by current state-
of-the-art DMs.

2 Learning Semantic Properties of
Concepts

The goal of this paper is to gain better understand-
ing of the type of information DMs encode. We
do so by evaluating the performance of a predictor
trained on a DM-based representation to learn a
semantic property. In this section, we describe the
proposed learning task, the dataset and the DMs
which serve as feature representations.

2.1 Task Description

We model the problem of learning a single seman-
tic property both as a binary classification problem
and as a regression problem. The binary setup is
simpler, however it may be argued that a regres-
sion setup is more appropriate, since the nature of
the affiliation between a concept and its properties
is not necessarily binary.

Binary Classification. For each property p, we
take concepts for which p applies to be positive
instances, and concepts for which it does not as
negative instances. For example, the property is
loud is positive for a trumpet but negative for a
mouse. Let X denote the domain of concepts,
and Yp = {±1} denote the binary label space.
Then for each property p we learn a predictor
hp : ψ(X ) → Yp, where ψ(X ) ⊆ Rn is a map-
ping from the concept domain to some DM space.

Regression. Here we consider the saliency of
a property for a concept and regard it as a real-
valued measure. For example, white is a salient
property of swan, a less salient property of house,
and not a property at all of hammer. The formal
definitions are the same as in the binary classifica-
tion setup, except that here Yp = R.

2.2 The Data

We use the McRae Feature Norms dataset (McRae
et al., 2005). This data was collected in a set of ex-
periments, where participants were presented with
concepts (concrete nouns only) and were asked to
write down properties that describe them. This re-
sulted in a matrix of 541 concepts and 2,526 prop-
erties, where each (concept, property) entry holds
the number of participants who elicited the prop-
erty for the concept. This dataset has been widely
used in the past as a proxy to the human percep-
tual representation of concrete objects (Baroni and
Lenci, 2008; Barbu, 2008; Devereux et al., 2009;
Johns and Jones, 2012).

In the binary classification setting, for each
property, we take all concepts for which this prop-
erty was elicited (by any number of participants)1

to be positive, and all other concepts to be nega-
tive. In the regression setting, we take the [0, 1]-
scaled number of participants who elicited each
property for a concept to be the real-valued mea-
sure of its saliency for that concept.

2.3 Distributional Models

We experiment with four state-of-the-art DMs as
feature representations for the concept domain.
The models differ with respect to their method
of generation (neural network or transformed co-
occurrence counts) and their consideration of lin-

1Due to a pre-defined threshold applied by McRae et al.
(2005), only properties mentioned by at least 5 participants
are considered positive.
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guistic information (using plain text only, mor-
phology, syntax or pattern information).

word2vec. word2vec (w2v, Mikolov et al.
(2013)) is a neural network model which imple-
ments a language model objective. It has reached
state-of-the-art results for word similarity, catego-
rization and analogy tasks (Baroni et al., 2014).
We use the off-the-shelf 300-dimensional version
trained on a corpus of 100B tokens.2

GloVe. GloVe (gv, Pennington et al. (2014)) is a
log bilinear regression model. The authors report
state-of-the-art results in word similarity, seman-
tic analogies and NER tasks. We use the off-the-
shelf 300-dimensional version trained on a corpus
of 840B tokens.3

Distributional Memory. The Distributional
Memory model (dm, Baroni and Lenci (2010)) is a
co-occurrence based DM, which admits morpho-
logical, structural and pattern information. The
authors have shown that it is highly competitive
with state-of-the-art co-occurrence models in a
range of semantic tasks. We use the off-the-shelf
5K-dimensional version trained on 3B tokens.4

Dependency word2vec. The dependency
word2vec model (dep, Levy and Goldberg (2014))
is a variation of the word2vec model, which
takes into account the dependency links between
words. The authors have shown that it accurately
models word similarity. We use the off-the-shelf
300-dimensional version trained on Wikipedia.5

2.4 Experimental Setup

In our experiments, we consider properties which
have at least 25 positive instances in the dataset.
We then discard attributive properties that clearly
correspond to a taxonomic property. For exam-
ple, the property has feathers is no different from
the bird category, or the property lives in water is
identical to the fish category. The final list consists
of 7 taxonomic and 13 attributive properties.6

For each property, we learn both a linear SVM
classifier in the binary setup, and a linear SVM re-
gressor in the regression setup. For both setups we

2code.google.com/p/word2vec/
3nlp.stanford.edu/projects/glove/
4clic.cimec.unitn.it/dm/
5levyomer.wordpress.com/2014/04/25/

dependency-based-word-embeddings/
6The average number of positive instances per property is

42 for taxonomic properties and 61 for attributive properties.

use the lib-svm package (Chang and Lin, 2011)7

and follow a 5-fold cross-validation protocol.
In the binary setup, we report F-scores only, as

accuracy measures tend to be misleading due to
an unbalanced label distribution. In the regression
setup, we report Pearson’s correlation scores be-
tween predicted values and gold standard values.

2.5 Results

Table 1 shows our results in the binary setup (left
side) and in the regression setup (right side) for all
models. We display average scores separately for
taxonomic and attributive properties.

The results for the binary setup show a rather
low performance on learning attributive proper-
ties, attaining an average F-score of no more than
0.37 (dep model). This is emphasized when com-
pared to the average performance on taxonomic
properties, which is 0.73 for dep, and can be as
high as 0.78 (w2v). The regression setup shows a
similar trend; the average correlation for attribu-
tive properties is at most 0.28 (dep), compared to
0.59 for taxonomic properties.

While linear Support Vectors are a well-
established method for classification and regres-
sion, we have attempted the same experiments
with several other methods, including K-Nearest-
Neighbors and Decision Trees for classification,
and simple Least Squares for regression. In all
cases, the results were found to be inferior to the
ones obtained by the Support Vectors, while main-
taining the discrepancy in performance between
taxonomic and attributive property learning.

3 Discussion

Our results show that there is a great difference
between the performance of DMs when used to
predict taxonomic and attributive properties. Con-
cretely, four state-of-the-art DMs fail to predict at-
tributive properties, implying that even if the prop-
erty information is indicated in text, it is signaled
very weakly, at least by means of linguistic regu-
larities captured by current, state-of-the-art DMs.

Our findings are in line with previous work,
such as (Baroni and Lenci, 2008), who demon-
strated that taxonomic properties are more dom-
inant in text compared to attributive properties.
This suggests that the distributional hypothesis
may not be equally applicable to all types of se-
mantic information, and in particular, it may be

7www.csie.ntu.edu.tw/˜cjlin/libsvm

728



Property
Binary Classification Regression

w2v gv dm dep w2v gv dm dep

Ta
xo

no
m

ic

a bird 0.83 0.86 0.78 0.71 0.63 0.63 0.39 0.57
a fruit 0.86 0.8 0.72 0.6 0.66 0.69 0.57 0.55
a mammal 0.71 0.69 0.65 0.73 0.47 0.44 0.46 0.41
a vegetable 0.74 0.81 0.75 0.7 0.65 0.69 0.54 0.56
a weapon 0.72 0.64 0.67 0.77 0.61 0.58 0.48 0.58
an animal 0.8 0.77 0.74 0.82 0.79 0.73 0.51 0.78
clothing 0.81 0.84 0.64 0.81 0.63 0.69 0.36 0.67
Average 0.78 0.77 0.71 0.73 0.63 0.64 0.47 0.59

A
ttr

ib
ut

iv
e

of different colors 0.44 0.41 0.33 0.46 0.36 0.32 0.22 0.38
is black 0.24 0.2 0.17 0.22 0.09 0.17 0.13 0.15
is brown 0.28 0.23 0.29 0.33 0.25 0.25 0.16 0.27
is green 0.4 0.4 0.45 0.44 0.28 0.24 0.28 0.39
is white 0.19 0.22 0.11 0.2 0.06 0.1 0.06 0.15
is yellow 0.21 0.14 0.15 0.21 0.12 0.15 0.12 0.23
is large 0.4 0.41 0.42 0.44 0.39 0.34 0.38 0.33
is small 0.43 0.4 0.43 0.48 0.29 0.21 0.25 0.31
is long 0.31 0.24 0.31 0.36 0.24 0.03 0.14 0.27
is round 0.29 0.3 0.29 0.43 0.22 0.15 0.24 0.28
is loud 0.35 0.27 0.3 0.36 0.33 0.25 0.15 0.23
is dangerous 0.45 0.47 0.49 0.5 0.32 0.3 0.25 0.41
is fast 0.41 0.34 0.29 0.35 0.33 0.32 0.19 0.26
Average 0.34 0.31 0.31 0.37 0.25 0.22 0.2 0.28

Table 1: Results for the Property Learning Task. On the left: F-scores for the binary classification task.
On the right: Pearson correlation scores for the regression task.

limited with respect to attributive properties.
An interesting observation is found in the rela-

tive success of DMs in predicting taxonomic prop-
erties. This result, in line with past research,
e.g. (Schwartz et al., 2014), may be explained
by considering taxonomic properties as a rich ag-
gregate of attributive properties (Baroni and Lenci,
2010). For example, animals usually have legs and
mouths, they make sounds, they can be killed, etc.
This is contrasted with attributive properties such
as is white, whose members do not have much in
common, other than the property itself. We there-
fore hypothesize that although attributive proper-
ties may be signaled very weakly in text, as our
results indicate, their accumulation is sufficient to
distinguish concepts that share most of them from
concepts that do not.

To demonstrate this, we turned back to the
McRae dataset. For each property, we observed
the vector of its values across all concepts in the
dataset. We then found its 5 nearest neighbors
in terms of correlation, and computed the average
correlation with these neighbors, denoted c. Next,

we compared the averaged c value for taxonomic
properties with that of attributive properties. Taxo-
nomic properties show an average c value of 0.62,
compared to 0.32 only for attributive properties.
This supports our hypothesis that members of tax-
onomic properties are similar to each other in var-
ious aspects, while members of attributive proper-
ties are much less so. This finding may provide
a partial explanation as to why taxonomic proper-
ties are more easily learned compared to attribu-
tive properties, as demonstrated in this paper.

To conclude, we have shown that in the con-
text of learning semantic properties, state-of-the-
art distributional models perform differently with
respect to the type of property learned. Our results
serve as a basis for establishing the limitations to
the distributional hypothesis. As future work we
propose to further investigate the nature of the dis-
tributional hypothesis in its manifestation as DMs,
possibly by considering a more fine grained dis-
tinction between property types. For example, we
intend to compare the performance between prop-
erties grounded in the physical world, like colors
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or size, and more abstract properties such as dan-
gerous or cute.
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Abstract

Several compositional distributional se-
mantic methods use tensors to model
multi-way interactions between vectors.
Unfortunately, the size of the tensors can
make their use impractical in large-scale
implementations. In this paper, we inves-
tigate whether we can match the perfor-
mance of full tensors with low-rank ap-
proximations that use a fraction of the
original number of parameters. We in-
vestigate the effect of low-rank tensors on
the transitive verb construction where the
verb is a third-order tensor. The results
show that, while the low-rank tensors re-
quire about two orders of magnitude fewer
parameters per verb, they achieve perfor-
mance comparable to, and occasionally
surpassing, the unconstrained-rank tensors
on sentence similarity and verb disam-
biguation tasks.

1 Introduction

Distributional semantic methods represent word
meanings by their contextual distributions, for ex-
ample by computing word-context co-ocurrence
statistics (Schütze, 1998; Turney and Pantel, 2010)
or by learning vector representations for words
as part of a context prediction model (Bengio et
al., 2003; Collobert et al., 2011; Mikolov et al.,
2013). Recent research has also focused on com-
positional distributional semantics (CDS): com-
bining the distributional representations for words,
often in a syntax-driven fashion, to produce distri-
butional representations of phrases and sentences
(Mitchell and Lapata, 2008; Baroni and Zam-
parelli, 2010; Socher et al., 2012; Zanzotto and
Dell’Arciprete, 2012).

One method for CDS is the Categorial frame-
work (Coecke et al., 2011; Baroni et al., 2014),

where each word is represented by a tensor whose
order is determined by the Categorial Grammar
type of the word. For example, nouns are an
atomic type represented by a vector, and adjec-
tives are matrices that act as functions transform-
ing a noun vector into another noun vector (Baroni
and Zamparelli, 2010). A transitive verb is a third-
order tensor that takes the noun vectors represent-
ing the subject and object and returns a vector in
the sentence space (Polajnar et al., 2014).

However, a concrete implementation of the Cat-
egorial framework requires setting and storing the
values, or parameters, defining these matrices and
tensors. These parameters can be quite numerous
for even low-dimensional sentence spaces. For ex-
ample, a third-order tensor for a given transitive
verb, mapping two 100-dimensional noun spaces
to a 100-dimensional sentence space, would have
1003 parameters in its full form. All of the
more complex types have corresponding tensors of
higher order, and therefore a barrier to the practi-
cal implementation of this framework is the large
number of parameters required to represent an ex-
tended vocabulary and a variety of grammatical
constructions.

We aim to reduce the size of the models by
demonstrating that reduced-rank tensors, which
can be represented in a form requiring fewer pa-
rameters, can capture the semantics of complex
types as well as the full-rank tensors do. We base
our experiments on the transitive verb construction
for which there are established tasks and datasets
(Grefenstette and Sadrzadeh, 2011; Kartsaklis and
Sadrzadeh, 2014).

Previous work on the transitive verb construc-
tion within the Categorial framework includes a
two-step linear-regression method for the con-
struction of the full verb tensors (Grefenstette et
al., 2013) and a multi-linear regression method
combined with a two-dimensional plausibility
space (Polajnar et al., 2014). Polajnar et al. (2014)
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also introduce several alternative ways of reducing
the number of tensor parameters by using matri-
ces. The best performing method uses two matri-
ces, one representing the subject-verb interactions
and the other the verb-object interactions. Some
interaction between the subject and the object is
re-introduced through a softmax layer. A similar
method is presented in Paperno et al. (2014). Mi-
lajevs et al. (2014) use vectors generated by a neu-
ral language model to construct verb matrices and
several different composition operators to generate
the composed subject-verb-object sentence repre-
sentation.

In this paper, we use tensor rank decomposi-
tion (Kolda and Bader, 2009) to represent each
verb’s tensor as a sum of tensor products of vec-
tors. We learn the component vectors and apply
the composition without ever constructing the full
tensors and thus we are able to improve on both
memory usage and efficiency. This approach fol-
lows recent work on using low-rank tensors to pa-
rameterize models for dependency parsing (Lei et
al., 2014) and semantic role labelling (Lei et al.,
2015). Our work applies the same tensor rank
decompositions, and similar optimization algo-
rithms, to the task of constructing a syntax-driven
model for CDS. Although we focus on the Cat-
egorial framework, the low-rank decomposition
methods are also applicable to other tensor-based
semantic models including Van de Cruys (2010),
Smolensky and Legendre (2006), and Blacoe et al.
(2013).

2 Model

Tensor Models for Verbs We model each tran-
sitive verb as a bilinear function mapping subject
and object noun vectors, each of dimensionality
N , to a single sentence vector of dimensionality S
(Coecke et al., 2011; Maillard et al., 2014) repre-
senting the composed subject-verb-object (SVO)
triple. Each transitive verb has its own third-
order tensor, which defines this bilinear function.
Consider a verb V with associated tensor V ∈
RS×N×N , and vectors s ∈ RN , o ∈ RN for
subject and object nouns, respectively. Then the
compositional representation for the subject, verb,
and object is a vector V (s,o) ∈ RS , produced by
applying tensor contraction (the higher-order ana-
logue of matrix multiplication) to the verb tensor
and two noun vectors. The lth component of the

vector for the SVO triple is given by

V (s,o)l =
∑
j,k

Vljkoksj (1)

We aim to learn distributional vectors s and o
for subjects and objects, and tensors V for verbs,
such that the output vectors V (s,o) are distri-
butional representations of the entire SVO triple.
While there are several possible definitions of
the sentence space (Clark, 2013; Baroni et al.,
2014), we follow previous work (Grefenstette et
al., 2013) by using a contextual sentence space
consisting of content words that occur within the
same sentences as the SVO triple.

Low-Rank Tensor Representations Following
Lei et al. (2014), we represent each verb’s tensor
using a low-rank canonical polyadic (CP) decom-
position to reduce the numbers of parameters that
must be learned during training. As a higher-order
analogue to singular value decomposition for ma-
trices, CP decomposition factors a tensor into a
sum of R tensor products of vectors.1 Given a
third-order tensor V ∈ RS×N×N , the CP decom-
position of V is:

V =
R∑

r=1

Pr ⊗Qr ⊗Rr (2)

where P ∈ RR×S ,Q ∈ RR×N ,R ∈ RR×N are
parameter matrices, Pr gives the rth row of matrix
P, and ⊗ is the tensor product.

The smallest R that allows the tensor to be ex-
pressed as this sum of outer products is the rank
of the tensor (Kolda and Bader, 2009). By fixing a
value for R that is sufficiently small compared to
S and N (forcing the verb tensor to have rank of
at mostR), and directly learning the parameters of
the low-rank approximation using gradient-based
optimization, we learn a low-rank tensor requiring
fewer parameters without ever having to store the
full tensor.

In addition to reducing the number of parame-
ters, representing tensors in this form allows us to
formulate the verb tensor’s action on noun vectors
as matrix multiplication. For a tensor in the form
of Eq. (2), the output SVO vector is given by

V (s,o) = P>(Qs�Ro) (3)

where � is the elementwise vector product.
1However, unlike matrix singular value decomposition,

the component vectors in the CP decomposition are not nec-
essarily orthonormal.
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3 Training

We train the compositional model for verbs in
three steps: extracting transitive verbs and their
subject and object nouns from corpus data, pro-
ducing distributional vectors for the nouns and the
SVO triples, and then learning parameters of the
verb functions, which map the nouns to the SVO
triple vectors.

Corpus Data We extract SVO triples from an
October 2013 download of Wikipedia, tokenized
using Stanford CoreNLP (Manning et al., 2014),
lemmatized with the Morpha lemmatizer (Minnen
et al., 2001), and parsed using the C&C parser
(Curran et al., 2007). We filter the SVO triples
to a set containing 345 distinct verbs: the verbs
from our test datasets, along with some additional
high-frequency verbs included to produce more
representative sentence spaces. For each verb, we
selected up to 600 triples which occurred more
than once and contained subject and object nouns
that occurred at least 100 times (to allow suffi-
cient context to produce a distributional represen-
tation for the triple). This resulted in approxi-
mately 150,000 SVO triples overall.

Distributional Vectors We produce two types
of distributional vectors for nouns and SVO triples
using the Wikipedia corpus. Since these methods
for producing distributional vectors for the SVO
triples require that the triples occur in a corpus of
text, the methods are not a replacement for a com-
positional framework that can produce representa-
tions for previously unseen expressions. However,
they can be used to generate data to train such a
model, as we will describe.

1) Count vectors (SVD): we count the num-
ber of times each noun or SVO triple co-occurs
with each of the 10,000 most frequent words (ex-
cluding stopwords) in the Wikipedia corpus, using
sentences as context boundaries. If the verb in the
SVO triple is itself a content word, we do not in-
clude it as context for the triple. This produces one
set of context vectors for nouns and another for
SVO triples. We weight entries in these vectors
using the t-test weighting scheme (Curran, 2004;
Polajnar and Clark, 2014), and then reduce the
vectors to 100 dimensions via singular value de-
composition (SVD), decomposing the noun vec-
tors and SVO vectors separately.

2) Prediction vectors (PV): we train vector
embeddings for nouns and SVO triples by adapt-

ing the Paragraph Vector distributed bag of words
method of Le and Mikolov (2014), an extension of
the skip-gram model of Mikolov et al. (2013). In
our experiments, given an SVO triple, the model
must predict contextual words sampled from all
sentences containing that triple. In the process, the
model learns vector embeddings for both the SVO
triples and for the words in the sentences such that
SVO vectors have a high dot product with their
contextual word vectors. While previous work
(Milajevs et al., 2014) has used prediction-based
vectors for words in a tensor-based CDS model,
ours uses prediction-based vectors for both words
and phrases to train a tensor regression model.

We learn 100-dimensional vectors for nouns
and SVO triples with a modified version of
word2vec,2 using the hierarchical sampling
method with the default hyperparameters and 20
iterations through the training data.

Training Methods We learn the tensor V of pa-
rameters for a given verb V using multi-linear re-
gression, treating the noun vectors s and o as in-
put and the composed SVO triple vector V (s,o)
as the regression output. Let MV be the num-
ber of training instances for V , where the ith in-
stance is a triple of vectors

(
s(i),o(i), t(i)

)
, which

are the distributional vectors for the subject noun,
object noun, and the SVO triple, respectively. We
aim to learn a verb tensor V (either in full or in
decomposed, low-rank form) that minimizes the
mean of the squared residuals between the pre-
dicted SVO vectors V (s(i),o(i)) and those vec-
tors obtained distributionally from the corpus, t(i).
Specifically, we attempt to minimize the following
loss function:

L(V ) =
1
MV

MV∑
i=1

||V (s(i),o(i))− t(i)||22 (4)

V (s,o) is given by Eq. (1) for full tensors, and by
Eq. (3) for tensors represented in low-rank form.

In both the low-rank and full-rank tensor learn-
ing, we use mini-batch ADADELTA optimization
(Zeiler, 2012) up to a maximum of 500 iterations
through the training data, which we found to be
sufficient for convergence for every verb. Rather
than placing a regularization penalty on the ten-
sor parameters, we use early stopping if the loss

2https://groups.google.com/d/
msg/word2vec-toolkit/Q49FIrNOQRo/
J6KG8mUj45sJ
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increases on a validation set consisting of 10% of
the available SVO triples for each verb.

For low-rank tensors, we compare seven differ-
ent maximal ranks: R=1, 5, 10, 20, 30, 40 and 50.
To learn the parameters of the low-rank tensors,
we use an alternating optimization method (Kolda
and Bader, 2009; Lei et al., 2014): performing gra-
dient descent on one of the parameter matrices (for
example P) to minimize the loss function while
holding the other two fixed (Q and R), then re-
peating for the other parameter matrices in turn.
The parameter matrices are randomly initialized.3

4 Evaluation

We compare the performance of the low-rank ten-
sors against full tensors on two tasks. Both tasks
require the model to rank pairs of sentences each
consisting of a subject, transitive verb, and object
by the semantic similarity of the sentences in the
pair. The gold standard ranking is given by sim-
ilarity scores provided by human evaluators and
the scores are not averaged among the annotators.
The model ranking is evaluated against the rank-
ing from the gold standard similarity judgements
using Spearman’s ρ.

The verb disambiguation task (GS11) (Grefen-
stette and Sadrzadeh, 2011) involves distinguish-
ing between senses of an ambiguous verb, given
subject and object nouns as context. The dataset
consists of 200 sentence pairs, where the two sen-
tences in each pair have the same subject and ob-
ject but differ in the verb. Each of these pairs was
ranked by human evaluators on a 1-7 similarity
scale so that properly disambiguated pairs (e.g. au-
thor write book – author publish book) have higher
similarity scores than improperly disambiguated
pairs (e.g. author write book – author spell book).

The transitive sentence similarity dataset (Kart-
saklis and Sadrzadeh, 2014) consists of 72 subject-
verb-object sentences arranged into 108 sentence
pairs. As in GS11, each pair has a gold standard
semantic similarity score on a 1-7 scale. For ex-
ample, the pair medication achieve result – drug
produce effect has a high similarity rating, while
author write book – delegate buy land has a low
rating. In this dataset, however, the two sentences
in each pair have no lexical overlap: neither sub-
jects, objects, nor verbs are shared.

3Since the low-rank tensor loss is non-convex, we suspect
that parameter initialization may produce better results.

GS11 KS14 # tensor
SVD PV SVD PV params.

Add. 0.13 0.14 0.55 0.56 –
Mult. 0.13 0.14 0.09 0.27 –
R=1 0.10 0.05 0.18 0.30 300
R=5 0.26 0.30 0.28 0.40 1.5K
R=10 0.29 0.32 0.26 0.45 3K
R=20 0.31 0.34 0.39 0.44 6K
R=30 0.28 0.33 0.32 0.46 9K
R=40 0.32 0.30 0.31 0.52 12K
R=50 0.34 0.32 0.42 0.51 15K
Full 0.29 0.36 0.41 0.52 1M

Table 1: Model performance on the verb disam-
biguation (GS11) and sentence similarity (KS14)
tasks, given by Spearman’s ρ, and the number of
parameters needed to represent each verb’s tensor.
We show the highest tensor result for each task and
vector set in bold (and also bold the baseline when
it outperforms the tensor method).

5 Results

Table 1 displays correlations between the systems’
scores and human SVO similarity judgements on
the verb disambiguation (GS11) and sentence sim-
ilarity (KS14) tasks, for both the count (SVD) and
prediction vectors (PV). We also give results for
simple composition of word vectors using elemen-
twise addition and multiplication (Mitchell and
Lapata, 2008) (using verb vectors produced in the
same manner as for nouns). As is consistent with
prior work, the tensor-based models are surpassed
by vector addition on the KS14 dataset (Milajevs
et al., 2014), but perform better than both addition
and multiplication on the GS11 dataset.4

Unsurprisingly, the rank-1 tensor has lowest
performance for both tasks and vector sets, and
performance generally increases as we increase
the maximal rank R. The full tensor achieves
the best, or tied for the best, performance on both
tasks when using the PV vectors. However, for the
SVD vectors, low-rank tensors surpass the perfor-
mance of the full-rank tensor for R=40 and R=50

4The results in this table are not directly comparable with
Milajevs et al. (2014), who compare against averaged annota-
tor scores. Comparing against averaged annotator scores, our
best result on GS11 is 0.47 for the full-rank tensor with PV
vectors, and our best non-addition result on KS14 is 0.68 for
the K=40 tensor with PV vectors (the best result is addition
with PV vectors, which achieves 0.71). These results exceed
the scores reported for tensor-based models by Milajevs et al.
(2014).
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on GS11, and R=50 on KS14.
On GS11, the SVD and PV vectors have vary-

ing but mostly comparable performance, with PV
having higher performance on 5 out of 8 models.
However, on KS14, the PV vectors have better per-
formance than the SVD vectors for every model
by at least 0.05 points, which is consistent with
prior work comparing count and predict vectors on
these datasets (Milajevs et al., 2014).

The low-rank tensor models are also at least
twice as fast to train as the full tensors: on a single
core, training a rank-1 tensor takes about 5 sec-
onds for each verb on average, ranks 5-50 each
take between 1 and 2 minutes, and the full tensors
each take about 4 minutes. Since a separate tensor
is trained for each verb, this allows a substantial
amount of time to be saved even when using the
constrained vocabulary of 345 verbs.

6 Conclusion

We find that low-rank tensors for verbs achieve
comparable or better performance than full-rank
tensors on both verb disambiguation and sentence
similarity tasks, while reducing the number of pa-
rameters that must be learned and stored for each
verb by at least two orders of magnitude, and cut-
ting training time in half.

While in our experiments the prediction-based
vectors outperform the count-based vectors on
both tasks for most models, Levy et al. (2015) in-
dicate that tuning hyperparameters of the count-
based vectors may be able to produce compara-
ble performance. Regardless, we show that the
low-rank tensors are able to achieve performance
comparable to the full rank for both types of vec-
tors. This is important for extending the model
to many more grammatical types (including those
with corresponding tensors of higher order than in-
vestigated here) to build a wide-coverage tensor-
based semantic system using, for example, the
CCG parser of Curran et al. (2007).

Acknowledgments

Daniel Fried is supported by a Churchill Schol-
arship. Tamara Polajnar is supported by ERC
Starting Grant DisCoTex (306920). Stephen Clark
is supported by ERC Starting Grant DisCoTex
(306920) and EPSRC grant EP/I037512/1. We
would like to thank Laura Rimell and the anony-
mous reviewers for their comments.

References
Marco Baroni and Roberto Zamparelli. 2010. Nouns

are vectors, adjectives are matrices: Representing
adjective-noun constructions in semantic space. In
Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2010), Cambridge, Massachusetts.

Marco Baroni, Raffaela Bernardi, and Roberto Zam-
parelli. 2014. Frege in space: A program of compo-
sitional distributional semantics. Linguistic Issues
in Language Technology, 9.
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Abstract

In this paper, we present a model for
improved discriminative semantic parsing.
The model addresses an important limi-
tation associated with our previous state-
of-the-art discriminative semantic parsing
model – the relaxed hybrid tree model
by introducing our constrained semantic
forests. We show that our model is able to
yield new state-of-the-art results on stan-
dard datasets even with simpler features.
Our system is available for download from
http://statnlp.org/research/sp/.

1 Introduction

This paper addresses the problem of parsing natu-
ral language sentences into their corresponding se-
mantic representations in the form of formal logi-
cal representations. Such a task is also known as
semantic parsing (Kate and Mooney, 2006; Wong
and Mooney, 2007; Lu et al., 2008; Kwiatkowski
et al., 2010).

One state-of-the-art model for semantic pars-
ing is our recently introduced relaxed hybrid tree
model (Lu, 2014), which performs integrated lexi-
con acquisition and semantic parsing within a sin-
gle framework utilizing efficient algorithms for
training and inference. The model allows natural
language phrases to be recursively mapped to se-
mantic units, where certain long-distance depen-
dencies can be captured. It relies on representa-
tions called relaxed hybrid trees that can jointly
represent both the sentences and semantics. The
model is essentially discriminative, and allows
rich features to be incorporated.

Unfortunately, the relaxed hybrid tree model
has an important limitation: it essentially does
not allow certain sentence-semantics pairs to be
jointly encoded using the proposed relaxed hy-
brid tree representations. Thus, the model is un-
able to identify joint representations for certain

sentence-semantics pairs during the training pro-
cess, and is unable to produce desired outputs for
certain inputs during the evaluation process. In
this work, we propose a solution addressing the
above limitation, which makes our model more ro-
bust. Through experiments, we demonstrate that
our improved discriminative model for semantic
parsing, even when simpler features are used, is
able to obtain new state-of-the-art results on stan-
dard datasets.

2 Related Work

Semantic parsing has recently attracted a signif-
icant amount of attention in the community. In
this section, we provide a relatively brief discus-
sion of prior work in semantic parsing. The hy-
brid tree model (Lu et al., 2008) and the Bayesian
tree transducer based model (Jones et al., 2012)
are generative frameworks, which essentially as-
sume natural language and semantics are jointly
generated from an underlying generative process.
Such models are efficient, but are limited in their
predictive power due to the simple independence
assumptions made.

On the other hand, discriminative models are
able to exploit arbitrary features and are usually
able to give better results. Examples of such mod-
els include the WASP system (Wong and Mooney,
2006) which regards the semantic parsing prob-
lem as a statistical machine translation problem,
the UBL system (Kwiatkowski et al., 2010) which
performs CCG-based semantic parsing using a
log-linear model, as well as the relaxed hybrid tree
model (Lu, 2014) which extends the generative
hybrid tree model. This extension results in a dis-
criminative model that incorporates rich features
and allows long-distance dependencies to be cap-
tured. The relaxed hybrid tree model has achieved
the state-of-the-art results on standard benchmark
datasets across different languages.

Performing semantic parsing under other forms
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Figure 1: The semantics-sentence pair (a), an example hybrid tree (b), and an example relaxed hybrid
tree (c).

of supervision is also possible. Clarke et al. (2010)
proposed a model that learns a semantic parser for
answering questions without relying on semantic
annotations. Goldwasser et al. (2011) presented
a confidence-driven approach to semantic parsing
based on self-training. Liang et al. (2013) in-
troduced semantic parsers based on dependency
based semantics (DCS) that map sentences into
their denotations. In this work, we focus on pars-
ing sentences into their formal semantic represen-
tations.

3 Relaxed Hybrid Trees

We briefly discuss our previously proposed re-
laxed hybrid tree model (Lu, 2014) in this section.
The model is a discriminative semantic parsing
model which extends the generative hybrid tree
model (Lu et al., 2008). Both systems are publicly
available1.

Let us use m to denote a complete semantic
representation, n to denote a complete natural lan-
guage sentence, and h to denote a complete latent
structure that jointly represents both m and n. The
model defines the conditional probability for ob-
serving a (m,h) pair for a given natural language
sentence n using a log-linear approach:

PΛ(m,h|n) =
eΛ·Φ(n,m,h)∑

m′,h′∈H(n,m′) e
Λ·Φ(n,m′,h′) (1)

where Λ is the set of parameters (weights of fea-
tures) used by the model. Figure 1 (a) gives an
example sentence-semantics pair. A real example
taken from the GeoQuery dataset is shown in Fig-
ure 2.

Note that h is a complete latent structure that
jointly represents a natural language sentence and

1http://statnlp.org/research/sp/

QUERY : answer(RIVER)

RIVER : exclude(RIVER, RIVER)

RIVER : traverse(STATE)

STATE : stateid(STATENAME)

STATENAME : (′tn′)

RIVER : river(all)

What rivers do not run through Tennessee ?

Figure 2: An example tree-structured semantic
representation (above) and its corresponding nat-
ural language sentence (below).

its corresponding semantic representation. Typi-
cally, to limit the space of latent structures, certain
assumptions have to be made to h. In our work,
we assume that h must be from a space consisting
of relaxed hybrid tree structures (Lu, 2014).

The relaxed hybrid trees are analogous to the
hybrid trees, which was earlier introduced as a
generative framework. One major distinction be-
tween these two types of representations is that
the relaxed hybrid tree representations are able to
capture unbounded long-distance dependencies in
a principled way. Such dependencies were un-
able to be captured by hybrid tree representations
largely due to their generative settings. Figure 1
gives an example of a hybrid tree and a relaxed
hybrid tree representation encoding the sentence
w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 and the se-
mantics ma(mb(mc,md)).

In the hybrid tree structure, each word is strictly
associated with a semantic unit. For example the
word w3 is associated with the semantic unit mb.
In the relaxed hybrid tree, however, each word is
not only directly associated with exactly one se-
mantic unit m, but also indirectly associated with
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Figure 3: (a) Example semantics-sentence pair
that cannot be jointly represented with relaxed hy-
brid trees if pattern X is disallowed. (b) Exam-
ple relaxed hybrid tree that consists of an infinite
number of nodes when pattern X is allowed. (c)
Example hybrid tree jointly representing both the
semantics and the sentence (where pattern X is al-
lowed).

all other semantic units that are predecessors ofm.
For example, the word w3 now is directly associ-
ated withmb, but is also indirectly associated with
ma. These indirect associations allow the long-
distance dependencies to be captured.

Both the hybrid tree and relaxed hybrid tree
models define patterns at each level of their latent
structure which specify how the words and child
semantic units are organized at each level. For
example, within the semantic unit ma, we have
a pattern wXw which states that we first have
words that are directly associated with ma, fol-
lowed by some words covered by its first child se-
mantic unit, then another sequence of words di-
rectly associated with ma.

3.1 Limitations
One important difference between the hybrid tree
representations and the relaxed hybrid tree repre-
sentations is the exclusion of the pattern X in the
latter. This ensured relaxed hybrid trees with an
infinite number of nodes were not considered (Lu,
2014) when computing the denominator term of
Equation 1. In relaxed hybrid tree, H(n,m) was
implemented as a packed forest representation for
exponentially many possible relaxed hybrid trees
where pattern X was excluded.

By allowing pattern X, we allow certain seman-
tic units with no natural language word counter-

#Args Patterns
0 w
1 [w]X[w]
2 [w]X[w]Y[w], [w]Y[w]X[w]

Table 1: The patterns allowed for our model. [w]
denotes an optional sequence of natural language
words. E.g., [w]X[w] refers to the following 4
patterns: wX, Xw, wXw, and X (the pattern ex-
cluded by the relaxed hybrid tree model).

part to exist in the joint relaxed hybrid tree repre-
sentation. This may lead to possible relaxed hy-
brid tree representations consisting of an infinite
number of internal nodes (semantic units), as seen
in Figure 3 (b). When pattern X is allowed, both
ma and mb are not directly associated with any
natural language word, so we are able to further
insert arbitrarily many (compatible) semantic units
between the two units ma and mb while the re-
sulting relaxed hybrid tree remains valid. There-
fore we can construct a relaxed hybrid tree repre-
sentation that contains the given natural language
sentence w1 w2 with an infinite number of nodes.
This issue essentially prevents us from comput-
ing the denominator term of Equation 1 since it
involves an infinite number of possible m′ and h′.

To eliminate relaxed hybrid trees consisting of
an infinite number of nodes, pattern X is dis-
allowed in the relaxed hybrid trees model (Lu,
2014). However, disallowing pattern X has led
to other issues. Specifically, for certain semantics-
sentence pairs, it is not possible to find relaxed hy-
brid trees that jointly represent them. In the exam-
ple semantics-sentence pair given in Figure 3 (a),
it is not possible to find any relaxed hybrid tree that
contains both the sentence and the semantics since
each semantic unit which takes one argument must
be associated with at least one word. On the other
hand, it is still possible to find a hybrid tree repre-
sentation for both the sentence and the semantics
where pattern X is allowed (see Figure 3 (c)).

In practice, we can alleviate this issue by ex-
tending the lengths of the sentences. For example,
we can append the special beginning-of-sentence
symbol 〈s〉 and end-of-sentence symbol 〈/s〉 to
all sentences to increase their lengths, allowing
the relaxed hybrid trees to be constructed for cer-
tain sentence-semantics pairs with short sentences.
However, such an approach does not resolve the
theoretical limitation of the model.
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4 Constrained Semantic Forests

To address this limitation, we allow pattern X to
be included when building our new discrimina-
tive semantic parsing model. However, as men-
tioned above, doing so will lead to latent struc-
tures (relaxed hybrid tree representations) of infi-
nite heights. To resolve such an issue, we instead
add an additional constraint – limiting the height
of a semantic representation to a fixed constant c,
where c is larger than the maximum height of all
the trees appearing in the training set.

Table 1 summarizes the list of patterns that our
model considers. This is essentially the same as
those considered by the hybrid tree model.

Our new objective function is as follows:

PΛ(m,h|n)

=
eΛ·Φ(n,m,h)∑

m′∈M,h′∈H′(n,m′) e
Λ·Φ(n,m′,h′) (2)

where M refers to the set of all possible seman-
tic trees whose heights are less than or equal to c,
andH′(n,m′) refers to the set of possible relaxed
hybrid tree representations where the pattern X is
allowed.

The main challenge now becomes the compu-
tation of the denominator term in Equation 2, as
the set M is still very large. To properly handle
all such semantic trees in an efficient way, we in-
troduce a constrained semantic forest (CSF) rep-
resentation ofM here. Such a constrained seman-
tic forest is a packed forest representation of ex-
ponentially many possible unique semantic trees,
where we set the height of the forest to c. By con-
trast, it was not possible in our previous relaxed
hybrid tree model to introduce such a compact
representation over all possible semantic trees. In
our previous model’s implementation, we directly
constructed for each sentence n a different com-
pact representation over all possible relaxed hy-
brid trees containing n.

Setting the maximum height to c effectively
guarantees that all semantic trees contained in
the constrained semantic forest have a height no
greater than c. We then constructed the (exponen-
tially many) relaxed hybrid tree representations
based on the constrained semantic forest M and
each input sentence n. We used a single packed
forest representation to represent all such relaxed
hybrid tree representations. This allows the com-
putation of the denominator to be performed ef-

ficiently using similar dynamic programming al-
gorithms described in (Lu, 2014). Optimization
of the model parameters were done by using L-
BFGS (Liu and Nocedal, 1989), where the gradi-
ents were computed efficiently using an analogous
dynamic programming algorithm.

5 Experiments

Our experiments were conducted on the publicly
available multilingual GeoQuery dataset. Vari-
ous previous works on semantic parsing used this
dataset for evaluations (Wong and Mooney, 2006;
Kate and Mooney, 2006; Lu et al., 2008; Jones
et al., 2012). The dataset consists of 880 natural
language sentences where each sentence is cou-
pled with a formal tree-structured semantic repre-
sentation. The early version of this dataset was
annotated with English only (Wong and Mooney,
2006; Kate and Mooney, 2006), and Jones et al.
(2012) released a version that is annotated with
three additional languages: German, Greek and
Thai. To make our system directly comparable to
previous works, we used the same train/test split
used in those works (Jones et al., 2012; Lu, 2014)
for evaluation. We also followed the standard ap-
proach for evaluating the correctness of an output
semantic representation from our system. Specifi-
cally, we used a standard script to construct Prolog
queries based on the outputs, and used the queries
to retrieve answers from the GeoQuery database.
Following previous works, we regarded an out-
put semantic representation as correct if and only
if it returned the same answers as the gold stan-
dard (Jones et al., 2012; Lu, 2014).

The results of our system as well as those of
several previous systems are given in Table 2.
We compared our system’s performance against
those of several previous works. The WASP sys-
tem (Wong and Mooney, 2006) is based on statis-
tical machine translation technique while the HY-
BRIDTREE+ system (Lu et al., 2008) is based on
the generative hybrid tree model augmented with
a discriminative re-ranking stage where certain
global features are used. UBL-S (Kwiatkowski et
al., 2010) is a CCG-based semantic parsing sys-
tem. TREETRANS (Jones et al., 2012) is the sys-
tem based on tree transducers. RHT (Lu, 2014) is
the discriminative semantic parsing system based
on relaxed hybrid trees.

In practice, we set c (the maximum height of
a semantic representation) to 20 in our experi-
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System
English Thai German Greek

Acc. F Acc. F Acc. F Acc. F
WASP 71.1 77.7 71.4 75.0 65.7 74.9 70.7 78.6
HYBRIDTREE+ 76.8 81.0 73.6 76.7 62.1 68.5 69.3 74.6
UBL-S 82.1 82.1 66.4 66.4 75.0 75.0 73.6 73.7
TREETRANS 79.3 79.3 78.2 78.2 74.6 74.6 75.4 75.4
RHT (all features) 83.6 83.6 79.3 79.3 74.3 74.3 78.2 78.2
This work 86.8 86.8 80.7 80.7 75.7 75.7 79.3 79.3

Table 2: Performance of various works across four different languages. Acc.: accuracy percentage, F:
F1-measure percentage.

ments, which we determined based on the heights
of the semantic trees that appear in the training
data. Results showed that our system consistently
yielded higher results than all the previous sys-
tems, including our state-of-the-art relaxed hybrid
tree system (the full model, when all the features
are used), in terms of both accuracy score and F1-
measure. We would like to highlight two potential
advantages of our new model over the old RHT
model. First, our model is able to handle certain
sentence-semantics pairs which could not be han-
dled by RHT during both training and evaluation
as discussed in Section 3.1. Second, our model
considers the additional pattern X and therefore
has the capability to capture more accurate depen-
dencies between the words and semantic units.

We note that in our experiments we used a small
subset of the features used by our relaxed hy-
brid tree work. Specifically, we did not use any
long-distance features, and also did not use any
character-level features. As we have mentioned
in (Lu, 2014), although the RHT model is able
to capture unbounded long-distance dependencies,
for certain languages such as German such long-
distance features appeared to be detrimental to
the performance of the system (Lu, 2014, Table
4). Here in this work, we only used simple un-
igram features (concatenation of a semantic unit
and an individual word that appears directly below
that unit in the joint representation), pattern fea-
tures (concatenation of a semantic unit and the pat-
tern below that unit) as well as transition features
(concatenation of two semantic units that form a
parent-child relationship) described in (Lu, 2014).
While additional features could potentially lead to
better results, using simpler features would make
our model more compact and more interpretable.
We summarized in Table 3 the number of features
used in both the previous RHT system and our sys-
tem across four different languages. It can be seen
that our system only required about 2-3% of the

System English Thai German Greek
RHT 2.1×106 2.3×106 2.7×106 2.6×106

This work 5.4×104 5.2×104 7.5×104 6.9×104

Table 3: Number of features involved for both
the RHT system and our new system using con-
strained semantic forests, across four different lan-
guages.

features used in the previous system.
We also note that the training time for our

model is longer than that of the relaxed hybrid tree
model since the space for H′(n,m′) is now much
larger than the space for H(n,m′). In practice,
to make the overall training process faster, we im-
plemented a parallel version of the original RHT
algorithm.

6 Conclusion

In this work, we presented an improved discrim-
inative approach to semantic parsing. Our ap-
proach does not have the theoretical limitation
associated with our previous state-of-the-art ap-
proach. We demonstrated through experiments
that our new model was able to yield new state-
of-the-art results on a standard dataset across four
different languages, even though simpler features
were used. Since our new model involves simpler
features, including unigram features defined over
individual semantic unit – word pairs, we believe
our new model would aid the joint modeling of
both distributional and logical semantics (Lewis
and Steedman, 2013) within a single framework.
We plan to explore this avenue in the future.
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Abstract

A question may be asked not only to elicit
information, but also to make a state-
ment. Questions serving the latter pur-
pose, called rhetorical questions, are often
lexically and syntactically indistinguish-
able from other types of questions. Still,
it is desirable to be able to identify rhetor-
ical questions, as it is relevant for many
NLP tasks, including information extrac-
tion and text summarization. In this paper,
we explore the largely understudied prob-
lem of rhetorical question identification.
Specifically, we present a simple n-gram
based language model to classify rhetori-
cal questions in the Switchboard Dialogue
Act Corpus. We find that a special treat-
ment of rhetorical questions which incor-
porates contextual information achieves
the highest performance.

1 Introduction
Rhetorical questions frequently appear in every-
day conversations. A rhetorical question is func-
tionally different from other types of questions in
that it is expressing a statement, rather than seek-
ing information. Thus, rhetorical questions must
be identified to fully capture the meaning of an
utterance. This is not an easy task; despite their
drastic functional differences, rhetorical questions
are formulated like regular questions.

Bhatt (1998) states that in principle, a given
question can be interpreted as either an informa-
tion seeking question or as a rhetorical question
and that intonation can be used to identify the in-
terpretation intended by the speaker. For instance,
consider the following example:

(1) Did I tell you that writing a dissertation
was easy?

Just from reading the text, it is difficult to tell
whether the speaker is asking an informational
question or whether they are implying that they
did not say that writing a dissertation was easy.

However, according to our observation, which
forms the basis of this work, there are two cases in
which rhetorical questions can be identified solely
based on the text. Firstly, certain linguistic cues
make a question obviously rhetorical, which can
be seen in examples (2) and (3)1. Secondly, the
context, or neighboring utterances, often reveal
the rhetorical nature of the question, as we can see
in example (4).

(2) Who ever lifted a finger to help George?

(3) After all, who has any time during the
exam period?

(4) Who likes winter? It is always cold and
windy and gray and everyone feels miser-
able all the time.

There has been substantial work in the area
of classifying dialog acts, within which rhetor-
ical questions fall. To our knowledge, prior
work on dialog act tagging has largely ignored
rhetorical questions, and there has not been any
previous work specifically addressing rhetorical
question identification. Nevertheless, classifica-
tion of rhetorical questions is crucial and has nu-
merous potential applications, including question-
answering, document summarization, author iden-
tification, and opinion extraction.

We provide an overview of related work in Sec-
tion 2, discuss linguistic characteristics of rhetor-
ical questions in Section 3, describe the experi-
mental setup in Section 4, and present and analyze
the experiment results in Section 5. We find that,
while the majority of the classification relies on
features extracted from the question itself, adding

1See Section 3 for more details.
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in n-gram features from the context improves the
performance. An F1-score of 53.71% is achieved
by adding features extracted from the preceding
and subsequent utterances, which is about a 10%
improvement from a baseline classifier using only
the features from the question itself.

2 Related work
Jurafsky et al. (1997a) and Reithinger and Kle-
sen (1997) used n-gram language modeling on the
Switchboard and Verbmobil corpora respectively
to classify dialog acts. Grau et al. (2004) uses
a Bayesian approach with n-grams to categorize
dialog acts. We also employ a similar language
model to achieve our results.

Samuel et al. (1999) used transformation-based
learning on the Verbmobil corpus over a num-
ber of utterance features such as utterance length,
speaker turn, and the dialog act tags of adja-
cent utterances. Stolcke et al. (2000) utilized
Hidden Markov Models on the Switchboard cor-
pus and used word order within utterances and
the order of dialog acts over utterances. Zech-
ner (2002) worked on automatic summarization
of open-domain spoken dialogues i.e., important
pieces of information are found in the back and
forth of a dialogue that is absent in a written piece.

Webb et al. (2005) used intra-utterance features
in the Switchboard corpus and calculated n-grams
for each utterance of all dialogue acts. For each n-
gram, they computed the maximal predictivity i.e.,
its highest predictivity value within any dialogue
act category. We utilized a similar metric for n-
gram selection.

Verbree et al. (2006) constructed their baseline
for three different corpora using the performance
of the LIT set, as proposed by Samuel (2000).
In this approach, they also chose to use a com-
pressed feature set for n-grams and POS n-grams.
We chose similar feature sets to classify rhetorical
questions.

Our work extends these approaches to dialog
act classification by exploring additional features
which are specific to rhetorical question identifi-
cation, such as context n-grams.

3 Features for Identifying Rhetorical
Questions

In order to correctly classify rhetorical ques-
tions, we theorize that the choice of words in the
question itself may be an important indicator of
speaker intent. To capture intent in the words

themselves, it makes sense to consider a common
unigram, while a bigram model will likely capture
short phrasal cues. For instance, we might expect
the existence of n-grams such as well or you know
to be highly predictive features of the rhetorical
nature of the question.

Additionally, some linguistic cues are helpful
in identifying rhetorical questions. Strong nega-
tive polarity items (NPIs), also referred to as em-
phatic or even-NPIs in the literature, are consid-
ered definitive markers. Some examples are budge
an inch, in years, give a damn, bat an eye, and
lift a finger (Giannakidou 1999, van Rooy 2003).
Gresillon (1980) notes that a question containing a
modal auxiliary, such as could or would, together
with negation tends to be rhetorical. Certain ex-
pressions such as yet and after all can only ap-
pear in rhetorical questions (Sadock 1971, Sadock
1974). Again, using common n-grams as features
should partially capture the above cues because n-
gram segments of strong NPIs should occur more
frequently.

We also wanted to incorporate common gram-
matical sequences found in rhetorical questions.
To that end, we can consider part of speech (POS)
n-grams to capture common grammatical relations
which are predictive.

Similarly, for rhetorical questions, we expect
context to be highly predictive for correct classi-
fication. For instance, the existence of a question
mark in the subsequent utterance when spoken by
the questioner, will likely be a weak positive cue,
since the speaker may not have been expecting a
response. However, the existence of a question
mark by a different speaker may not be indicative.
This suggests a need to decompose the context-
based feature space by speaker. Similarly, phrases
uttered prior to the question will likely give rise to
a different set of predictive n-grams.

Using these observations, we decided to im-
plement a simple n-gram model incorporating
contextual cues to identify rhetorical questions.
Specifically, we used unigrams, bigrams, POS bi-
grams, and POS trigrams of a question and its im-
mediately preceding and following context as fea-
ture sets. Based on preliminary results, we did not
use trigrams or POS unigrams. POS tags did not
capture sufficient contextual information and tri-
grams were not implemented since the utterances
in our dataset were too small to fully utilize them.

Also, to capture the contextual information, we

744



distinguish three distinct categories - questions,
utterances immediately preceding questions, and
utterances immediately following questions. In
order to capture the effect of a feature if it is used
by the same speaker versus a different speaker,
we divided the feature space contextual utter-
ances into four disjoint groups: precedent-same-
speaker, precedent-different-speaker, subsequent-
same-speaker, and subsequent-different-speaker.
Features in each group are all considered indepen-
dently.

4 Experimental Setup

4.1 Data

For the experiments, we used the Switchboard
Dialog Act Corpus (Godfrey et al. 1992; Juraf-
sky et al. 1997b), which contains labeled utter-
ances from phone conversations between differ-
ent pairs of people. We preprocessed the data to
contain only the utterances marked as questions
(rhetorical or otherwise), as well as the utterances
immediately preceding and following the ques-
tions. Additionally, connectives like and and but
were marked as t con, the end of conversation was
marked as t empty, and laughter was marked as
t laugh.

After filtering down to questions, we split the
data into 5960 questions in the training set and
2555 questions in the test set. We find the dataset
to be highly skewed with only 128

2555 or 5% of the
test instances labeled as rhetorical. Because of
this, a classifier that naively labels all questions as
non-rhetorical would achieve a 94.99% accuracy.
Thus, we chose precision, recall and F1-measure
as more appropriate metrics of our classifier per-
formance. We should note also that our results as-
sume a high level of consistency of the hand anno-
tations from the original taggging of the Switch-
board Corpus. However, based on our observation
and the strict guidelines followed by annotators as
mentioned in Jurafsky et al. (1997a), we are rea-
sonably confident in the reliability of the rhetori-
cal labels.

4.2 Learning Algorithm

We experimented with both Naive Bayes and a
Support Vector Machine (SVM) classifiers. Our
Naive Bayes classifier was smoothed with an add-
alpha Laplacian kernel, where alpha was selected
via cross-validation. For our SVM, to account for
the highly skewed nature of our dataset, we set the

cost-factor based on the ratio of positive (rhetori-
cal) to negative (non-rhetorical) questions in our
training set as in Morik et al. (1999). We tuned
the trade-off between margin and training error via
cross validation over the training set.

In early experiments, Naive Bayes performed
comparably to or outperformed SVM because the
dimensionality of the feature space was relatively
low. However, we found that SVM performed
more robustly over the large range and dimension-
ality of features we employed in the later experi-
ments. Thus, we conducted the main experiments
using SVMLite (Joachims 1999).

As the number of parameters is linear in the
number of feature sets, an exhaustive search
through the space would be intractable. So as to
make this feasible, we employ a greedy approach
to model selection. We make a naive assumption
that parameters of feature sets are independent or
codependent on up to one other feature set in the
same group. Each pair of codependent feature sets
is considered alone while holding other feature
sets fixed. Classifier parameters are also assumed
to be independent for tuning purposes.

In order to optimize search time without sam-
pling the parameter space too coarsely, we em-
ployed an adaptive refinement variant to a tradi-
tional grid search. First, we discretely sampled the
Cartesian product of dependent parameters sam-
pled at regular geometric or arithmetic intervals
between a user-specified minimum and maximum.
We then updated minimum and maximum values
to center around the highest scoring sample and
recursed on the search with the newly downsized
span for a fixed recursion depth d. In practice, we
choose k = 4 and d = 3.

4.3 Features

Unigrams, bigrams, POS bigrams, and POS tri-
grams were extracted from the questions and
neighboring utterances as features, based on the
analysis in Section 3. Then, feature selection was
performed as follows.

For all features sets, we considered both uni-
gram and bigram features. All unigrams and bi-
grams in the training data are considered as po-
tential candidates for features. For each feature set
above, we estimated the maximal predictivity over
both rhetorical and non-rhetorical classes, corre-
sponding to using the MLE of P (c|n), where n
denotes the n-gram and c is the class. We used
these estimates as a score and select the j n-grams
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with the highest score for each n over each group,
regardless of class, where j was selected via 4-fold
cross validation.

Each feature was then encoded as a simple oc-
currence count within its respective group for a
given exchange. The highest scoring unigrams
and bigrams are as follows: “you”, “do”, “what”,
“to”, “t con”, “do you”, “you know”, “going to”,
“you have”, and “well ,”.

POS features were computed by running a POS
tagger on all exchanges and and then picking the
j-best n-grams as described above. For our exper-
iments, we used the maximum entropy treebank
POS tagger from the NLTK package (Bird et al.
2009) to compute POS bigrams and trigrams.

Lastly, in order to assess the relative value of
question-based and context-based features, we de-
signed the following seven feature sets:

• Question (baseline)

• Precedent

• Subsequent

• Question + Precedent

• Question + Subsequent

• Precedent + Subsequent

• Question + Precedent + Subsequent

The question-only feature set serves as our
baseline without considering context, whereas the
other feature sets serve to test the power of the
preceding and following context alone and when
paired with features from the question itself.

Feature set Acc Pre Rec F1 Error 95%
Question 92.41 35.00 60.16 44.25 7.59 ±1.02
Precedent 85.64 12.30 30.47 17.53 14.36 ±1.36

Subsequent 78.98 13.68 60.16 22.29 21.02 ±1.58
Question +
Precedent

93.82 41.94 60.94 49.68 6.18 ±0.93

Question +
Subsequent

93.27 39.52 64.84 49.11 6.73 ±0.97

Precedent +
Subsequent

84.93 19.62 64.84 30.14 15.07 ±1.38

Question +
Precedent +
Subsequent

94.87 49.03 59.38 53.71 5.13± 0.86

Table 1: Experimental results (%)

AC PC Utterance

+ + X: ‘i mean, why not.’
- X: ‘what are you telling that student?’

- + X: ‘t laugh why don’t we do that?’
- X: ‘who, was in that.’

Table 2: Classification without Context Features (AC: Actual
Class, P: Predicted Class. X denotes the speaker)

AC PC Utterances

+

+

X: ‘t con you give them an f on something that
doesn’t seem that bad to me.’
X: ‘what are you telling that student?’
X: ‘you’re telling them that, hey, you might as well
forget it, you know.’

-
X: ‘get homework done,’
X: ‘t con you know, where do you find the time’.
Y:‘well, in the first place it’s not your homework,’

-

+
X: ‘ha, ha, lots of luck.’
X: ‘is she spayed.’
Y: ‘yeah’.

-

Y: ‘t con it says when the conversation is over just
say your good-byes and hang up.’
X: ‘t laugh why don’t we do that?
Y: ‘i, guess so.’

Table 3: Classification with Context Features (AC: Actual
Class, PC: Predicted Class. X and Y denote the speakers)

5 Results and Analysis
Table 1 shows the performance of the feature sets
cross-valided and trained on 5960 questions (with
context) in the Switchboard corpus and tested on
the 2555 remaining questions.

Our results largely reflect our intuition on the
expected utility of our various feature sets. Fea-
tures in the question group prove by far the most
useful single source, while features within the
subsequent prove to be more useful than features
in the precedent. Somewhat surprisingly however,
an F1-score of 30.14% is achieved by training on
contextual features alone while ignoring any cues
from the question itself, suggesting the power of
context in identifying a question as rhetorical. Ad-
ditionally, one of the highest scoring bigrams is
you know, matching our earlier intuitions.

Some examples of the success and failings of
our system can be found in Table 2 and 3. For
instance, in our question-only feature space, the
phrase what are you telling that student? was in-
correctly classified as non-rhetorical. When the
contextual features were added in, the classifier
correctly identified it as rhetorical as we might ex-
pect. Failure cases of our simple language model
based system can be seen for instance in the false
positive question is she spayed which is inter-
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preted as rhetorical, likely due to the unigram yeah
in the response.

Overall, we achieve our best results when in-
cluding both precedent and subsequent context
along with the question in our feature space. Thus,
our results suggest that incorporating contextual
cues from both directly before and after the ques-
tion itself outperforms classifiers trained on a
naive question-only feature space.

5.1 Feature Dimensionality

After model selection via cross validation, our to-
tal feature space dimensionality varies between
2914 for the precedent only feature set and 16615
for the question + subsequent feature set. Distinct
n-gram and POS n-gram features are considered
for each of same speaker and different speaker for
precedents and subsequents so as to capture the
distinction between the two. Examining the rel-
ative number of features selected for these sub-
feature sets also gives a rough idea of the strength
of the various cues. For instance, same speaker
feature dimensionality tended to be much lower
than different speaker feature dimensionality, sug-
gesting that considering context uttered by the re-
spondent is a better cue as to whether the question
is rhetorical. Additionally, unigrams and bigrams
tend to be more useful features than POS n-grams
for the task of rhetorical question identification, or
at least considering the less common POS n-grams
is not as predictive.

5.2 Evenly Split Distribution

As the highly skewed nature of our data does not
allow us to get a good estimate of error rate, we
also tested our feature sets on a subsection of the
dataset with a 50-50 split between rhetorical and
non-rhetorical questions to get a better sense of
the accuracy of our classifier. The results can be
seen in Table 4. Our classifier achieves an accu-
racy of 81% when trained on the questions alone
and 84% when integrating precedent and subse-
quent context. Due to the reduced size of the
evenly split dataset, performing a McNemar’s test
with Edwards’ correction (Edwards 1948) does
not allow us to reject the null hypothesis that the
two experiments do not derive from the same dis-
tribution with 95% confidence (χ2 = 1.49 giv-
ing a 2-tailed p value of 0.22). However, over the
whole skewed dataset, we find χ2 = 30.74 giv-
ing a 2-tailed p < 0.00001 so we have reason to
believe that with a larger evenly-split dataset inte-

grating context-based features provides a quantifi-
able advantage.

Feature set Acc Pre Rec F1 Error 95%
Question 81.25 82.71 78.01 80.29 0.19 ±0.05

Question +
Precedent +
Subsequent

84.38 88.71 78.01 83.02 0.16 ±0.04

Table 4: Experimental results (%) on evenly distributed data
(training set size: 670 & test set size: 288)

6 Conclusions
In this paper, we tackle the largely understud-
ied problem of rhetorical question identification.
While the majority of the classification relies on
features extracted from the question itself, adding
in n-gram features from the context improves the
performance. We achieve a 53.71% F1-score by
adding features extracted from the preceding and
the subsequent utterances, which is about a 10%
improvement from a baseline classifier using only
the features from the question itself.

For future work, we would like to employ more
complicated features like the sentiment of the con-
text, and dictionary features based on an NPI lex-
icon. Also, if available, prosodic information like
focus, pauses, and intonation may be useful.
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Abstract

This paper proposes a novel lifelong learn-
ing (LL) approach to sentiment classifica-
tion. LL mimics the human continuous
learning process, i.e., retaining the knowl-
edge learned from past tasks and use it
to help future learning. In this paper, we
first discuss LL in general and then LL for
sentiment classification in particular. The
proposed LL approach adopts a Bayesian
optimization framework based on stochas-
tic gradient descent. Our experimental re-
sults show that the proposed method out-
performs baseline methods significantly,
which demonstrates that lifelong learning
is a promising research direction.

1 Introduction

Sentiment classification is the task of classifying
an opinion document as expressing a positive or
negative sentiment. Liu (2012) and Pang and Lee
(2008) provided good surveys of the existing re-
search. In this paper, we tackle sentiment clas-
sification from a novel angle, lifelong learning
(LL), or lifelong machine learning. This learn-
ing paradigm aims to learn as humans do: re-
taining the learned knowledge from the past and
use the knowledge to help future learning (Thrun,
1998, Chen and Liu, 2014b, Silver et al., 2013).

Although many machine learning topics and
techniques are related to LL, e.g., lifelong learn-
ing (Thrun, 1998, Chen and Liu, 2014b, Silver et
al., 2013), transfer learning (Jiang, 2008, Pan and
Yang, 2010), multi-task learning (Caruana, 1997),
never-ending learning (Carlson et al., 2010), self-
taught learning (Raina et al., 2007), and online
learning (Bottou, 1998), there is still no unified
definition for LL.

Based on the prior work and our research, to
build an LL system, we believe that we need to
answer the following key questions:

1. What information should be retained from the
past learning tasks?

2. What forms of knowledge will be used to help
future learning?

3. How does the system obtain the knowledge?
4. How does the system use the knowledge to help

future learning?
Motivated by these questions, we present the

following definition of lifelong learning (LL).

Definition (Lifelong Learning): A learner has
performed learning on a sequence of tasks, from
1 to N − 1. When faced with the N th task, it uses
the knowledge gained in the past N − 1 tasks to
help learning for the N th task. An LL system thus
needs the following four general components:
1. Past Information Store (PIS): It stores the in-

formation resulted from the past learning. This
may involve sub-stores for information such as
(1) the original data used in each past task, (2)
intermediate results from the learning of each
past task, and (3) the final model or patterns
learned from the past task, respectively.

2. Knowledge Base (KB): It stores the knowledge
mined or consolidated from PIS (Past Informa-
tion Store). This requires a knowledge repre-
sentation scheme suitable for the application.

3. Knowledge Miner (KM). It mines knowledge
from PIS (Past Information Store). This min-
ing can be regarded as a meta-learning process
because it learns knowledge from information
resulted from learning of the past tasks. The
knowledge is stored to KB (Knowledge Base).

4. Knowledge-Based Learner (KBL): Given the
knowledge in KB, this learner is able to lever-
age the knowledge and/or some information in
PIS for the new task.

Based on this, we can define lifelong sentiment
classification (LSC):

Definition (Lifelong Sentiment Classification):
A learner has performed a sequence of supervised
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sentiment classification tasks, from 1 to N − 1,
where each task consists of a set of training doc-
uments with positive and negative polarity labels.
Given the N th task, it uses the knowledge gained
in the past N − 1 tasks to learn a better classifier
for the N th task.

It is useful to note that although many re-
searchers have used transfer learning for super-
vised sentiment classification, LL is different from
the classic transfer learning or domain adapta-
tion (Pan and Yang, 2010). Transfer learning typi-
cally uses labeled training data from one (or more)
source domain(s) to help learning in the target do-
main that has little or no labeled data (Aue and
Gamon, 2005, Bollegala et al., 2011). It does not
use the results of the past learning or knowledge
mined from the results of the past learning. Fur-
ther, transfer learning is usually inferior to tradi-
tional supervised learning when the target domain
already has good training data. In contrast, our
target (or future) domain/task has good training
data and we aim to further improve the learning
using both the target domain training data and the
knowledge gained in past learning. To be consis-
tent with prior research, we treat the classification
of one domain as one learning task.

One question is why the past learning tasks can
contribute to the target domain classification given
that the target domain already has labeled training
data. The key reason is that the training data may
not be fully representative of the test data due to
the sample selection bias (Heckman, 1979, Shi-
modaira, 2000, Zadrozny, 2004). In few real-life
applications, the training data are fully represen-
tative of the test data. For example, in a senti-
ment classification application, the test data may
contain some sentiment words that are absent in
the training data of the target domain, while these
sentiment words have appeared in some past do-
mains. So the past domain knowledge can provide
the prior polarity information in this situation.

Like most existing sentiment classification pa-
pers (Liu, 2012), this paper focuses on binary clas-
sification, i.e., positive (+) and negative (−) polar-
ities. But the proposed method is also applicable
to multi-class classification. To embed and use the
knowledge in building the target domain classifier,
we propose a novel optimization method based on
the Naı̈ve Bayesian (NB) framework and stochas-
tic gradient descent. The knowledge is incorpo-
rated using penalty terms in the optimization for-

mulation. This paper makes three contributions:
1. It proposes a novel lifelong learning approach

to sentiment classification, called lifelong sen-
timent classification (LSC).

2. It proposes an optimization method that uses
penalty terms to embed the knowledge gained
in the past and to deal with domain dependent
sentiment words to build a better classifier.

3. It creates a large corpus containing reviews
from 20 diverse product domains for extensive
evaluation. The experimental results demon-
strate the superiority of the proposed method.

2 Related Work

Our work is mainly related to lifelong learning
and multi-task learning (Thrun, 1998, Caruana,
1997, Chen and Liu, 2014b, Silver et al., 2013).
Existing lifelong learning approaches focused on
exploiting invariances (Thrun, 1998) and other
types of knowledge (Chen and Liu, 2014b, Chen
and Liu, 2014a, Ruvolo and Eaton, 2013) across
multiple tasks. Multi-task learning optimizes the
learning of multiple related tasks at the same
time (Caruana, 1997, Chen et al., 2011, Saha et al.,
2011, Zhang et al., 2008). However, these meth-
ods are not for sentiment analysis. Also, our naı̈ve
Bayesian optimization based LL method is quite
different from all these existing techniques.

Our work is also related to transfer learning or
domain adaptation (Pan and Yang, 2010). In the
sentiment classification context, Aue and Gamon
(2005) trained sentiment classifiers for the target
domain using various mixes of labeled and un-
labeled reviews. Blitzer et al. (2007) proposed to
first find some common or pivot features from the
source and the target, and then identify correlated
features with the pivot features. The final classifier
is built using the combined features. Li and Zong
(2008) built a meta-classifier (called CLF) using
the outputs of each base classifier constructed in
each domain. Other works along similar lines
include (Andreevskaia and Bergler, 2008, Bol-
legala et al., 2011, He et al., 2011, Ku et al.,
2009, Li et al., 2012, Li et al., 2013, Pan and Yang,
2010, Tan et al., 2007, Wu et al., 2009, Xia and
Zong, 2011, Yoshida et al., 2011). Additional de-
tails about these and other related works can be
found in (Liu, 2012). However, as we discussed
in the introduction, these methods do not focus on
the ability to accumulate learned knowledge and
leverage it in new learning in a lifelong manner.
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3 Proposed LSC Technique

3.1 Naı̈ve Bayesian Text Classification
Before presenting the proposed method, we briefly
review the Naı̈ve Bayesian (NB) text classification
as our method uses it as the foundation.

NB text classification (McCallum and Nigam,
1998) basically computes the conditional proba-
bility of each word w given each class cj (i.e.,
P (w|cj)) and the prior probability of each class
cj (i.e., P (cj)), which are used to calculate the
posterior probability of each class cj given a test
document d (i.e., P (cj |d)). cj is either positive
(+) or negative (−) in our case.

The key parameter P (w|cj) is computed as:

P (w|cj) =
λ+Ncj ,w

λ |V |+∑|V |v=1Ncj ,v

(1)

where Ncj ,w is the frequency of word w in docu-
ments of class cj . |V | is the size of vocabulary V
and λ (0 ≤ λ ≤ 1) is used for smoothing.

3.2 Components in LSC
This subsection describes our proposed method
corresponding to the proposed LL components.
1. Past Information Store (PIS): In this work, we

do not store the original data used in the past
learning tasks, but only their results. For each
past learning task t̂, we store a) P t̂(w|+) and
P t̂(w|−) for each word w which are from task
t̂’s NB classifier (see Eq 1); and b) the number
of times that w appears in a positive (+) doc-
ument N t̂

+,w and the number of times that w
appears in a negative documents N t̂−,w.

2. Knowledge Base (KB): Our knowledge base
contains two types of knowledge:
(a) Document-level knowledge NKB

+,w (and
NKB−,w): number of occurrences of w in
the documents of the positive (and nega-
tive) class in the past tasks, i.e., NKB

+,w =∑
t̂N

t̂
+,w and NKB−,w =

∑
t̂N

t̂−,w.
(b) Domain-level knowledge MKB

+,w (and
MKB−,w): number of past tasks in
which P (w|+) > P (w|−) (and
P (w|+) < P (w|−)).

3. Knowledge Miner (KM). Knowledge miner is
straightforward as it just performs counting and
aggregation of information in PIS to generate
knowledge (see 2(a) and 2(b) above).

4. Knowledge-Based Learner (KBL): This learner
incorporates knowledge using regularization as

penalty terms in our optimization. See the de-
tails in 3.4.

3.3 Objective Function
In this subsection, we introduce the objective func-
tion used in our method. The key parameters that
affect NB classification results are P (w|cj) which
are computed using empirical counts of word w
with class cj , i.e., Ncj ,w (Eq. 1). In binary classifi-
cation, they are N+,w and N−,w. This suggests
that we can revise these counts appropriately to
improve classification. In our optimization, we
denote the optimized variables X+,w and X−,w

as the number of times that a word w appears in
the positive and negative class. We called them
virtual counts to distinguish them from empirical
counts N+,w and N−,w. For correct classification,
ideally, we should have the posterior probability
P (cj |di) = 1 for labeled class cj , and for the other
class cf , we should have P (cf |di) = 0. Formally,
given a new domain training dataDt, our objective
function is:

|Dt|∑
i=1

(P (cj |di)− P (cf |di)) (2)

Here cj is the actual labeled class of di ∈ Dt.
In this paper, we use stochastic gradient descent
(SGD) to optimize on the classification of each
document di ∈ Dt. Due to the space limit, we
only show the optimization process for a positive
document (the process for a negative document is
similar). The objective function under SGD for a
positive document is:

F+,i = P (+|di)− P (−|di) (3)

To further save space, we omit the derivation
steps and give the final derivatives below (See the
detailed derivation steps in the separate supple-
mentary note):

g (X) =

(
λ |V |+∑|V |v=1X+,v

λ |V |+∑|V |v=1X−,v

)|di|

(4)

∂F+,i

∂X+,u
=

nu,di
λ+X+,u

+ P (−)
P (+)

∏
w∈di

(λ+X−,w

λ+X+,w

)nw,di × ∂g
∂X+,u

1 + P (−)
P (+)

∏
w∈di

(λ+X−,w

λ+X+,w

)nw,di × g(X)

− nu,di

λ+X+,u

(5)

∂F+,i

∂X−,u
=

nu,di
λ+X−,u

× g(X) + ∂g
∂X−,u

P (+)
P (−)

∏
w∈di

(
λ+X+,w

λ+X−,w

)nw,di + g(X)
(6)
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Alarm Clock 30.51 Flashlight 11.69 Home Theater System 28.84 Projector 20.24
Baby 16.45 GPS 19.50 Jewelry 12.21 Rice Cooker 18.64
Bag 11.97 Gloves 13.76 Keyboard 22.66 Sandal 12.11

Cable Modem 12.53 Graphics Card 14.58 Magazine Subscriptions 26.88 Vacuum 22.07
Dumbbell 16.04 Headphone 20.99 Movies TV 10.86 Video Games 20.93

Table 1: Names of the 20 product domains and the proportion of negative reviews in each domain.

where nu,di is the term frequency of word u in
document di. X denotes all the variables consist-
ing of X+,w and X−,w for each word w. The par-
tial derivatives for a word u, i.e., ∂g

∂X+,u
and ∂g

∂X−,u ,
are quite straightforward and thus not shown here.
X0

+,w = N t
+,w +NKB

+,w andX0−,w = N t−,w +NKB−,w

are served as a reasonable starting point for SGD,
where N t

+,w and N t−,w are the empirical counts of
word w and classes + and− from domainDt, and
NKB

+,w and NKB−,w are from knowledge KB (Sec-
tion 3.2). The SGD runs iteratively using the fol-
lowing rules for the positive document di until
convergence, i.e., when the difference of Eq. 2 for
two consecutive iterations is less than 1e−3 (same
for the negative document), where γ is the learning
rate:

X l
+,u = X l−1

+,u−γ
∂F+,i

∂X+,u
, X l
−,u = X l−1

−,u−γ
∂F+,i

∂X−,u

3.4 Exploiting Knowledge via Penalty Terms
The above optimization is able to update the vir-
tual counts for a better classification in the target
domain. However, it does not deal with the issue
of domain dependent sentiment words, i.e., some
words may change the polarity across different do-
mains. Nor does it utilize the domain-level knowl-
edge in the knowledge baseKB (Section 3.2). We
thus propose to add penalty terms into the opti-
mization to accomplish these.

The intuition here is that if a word w can dis-
tinguish classes very well from the target domain
training data, we should rely more on the target
domain training data in computing counts related
to w. So we define a set of words VT that consists
of distinguishable target domain dependent words.
A word w belongs to VT if P (w|+) is much larger
or much smaller than P (w|−) in the target do-
main, i.e., P (w|+)

P (w|−) ≥ σ or P (w|−)
P (w|+) ≥ σ, where σ

is a parameter. Such words are already effective
in classification for the target domain, so the vir-
tual counts in optimization should follow the em-
pirical counts (N t

+,w and N t−,w) in the target do-
main, which are reflected in the L2 regularization
penalty term below (α is the regularization coeffi-
cient):

1

2
α
∑
w∈VT

((
X+,w −N t

+,w

)2
+
(
X−,w −N t

−,w
)2)

(7)

To leverage domain-level knowledge (the sec-
ond type of knowledge in KB in Section 3.2), we
want to utilize only those reliable parts of knowl-
edge. The rationale here is that if a word only
appears in one or two past domains, the knowl-
edge associated with it is probably not reliable or
it is highly specific to those domains. Based on
it, we use domain frequency to define the relia-
bility of the domain-level knowledge. For w, if
MKB

+,w ≥ τ or MKB−,w ≥ τ (τ is a parameter), we
regard it as appearing in a reasonable number of
domains, making its knowledge reliable. We de-
note the set of such words as VS . Then we add the
second penalty term as follows:

1
2
α
∑

w∈VS

(
X+,w −Rw ×X0

+,w

)2
+

1
2
α
∑

w∈VS

(
X−,w − (1−Rw)×X0

−,w

)2 (8)

where the ratio Rw is defined as MKB
+,w/(M

KB
+,w +

MKB−,w). X0
+,w andX0−,w are the starting points for

SGD (Section 3.3). Finally, we revise the partial
derivatives in Eqs. 4-6 by adding the correspond-
ing partial derivatives of Eqs. 7 and 8 to them.

4 Experiments

Datasets. We created a large corpus contain-
ing reviews from 20 types of diverse products
or domains crawled from Amazon.com (i.e., 20
datasets). The names of product domains are
listed in Table 1. Each domain contains 1,000 re-
views. Following the existing work of other re-
searchers (Blitzer et al., 2007, Pang et al., 2002),
we treat reviews with rating > 3 as positive and
reviews with rating < 3 as negative. The datasets
are publically available at the authors websites.

Natural class distribution: We keep the natural
(or skewed) distribution of the positive and nega-
tive reviews to experiment with the real-life situa-
tion. F1-score is used due to the imbalance.
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NB-T NB-S NB-ST SVM-T SVM-S SVM-ST CLF LSC
56.21 57.04 60.61 57.82 57.64 61.05 12.87 67.00

Table 2: Natural class distribution: Average F1-score of the negative class over 20 domains. Negative
class is the minority class and thus harder to classify.

NB-T NB-S NB-ST SVM-T SVM-S SVM-ST CLF LSC
80.15 77.35 80.85 78.45 78.20 79.40 80.49 83.34

Table 3: Balanced class distribution: Average accuracy over 20 domains for each system.

Balanced class distribution: We also created a
balance dataset with 200 reviews (100 positive and
100 negative) in each domain dataset. This set is
smaller because of the small number of negative
reviews in each domain. Accuracy is used for eval-
uation in this balanced setting.

We used unigram features with no feature se-
lection in classification. We followed (Pang et al.,
2002) to deal with negation words. For evalua-
tion, each domain is treated as the target domain
with the rest 19 domains as the past domains. All
the models are evaluated using 5-fold cross vali-
dation.

Baselines. We compare our proposed LSC
model with Naı̈ve Bayes (NB), SVM1, and
CLF (Li and Zong, 2008). Note that NB and SVM
can only work on a single domain data. To have
a comprehensive comparison, they are fed with
three types of training data:
a) labeled training data from the target domain

only, denoted by NB-T and SVM-T;
b) labeled training data from all past source do-

mains only, denoted by NB-S and SVM-S;
c) merged (labeled) training data from all past do-

mains and the target domain, referred to as NB-
ST and SVM-ST.
For LSC, we empirically set σ = 6 and τ = 6.

The learning rate λ and regularization coefficient
α are set to 0.1 empirically. λ is set to 1 for
(Laplace) smoothing.

Table 2 shows the average F1-scores for the
negative class in the natural class distribution, and
Table 3 shows the average accuracies in the bal-
anced class distribution. We can clearly see that
our proposed model LSC achieves the best perfor-
mance in both cases. In general, NB-S (and SVM-
S) are worse than NB-T (and SVM-T), both of
which are worse than NB-ST (and SVM-ST). This
shows that simply merging both past domains and
the target domain data is slightly beneficial. Note

1http://www.csie.ntu.edu.tw/˜cjlin/libsvm/

NB-T    5   10   15   19
0.79

0.81

0.83

0.85

NB-T    5   10   15   19
0.55

0.6

0.65

0.7

Figure 1: (Left): Negative class F1-score of LSC
with #past domains in natural class distribution.
(Right): Accuracy of LSC with #past domains in
balanced class distribution.

that the average F1-score for the positive class is
not shown as all classifiers perform very well be-
cause the positive class is the majority class (while
our model performs slightly better than the base-
lines). The improvements of the proposed LSC
model over all baselines in both cases are statisti-
cally significant using paired t-test (p < 0.01 com-
pared to NB-ST and CLF, p < 0.0001 compared
to the others). In the balanced class setting (Ta-
ble 3), CLF performs better than NB-T and SVM-
T, which is consistent with the results in (Li and
Zong, 2008). However, it is still worse than our
LSC model.

Effects of #Past Domains. Figure 1 shows the
effects of our model using different number of past
domains. We clearly see that LSC performs bet-
ter with more past domains, showing it indeed has
the ability to accumulate knowledge and use the
knowledge to build better classifiers.

5 Conclusions

In this paper, we proposed a lifelong learning ap-
proach to sentiment classification using optimiza-
tion, which is based on stochastic gradient de-
scent in the framework of Bayesian probabilities.
Penalty terms are introduced to effectively exploit
the knowledge gained from past learning. Our
experimental results using 20 diverse product re-
view domains demonstrate the effectiveness of the
method. We believe that lifelong learning is a
promising direction for building better classifiers.
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Abstract

The relationship between context incon-
gruity and sarcasm has been studied in lin-
guistics. We present a computational sys-
tem that harnesses context incongruity as a
basis for sarcasm detection. Our statistical
sarcasm classifiers incorporate two kinds
of incongruity features: explicit and im-
plicit. We show the benefit of our incon-
gruity features for two text forms - tweets
and discussion forum posts. Our system
also outperforms two past works (with F-
score improvement of 10-20%). We also
show how our features can capture inter-
sentential incongruity.

1 Introduction

Sarcasm is defined as ‘a cutting, often ironic re-
mark intended to express contempt or ridicule’1.
Sarcasm detection is the task of predicting a text
as sarcastic or non-sarcastic. The past work in sar-
casm detection involves rule-based and statistical
approaches using: (a) unigrams and pragmatic fea-
tures (such as emoticons, etc.) (Gonzalez-Ibanez
et al., 2011; Carvalho et al., 2009; Barbieri et al.,
2014), (b) extraction of common patterns, such
as hashtag-based sentiment (Maynard and Green-
wood, 2014; Liebrecht et al., 2013), a positive verb
being followed by a negative situation (Riloff et
al., 2013), or discriminative n-grams (Tsur et al.,
2010a; Davidov et al., 2010).

Thus, the past work detects sarcasm with spe-
cific indicators. However, we believe that it is time
that sarcasm detection is based on well-studied lin-
guistic theories. In this paper, we use one such lin-
guistic theory: context incongruity. Although the
past work exploits incongruity, it does so piece-
meal; we take a more well-rounded view of in-
congruity and place it center-stage for our work.

1Source: The Free Dictionary

The features of our sarcasm detection system are
based on two kinds of incongruity: ‘explicit’ and
‘implicit’. The contribution of this paper is:

• We present a sarcasm detection system that is
grounded on a linguistic theory, the theory of
context incongruity in our case. Sarcasm de-
tection research can push the frontiers by tak-
ing help of well-studied linguistic theories.
• Our sarcasm detection system outperforms

two state-of-art sarcasm detection sys-
tems (Riloff et al., 2013; Maynard and
Greenwood, 2014). Our system shows an
improvement for short ‘tweets’ as well as
long ‘discussion forum posts’.
• We introduce inter-sentential incongruity for

sarcasm detection, that expands context of a
discussion forum post by including the previ-
ous post (also known as the ‘elicitor’ post) in
the discussion thread.

Rest of the paper is organized as follows. We first
discuss related work in Section 2. We introduce
context incongruity in Section 3. Feature design
for explicit incongruity is presented in Section 3.1,
and that for implicit incongruity is in Section 3.2.
We then describe the architecture of our sarcasm
detection system in Section 4 and our experimen-
tal setup in Section 5. Quantitative evaluation is
in Section 6. Inter-sentential sarcasm detection is
in Section 7. Section 8 presents the error analysis.
Section 9 concludes the paper and points to future
directions.

2 Related Work

Sarcasm/irony as a linguistic phenomenon has
been extensively studied. According to Wilson
(2006), sarcasm arises from situational disparity.
The relationship between context incongruity and
sarcasm processing (by humans) has been studied
in Ivanko and Pexman (2003). Several properties
of sarcasm have also been investigated. Campbell
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and Katz (2012) state that sarcasm occurs along
different dimensions, namely, failed expectation,
pragmatic insincerity, negative tension, presence
of a victim and along stylistic components such as
emotion words. Eisterhold et al. (2006) observe
that sarcasm can be identified based on the state-
ment preceding and following the sarcastic state-
ment. This is particularly true in cases where the
incongruity is not expressed within the sarcastic
text itself.

Computational detection of sarcasm is a rela-
tively recent area of research. Initial work on
sarcasm detection investigates the role of lexi-
cal and pragmatic features. Tepperman et al.
(2006) present sarcasm recognition in speech us-
ing prosodic, spectral (average pitch, pitch slope,
etc.) and contextual cues (laughter or response
to questions). Carvalho et al. (2009) use sim-
ple linguistic features like interjection, changed
names, etc. for irony detection. Davidov et al.
(2010) train a sarcasm classifier with syntactic
and pattern-based features. Gonzalez-Ibanez et al.
(2011) study the role of unigrams and emoticons
in sarcasm detection. Liebrecht et al. (2013) use
a dataset of Dutch tweets that contain sarcasm-
related hashtags and implement a classifier to pre-
dict sarcasm. A recent work by ?) takes the output
of sarcasm detection as an input to sentiment clas-
sification. They present a rule-based system that
uses the pattern: if the sentiment of a tokenized
hashtag does not agree with sentiment in rest of the
tweet, the tweet is sarcastic, in addition to other
rules.

Our approach is architecturally similar to Tsur
et al. (2010b) who use a semi-supervised pattern
acquisition followed by classification. Our feature
engineering is based on Riloff et al. (2013) and
Ramteke et al. (2013). Riloff et al. (2013) state
that sarcasm is a contrast between positive senti-
ment word and a negative situation. They imple-
ment a rule-based system that uses phrases of pos-
itive verb phrases and negative situations extracted
from a corpus of sarcastic tweets. Ramteke et al.
(2013) present a novel approach to detect thwart-
ing: the phenomenon where sentiment in major
portions of text is reversed by sentiment in smaller,
conclusive portions.

3 Context Incongruity

Incongruity is defined as ‘the state of being not
in agreement, as with principles’1. Context incon-

gruity is a necessary condition for sarcasm (Camp-
bell and Katz, 2012). Ivanko and Pexman (2003)
state that the sarcasm processing time (time taken
by humans to understand sarcasm) depends on the
degree of context incongruity between the state-
ment and the context.

Deriving from this idea, we consider two cases
of incongruity in sarcasm that are analogous to two
degrees of incongruity. We call them explicit in-
congruity and implicit incongruity, where im-
plicit incongruity demands a higher processing
time. It must be noted that our system only han-
dles incongruity between the text and common
world knowledge (i.e., the knowledge that ‘being
stranded’ is an undesirable situation, and hence,
‘Being stranded in traffic is the best way to start
my week’ is a sarcastic statement). This leaves out
an example like ‘Wow! You are so punctual’ which
may be sarcastic depending on situational context.

3.1 Explicit incongruity
Explicit incongruity is overtly expressed through
sentiment words of both polarities (as in the case
of ‘I love being ignored’ where there is a positive
word ‘love’ and a negative word ‘ignored’). The
converse is not true as in the case of ‘The movie
starts slow but the climax is great’.

3.2 Implicit Incongruity
An implicit incongruity is covertly expressed
through phrases of implied sentiment, as op-
posed to opposing polar words. Consider
the example “I love this paper so much that
I made a doggy bag out of it”. There is no explicit
incongruity here: the only polar word is ‘love’.
However, the clause ‘I made a doggy bag out of it’
has an implied sentiment that is incongruous with
the polar word ‘love’.

3.3 Estimating prevalence
We conduct a naı̈ve, automatic evaluation on a
dataset of 18,141 sarcastic tweets. As a crude
estimate, we consider an explicit incongruity as
presence of positive and negative words. Around
11% sarcastic tweets have at least one explicit in-
congruity. We also manually evaluate 50 sarcas-
tic tweets and observe that 10 have explicit incon-
gruity, while others have implicit incongruity.

4 Architecture

Our system for sarcasm detection augments the
feature vector of a tweet with features based on the
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two types of incongruity. Specifically, we use four
kinds of features: (a) Lexical, (b) Pragmatic, (c)
Implicit congruity, and (d) Explicit incongruity
features. Lexical features are unigrams obtained
using feature selection techniques such as χ2 Test
and Categorical Proportional Difference. Prag-
matic features include emoticons, laughter expres-
sions, punctuation marks and capital words as
given by Carvalho et al. (2009). In addition to
the two, our system incorporates two kinds of in-
congruity features, as discussed next. The explicit
incongruity features are numeric, qualitative fea-
tures, while implicit incongruity features are re-
lated to implicit phrases.

4.1 Feature Design: Explicit Incongruity

An explicit incongruity giving rise to sarcasm
bears resemblance to thwarted expectations (an-
other commonly known challenge to sentiment
analysis). Consider this example: ‘I love the
color. The features are interesting. But a
bad battery life ruins it’. The positive expectation
in the first two sentences is thwarted by the last
sentence. A similar incongruity is observed in
the sarcastic ‘My tooth hurts! Yay!’. The nega-
tive word ‘hurts’ is incongruous with the positive
‘Yay!’. Hence, our explicit incongruity features
are a relevant subset of features from a past sys-
tem to detect thwarting by Ramteke et al. (2013).
These features are:

• Number of sentiment incongruities: The
number of times a positive word is followed
by a negative word, and vice versa
• Largest positive/negative subsequence: The

length of the longest series of contiguous pos-
itive/negative words
• Number of positive and negative words
• Lexical Polarity: The polarity based purely

on the basis of lexical features, as determined
by Lingpipe SA system (Alias-i, 2008). Note
that the ‘native polarity’ need not be correct.
However, a tweet that is strongly positive on
the surface is more likely to be sarcastic than
a tweet that seems to be negative. This is
because sarcasm, by definition, tends to be
caustic/hurtful. This also helps against hum-
ble bragging. (as in case of the tweet ‘so i
have to be up at 5am to autograph 7,000 pics
of myself? Sounds like just about the worst
Wednesday morning I could ever imagine’).

4.2 Feature Design: Implicit Incongruity

We use phrases with implicit sentiment as the
implicit incongruity features. These phrases are
sentiment-bearing verb and noun phrases, the lat-
ter being situations with implied sentiment (e.g.
‘getting late for work’). For this, we modify
the algorithm given in Riloff et al. (2013) in two
ways: (a) they extract only positive verbs and neg-
ative noun situation phrases. We generalize it to
both polarities, (b) they remove subsumed phrases
(i.e. ‘being ignored’ subsumes ‘being ignored by
a friend’) while we retain both phrases. The ben-
efit of (a) and (b) above was experimentally vali-
dated, but is not included in this paper due to lim-
ited space.

While they use rule-based algorithms that em-
ploy these extracted phrases to detect sarcasm, we
include them as implicit incongruity features, in
addition to other features. It is possible that the set
of extracted situation phrases may contain some
phrases without implicit sentiment. We hope that
the limited size of the tweet guards against such
false positives being too many in number. We add
phrases in the two sets as count-based implicit in-
congruity features.

5 Experimental Setup

We use three datasets to evaluate our system:

1. Tweet-A (5208 tweets, 4170 sarcastic):
We download tweets with hashtags #sar-
casm and #sarcastic as sarcastic tweets
and #notsarcasm and #notsarcastic as non-
sarcastic, using the Twitter API (https://
dev.twitter.com/). A similar hashtag-
based approach to create a sarcasm-annotated
dataset was employed in Gonzalez-Ibanez et
al. (2011). As an additional quality check, a
rough glance through the tweets is done, and
the ones found to be wrong are removed. The
hashtags mentioned above are removed from
the text so that they act as labels but not as
features.

2. Tweet-B (2278 tweets, 506 sarcastic): This
dataset was manually labeled for Riloff et al.
(2013). Some tweets were unavailable, due
to deletion or privacy settings.

3. Discussion-A (1502 discussion forum
posts, 752 sarcastic): This dataset is created
from the Internet Argument Corpus (Walker
et al., 2012) that contains manual annota-
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Lexical
Unigrams Unigrams in the training corpus

Pragmatic
Capitalization Numeric feature indicating presence of capital letters
Emoticons & laughter ex-
pressions

Numeric feature indicating presence of emoticons and ‘lol’s

Punctuation marks Numeric feature indicating presence of punctuation marks
Implicit Incongruity

Implicit Sentiment
Phrases

Boolean feature indicating phrases extracted from the implicit phrase
extraction step

Explicit Incongruity
#Explicit incongruity Number of times a word is followed by a word of opposite polarity
Largest positive /negative
subsequence

Length of largest series of words with polarity unchanged

#Positive words Number of positive words
#Negative words Number of negative words
Lexical Polarity Polarity of a tweet based on words present

Table 1: Features of our sarcasm detection system

tions for sarcasm. We randomly select 752
sarcastic and 752 non-sarcastic discussion
forum posts.

To extract the implicit incongruity features, we run
the iterative algorithm described in Section 4.2,
on a dataset of 4000 tweets (50% sarcastic) (also
created using hashtag-based supervision). The al-
gorithm results in a total of 79 verb phrases and
202 noun phrases. We train our classifiers for dif-
ferent feature combinations, using LibSVM with
RBF kernel (Chang and Lin, 2011), and report av-
erage 5-fold cross-validation values.

Features P R F
Original Algorithm by Riloff et al. (2013)

Ordered 0.774 0.098 0.173
Unordered 0.799 0.337 0.474

Our system
Lexical (Baseline) 0.820 0.867 0.842
Lexical+Implicit 0.822 0.887 0.853
Lexical+Explicit 0.807 0.985 0.8871
All features 0.814 0.976 0.8876

Table 2: Comparative results for Tweet-A using
rule-based algorithm and statistical classifiers us-
ing our feature combinations

6 Evaluation

Table 2 shows the performance of our classifiers
in terms of Precision (P), Recall (R) and F-score

Features P R F
Lexical (Baseline) 0.645 0.508 0.568
Lexical+Explicit 0.698 0.391 0.488
Lexical+Implicit 0.513 0.762 0.581
All features 0.489 0.924 0.640

Table 3: Comparative results for Discussion-A us-
ing our feature combinations

(F), for Tweet-A. The table first reports values
from a re-implementation of Riloff et al. (2013)’s
two rule-based algorithms: the ordered version
predicts a tweet as sarcastic if it has a positive
verb phrase followed by a negative situation/noun
phrase, while the unordered does so if the two are
present in any order. We see that all statistical
classifiers surpass the rule-based algorithms. The
best F-score obtained is 0.8876 when all four kinds
of features are used. This is an improvement of
about 5% over the baseline, and 40% over the al-
gorithm by Riloff et al. (2013). Table 3 shows
that even in the case of the Discussion-A dataset,
our features result in an improved performance.
The F-score increases from 0.568 to 0.640, an im-
provement of about 8% in case of discussion fo-
rum posts, when all features are used.

To confirm that we indeed do better, we com-
pare our system, with their reported values. This
is necessary for several reasons. For example,
we reimplement their algorithm but do not have
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Approach P R F
Riloff et al. (2013)
(best reported)

0.62 0.44 0.51

Maynard and Green-
wood (2014)

0.46 0.38 0.41

Our system (all fea-
tures)

0.77 0.51 0.61

Table 4: Comparison of our system with two past
works, for Tweet-B

access to their exact extracted phrases. Table 4
shows that we achieve a 10% higher F-score
than the best reported F-score of Riloff et al.
(2013). This value is also 20% higher than our
re-implementation of Maynard and Greenwood
(2014) that uses their hashtag retokenizer and rule-
based algorithm.

7 Incorporating inter-sentential
incongruity

Our system performs worse for Discussion-A
than Tweet-A/B possibly because of incongruity
outside the text. Because of the thread struc-
ture of discussion forums, sarcasm in a ‘target
post’ can be identified using the post preceding
it (called ‘elicitor post’), similar to human con-
versation (Eisterhold et al., 2006). For example,
‘Wow, you are smart!’ may or may not be sarcas-
tic. If a sarcasm classifier incorporates informa-
tion from the elicitor post ‘I could not finish my as-
signment’, a correct prediction is possible. Hence,
we now explore how our incongruity-based fea-
tures can help to capture ‘inter-sentential incon-
gruity’. We compute the five explicit incongruity
features for a concatenated version of target post
and elicitor post (elicitor posts are available for
IAC corpus, the source of Discussion-A). The pre-
cision rises to 0.705 but the recall falls to 0.274. A
possible reason is that only 15% posts have elicitor
posts, making the inter-sentential features sparse.

That notwithstanding, our observation shows
that using the inter-sentential context is an in-
teresting direction for sarcasm detection.

8 Error Analysis

Some common errors made by our system are:

1. Subjective polarity: The tweet ‘Yay for 3
hour Chem labs’ is tagged by the author as
sarcastic, which may not be common percep-
tion.

2. No incongruity within text: As stated in
Section 2, our system does not detect sar-
casm where incongruity is expressed outside
the text. About 10% misclassified examples
that we analyzed, contained such an incon-
gruity.

3. Incongruity due to numbers: Our system
could not detect incongruity arising due to
numbers as in ‘Going in to work for 2 hours
was totally worth the 35 minute drive.’.

4. Dataset granularity: Some discussion
forum posts are marked as sarcastic,
but contain non-sarcastic portions, lead-
ing to irrelevant features. For example,
‘How special, now all you have to do is prove
that a glob of cells has rights. I happen to
believe that a person’s life and the right to
life begins at conception’.

5. Politeness: In some cases, implicit incon-
gruity was less evident because of politeness,
as in, ‘Post all your inside jokes on facebook,
I really want to hear about them’.

9 Conclusion & Future Work

Our paper uses the linguistic relationship between
context incongruity and sarcasm as a basis for sar-
casm detection. Our sarcasm classifier uses four
kinds of features: lexical, pragmatic, explicit in-
congruity, and implicit incongruity features. We
evaluate our system on two text forms: tweets and
discussion forum posts. We observe an improve-
ment of 40% over a reported rule-based algo-
rithm, and 5% over the statistical classifier base-
line that uses unigrams, in case of tweets. The cor-
responding improvement in case of discussion fo-
rum posts is 8%. Our system also outperforms
two past works (Riloff et al., 2013; Maynard and
Greenwood, 2014) with 10-20% improvement in
F-score. Finally, to improve the performance for
discussion forum posts, we introduce a novel ap-
proach to use elicitor posts for sarcasm detection.
We observe an improvement of 21.6% in preci-
sion, when our incongruity features are used to
capture inter-sentential incongruity.

Our error analysis points to potential future
work such as: (a) role of numbers for sarcasm, and
(b) situations with subjective sentiment. We are
currently exploring a more robust incorporation of
inter-sentential incongruity for sarcasm detection.
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Abstract

Code-switching is commonly used in the
free-form text environment, such as so-
cial media, and it is especially favored in
emotion expressions. Emotions in code-
switching texts differ from monolingual
texts in that they can be expressed in ei-
ther monolingual or bilingual forms. In
this paper, we first utilize two kinds of
knowledge, i.e. bilingual and sentimen-
tal information to bridge the gap between
different languages. Moreover, we use
a term-document bipartite graph to incor-
porate both bilingual and sentimental in-
formation, and propose a label propaga-
tion based approach to learn and predic-
t in the bipartite graph. Empirical stud-
ies demonstrate the effectiveness of our
proposed approach in detecting emotion in
code-switching texts.

1 Introduction

With the rapid development of Web 2.0, emotion
analysis in social media has become of great val-
ue to market predictions and analysis (Liu et al.,
2013; Lee et al., 2014). Previous researches on
emotion analysis have mainly focused on emo-
tion expressions in monolingual texts (Chen et al.,
2010; Lee et al., 2013a). However, in informal
settings such as micro-blogs, emotions are often
expressed by a mixture of different natural lan-
guages. Such a mixture of language is called code-
switching. Specifically, code-switching text is de-
fined as text that contains more than one language
(code). It is a common phenomenon in multilin-
gual communities (Auer, 1999; Adel et al., 2013).
For instance, [E1-E3] are three examples of code-
switching emotional posts containing both Chi-

*Corresponding author

nese and English words. [E1] expresses the hap-
piness emotion through English, and the anger e-
motion in [E2] is expressed through both Chinese
and English, while the fear emotion in [E3] is ex-
pressed through a mixed English-Chinese phrase
(holdØ4).

[E1]·�®²ghighå5

(We are already getting hyper our-
selves.)

[E2] �����é{Ò´/O�v
kk5��§Ø�O�â´1n
ö0"shit!
(A quote, to my great disgust, is
”There’s no staking claims in a relation-
ship based on who got there first - the
one who isn.t loved is the true third
party.” Shit!)

[E3] ùo�y­:{"""¶
�holdØØØ444B���
(The so-called ”highlighting”...we can’t
hold it anymore.)

It is more difficult to detect emotions in code-
switching texts than in monolingual ones since e-
motions in code-switching posts can be expressed
through one or two languages. Hence, traditional
automatic emotion detection methods which sim-
ply consider monolingual texts (Liu et al., 2013;
Lee et al., 2013a) would not be readily applicable.

The key issue of emotion detection in code-
switching texts is to deal with the emotions ex-
pressed through different languages. Thus bridg-
ing the gap between different languages becomes
essential for emotion detection in code-switching
texts. A straightforward approach to handle this
issue is to translate texts from one language into
another. Since Chinese is the dominant language
in our data set, a word-by-word statistical machine
translation strategy (Zhao et al., 2009) is adopt-
ed to translate English words into Chinese. Ad-
ditionally, as text from micro-blogs is informal,
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synonym dictionary and PMI similar based word
correlation (Turney, 2002) are used to enhance the
language model for machine translation.

In spite of the English-to-Chinese translation,
many English and Chinese words are still uncon-
nected. Hence, we use sentiment analysis strategy
(Turney, 2002; Li et al., 2013) to extract the po-
larity of both Chinese and English texts, and then
connect words of similar polarity.

Moreover, for propagating label information be-
tween the bilingual texts from training data to
test data, we use a term-document bipartite graph
to incorporate both bilingual and sentimental in-
formation and propose a label propagation (Zhu
and Ghahramani, 2002) based approach to learn
and predict in the graph. Specially, the label
information between Chinese and English texts
would be propagated through the bipartite graph
by word-document relations, bilingual informa-
tion, and sentiment information. Evaluation of the
data set indicates the importance of the task and
the effectiveness of our proposed approach.

2 Related Work

Emotion analysis has been a hot research topic in
NLP in the last decade. One main group of relat-
ed studies on this task is about emotion resource
construction (Xu et al., 2010; Volkova et al., 2012;
Lee et al., 2014). Moreover, emotion classification
is one of the most important tasks in emotion anal-
ysis, while emotion classification aims to classify
text into multiple emotion categories (Chen et al.,
2010; Liu et al., 2013). Despite a growing body of
research on emotion analysis, little has been done
on the analysis of emotion in code-switching due
to the complexities of processing two languages at
the same time.

Besides, although several research studies have
focused on analyzing bilingual (Wan, 2009; Lu et
al., 2011; Tang et al., 2014) and code-switching
texts (Li and Fung, 2012; Ling et al., 2013; Lig-
nos and Marcus, 2013), none of them has studied
the multilingual code-switching issues in emotion
detection. This research area is especially crucial
when public emotions are mostly expressed in the
free-form text on the Internet.

3 Data Collection

We collect our data set from Weibo.com, one of
the most popular SNS websites in China. We use
encoding code for each character in the post to i-

dentify the code-switching posts. After removing
posts containing noise and advertisements, we ex-
tract 4,195 code-switching posts from the dataset
for emotion annotation. Five basic emotions are
annotated, namely happiness, sadness, fear, anger
and surprise (Lee et al., 2013b). After the an-
notation process, results show 2,312 posts which
include emotions. Moreover, 81.4% of emotion-
al posts are expressed through Chinese. Although
there are a few words of English in each post (an
average of 3 words per post), 43.5% of emotion
posts are caused by English. This statistic indi-
cates that English is of vital importance to emotion
expression even in code-switching contexts domi-
nated by Chinese.

The corpora is annotated by two annotators and
the inter-annotator agreement calculation shows
that the agreement of our annotation is 0.692 in
Cohen’s Kappa coefficient, which indicates that
the quality of the annotation is guaranteed.

Figure 1: Distribution of Emotions and Languages

The joint distribution between emotions and
caused languages is illustrated in Figure 1. The
Y-axis of the figure presents the conditional prob-
ability of a post expressing the emotion ei given
that lj is the caused language, p(ei|lj).

It is suggested in Figure 2 that: 1) happiness oc-
curs more frequently than other emotions; 2) peo-
ple would like to use English text to express the
happiness emotion much more than the sadness e-
motion; 3) the distribution of emotions expressed
through Chinese and English text are similar.

4 Emotion Detection via Bilingual and
Sentiment Information

In this paper, our goal is to predict the emotion
label for each unlabeled post. Simply, we only
choose those posts with single emotion on our re-
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search. We systematically explore both the bilin-
gual and sentimental information to detect emo-
tions in code-switching posts. Moreover, we use
a term-document bipartite graph to incorporate
these two kinds of information, and propose a La-
bel Propagation (LP) based approach to learn and
predict emotion in code-switching texts. In the fol-
lowing subsections, we will discuss these issues
one by one.

4.1 Bilingual Information

For using bilingual information, a word-by-word
statistical machine translation strategy is adopt-
ed to translate words from English into Chinese.
For better clarity, a word-based decoding, which
adopts a log-linear framework as in (Och and Ney,
2002) with translation model and language model
being the only features, is used:

P (c|e) =
exp [

∑2
i=1 λihi(c, e)]∑

c exp [
∑2
i=1 λihi(c, e)]

(1)

where
h1(c, e) = log(pγ(c|e)) (2)

is the translation model, which is converted from
the bilingual lexicon1, and

h2(c, e) = log(pθLM
(c)pθSY N

(c)pθPMI
(c)) (3)

is the language model, and pθLM
(c) is the bigram

language model which is trained from a large s-
cale Weibo data set2. As text in micro-blogs is in-
formal, synonym dictionary3 and PMI based word
correlation are used to enhance the language mod-
el for machine translation. pθSY N

(c) denotes the
synonym similarity between translated words and
the contexts. This is necessary since the sense of
translated words and the contexts are expected to
be similar; and pθPMI

(c) presents the PMI simi-
larity between translated words and the contexts,
while the PMI score is calculated by the individ-
ual and co-occurred hit count between translated
words and contexts from the search engine4 (Tur-
ney, 2002). This is to ensure that the translated
words are highly associated with the contexts.

1MDBG CC-CEDICT is adopted as the bilingual lexicon:
http://www.mdbg.net/chindict/chindict.php?page=cedict

2The large-scale Weibo data set contains 2,716,197 posts
in total.

3TongYiCiLin is adopted as the Chinese synonym dictio-
nary: http://www.ltp-cloud.com/

4We use BING.com as the search engine for PMI:
http://www.bing.com/

The candidate target sentences made up of a se-
quence of the optional target words are ranked by
the language model. The output will be generat-
ed only if it reaches the maximum probability as
follows (Brown et al., 1990; Zhao et al., 2009):

c = argmax
∏

p(wc) (4)

4.2 Sentimental Information
Sentimental information is very useful in emotion
detection (Gao et al., 2013). In this paper, we ex-
tract polarity from both Chinese and English texts
to ensure text of similar polarity will be connected.

In this paper, both Chinese5 and English6 sen-
timental lexicons are employed to identify can-
didate opinion expressions by searching the oc-
currences of negative and positive expressions in
text, and predict the polarity of both Chinese and
English texts through the word-counting approach
(Turney, 2002).

4.3 LP-based Emotion Detection
For the knowledge of bilingual and sentimental in-
formation to be well incorporated, we use a term-
document bipartite graph to incorporate the in-
formation, and propose a label propagation based
approach to learn and predict emotion in code-
switching texts.

The input of the LP algorithm is a graph de-
scribing the relationship between each sample
pair in the labeled and test data (Sindhwani and
Melville, 2008; Li et al., 2013). In a bipartite
graph, the nodes consist of two parts: documents
and all terms extracted from the documents. An
undirected edge (di, wk) exists if and only if the
document di contains the term wk.

Note that, there are four kinds of terms on the
graph, i.e., Chinese words, English words, trans-
lated Chinese words (bilingual information), and
sentimental features. Although Chinese words and
English words cannot be connected directly, the
label information between Chinese and English
words would be propagated through the bipartite
graph by word-document relations, bilingual in-
formation, and sentiment information. The exam-
ple of the bipartite graph is illustrated on the Fig-
ure 2.

5DUTIR Sentiment Lexicon is adopt-
ed as the Chinese sentiment lexicon:
http://ir.dlut.edu.cn/EmotionOntologyDownload.aspx

6English sentiment lexicon is uti-
lized from MPQA Subjectivity Lexicon:
http://mpqa.cs.pitt.edu/lexicons/subj lexicon/
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Figure 2: Example of the bipartite graph

When all terms are taken into consideration, we
get the transition probability from di to dj as in
(5):

tij =
∑
k

xik∑
k xik

· xjk∑
k xjk

(5)

where xik is the frequency of term wk in docu-
ment di.

After building the document-document trans-
fer matrix through the bipartite graph, we use la-
bel propagation algorithm (Zhu and Ghahramani,
2002; Zhou and Kong, 2009) to learn and predict
emotions in the graph, in which the probabilities
of the labeled data are clamped in each loop using
their initial ones and act as a force to propagate
their labels to the test data.

5 Experiments

In this section, we first introduce the experimental
settings, and then evaluate the performance of our
proposed approach for detecting emotions in code-
switching texts.

5.1 Experimental Settings
As described in Section 3, the data are collected
from Weibo.com. We randomly select half of the
annotated posts as the training data and another
half as the test data. FNLP7 is used for Chinese
word segmentation.

5.2 Experimental Results
Our first group of experiments is to investigate
whether our proposed label propagation model
with both bilingual and sentimental information
can improve emotion detection in code-switching
texts. Figure 3 shows the experimental results of
different models, where ME is the basic Maximum

7FNLP (FudanNLP), https://github.com/xpqiu/fnlp/

Entropy (ME) classification model8 in which all
Chinese and English words of each post function
as a feature, ME-CN and ME-EN in which only the
Chinese or English text of each post function as
features, and BLP-BS, our proposed LP-based ap-
proach which incorporates both bilingual and sen-
timental information. We adopt F1-Measure (F1.)
to measure the performance of each model in the
respective emotions.

From Figure 3, we find that the results of ME-
CN and ME-EN are instable. It indicates that on-
ly considering one kind of language text is not
very effective for predicting emotions in code-
switching texts. Moreover, as Chinese and English
texts are taken into account collectively with both
bilingual and sentimental information, our pro-
posed BLP-BS model is significantly better than
basic approaches on all the emotions.

Figure 3: Results of emotion detection

We then analyze the influence of different fac-
tors in our proposed approach with average F1-
Measure of the five emotions with the results il-
lustrated in Table 1. In the table, Basic SMT
refers to using basic word-by-word statistical ma-
chine translation to help the detection process; En-
hanced SMT refers to using both synonyms and
word correlation to enhance the machine transla-
tion process; Sentiment refers to using sentimen-
tal information to help the detection process; ME-
BS refers to using the maximum entropy model
with both bilingual and sentimental information,
and BLP refers to the label propagation model in
which all of the words in Chinese and English text
function as a feature.

From Table 1, it is observed that: 1) senti-
mental information (Sentiment) are effective for
predicting emotion in both ME-based and BLP-

8ME algorithm is implemented with the MALLET Toolkit,
http://mallet.cs.umass.edu
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Method Average F1.
ME 0.354

+Basic SMT 0.354
+Enhanced SMT 0.382
+Sentiment 0.369

ME-BS 0.383
BLP 0.385

+Enhanced SMT 0.392
+Sentiment 0.406

BLP-BS 0.412

Table 1: Results of influence on different factors

based models; 2) Enhanced SMT outperforms Ba-
sic SMT, which proves the effectiveness of our en-
hanced approaches for statistical machine transla-
tion; and 3) our proposed approach (BLP-BS) out-
performs the other approaches. This indicates the
complementarity of bilingual and sentimental in-
formation on the bipartite graph based label prop-
agation model.

6 Conclusion

In this study, we address a novel task, namely e-
motion detection in code-switching texts. First,
we collect and extract the code-switching post-
s from Weibo.com, which are annotated with e-
motions. Then, we use both SMT-based bilin-
gual information and sentimental information to
bridge the gap between different languages in
code-switching texts. Finally, we propose a bi-
partite graph based label propagation model to
effectively incorporate both bilingual and senti-
mental information for detecting emotion in code-
switching texts. Empirical studies demonstrate
that our model significantly outperforms several
strong baselines.

Our current work assumes the independence of
emotions and caused languages. In future work,
we would like to explore the relation among emo-
tions and caused languages for detecting the emo-
tion and caused languages collectively.
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Abstract

Humans are idiosyncratic and variable: to-
wards the same topic, they might hold dif-
ferent opinions or express the same opin-
ion in various ways. It is hence impor-
tant to model opinions at the level of in-
dividual users; however it is impractical
to estimate independent sentiment classi-
fication models for each user with limited
data. In this paper, we adopt a model-
based transfer learning solution – using
linear transformations over the parame-
ters of a generic model – for personalized
opinion analysis. Extensive experimental
results on a large collection of Amazon
reviews confirm our method significantly
outperformed a user-independent generic
opinion model as well as several state-of-
the-art transfer learning algorithms.

1 Introduction

The proliferation of user-generated opinionated
text data has fueled great interest in opinion analy-
sis (Pang and Lee, 2008; Liu, 2012). Understand-
ing opinions expressed by a population of users
has value in a wide spectrum of areas, including
social network analysis (Bodendorf and Kaiser,
2009), business intelligence (Gamon et al., 2005),
marketing analysis (Jansen et al., 2009), person-
alized recommendation (Yang et al., 2013) and
many more.

Most of the existing opinion analysis research
focuses on population-level analyses, i.e., predict-
ing opinions based on models estimated from a
collection of users. The underlying assumption is
that users are homogeneous in the way they ex-
press opinions. Nevertheless, different users may
use the same words to express distinct opinions.
For example, the word “expensive” tends to be
associated with negative sentiment in general, al-
though some users may use it to describe their sat-
isfaction with a product’s quality. Failure to rec-

ognize this difference across users will inevitably
lead to inaccurate understanding of opinions.

However, due to the limited availability of user-
specific opinionated data, it is impractical to es-
timate independent models for each user. In this
work, we propose a transfer learning based solu-
tion, named LinAdapt, to address this challenge.
Instead of estimating independent classifiers for
each user, we start from a generic model and adapt
it toward individual users based on their own opin-
ionated text data. In particular, our key assump-
tion is that the adaptation can be achieved via a set
of linear transformations over the generic model’s
parameters. When we have sufficient observations
for a particular user, the transformations will push
the adapted model towards the user’s personalized
model; otherwise, it will back off to the generic
model. Empirical evaluations on a large collection
of Amazon reviews verify the effectiveness of the
proposed solution: it significantly outperformed a
user-independent generic model as well as several
state-of-the-art transfer learning algorithms.

Our contribution is two-fold: 1) we enable ef-
ficient personalization of opinion analysis via a
transfer learning approach, and 2) the proposed so-
lution is general and applicable to any linear model
for user opinion analysis.

2 Related Work

Sentiment Analysis refers to the process of iden-
tifying subjective information in source materials
(Pang and Lee, 2008; Liu, 2012). Typical tasks in-
clude: 1) classifying textual documents into posi-
tive and negative polarity categories, (Dave et al.,
2003; Kim and Hovy, 2004); 2) identifying textual
topics and their associated opinions (Wang et al.,
2010; Jo and Oh, 2011); and 3) opinion summa-
rization (Hu and Liu, 2004; Ku et al., 2006). Ap-
proaches for these tasks focus on population-level
opinion analyses, in which one model is shared
across all users. Little effort has been devoted
to personalized opinion analyses, where each user
has a particular model, due to the absence of user-
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specific opinion data for model estimation.
Transfer Learning aims to help improve pre-

dictive models by using knowledge from different
but related problems (Pan and Yang, 2010). In
the opinion mining community, transfer learning
is used primarily for domain adaptation. Blitzer
et al. (2006) proposed structural correspondence
learning to identify the correspondences among
features between different domains via the concept
of pivot features. Pan et al. (2010) propose a spec-
tral feature alignment algorithm to align domain-
specific sentiment words from different domains
for sentiment categorization. By assuming that
users tend to express consistent opinions towards
the same topic over time, Guerra et al. (2011) ap-
plied instance-based transfer learning for real time
sentiment analysis.

Our method is inspired by a personalized rank-
ing model adaptation method developed by Wang
et al. (2013). To the best of our knowledge, our
work is the first to estimate user-level classifiers
for opinion analysis. By adapting a generic opin-
ion classification model for each user, heterogene-
ity among their expressions of opinions can be
captured and it help us understand users’ opinions
at a finer granularity.

3 Linear Transformation Based Model
Adaptation

Given a generic sentiment classification model y=
fs(x), we aim at finding an optimal adapted model
y = fu(x) for user u, such that fu(x) best cap-
tures u’s opinion in his/her generated textual doc-
uments Du ={xd, yd}|D|d=1, where xd is the feature
vector for document d, yd is the sentiment class
label (e.g., positive v.s., negative). To achieve so,
we assume that such adaptation can be performed
via a series of linear transformations on f s(x)’s
model parameter ws. This assumption is general
and can be applied to a wide variety of sentiment
classifiers, e.g., logistic regression and linear sup-
port vector machines, as long as they have a linear
core function. Therefore, we name our proposed
method as LinAdapt. In this paper, we focus on
logistic regression (Pang et al., 2002); but the pro-
posed procedures can be easily adopted for many
other classifiers (Wang et al., 2013).

Our global model y=fs(x) can be written as,

P s(yd = 1|xd) =
1

1 + e−wsTxd
(1)

where ws are the linear coefficients for the corre-
sponding document features.

Standard linear transformations, i.e., scaling,
shifting and rotation, can be encoded via a V ×

(V + 1) matrix Au for each user u as:



au
g(1) cug(1),12 cug(1),13 0 0 bug(1)

cug(2),21 au
g(2) cug(2),23 . . . 0 bug(2)

cug(3),31 cug(3),32 au
g(3)

. . .
... bug(3)

0 . . . . . . . . .
. . .

...
0 0 . . . . . . au

g(V ) bug(V )


where V is the total number of features.

However, the above transformation introduces
O(V 2) free parameters, which are even more than
the number of free parameters required to estimate
a new logistic regression model. Following the so-
lution proposed by Wang et al. (2013), we further
assume the transformations can be performed in a
group-wise manner to reduce the size of param-
eters in adaptation. The intuition behind this as-
sumption is that features that share similar contri-
butions to the classification model are more likely
to be adapted in the same way. Another advantage
of feature grouping is that the feedback informa-
tion will be propagated through the features in the
same group while adaptation; hence the features
that are not observed in the adaptation data can
also be updated properly.

We denote g(·) as the feature grouping function,
which maps V original features to K groups, and
au

k , buk and cuk as the scaling, shifting and rotation
operations over ws in group k for user u. In addi-
tion, rotation is only performed for the features in
the same group, and it is assumed to be symmetric,
i.e., cuk,ij = cuk,ji, where g(i) = k and g(j) = k.
As a result, the personalized classification model
fu(x) after adaptation can be written as,

Pu(yd = 1|xd) =
1

1 + e−(Auw̃s)Txd
(2)

where w̃s = (ws, 1) to accommodate the shifting
operation.

The optimal transformation matrix Au for user
u can be estimated by maximum likelihood esti-
mation based on user u’s own opinionated docu-
ment collection Du. To avoid overfitting, we pe-
nalize the transformation which increases the dis-
crepancy between the adapted model and global
model by the following regularization term,

R(Au) = −η
2

K∑
k=1

(au
k − 1)2 − σ

2

K∑
k=1

buk
2

− ε
2

K∑
k=1

∑
i,g(i)=k

∑
j 6=i,g(j)=k

cuk,ij
2, (3)

where η, σ and ε are trade-off parameters control-
ling the balance among shifting, scaling and rota-
tion operations in adaptation.
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Combining the newly introduced regularization
term for Au and log-likelihood function for logis-
tic regression, we get the following optimization
problem to estimate the adaptation parameters,

max
Au

L(Au) = LLR(Du;Pu) +R(Au) (4)

whereLLR(Du;P u) is the log-likelihood of logis-
tic regression on collection Du, and P u is defined
in Eq (2).

Gradient-based method is used to optimize
Eq (4), in which the gradient for au

k , buk and cuk
can be calculated as,

∂L(Au)

∂ak
=

Du∑
d=1

{yd[1− p(yd|xd)]
∑

i,g(i)=k

ws
i xdi}−η(ak − 1)

∂L(Au)

∂bk
=

Du∑
d=1

{yd[1− p(yd|xd)]
∑

i,g(i)=k

xdi}−σbk

∂L(Au)

∂ck,ij
=

Du∑
d=1

{yd[1− p(yd|xd)]ws
jxdi}−εck,ij

4 Experiments and Discussion

We performed empirical evaluations of the pro-
posed LinAdapt algorithm on a large collection of
product review documents. We compared our ap-
proach with several state-of-the-art transfer learn-
ing algorithms. In the following, we will first in-
troduce the evaluation corpus and baselines, and
then discuss our experimental findings.

4.1 Data Collection and Baselines
We used a corpus of Amazon reviews provided
on Stanford SNAP website by McAuley and
Leskovec. (2013). We performed simple data pre-
processing: 1) annotated the reviews with ratings
greater than 3 stars (out of total 5 stars) as positive,
and others as negative; 2) removed duplicate re-
views; 3) removed reviewers who have more than
1,000 reviews or more than 90% positive or neg-
ative reviews; 4) chronologically ordered the re-
views in each user. We extracted unigrams and bi-
grams to construct bag-of-words feature represen-
tations for the review documents. Standard stop-
word removal (Lewis et al., 2004) and Porter stem-
ming (Willett, 2006) were applied. Chi-square
and information gain (Yang and Pedersen, 1997)
were used for feature selection and the union of
the resulting selected features are used in the fi-
nal controlled vocabulary. The resulting evalua-
tion data set contains 32,930 users, 281,813 posi-
tive reviews, and 81,522 negative reviews, where
each review is represented with 5,000 text features
with TF-IDF as the feature value.

Our first baseline is an instance-based adapta-
tion method (Brighton and Mellish, 2002). The k-
nearest neighbors of each testing review document
are found from the shared training set for person-
alized model training. As a result, for each test-
ing case, we are estimating an independent clas-
sification model. We denote this method as “Re-
Train.” The second baseline builds on the model-
based adaptation method developed by Geng et
al. (2012). For each user, it enforces the adapted
model to be close to the global model via an ad-
ditional L2 regularization when training the per-
sonalized model. But the full set of parameters in
logistic regression need to estimated during adap-
tation. We denote this method as “Reg-LR.”

In our experiments, all model adaptation is per-
formed in an online fashion: we first applied the
up-to-date classification model on the given test-
ing document; evaluated the model’s performance
with ground-truth; and used the feedback to up-
date the model. Because the class distribution of
our evaluation data set is highly skewed (77.5%
positive), it is important to evaluate the adapted
models’ performance on both classes. In the fol-
lowing comparisons, we report the average F-1
measure of both positive and negative classes.

4.2 Comparison of Adaptation Performance

First we need to estimate a global model for adap-
tation. A typical approach is to collect a portion
of historical reviews from each user to construct a
shared training corpus (Wang et al., 2013). How-
ever, this setting is problematic: it already exploits
information from every user and does not reflect
the reality that some (new) users might not exist
when training the global model. In our experi-
ment, we isolated a group of random users for
global model training. In addition, since there are
multiple categories in this review collection, such
as book, movies, electronics, etc, and each user
might discuss various categories, it is infeasible
to balance the coverage of different categories in
global model training by only selecting the users.
As a result, we vary the number of reviews in each
domain from the selected training users to estimate
the global model. We started with 1000 reviews
from the top 5 categories (Movies & TV, Books,
Music, Home & Kitchen, and Video Games), then
evaluated the global model on 10,000 testing users
which consist of three groups: light users with 2 to
10 reviews, medium users with 11 to 50 reviews,
and heavy users with 51 to 200 reviews. After each
evaluation run, we added an extra 1000 reviews
and repeated the training and evaluation.
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Table 1: Global model training with varying size
of training corpus.

Model Metric 1000 2000 3000 4000 5000

Global Pos F1 0.741 0.737 0.738 0.734 0.729
Neg F1 0.106 0.126 0.125 0.132 0.159

LinAdapt Pos F1 0.694 0.693 0.692 0.694 0.696
Neg F1 0.299 0.299 0.296 0.299 0.304

Table 2: Effect of feature grouping in LinAdapt.

Method Metric 100 200 400 800 1000

Rand Pos F1 0.691 0.692 0.696 0.686 0.681
Neg F1 0.295 0.298 0.300 0.322 0.322

SVD Pos F1 0.691 0.698 0.704 0.697 0.696
Neg F1 0.298 0.302 0.300 0.322 0.334

Cross Pos F1 0.701 0.702 0.705 0.700 0.696
Neg F1 0.298 0.299 0.303 0.328 0.331

To understand the effect of global model train-
ing in model adaptation, we also included the per-
formance of LinAdapt, which only used shifting
and scaling operations and Cross feature group-
ing method with k = 400 (detailed feature group-
ing method will be discussed in the next exper-
iment). Table 1 shows the performance of the
global model and LinAdapt with respect to differ-
ent training corpus size. We found that the global
model converged very quickly with around 5,000
reviews, and this gives the best compromise for
both positive and negative classes in both global
and adaptaed model. Therefore, we will use this
global model for later adaptation experiments.

We then investigated the effect of feature group-
ing in LinAdapt. We employed the feature group-
ing methods of SV D and Cross developed by
Wang et al. (2013). A random feature grouping
method is included to validate the necessity of
proper feature grouping. We varied the number
of feature groups from 100 to 1000, and evaluated
the adapted models using the same 10,000 testing
users from the previous experiment. As shown in
Table 2, Cross provided the best adaptation per-
formance and random is the worse; a moderate
group size balances performance between positive
and negative classes. For the remaining experi-
ments, we use the Cross grouping with k = 400
in LinAdapt. In this group setting, we found that
the average number of features per group is 12.47
while the median is 12, which means that features
are normally distributed across different groups.

Next, we investigated the effect of differ-
ent linear operations in LinAdapt, and com-
pared LinAdapt against the baselines. We started
LinAdapt with only the shifting operation, and
then included scaling and rotation. To validate
the necessity of personalizing sentiment classifica-

tion models, we also included the global model’s
performance in Figure 1. In particular, to under-
stand the longitudinal effect of personalized model
adaptation, we only used the heavy users (4,021
users) in this experiment. The results indicate
that the adapted models outperformed the global
model in identifying the negative class; while the
global model performs the best in recognizing pos-
itive reviews. This is due to the heavily biased
class distribution in our collection: global model
puts great emphasis on the positive reviews; while
the adaptation methods give equal weights to both
positive and negative reviews. In particular, in
LinAdapt, scaling and shifting operations lead to
satisfactory adaptation performance for the nega-
tive class with only 15 reviews; while rotation is
essential for recognizing the positive class.

To better understand the improvement of model
adaptation against the global model in different
types of users, we decomposed the performance
gain of different adaptation methods. For this ex-
periment, we used all the 10,000 testing users:
we used the first 50% of the reviews from each
user for adaptation and the rest for testing. Ta-
ble 3 shows the performance gain of different al-
gorithms under light, medium and heavy users.
For the heavy and medium users, which only
consist 0.1% and 35% of the total population in
our data set, our adaptation model achieved the
best improvement against the global model com-
pared with Reg-LR and ReTrain. For the light
users, who cover 64.9% of the total population,
LinAdapt was able to improve the performance
against the global model for the negative class, but
Reg-LR and ReTrain had attained higher perfor-
mance. For the positive class, none of those adap-
tation methods can improve over the global model
although they provide a very close performance (in
LinAdapt, the differences are not significant). The
significant improvement in negative class predic-
tion from model adaptation is encouraging con-
sidering the biased distribution of classes, which
results in poor performance in the global model.

The above improved classification performance
indicates the adapted model captures the hetero-
geneity in expressing opinions across users. To
verify this, we investigated textual features whose
sentiment polarities are most/least frequently up-
dated across users. We computed the variance of
the absolute difference between the learned feature
weights in LinAdapt and global model. High vari-
ance indicates the word’s sentiment polarity fre-
quently changes across different users. But there
are two reasons for a low variance: first, a rare
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Figure 1: Online adaptation performance comparisons.

Table 3: User-level performance gain over global
model from ReTrain, Reg-LR and LinAdapt.

Method User Class Pos F1 Neg F1

ReTrain
Heavy -0.092 0.155∗

Medium -0.095 0.235∗
Light -0.157∗ 0.255∗

Reg-LR
Heavy -0.010 0.109∗

Medium -0.005 0.206∗
Light -0.060 0.232∗

LinAdapt
Heavy -0.046 0.248∗

Medium -0.049 0.235∗
Light -0.091 0.117∗

∗ p-value< 0.05 with paired t-test.
Table 4: Top 10 words with the highest and lowest
variance of learned polarity in LinAdapt.

Variance Features

Highest
waste good attempt
money return save
poor worst annoy

Lowest
lover correct pure
care the product odd
sex evil less than

word that is not used by many users; second, a
word is being used frequently, yet, with the same
polarity. We are only interested in the second case.
Therefore, for each word, we compute its user fre-
quency (UF), i.e., how many unique users used
this word in their reviews. Then, we selected 1000
most popular features by UF, and ranked them ac-
cording to the variance of learned sentiment polar-
ities. Table 4 shows the top ten features with the
highest and lowest polarity variance.

We inspected the learned weights in the adapted
models in each user from LinAdapt, and found
the words like waste, poor, and good share the
same sentiment polarity as in the global model
but different magnitudes; while words like money,
instead, and return are almost neutral in global
model, but vary across the personalized models.
On the other hand, words such as care, sex, evil,
pure, and correct constantly carry the same sen-

Table 5: Learned sentiment polarity range of three
typical words in LinAdapt.

Feature Range Global Used as Used as
Weight Positive Negative

Experience [-0.231,0.232] 0.002 3348 1503
Good [-0.170,0.816] 0.032 8438 1088
Money [-0.439,0.074] -0.013 646 6238

timent across users. Table 5 shows the detailed
range of learned polarity for three typical opin-
ion words in 10,000 users. This result indicates
LinAdapt well captures the fact that users express
opinions differently even with the same words.

5 Conclusion and Future Work

In this paper, we developed a transfer learning
based solution for personalized opinion mining.
Linear transformations of scaling, shifting and ro-
tation are exploited to adapt a global sentiment
classification model for each user. Empirical
evaluations based on a large collection of opin-
ionated review documents confirm that the pro-
posed method effectively models personal opin-
ions. By analyzing the variance of the learned
feature weights, we are able to discover words
that hold different polarities across users, which
indicates our model captures the fact that users
express opinions differently even with the same
words. In the future, we plan to further explore
this linear transformation based adaptation from
different perspectives, e.g., sharing adaptation op-
erations across users or review categories.
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Abstract

In this paper, we propose a flexi-
ble principle-based approach (PBA) for
reader-emotion classification and writ-
ing assistance. PBA is a highly auto-
mated process that learns emotion tem-
plates from raw texts to characterize an
emotion and is comprehensible for hu-
mans. These templates are adopted to pre-
dict reader-emotion, and may further assist
in emotional resonance writing. Results
demonstrate that PBA can effectively de-
tect reader-emotions by exploiting the syn-
tactic structures and semantic associations
in the context, thus outperforming well-
known statistical text classification meth-
ods and the state-of-the-art reader-emotion
classification method. Moreover, writers
are able to create more emotional reso-
nance in articles under the assistance of the
generated emotion templates. These tem-
plates have been proven to be highly inter-
pretable, which is an attribute that is diffi-
cult to accomplish in traditional statistical
methods.

1 Introduction

The Internet has rapidly grown into a powerful
medium for disseminating information. People
can easily share experiences and emotions anytime
and anywhere on social media websites. Human
feelings can be quickly collected through emotion
classification, as these emotions reflect an individ-
ual’s feelings and experiences toward some sub-
ject matters (Turney, 2002; Wilson et al., 2009).
Moreover, people can obtain more sponsorship
opportunities from manufacturers if their articles
about a certain product are able to create more
emotional resonance in the readers. Therefore,

∗Corresponding author

emotion classification has been attracting more
and more attention, e.g., Chen et al. (2010), Purver
and Battersby (2012).

Emotion classification aims to predict the emo-
tion categories (e.g., happy or angry) of the given
text (Quan and Ren, 2009; Das and Bandyopad-
hyay, 2009). There are two aspects of emotions
in texts, namely, writer’s and reader’s emotions.
The former concerns the emotion expressed by
the writer of the text, and the latter concerns
the emotion a reader had after reading it. Rec-
ognizing reader-emotion is different and may be
even more complex than writer-emotion (Lin et
al., 2008; Tang and Chen, 2012). A writer may
directly express her emotions through sentiment
words. By contrast, reader-emotion possesses a
more perplexing nature, as even common words
can invoke different types of reader-emotions de-
pending on the reader’s personal experiences and
knowledge (Lin et al., 2007). For instance, a sen-
tence like “Kenya survivors describe deadly at-
tack at Garissa University” is simply stating the
facts without any emotion, but may invoke emo-
tions such as angry or worried in its readers.

In light of this rationale, we propose a principle-
based approach (PBA) for reader-emotion classifi-
cation. It is a highly automated process that in-
tegrates various types of knowledge to generate
discriminative linguistic templates that can be ac-
knowledged as the essential knowledge for hu-
mans to understand different kinds of emotions.
PBA recognizes reader-emotions of documents us-
ing an alignment algorithm that allows a template
to be partially matched through a statistical scor-
ing scheme. Experiments demonstrate that PBA
can achieve a better performance than other well-
known text categorization methods and the state-
of-the-art reader-emotion classification method.
Furthermore, we adopt these generated templates
to assist in emotional resonance writing. Results
show that writers are able to generate more emo-
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p(w|E)N(w∧E)(1−p(w|E))N(E)−N(w∧E)p(w|¬E)N(w∧¬E)(1−p(w|¬E))N(¬E)−N(w∧¬E)

]
(1)

tional resonance in readers after exploiting these
templates, demonstrating the capability of PBA in
extracting templates with high interpretability.

2 Extracting Emotion Templates from
Raw Text

PBA attempts to construct emotion templates
through recognition of crucial elements using a
three-layered approach. First, since keywords
contain important information, PBA learns reader-
emotion specific keywords using an effective
feature selection method, log likelihood ratio
(LLR) (Manning and Schütze, 1999). It employs
Equation (1) to calculate the likelihood of the
assumption that the occurrence of a word w in
reader-emotionE is not random. In (1),E denotes
the set of documents of the reader-emotion in the
training data; N(E) and N(¬E) denote the num-
bers of documents that do or do not contain this
emotion, respectively; and N(w ∧ E) is the num-
ber of documents with emotion E and having w.
The probabilities p(w), p(w|E), and p(w|¬E) are
estimated using maximum likelihood estimation.
A larger LLR value is considered closely associ-
ated with an emotion. Words in the training data
are ranked by LLR values, and the top 200 are in-
cluded in our emotion keyword list.

Next, named entities (NEs) have been shown
to improve the performance of identifying top-
ics (Bashaddadh and Mohd, 2011). Thus, we uti-
lize Wikipedia to semi-automatically label NEs
with their semantic classes, which can be con-
sidered as a form of generalization. Wikipedia’s
category tags are used to label NEs recognized
by the Stanford NER1. If there are more than
one category tag for an NE, we select the most
dominant one with the highest number of as-
sociated Wikipedia pages. The assumption is
that the generality of a tag is indicated by the
number of Wikipedia pages that are linked to
it. For example, a query “奥巴马 (Obama)”
to the Wikipedia would return a page titled
“贝拉克.奥巴马 (Barack Obama)”. Within this
page, there are a number of category tags such
as “民主党 (Democratic Party)” and “美国总统

1http://nlp.stanford.edu/software/CRF-NER.shtml

(Presidents of the United States)”. Suppose
“美国总统 (Presidents of the United States)” has
more out-going links, we will label “奥巴马
(Obama)” as “[美国总统] (Presidents of the
United States)”. We also annotate those NEs
not found in Wikipedia with their category tags.
In this manner, we can transform plain NEs
to a more general class and increase the cov-
erage of each label. Finally, to incorporate
richer semantic context, we exploit the Extended
HowNet (E-HowNet) (Chen et al., 2005) after
the above processes to tag the remaining text
with sense labels. Figure 1 illustrates crucial
element labeling process. Consider the clause
Cn = “奥巴马又代表民主党赢得美国总统选举
(Obama, representing the Democratic Party, won
the U.S. Presidential election)”. First, “奥巴马
(Obama)” is found in the emotion keyword list
and tagged. Then, NEs like “民主党 (Democratic
Party)” and “总统选举 (Presidential election)”
are recognized and tagged as “{政党 (Party)}”
and “{总统选举 (Presidential election)}”. Sub-
sequently, other terms such as “代表 (represent)”
and “赢得 (won)” are labeled with their corre-
sponding E-HowNet senses. Finally, we obtain the
sequence “[奥巴马] : {代表} : {政党} : {得到}
: {国家} : {总统选举} ([Obama] : {represents}
: {party} : {got} : {country} : {Presidential elec-
tion}).” This three-layered labeling process serves
as a generalization of the raw text for capturing
crucial elements used in the template generation
stage that follows.

The emotion template generation process aims
at automatically constructing representative tem-
plates consisting of a sequence of crucial el-
ements. We observed that the rank-frequency
distribution of the elements follows the Zipf’s
law (Manning and Schütze, 1999). Thus, we
rank the templates according to their frequency,
and adopt a dominating set algorithm (Johnson,
1974) to use the top 20% templates to cover the
rest. First, we constructed a directed graph G =
{V,E}, in which vertices V contains all crucial
element sequences {CES1, · · · , CESm} in each
emotion, and edgesE represent the dominating re-
lations between sequences. If CESx dominates
CESy, there is an edge CESx → CESy. A
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Figure 1: Crucial element labeling process.

dominating relation is defined as follows. 1) Cru-
cial element sequences with high frequency are
selected as candidate dominators. 2) Longer se-
quences dominate shorter ones if their head and
tail elements are identical. The intermediate el-
ements are treated as insertions and/or deletions,
which can be scored based on their distribution in
this emotion during the matching process. Lastly,
we preserve top 100 most prominent and distinc-
tive ones from approximately 55,000 sequences
based on the dominating rate. This process serves
as a kind of dimension reduction and facilitates the
execution of our matching algorithm.

3 Template Matching for Inference

We believe that human perception of an emotion is
through recognizing important events or semantic
contents. For instance, when an article contains
strongly correlated words such as “Japan (coun-
try)”, “Earthquake (disaster)”, and “Tsunami (dis-
aster)” simultaneously, it is natural to conclude
that this article is more likely to elicit emotions
like depressed and worried rather than happy and
warm. Following this line of thought, PBA uses
an alignment algorithm (Needleman and Wun-
sch, 1970) to measure the similarity between tem-
plates and texts. It enables a single template to
match multiple semantically related expressions
with appropriate scores. For each clause in a doc-
ument dj , we first label crucial elements CE =
{ce1, · · · , cen}, followed by the matching proce-
dure that compares all sequences in CE from dj
to all emotion templates ET = {et1, · · · , etj} in

each emotion category, and calculates the scores.
Within the alignment matching, a statistical based
scoring criterion is used to score insertions, dele-
tions, and substitutions as described below. The
emotion ei with the highest sum of scores defined
in (2) is considered as the winner.

Emotion(dj)

= arg max
ei∈E

∑
etn∈ETci ,cem∈CEdj

∆(etn, cem)

=
∑
k

∑
l

∆(etn · slk, cem · cel) (2)

where slk and cel represent the kth slot of etn and
lth element of cem, respectively. Details for scor-
ing matched and unmatched elements are as fol-
lows. If etn·slk and cem·cel are identical, we add a
matched score (MS) obtained from the LLR value
of cel if it matches a keyword. Otherwise, the
score is determined by multiplying the frequency
of the crucial element in category ci by a normal-
izing factor λ = 100, as in (3). On the other hand,
an unmatched element is given a score of insertion
or deletion. The insertion score (IS), defined as
(4), can be accounted for by the inversed entropy
of this element, which represents the uniqueness
or generality of it among categories. And the dele-
tion score (DS), defined as (5), is computed from
the log frequency of this crucial element in this
emotion category.
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MS (cel) =


LLRcel , if cel ∈ keyword

λ
fcel
m∑
i=1

fcei

, otherwise (3)

IS (cel) =
1

−
m∑
i=1

P (celci ) · log2(P (celci ))

(4)

DS (ce
l
) = log

fcel
m∑
i=1

fcei

(5)

4 Experiments

4.1 Dataset and Setting

We collected a corpus of Chinese news articles
from Yahoo! Kimo News2, in which each article
is given votes from readers with emotion tags in
eight categories: angry, worried, boring, happy,
odd, depressing, warm, and informative. We con-
sider the voted emotions as the reader’s emotion
toward the news. Following previous studies such
as Lin et al. (2007) and Lin et al. (2008) that used
a similar source, we exclude “informative” as it is
not considered as an emotion category. To ensure
the quality of our evaluation, only articles with
a clear statistical distinction between the highest
vote of emotion and others determined by t-test
with a 95% confidence level are retained. Finally,
47,285 out of 68,026 articles are kept, and divided
into the training set and the test set, each contain-
ing 11,681 and 35,604 articles, respectively.

4.2 Reader’s Emotion Classification

Several classification methods are implemented
and compared. Naı̈ve Bayes (McCallum et al.,
1998) serves as the baseline, denoted as NB. In
addition, a probabilistic graphical model that uses
LDA as document representation to train an SVM
classifier that determines a document as either rel-
evant or irrelevant (Blei et al., 2003), denotes as
LDA. Next, an emotion keyword-based model, de-
noted as KW, is trained using SVM to test the
effect of our keyword extraction approach. CF
is the state-of-the-art reader-emotion recognition
method that combines various features including
bigrams, words, metadata, and emotion category
words (Lin et al., 2007). For evaluation, we adopt

2https://tw.news.yahoo.com

the accuracy measures as used by Lin et al. (2007),
and compute the macro-average (AM ) and micro-
average (Aµ). Table 1 shows a comprehensive
evaluation of PBA and other methods3.

Emotion Accuracy(%)
NB LDA KW CF PBA

angry 47.00 74.21 79.21 83.71 87.83
worried 69.56 92.83 81.96 87.50 75.80
boring 75.67 76.21 84.34 87.52 90.52
happy 37.90 67.59 80.97 86.27 88.94
odd 73.90 85.40 77.05 84.25 83.34
depressing 73.76 81.43 85.00 87.70 92.15
warm 75.09 87.09 79.59 85.83 91.91
AM 58.11 76.10 80.36 85.80 86.43
Aµ 52.78 74.16 80.81 85.70 88.56

Table 1: Comparison of the accuracies of five
reader-emotion classification systems.

Since NB only considers surface word weight-
ings and ignore inter-word relations, it only
achieved an accuracy of 58.11%. By contrast,
LDA includes both keywords and long-distance re-
lations, thus greatly outperforms NB with an over-
all accuracy of 76.10%. It even obtained the high-
est accuracy of 92.83% for the emotions “worried”
and “odd” among all methods. Notably, KW can
bring about substantial proficiency in detecting the
emotions, which indicates that reader-emotion can
be recognized effectively by using only the LLR
scores of keywords. Meanwhile, CF achieved a
satisfactory overall accuracy around 85%, due to
the combined lexical feature sets (e.g., charac-
ter bigrams, word dictionary, and emotion key-
words), paired with metadata of the articles. For
instance, we found that many sports-related ar-
ticles invoke the emotion “happy”. Specifically,
45% of all “happy” instances are sports-related,
and a sports-related article has a 31% chance of
having the emotion tag “happy”. Hence, the high
accuracy of the emotion category “happy” could
be the result of people’s general enthusiasm over
sports rather than a particular event. On top of
that, PBA can generate distinctive emotion tem-
plates to capture variations of similar expressions,
thus achieving better outcome. For instance, the
template “{国家 country}” : [发生 occur] : [地震
earthquake] : {劫难 disaster}” is generated by PBA

3The dictionary required by all methods is constructed
by removing stop words according to (Zou et al., 2006),
and retaining tokens that make up 90% of the accumu-
lated frequency. As for unseen events, we used the Laplace
smoothing in NB. LDA is implemented using a toolkit
(http://nlp.stanford.edu/software/tmt/tmt-0.4/).
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for the emotion “worried”. It is perceivable that
this template is relaying information about dis-
astrous earthquakes in a country, and such news
often makes readers worry. The ability to yield
such emotion-specific, human interpretable tem-
plates could account for the outstanding perfor-
mance of PBA.

4.3 Reader’s Emotion Templates Suggestion
in Emotional Resonance Writing

This experiment aims at testing the effectiveness
of the emotion templates in aiding writers to com-
pose articles with stronger emotional resonance.
Here, we only consider coarse-grained emotion
categories (i.e., positive and negative). Thus, fine-
grained emotions like happy, warm, and odd are
merged into ‘positive’, while angry, boring, de-
pressing, and worried are merged into ‘negative’.
10 templates for each of the fine-grained emo-
tions are selected, resulting in 30 and 40 templates
for the two coarse-grained emotions, respectively.
We recruited seven writers to compose two arti-
cles that they think will trigger positive and neg-
ative emotions without using templates (denoted
as NT). Then, we asked them to compose two
more articles with the aid of templates (denoted
as WT). Afterwards, all articles are randomly or-
ganized into a questionnaire to test the emotional
resonance. Subjects are required to perform two
tasks: 1) answer ‘positive’, ‘neutral’, or ‘negative’
2) give a score according to the five-point Likert
scale (Likert, 1932) for a given emotion. In the
end, 42 effective responses are gathered. For Task
1, the score is defined as the number of matching
responses and answers. As for Task 2, the score is
the sum of all articles. Higher scores indicate bet-
ter emotional resonance between writers and read-
ers. Figure 2 shows the sum of scores in Task 1
from all subjects, grouped by writer. As for Task 2,
Figure 3 shows the average score across subjects,
grouped by writers. In both tasks, we can see that
higher scores are obtained after using templates,
indicating that emotion templates can indeed assist
writers in creating stronger emotional resonance in
their composition.

To sum up, results show that PBA can gener-
ate emotion templates that not only help machines
predict reader’s emotion, but also effectively aid
writers in creating a stronger emotional resonance
with the readers.
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Figure 2: Comparison of the number of correct
emotional response before and after utilizing tem-
plates.
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Figure 3: Degree of emotional resonance between
writers and readers.

5 Conclusion

In this paper, we present PBA, a flexible, highly
automated, and human-interpretable approach
for reader-emotion classification. By capturing
prominent and representative patterns in texts,
PBA can effectively recognize the reader-emotion.
Results demonstrate that PBA outperforms other
reader-emotion detection methods, and can assist
writers in creating higher emotional resonance. In
the future, we plan to further refine and employ it
to other NLP applications. Also, additional work
can be done on combining statistical models into
different components of PBA.
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Abstract

Most cross-lingual sentiment classifica-
tion (CLSC) research so far has been per-
formed at sentence or document level.
Aspect-level CLSC, which is more appro-
priate for many applications, presents the
additional difficulty that we consider sub-
sentential opinionated units which have to
be mapped across languages. In this pa-
per, we extend the possible cross-lingual
sentiment analysis settings to aspect-level
specific use cases. We propose a method,
based on constrained SMT, to transfer
opinionated units across languages by pre-
serving their boundaries. We show that
cross-language sentiment classifiers built
with this method achieve comparable re-
sults to monolingual ones, and we com-
pare different cross-lingual settings.

1 Introduction

Sentiment analysis (SA) is the task of analysing
opinions, sentiments or emotions expressed to-
wards entities such as products, services, organi-
sations, issues, and the various attributes of these
entities (Liu, 2012). The analysis may be per-
formed at the level of a document (blog post, re-
view) or sentence. However, this is not appropriate
for many applications because the same document
or sentence can contain positive opinions towards
specific aspects and negative ones towards other
aspects. Thus a finer analysis can be conducted
at the level of the aspects of the entities towards
which opinions are expressed, identifying for each
opinionated unit elements such as its target, polar-
ity and the polar words used to qualify the target.

The two main SA approaches presented in the
literature are (i) a machine learning approach,
mostly supervised learning with features such as
opinion words, dependency information, opinion

shifters and quantifiers and (ii) a lexicon-based ap-
proach, based on rules involving opinion words
and phrases, opinion shifters, contrary clauses
(but), etc. Thus in most SA systems we may dis-
tinguish three types of resources and text:

TRAIN Resources (collection of training exam-
ples, lexicons) used to train the classifier.

TEST Opinions to be analysed.
OUT Outcome of the analysis. It depends on the

level of granularity. At the document or sentence
level, it is the polarity of each document or sen-
tence. At the aspect level, it may the set of opinion
targets with their polarity.

The internet multilingualism and the globalisa-
tion of products and services create situations in
which these three types of resources are not all
in the same language. In these situations, a lan-
guage transfer is needed at some point to perform
the SA analysis or to understand its results, thus
called cross-lingual sentiment analysis (CLSA).

Sentences or documents are handy granularity
levels for CLSA because the labels are not related
to specific tokens and thus are not affected by a
language transfer. At the aspect level, labels are
attached to a specific opinionated unit formed by
a sequence of tokens. When transferring these an-
notations into another language, the opinionated
units in the two languages have thus to be mapped.

This paper is one of the first ones to address
CLSA at aspect level (see Section 3). It makes
the following specific contributions:

(i) an extended definition of CLSA including
use cases and settings specific to aspect-level
analyses (Section 2);

(ii) a method to perform the language transfer
preserving the opinionated unit boundaries.
This avoids the need of mapping source and
target opinionated units after the language
transfer via methods such as word alignment
(Section 4);
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The paper also reports (in Section 5) experiments
comparing different settings described in Sec-
tion 2.

2 Use Cases and Settings

We can think of the following use cases for CLSA:
Use case I. There are opinions we want to ana-

lyse, but we do not avail of a SA system to perform
this analysis. We thus want to predict the polarity
of opinions expressed in a language LTEST us-
ing a classifier in another language LTRAIN . We
can assume that the languageLOUT of the analysis
outcome1 is the same as the one of the opinions. In
this case, equation 1 applies, yielding CLSA set-
tings a and b as follows (see also Figure 1).

LTRAIN 6= LTEST ;LOUT = LTEST (1)

(a) available training resources are transferred
into the test language to build a classifier in the
test language.

(b) we translate the test into the language of the
classifier, classify the opinions in the test, and then
transfer back the analysis outcome into the source
language by projecting the labels or/and opinion-
ated units onto the test set.

(a)

TRAIN TRAIN
L

′
TEST

TEST OUTLTEST

T

SA
L

′
TEST

Learn

(b)

TEST OUT
L

′
TEST

TEST
L

′
TRAIN

OUTLTRAIN

T

SALTRAIN

T
Proj

Figure 1: Use case I settings. SA refers to Senti-
ment Analisys, T to Translation, Proj to Projec-
tion and Learn to Learning, and the prime sym-
bol designs a language into which a set has been
automatically translated.

Use case II. We may have training resources in
the language of the opinions, but we need the re-

1As mentioned above, at the aspect level, the outcome of
the analysis may be a set of opinion targets with their polar-
ity. It may also be more complex, such as a set of opinion
expressions with their respective target, polarity, holder and
time (Liu, 2012). The outcome may need to be in another lan-
guage as the opinions themselves. For example, a company
based in China may survey the opinions of their Spanish-
speaking customers, and then transfer the SA outcome into
Chinese so that their marketing department can understand it.

sult of the analysis in a different language. Here,
the inequality of Eq. 2 applies, yielding CLSA set-
tings c and d as follows (see also Figure 2).

LOUT 6= LTEST (2)

(c) LTRAIN = LTEST ; the test opinions are
first analysed in their language, then the analysis
outcome is transferred into the desired language.

(d) LTRAIN = LOUT ; the test set is first trans-
ferred into the desired outcome language, and the
SA is performed in this language.

(c) TEST OUTLTEST
OUT

L
′
OUT

SALTEST T

(d) TEST TEST
L

′
OUT

OUT
T SALOUT

Figure 2: Use case II settings.

Use case II only makes sense for aspect-level
analysis,2 and to our knowledge, it was not ad-
dressed in the literature so far.

Use case III. We want to benefit from data
available in several languages, either to have more
examples and improve the classifier accuracy, or to
have a broader view of the opinions under study.

In this paper we focus on use cases I and II.

3 Related Work

The main CLSC approaches described in the liter-
ature are via lexicon transfer, via corpus transfer,
via test translation and via joint classification.

In the lexicon transfer approach, a source senti-
ment lexicon is transferred into the target language
and a lexicon-based classifier is build in the tar-
get language. Approaches to transfer lexica in-
clude machine translation (MT) (Mihalcea et al.,
2007), Wordnet (Banea et al., 2011; Hassan et al.,
2011; Perez-Rosas et al., 2012), relations between
dictionaries represented in graphs (Scheible et al.,
2010), or triangulation (Steinberger et al., 2012).

The corpus transfer approach consists of trans-
ferring a source training corpus into the target lan-
guage and building a corpus-based classifier in the
target language. Banea et al. (2008) follow this
approach, translating an annotated corpus via MT.
Balamurali et al. (2012) use linked Wordnets to

2For document and sentence-level classification, the out-
come is a set of polarity labels independent on language.

782



replace words in training and test corpora by their
(language-independent) synset identifiers. Gui et
al. (2014) reduce negative transfer in the process
of transfer learning. Popat et al. (2013) perform
CLSA with clusters as features, bridging target
and source language clusters with word alignment.

In the test translation approach, test sentences
from the target language are translated into the
source language and they are classified using a
source language classifier (Bautin et al., 2008).

Work on joint classification includes train-
ing a classifier with features from multilingual
views (Banea et al., 2010; Xiao and Guo, 2012),
co-training (Wan, 2009; Demirtas and Pech-
enizkiy, 2013), joint learning (Lu et al., 2011),
structural correspondence learning (Wei and Pal,
2010; Prettenhofer and Stein, 2010) or mixture
models (Meng et al., 2012). Gui et al. (2013) com-
pare several of these approaches.

Brooke et al. (2009) and Balamurali et al.
(2013) conclude that at document level, it is
cheaper to annotate resources in the target lan-
guage than building CLSA systems. This may
not be true at aspect level, in which the annota-
tion cost is much higher. In any case, when the
skills to build such annotated resources are lack-
ing, CLSA may be the only option. In language
pairs in which no high-quality MT systems are
available, MT may not be an appropriate trans-
fer method (Popat et al., 2013; Balamurali et al.,
2012). However, Balahur and Turchi (2014) con-
clude that MT systems can be used to build senti-
ment analysis systems that can obtain comparable
performances to the one obtained for English.

All this work was performed at sentence or doc-
ument level. Zhou et al. (2012) and Lin et al.
(2014) work at the aspect level, but they focus on
cross-lingual aspect extraction. Haas and Versley
(2015) use CLSA for individual syntactic nodes,
however they need to map target-language and
source-language nodes with word alignment.

4 Language Transfer

In aspect-level SA, there may be several opinion-
ated segments in each sentence. When perform-
ing a language transfer, each segment in the target
language has to be mapped to its corresponding
segment in the source language. This may not be
an obvious task at all. For example, if a standard
MT system is used for language translation, the
source opinionated segment may be reordered and

split in several parts in the target language. Then
the different parts have to be mapped to the orig-
inal segment with a method such as word align-
ment, which may introduce errors and may leave
some parts without a corresponding segment in
the source language. To avoid these problems, we
could translate only the opinionated segments, in-
dependently of each other. However, the context
of these segments, which may be useful for some
applications, would then be lost. Furthermore, the
translation quality would be worse than when the
segments are translated within the whole sentence
context.

To solve these problems, we translate the whole
sentences but with reordering constraints ensur-
ing that the opinionated segments are preserved
during translation. That is, the text between the
relevant segment boundaries is not reordered nor
mixed with the text outside these boundaries.3

Thus the text in the target language segment comes
only from the corresponding source language seg-
ment. We use the Moses statistical MT (SMT)
toolkit (Koehn et al., 2007) to perform the trans-
lation. In Moses, these reordering constraints are
implemented with the zone and wall tags, as in-
dicated in Figure 3. Moses also allows mark-up
to be directly passed to the translation, via the x
tag. We use this functionality to keep track, via the
tags <ou[id][-label]> and </ou[id]>, of
the segment boundaries (ou stands for Opinion-
ated Unit), of the opinionated segment identifier
([id]) and, for training and evaluation purposes,
of the polarity label ([-label]). In the example
of Figure 3, the id is 1 and the label is P.

5 CLSA experiments

In order to compare CLSA settings a and b (of use
case I), we needed data with opinion annotations at
the aspect level, in two different languages and in
the same domain. We used the OpeNER4 opinion
corpus,5 and more specifically the opinion expres-
sion and polarity label annotations of the hotel re-
view component, in Spanish and English. We split
the data in training (train) and evaluation (test) sets
as indicated in Table 1.

The SMT system was trained on freely avail-

3However, reordering within the segment text is allowed.
4http://www.opener-project.eu/
5Described in deliverable D5.42 (page 6) at:

http://www.opener-project.eu/project/publications.html.
This corpus will be freely available from June 2016 on, and
until then can be used for research purposes.
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Source: On the other hand <zone> <x translation="ou1-P">x</x> <wall/> a big ad-
vantage <wall/> <x translation="/ou1">x</x> </zone> of the hostel is its placement
Translation: por otra parte <ou1-P>una gran ventaja</ou1> del hostal es su colocación

Figure 3: Source text with reordering constraint mark-up as well as code to pass tags, and its translation.

Lang Docs Words Op. Units
Train EN 346 32149 3643

ES 359 31511 3905
Test EN 49 4256 496

ES 50 3733 484

Table 1: Number of documents (Docs), words and
opinionated units (Op. Units) in the OpeNER an-
notated data for English (EN) and Spanish (ES).

able data from the 2013 workshop on Statisti-
cal Machine Translation6 (WMT 2013). We also
crawled monolingual data in the hotel booking
domain, from booking.com and TripAdvisor.com.
From these in-domain data we extracted 100k and
50k word corpora, respectively for data selec-
tion and language model (LM) interpolation tun-
ing. We selected the data closest to the domain in
the English-Spanish parallel corpora via a cross-
entropy-based method (Moore and Lewis, 2010),
using the open source XenC tool (Rousseau,
2013). The size of available and selected corpora
are indicated in the first 4 rows of Table 2. The LM
was an interpolation of LMs trained with the target
part of the parallel corpora and with the rest of the
Booking and Trip Advisor data (last 2 rows of Ta-
ble 2). We used Moses Experiment Management
System (Koehn, 2010) with all default options to
build the SMT system.7

Because the common crawl corpus contained
English sentences in the Spanish side, we applied
an LM-based filter to select only sentence pairs in
which the Spanish side was better scored by the
Spanish LM than with the English LM, and con-
versely for the English side.

We conducted supervised sentiment classifica-
tion experiments for settings a and b of use case
I (see Section 2). We trained and evaluated clas-
sifiers on the annotated data (Table 1), using as
features the tokens (unigrams) within opinion ex-
pressions, and SP (Strong Positive), P (Positive),
N (Negative) and SN (Strong Negative) as la-

6http://www.statmt.org/wmt13/translation-task.html
7We kept selected parallel data of the common crawl cor-

pus for tuning and test. We obtained BLEU scores of 42 and
45 in the English–Spanish and Spanish–English directions.

Available Selected
Corpus EN ES EN ES
Common Crawl 46.7 49.5 6.7 7.0
Europarl v7 54.6 57.1 1.7 1.7
News Commentary 4.5 5.1 4.5 5.1
UN 321.7 368.6 3.4 3.5
Booking 1.7 2.6 1.7 2.6
Trip Advisor 23.4 4.4 23.4 4.4

Table 2: Size of the available and selected corpora
(in million words) in English (EN) and Spanish
(ES) used to train the SMT system.

TESTEN TESTES
′

TRAINEN TRAINEN
′ TRAINES

1 mono 1 CL a

MT

1 CL b

Figure 4: Experiments corresponding to group of
rows 1 of Table 3. “mono” refers to monolingual
and “CL a” and “CL b” refer to settings a and b of
use case I (Sec. 2).

bels. We performed the experiments with the weka
toolkit (Hall et al., 2009), using a filter to con-
vert strings into word vectors, and two learning al-
gorithms: SVMs and bagging with Fast Decision
Tree Learner as base algorithm.

Figure 4 represents the experiments conducted
with the EN test set. A monolingual classifier in
English is trained with the EN training set, and
evaluated with the EN test set (1 mono). The re-

LM Filter No Fil
Config Train Test Bag. SVM SVM
1 mono EN EN 77.2 83.4 83.4
1 CL a EN

′
EN 70.3 75.4 75.8

1 CL b ES ES
′

73.0 75.8 73.6
2 mono ES ES 76.8 81.1 81.1
2 CL a ES

′
ES 66.2 72.5 73.0

2 CL b EN EN
′

74.5 77.6 76.8

Table 3: Accuracy (in %) achieved by the different
systems. LM Filter and No Fil(ter) refer to the
presence or not of the LM filter for the common
crawl parallel corpus. “Bag.” refers to bagging.
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sults are reported in the first row of Table 3. To
evaluate cross-lingual setting a, the ES training set
is translated into English (see Section 4), and an
English classifier is trained on the translated data
and evaluated on the EN test set (1 CL a). To eval-
uate setting b, the EN test set is translated into
Spanish, and this translated test is used to evalu-
ate a classifier trained on the ES training set (1 CL
b). With this very simple classifier, we achieve
up to 83.4% accuracy in the monolingual case.
With cross-lingual settings, we loose from about
4% to 8% accuracy, and with the higher quality
SMT system (LM filter), CL-b setting is slightly
better than CL-a.

The same three experiments were conducted for
the ES test set (last three rows of Table 3). We
achieved an accuracy of 81.1% in the monolin-
gual case. Here the CL-b setting achieved a clearly
better accuracy than the CL-a setting (at least 5%
more), and only from 2.3% to 3.5% below the
monolingual one. Thus with the higher quality
SMT system, it is always better to translate the test
data (CL-b setting) than the training corpus.

Comparing the SVM classification accuracy in
the “LM Filter” and “No Fil” columns, we can see
the effect of introducing noise in the MT system.
We observe that the results were more affected by
the translation of the test (-2.2% and -0.8% accu-
racy) than the training set (+0.5% accuracy in both
cases). This agrees with the intuition than errors in
the test directly affect the results and thus may be
more harmful than in the training set, where they
may hardly affect the results if they represent in-
frequent examples.

Regarding use case II, setting c implies a trans-
lation of the analysis outcome. We can use our
method to translate the relevant opinionated units
with their predicted label in their test sentence
context, and extract the relevant information in the
outcome language. In setting d, the test is trans-
lated in the same way as in setting b.

6 Conclusions and Perspectives

We extended the possible CLSA settings to aspect-
level specific use cases. We proposed a method,
based on constrained SMT, to transfer opinionated
units across languages by preserving their bound-
aries. With this method, we built cross-language
sentiment classifiers achieving comparable results
to monolingual ones (from about 4 to 8% and 2.3
to 3.5% loss in accuracy depending on the lan-

guage and machine learning algorithm). We ob-
served that improving the MT quality had more
impact in settings using a translated test than a
translated training corpus. With the higher MT
quality system, we achieved better accuracy by
translating the test than the training corpus.

As future work, we plan to investigate the ex-
act effect of the reordering constraints in terms of
possible translation model phrase pairs and target
language model n-grams which may not be used
depending on the constraint parameters, in order
to find the best configuration.
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Abstract 

Compared to the categorical approach 
that represents affective states as several 
discrete classes (e.g., positive and nega-
tive), the dimensional approach repre-
sents affective states as continuous nu-
merical values on multiple dimensions, 
such as the valence-arousal (VA) space, 
thus allowing for more fine-grained sen-
timent analysis. In building dimensional 
sentiment applications, affective lexicons 
with valence-arousal ratings are useful 
resources but are still very rare. There-
fore, this study proposes a weighted 
graph model that considers both the rela-
tions of multiple nodes and their similari-
ties as weights to automatically deter-
mine the VA ratings of affective words. 
Experiments on both English and Chi-
nese affective lexicons show that the 
proposed method yielded a smaller error 
rate on VA prediction than the linear re-
gression, kernel method, and pagerank 
algorithm used in previous studies. 

1 Introduction 

Thanks to the vigorous development of online 
social network services, anyone can now easily 
publish and disseminate articles expressing their 
thoughts and opinions. Sentiment analysis thus 
has become a useful technique to automatically 
identify affective information from texts (Pang 
and Lee, 2008; Calvo and D'Mello, 2010; Liu, 
2012; Feldman, 2013). In sentiment analysis, 
representation of affective states is an essential 

issue and can be generally divided into categori-
cal and dimensional approaches. 

The categorical approach represents affective 
states as several discrete classes such as binary 
(positive and negative) and Ekman’s six basic 
emotions (e.g., anger, happiness, fear, sadness, 
disgust and surprise) (Ekman, 1992). Based on 
this representation, various techniques have been 
investigated to develop useful applications such 
as deceptive opinion spam detection (Li et al., 
2014), aspect extraction (Mukherjee and Liu, 
2012), cross-lingual portability (Banea et al., 
2013; Xu et al., 2015), personalized sentiment 
analysis (Ren and Wu, 2013; Yu et al., 2009) and 
viewpoint identification (Qiu and Jiang, 2013). 
In addition to identifying sentiment classes, an 
extension has been made to further determine 
their sentiment strength in terms of a multi-point 
scale (Taboada et al., 2011; Li et al., 2011; Yu et 
al., 2013; Wang and Ester, 2014). 

The dimensional approach has drawn consid-
erable attention in recent years as it can provide a 
more fine-grained sentiment analysis. It repre-
sents affective states as continuous numerical 
values on multiple dimensions, such as valence-
arousal (VA) space (Russell, 1980), as shown in 
Figure 1. The valence represents the degree of 
pleasant and unpleasant (or positive and negative) 
feelings, and the arousal represents the degree of 
excitement and calm. Based on such a two-
dimensional representation, a common research 
goal is to determine the degrees of valence and 
arousal of given texts such that any affective 
state can be represented as a point in the VA co-
ordinate plane. To accomplish this goal, affective 
lexicons with valence-arousal ratings are useful 
resources but few exist. Most existing applica-
tions rely on a handcrafted lexicon ANEW (Af-
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fective Norms for English Words) (Bradley, 
1999) which provides 1,034 English words with 
ratings in the dimensions of pleasure, arousal and 
dominance to predict the VA ratings of short and 
long texts (Paltoglou et al, 2013; Kim et al., 
2010). Accordingly, the automatic prediction of 
VA ratings of affective words is a critical task in 
building a VA lexicon. 

Few studies have sought to predict the VA rat-
ing of words using regression-based methods 
(Wei et al., 2011; Malandrakis et al., 2011). This 
kind of method usually starts from a set of words 
with labeled VA ratings (called seeds). The VA 
rating of an unseen word is then estimated from 
semantically similar seeds. For instance, Wei et 
al. (2011) trained a linear regression model for 
each seed cluster, and then predicted the VA rat-
ing of an unseen word using the model of the 
cluster to which the unseen word belongs. 
Malandrakis et al. (2011) used a kernel function 
to combine the similarity between seeds and un-
seen words into a linear regression model. In-
stead of estimating VA ratings of words, another 
direction is to determine the polarity (i.e., posi-
tive and negative) of words by applying the label 
propagation (Rao and Ravichandran, 2009; Has-
san et al., 2011) and pagerank (Esuli et al., 2007) 
on a graph. Based on these methods, the polarity 
of an unseen word can be determined/ranked 
through its neighbor nodes (seeds).  

Although the pagerank algorithm has been 
used for polarity ranking, it can still be extended 
for VA prediction. Therefore, this study extends 
the idea of pagerank in two aspects. First, we 
implement pagerank for VA prediction by trans-
forming ranking scores into VA ratings. Second, 
whereas pagerank assigns an equal weight to the 
edges connected between an unseen word and its 
neighbor nodes, we consider their similarities as 

weights to construct a weighted graph such that 
neighbor nodes more similar to the unseen word 
may contribute more to estimate its VA ratings. 
That is, the proposed weighted graph model con-
siders both the relations of multiple nodes and 
the similarity weights among them. In experi-
ments, we evaluate the performance of the pro-
posed method against the linear regression, ker-
nel method, and pagerank algorithm on both 
English and Chinese affective lexicons for VA 
prediction. 

The rest of this paper is organized as follows. 
Section 2 describes the proposed weighted graph 
model. Section 3 summarizes the comparative 
results of different methods for VA prediction. 
Conclusions are finally drawn in Section 4. 

2 Graph Model for VA Prediction 

Based on the theory of link analysis, the rela-
tions between unseen words and seed words can 
be considered as a graph, as shown in Figure 2. 
The valence-arousal ratings of each unseen word 
can then be predicted through the links connect-
ed to the seed words to which it is similar using 
their similarities as weights. To measure the sim-
ilarity between words (nodes), we use the 
word2vec toolkit (Mikolov et al., 2013) provided 
by Google (http://code.google.com/p/word2vec/). 

The formal definition of a graph model is de-
scribed as follows. Let G=(V, E) be an undirected 
graph, where V denotes a set of words and E de-
notes a set of undirected edges. Each edge e in E 
denotes a relation between word vi and word vj in 
V (1≤i, j≤n, i≠j), representing the similarity be-
tween them. For each node vi,

( ) { | ( , ) }i j j iN v v v v E  denotes the set of its 

neighbor nodes, representing a set of words to 
which it is similar. The valence or arousal of vi, 
denoted as

ivval or
ivaro , can then be determined 

by its neighbors, defined as 

( )

( )

( , )
(1 )

( , )

jj i

i i

j i

i j vv N v

v v
i jv N v

Sim v v val
val val

Sim v v
  




   




, 

(1) 

where  is a decay factor or a confidence level 
for computation (a constant between 0 and 1), 
which limits the effect of rank sinks to guarantee 
convergence to a unique vector. Initially, the va-
lence (or arousal) of each unseen word is as-
signed to a random value that between 0 and 10. 
Later, it is iteratively updated using the following 
formula, 

Figure 1. Two-dimensional valence-arousal
space. 
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(2) 

where t denotes the t-th iteration. It is worth not-
ing that the valence (or arousal) of the seed 
words is a constant in each iterative step. Based 
on this, the valence (or arousal) of each unseen 
word is propagated through the graph in multiple 
iterations until convergence. 

To improve the efficiency of the iterative 
computation, Eq. (2) can be transformed into a 
matrix notation. Suppose that the vectors, 

1 1
( , , , )

N

T
v v vval val valV  , 

1 1
( , , , )

N

T
v v varo aro aroA   

are the vectors of the valence-arousal rating of all 
words (including seed words and unseen words). 
Matrix 

1 1 1 1
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is the adjacency matrix of each words, where 
Sim(vi, vj) represents the similarity between 
words i and j, where i, j=1, 2, …, N, i ≠ j. 

Given two other vectors  (1,1, ,1)TI   and 

1 2( , , , )T

Nd d dD  , where 

0
i

i
i

if node
d

if node

 
  

cand

seed
, 

  is the previously mentioned decay factor. For 

vectors 1 2( , , , )T

Na a aA  and 1 2( , , , )T

Nb b bB  , 

function ( )A,B and ( )A,B  can be defined as 

1 1 2 2( ) ( , , , )T

N Na b a b a b   A,B  , 

1 1 2 2( ) ( / , / , , / )T

N Na b a b a bA, B  . 

Then, Eq. (2) can be turned into the following 
matrix format. 

1 1[( ) , ] [ , ( )]T T

t t t   V I - D V D SV ,S I   , 

1 1[( ) , ] [ , ( )]T T

t t t   A I - D A D SA ,S I    (3) 

Through the transformation of matrix multi-
plication, the computation of VA prediction can 
converge within only a few iterations. 

3 Experimental Results 

Data. This experiment used two affective lexi-
cons with VA ratings: 1) ANEW which contains 
1,034 English affective words (Bradley, 1999) 
and 2) 162 Chinese affective words (CAW) tak-
en from (Wei et al., 2011). Both lexicons were 
used for 5-fold cross-validation. That is, for each 
run, 80% of the words in the lexicons were con-
sidered as seeds and the remaining 20% were 
used as unseen words. The similarities between 
English words and between Chinese words were 
calculated using the word2vec toolkit trained 
with the respective English and Chinese wiki 
corpora (https://dumps.wikimedia.org/).   

Implementation Details. Two regression-based 
methods were used for comparison:  linear re-
gression (Wei et al., 2011) and the kernel method 
(Malandrakis et al., 2011), along with two graph-
based methods: pagerank (Esuli et al., 2007) and 
the proposed weighted graph model. For both 
regression-based methods, the similarities and 
VA ratings of the seed words were used for train-
ing, and the VA ratings of an unseen word were 
predicted by taking as input its similarity to the 
seeds. In addition, for the kernel method, the lin-
ear similarity function was chosen because it 
yielded top performance. Both graph-based 
methods used an iterative procedure for VA pre-
diction and required no training. For pagerank, 
the iterative procedure was implemented using 
the algorithm presented in (Esuli et al., 2007), 
which estimates the VA ratings of an unseen 
word by assigning an equal weight to the edges 
connected to its neighbor seeds. For the proposed 
method, the iterative procedure was implemented 
by considering the word similarity as weights. 

seed unseen

unseen

seed

unseen

seed

seed

similarity

similarity

similarity

similarity similarity

similarity

similarity

Figure 2. Conceptual diagram of a weighted
graph model for VA prediction. 
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Evaluation Metrics. The prediction perfor-
mance was evaluated by examining the differ-
ence between the predicted values of VA ratings 
and the corresponding actual values in the 
ANEW and CAW lexicons. The evaluation met-
rics included: 

 Root mean square error (RMSE) 

 2

1

n

i i
i

RMSE A P n


   

 Mean absolute error (MAE) 

1

1
| |

n

i i
i

MAE A P
n 

  , 

 Mean absolute percentage error (MAPE) 

1

1
100%

n
i i

i i

A P
MAPE

n A


   

where Ai is the actual value, Pi is the predicted 
value, and n is the number of test samples. A 
lower MAPE, MAE or RMSE value indicates 
more accurate forecasting performance. 

Iterative Results of the Graph-based Methods. 
Figure 3 uses RMSE as an example to show the 
iterative results of the pagerank and proposed 
methods. The results show that the performance 
of both methods stabilized after around 10 itera-
tions, indicating its efficiency for VA prediction. 
Another observation is that the ultimate converg-
ing result of each word is unrelated to the decay 
factor and the initial random assignment. 

Comparative Results. Table 1 compares the 
results of the regression-based methods (Linear 
Regression and Kernel) and graph-based meth-
ods (PageRank and Weighted Graph). The per-
formance of PageRank and Weighted Graph was 
taken from results of the 50th iteration. The re-
sults show that both graph-based methods out-
performed the regression-based methods for all 
metrics. For the graph-based methods, the pro-
posed Weighted Graph yielded better MAPE per-
formance than PageRank (around 4%), Kernel 
(around 8%) and Linear Regression (around 7%) 
on both the ANEW and CAW corpora. The 
weighted graph model achieved better perfor-
mance because it predicted VA ratings by con-
sidering both the relations of multiple nodes and 
the weights between them. For the regression-
based methods, both Linear Regression and Ker-
nel achieved similar results. Another observation 
is that the arousal prediction error is greater than 
that for the valence prediction, indicating that the 
arousal dimension is more difficult to predict. 

Valence 
ANEW (English) CAW (Chinese) 

RMSE MAE MAPE(%) RMSE MAE MAPE(%)

Weighted Graph 1.122 0.812 11.51 1.224 0.904 13.03 

PageRank 1.540 1.085 15.69 1.642 1.187 16.84 

Kernel 1.926 1.385 19.55 2.028 1.426 20.57 

Linear Regression 1.832 1.301 18.61 1.935 1.393 19.66 

Arousal 
ANEW (English) CAW (Chinese) 

RMSE MAE MAPE(%) RMSE MAE MAPE(%)

Weighted Graph 1.203 0.894 12.24 1.311 0.966 13.37 

PageRank 1.627 1.149 16.48 1.735 1.238 17.51 

Kernel 2.007 1.419 20.27 2.118 1.434 21.44 

Linear Regression 1.912 1.382 19.33 2.020 1.421 20.46 

Table 1. Comparative results of different methods in VA prediction. 

Figure 3. Iterative results of the pagerank algo-
rithm and weighted graph model. 
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4  Conclusion 

This study presents a weighted graph model to 
predict valence-arousal ratings of words which 
can be used for lexicon augmentation in the va-
lence and arousal dimensions. Unlike the equal 
weight used in the traditional pagerank algorithm, 
the proposed method considers the similarities 
between words as weights such that the neighbor 
nodes more similar to the unseen word may con-
tribute more to VA prediction. Experiments on 
both English and Chinese affective lexicons 
show that the proposed method yielded a smaller 
error rate than the pagerank, kernel and linear 
regression methods. Future work will focus on 
extending the VA prediction from the word-level 
to the sentence- and document-levels. 
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Abstract

Dialog state tracking is a key component
of many modern dialog systems, most of
which are designed with a single, well-
defined domain in mind. This paper shows
that dialog data drawn from different dia-
log domains can be used to train a general
belief tracking model which can operate
across all of these domains, exhibiting su-
perior performance to each of the domain-
specific models. We propose a training pro-
cedure which uses out-of-domain data to
initialise belief tracking models for entirely
new domains. This procedure leads to im-
provements in belief tracking performance
regardless of the amount of in-domain data
available for training the model.

1 Introduction

Spoken dialog systems allow users to interact with
computer applications through a conversational in-
terface. Modern dialog systems are typically de-
signed with a well-defined domain in mind, e.g.,
restaurant search, travel reservations or shopping
for a new laptop. The goal of building open-domain
dialog systems capable of conversing about any
topic remains far off. In this work, we move to-
wards this goal by showing how to build dialog
state tracking models which can operate across
entirely different domains. The state tracking com-
ponent of a dialog system is responsible for inter-
preting the users’ utterances and thus updating the
system’s belief state: a probability distribution over
all possible states of the dialog. This belief state is
used by the system to decide what to do next.

Recurrent Neural Networks (RNNs) are well
suited to dialog state tracking, as their ability to cap-
ture contextual information allows them to model
and label complex dynamic sequences (Graves,
2012). In recent shared tasks, approaches based on

these models have shown competitive performance
(Henderson et al., 2014d; Henderson et al., 2014c).
This approach is particularly well suited to our goal
of building open-domain dialog systems, as it does
not require handcrafted domain-specific resources
for semantic interpretation.

We propose a method for training multi-domain
RNN dialog state tracking models. Our hierarchical
training procedure first uses all the data available
to train a very general belief tracking model. This
model learns the most frequent and general dialog
features present across the various domains. The
general model is then specialised for each domain,
learning domain-specific behaviour while retaining
the cross-domain dialog patterns learned during the
initial training stages. These models show robust
performance across all the domains investigated,
typically outperforming trackers trained on target-
domain data alone. The procedure can also be used
to initialise dialog systems for entirely new do-
mains. In the evaluation, we show that such initiali-
sation always improves performance, regardless of
the amount of the in-domain training data available.
We believe that this work is the first to address the
question of multi-domain belief tracking.

2 Related Work

Traditional rule-based approaches to understanding
in dialog systems (e.g. Goddeau et al. (1996)) have
been superseded by data-driven systems that are
more robust and can provide the probabilistic dia-
log state distributions that are needed by POMDP-
based dialog managers. The recent Dialog State
Tracking Challenge (DSTC) shared tasks (Williams
et al., 2013; Henderson et al., 2014a; Henderson
et al., 2014b) saw a variety of novel approaches,
including robust sets of hand-crafted rules (Wang
and Lemon, 2013), conditional random fields (Lee
and Eskenazi, 2013; Lee, 2013; Ren et al., 2013),
maximum entropy models (Williams, 2013) and
web-style ranking (Williams, 2014).
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Henderson et al. (2013; 2014d; 2014c) proposed
a belief tracker based on recurrent neural networks.
This approach maps directly from the ASR (au-
tomatic speech recognition) output to the belief
state update, avoiding the use of complex semantic
decoders while still attaining state-of-the-art per-
formance. We adopt this RNN framework as the
starting point for the work described here.

It is well-known in machine learning that a sys-
tem trained on data from one domain may not per-
form as well when deployed in a different domain.
Researchers have investigated methods for mitigat-
ing this problem, with NLP applications in parsing
(McClosky et al., 2006; McClosky et al., 2010),
sentiment analysis (Blitzer et al., 2007; Glorot et
al., 2011) and many other tasks. There has been a
small amount of previous work on domain adapta-
tion for dialog systems. Tur et al. (2007) and Mar-
golis et al. (2010) investigated domain adaptation
for dialog act tagging. Walker et al. (2007) trained
a sentence planner/generator that adapts to differ-
ent individuals and domains. In the third DSTC
shared task (Henderson et al., 2014b), participants
deployed belief trackers trained on a restaurant do-
main in an expanded version of the same domain,
with a richer output space but essentially the same
topic. To the best of our knowledge, our work is
the first attempt to build a belief tracker capable of
operating across disjoint dialog domains.

3 Dialog State Tracking using RNNs

Belief tracking models capture users’ goals given
their utterances. Goals are represented as sets of
constraints expressed by slot-value mappings such
as [food: chinese] or [wifi: available]. The set of
slots S and the set of values Vs for each slot make
up the ontology for an application domain.

Our starting point is the RNN framework for
belief tracking that was introduced by Henderson
et al. (2014d; 2014c). This is a single-hidden-layer
recurrent neural network that outputs a distribution
over all goal slot-value pairs for each user utterance
in a dialog. It also maintains a memory vector
that stores internal information about the dialog
context. The input for each user utterance consists
of the ASR hypotheses, the last system action, the
current memory vector and the previous belief state.
Rather than using a spoken language understanding
(SLU) decoder to convert this input into a meaning
representation, the system uses the turn input to
extract a large number of word n-gram features.

These features capture some of the dialog dynamics
but are not ideal for sharing information across
different slots and domains.

Delexicalised n-gram features overcome this
problem by replacing all references to slot names
and values with generic symbols. Lexical n-grams
such as [want cheap price] and [want Chinese
food] map to the same delexicalised feature, rep-
resented by [want tagged-slot-value tagged-slot-
name]. Such features facilitate transfer learning
between slots and allow the system to operate on
unseen values or entirely new slots. As an example,
[want available internet] would be delexicalised to
[want tagged-slot-value tagged-slot-name] as well,
a useful feature even if there is no training data
available for the internet slot. The delexicalised
model learns the belief state update corresponding
to this feature from its occurrences across the other
slots and domains. Subsequently, it can apply the
learned behaviour to slots in entirely new domains.

The system maintains a separate belief state for
each slot s, represented by the distribution ps over
all possible slot values v ∈ Vs. The model input
at turn t, xt, consists of the previous belief state
pt−1

s , the previous memory state mt−1, as well as
the vectors fl and fd of lexical and delexicalised
features extracted from the turn input1. The belief
state of each slot s is updated for each of its slot
values v ∈ Vs. The RNN memory layer is updated
as well. The updates are as follows2:

xt
v = f t

l ⊕ f t
d ⊕ mt−1 ⊕ pt−1

v ⊕ pt−1
∅

gt
v = ws

1 · σ
(
Ws

0x
t
v + bs0

)
+ bs1

pt
v =

exp(gt
v)

exp(gt
∅) +

∑
v′∈V exp(gt

v′)

mt = σ
(
Ws

m0
xt + Ws

m1
mt−1

)
where⊕ denotes vector concatenation and pt

∅ is the
probability that the user has expressed no constraint
up to turn t. Matrices Ws

0, Ws
m0

, Ws
m1

and the
vector ws

1 are the RNN weights, and b0 and b1 are
the hidden and output layer RNN bias terms.

For training, the model is unrolled across turns
and trained using backpropagation through time
and stochastic gradient descent (Graves, 2012).

1Henderson et al.’s work distinguished between three types
of features: the delexicalised feature sets fs and fv are sub-
sumed by our delexicalised feature vector fd, and the turn
input f corresponds to our lexical feature vector fl.

2The original RNN architecture had a second component
which learned mappings from lexical n-grams to specific slot
values. In order to move towards domain-independence, we
do not use this part of the network.
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4 Hierarchical Model Training

Delexicalised features allow transfer learning be-
tween slots. We extend this approach to achieve
transfer learning between domains: a model trained
to talk about hotels should have some success talk-
ing about restaurants, or even laptops. If we can
incorporate features learned from different domains
into a single model, this model should be able to
track belief state across all of these domains.

The training procedure starts by performing
shared initialisation: the RNN parameters of all
the slots are tied and all the slot value occurrences
are replaced with a single generic tag. These slot-
agnostic delexicalised dialogs are then used to train
the parameters of the shared RNN model.

Extending shared initialisation to training across
multiple domains is straightforward. We first delex-
icalise all slot value occurrences for all slots across
the different domains in the training data. This
combined (delexicalised) dataset is then used to
train the multi-domain shared model.

The shared RNN model is trained with the pur-
pose of extracting a very rich set of lexical and
delexicalised features which capture general dialog
dynamics. While the features are general, the RNN
parameters are not, since not all of the features
are equally relevant for different slots. For exam-
ple, [eat tagged-slot-value food] and [near tagged-
slot-value] are clearly features related to food and
area slots respectively. To ensure that the model
learns the relative importance of different features
for each of the slots, we train slot specific mod-
els for each slot across all the available domains.
To train these slot-specialised models, the shared
RNN’s parameters are replicated for each slot and
specialised further by performing additional runs
of stochastic gradient descent using only the slot-
specific (delexicalised) training data.

5 Dialog domains considered

We use the experimental setup of the Dialog State
Tracking Challenges. The key metric used to mea-
sure the success of belief tracking is goal accuracy,
which represents the ability of the system to cor-
rectly infer users’ constraints. We report the joint
goal accuracy, which represents the marginal test
accuracy across all slots in the domain.

We evaluate on data from six domains, varying
across topic and geographical location (Table 1).
The Cambridge Restaurants data is the data from
DSTC 2. The San Francisco Restaurants and Ho-

Dataset / Model Domain Train Test Slots
Cambridge Rest. Restaurants 2118 1117 4
SF Restaurants Restaurants 1608 176 7
Michigan Rest. Restaurants 845 146 12
All Restaurants Restaurants 4398 - 23

Tourist Info. Tourist Info 2039 225 9
SF Hotels Hotels Info 1086 120 7

R+T+H Model Mixed 7523 - 39
Laptops Laptops 900 100 6

R+T+H+L Model Mixed 8423 - 45

Table 1: datasets used in our experiments

tels data was collected during the Parlance project
(Gašić et al., 2014). The Tourist Information do-
main is the DSTC 3 dataset: it contains dialogs
about hotels, restaurants, pubs and coffee shops.

The Michigan Restaurants and Laptops datasets
are collections of dialogs sourced using Amazon
Mechanical Turk. The Laptops domain contains
conversations with users instructed to find laptops
with certain characteristics. This domain is sub-
stantially different from the other ones, making it
particularly useful for assessing the quality of the
multi-domain models trained.

We introduce three combined datasets used to
train increasingly general belief tracking models:

1. All Restaurants model: trained using the com-
bined data of all three restaurant domains;

2. R+T+H model: trained on all dialogs related
to restaurants, hotels, pubs and coffee shops;

3. R+T+H+L model: the most general model,
trained using all the available dialog data.

6 Results

As part of the evaluation, we use the three com-
binations of our dialog domains to build increas-
ingly general belief tracking models. The domain-
specific models trained using only data from each
of the six dialog domains provide the baseline per-
formance for the three general models.

6.1 Training General Models
Training the shared RNN models is the first step of
the training procedure. Table 2 shows the perfor-
mance of shared models trained using dialogs from
the six individual and the three combined domains.
The joint accuracies are not comparable between
the domains as each of them contains a different
number of slots. The geometric mean of the six ac-
curacies is calculated to determine how well these
models operate across different dialog domains.
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Model / Domain Cam Rest SF Rest Mich Rest Tourist SF Hotels Laptops Geo. Mean
Cambridge Restaurants 75.0 26.2 33.1 48.7 5.5 54.1 31.3

San Francisco Restaurants 66.8 51.6 31.5 38.2 17.5 47.4 38.8
Michigan Restaurants 57.9 22.3 64.2 32.6 10.2 45.4 32.8

All Restaurants 75.5 49.6 67.4 48.2 19.8 53.7 48.5
Tourist Information 71.7 27.1 31.5 62.9 10.1 55.7 36.0
San Francisco Hotels 26.2 28.7 27.1 27.9 57.1 25.3 30.6

Rest ∪ Tourist ∪ Hotels (R+T+H) 76.8 51.2 68.7 65.0 58.8 48.1 60.7
Laptops 66.9 26.1 32.0 46.2 4.6 74.7 31.0

All Domains (R+T+H+L) 76.8 50.8 64.4 63.6 57.8 76.7 64.3

Table 2: Goal accuracy of shared models trained using different dialog domains (ensembles of 12 models)

The parameters of the three multi-domain mod-
els are not slot or even domain specific. Nonethe-
less, all of them improve over the domain-specific
model for all but one of their constituent domains.
The R+T+H model outperforms the R+T+H+L
model across four domains, showing that the use
of laptops-related dialogs decreases performance
slightly across other more closely related domains.
However, the latter model is much better at balanc-
ing its performance across all six domains, achiev-
ing the highest geometric mean and still improving
over all but one of the domain-specific models.

6.2 Slot-specialising the General Models
Slot specialising the shared model allows the train-
ing procedure to learn the relative importance of
different delexicalised features for each slot in a
given domain. Table 3 shows the effect of slot-
specialising shared models across the six dialog
domains. Moving down in these tables corresponds
to adding more out-of-domain training data and
moving right corresponds to slot-specialising the
shared model for each slot in the current domain.

Slot-specialisation improved performance in the
vast majority of the experiments. All three slot-
specialised general models outperformed the RNN
model’s performance reported in DSTC 2.

6.3 Out of Domain Initialisation

The hierarchical training procedure can exploit the
available out-of-domain dialogs to initialise im-
proved shared models for new dialog domains.

In our experiments, we choose one of the do-
mains to act as the new domain, and we use a subset
of the remaining ones as out-of-domain data. The
number of in-domain dialogs available for train-
ing is increased at each stage of the experiment
and used to train and compare the performance of
two slot-specialised models. These models slot-
specialise from two different shared models. One
is trained using in-domain data only, and the other
is trained on all the out-of-domain data as well.

The two experiments vary in the degree of sim-
ilarity between the in-domain and out-of-domain
dialogs. In the first experiment, Michigan Restau-
rants act as the new domain and the remaining
R+T+H dialogs are used as out-of-domain data. In
the second experiment, Laptops dialogs are the in-
domain data and the remaining dialog domains are
used to initialise the more general shared model.

Figure 1 shows how the performance of the
two differently initialised models improves as ad-
ditional in-domain dialogs are introduced. In both
experiments, the use of out-of-domain data helps to

Model Cambridge Restaurants SF Restaurants Michigan Restaurants
Shared Model Slot-specialised Shared Model Slot-specialised Shared Model Slot-specialised

Domain Specific 75.0 75.4 51.6 56.5 64.2 65.6
All Restaurants 75.5 77.3 49.6 53.6 67.4 65.9

R+T+H 76.8 77.4 51.2 54.6 68.7 65.8
R+T+H+L 76.8 77.0 50.8 54.1 64.4 66.9

Tourist Information SF Hotels Laptops
Shared Model Slot-specialised Shared Model Slot-specialised Shared Model Slot-specialised

Domain Specific 62.9 65.1 57.1 57.4 74.7 78.4
R+T+H 65.0 67.1 58.8 60.7 - -

R+T+H+L 63.6 65.5 57.8 61.6 76.7 78.9

Table 3: Impact of slot specialisation on performance across the six domains (ensembles of 12 models)
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Figure 1: Joint goal accuracy on Michigan Restaurants (left) and the Laptops domain (right) as a function
of the number of in-domain training dialogs available to the training procedure (ensembles of four models)

initialise the model to a much better starting point
when the in-domain training data set is small. The
out-of-domain initialisation consistently improves
performance: the joint goal accuracy is improved
even when the entire in-domain dataset becomes
available to the training procedure.

These results are not surprising in the case of
the system trained to talk about Michigan Restau-
rants. Dialog systems trained to help users find
restaurants or hotels should have no trouble find-
ing restaurants in alternative geographies. In line
with these expectations, the use of a shared model
initialised using R+T+H dialogs results in a model
with strong starting performance. As additional
restaurants dialogs are revealed to the training pro-
cedure, this model shows relatively minor perfor-
mance gains over the domain-specific one.

The results of the Laptops experiment are even
more compelling, as the difference in performance
between the differently initialised models becomes
larger and more consistent. There are two factors at
play here: exposing the training procedure to sub-
stantially different out-of-domain dialogs allows
it to learn delexicalised features not present in the
in-domain training data. These features are appli-
cable to the Laptops domain, as evidenced by the
very strong starting performance. As additional
in-domain dialogs are introduced, the delexicalised
features not present in the out-of-domain data are
learned as well, leading to consistent improvements
in belief tracking performance.

In the context of these results, it is clear that
the out-of-domain training data has the potential to
be even more beneficial to tracking performance

than data from relatively similar domains. This is
especially the case when the available in-domain
training datasets are too small to allow the proce-
dure to learn appropriate delexicalised features.

7 Conclusion

We have shown that it is possible to train general be-
lief tracking models capable of talking about many
different topics at once. The most general model
exhibits robust performance across all domains,
outperforming most domain-specific models. This
shows that training using diverse dialog domains
allows the model to better capture general dialog
dynamics applicable to different domains at once.

The proposed hierarchical training procedure
can also be used to adapt the general model to new
dialog domains, with very small in-domain data
sets required for adaptation. This procedure im-
proves tracking performance even when substantial
amounts of in-domain data become available.

7.1 Further Work
The suggested domain adaptation procedure re-
quires a small collection of annotated in-domain
dialogs to adapt the general model to a new domain.
In our future work, we intend to focus on initialis-
ing good belief tracking models when no annotated
dialogs are available for the new dialog domain.
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Abstract

Dialogue Management (DM) is a key is-
sue in Spoken Dialogue System (SDS).
Most of the existing studies on DM use
Dialogue Act (DA) to represent seman-
tic information of sentence, which might
not represent the nuanced meaning some-
times. In this paper, we model DM based
on sentence clusters which have more
powerful semantic representation ability
than DAs. Firstly, sentences are clustered
not only based on the internal informa-
tion such as words and sentence structures,
but also based on the external information
such as context in dialogue via Recurren-
t Neural Networks. Additionally, the DM
problem is modeled as a Partially Observ-
able Markov Decision Processes (POMD-
P) with sentence clusters. Finally, exper-
imental results illustrate that the proposed
DM scheme is superior to the existing one.

1 Introduction

Dialogue Management (DM) is an important is-
sue in Spoken Dialogue Systems (SDS). (Paek et
al., 2008) Most of the existing studies on DM use
the abstract semantic representation such as Dia-
logue Act (DA) to represent the sentence intention.
In (Bohus et al., 2009), authors propose a plan-
based, task-independent DM framework, called
RavenClaw, which isolates the domain-specific as-
pects of the dialogue control logic from domain-
independent conversational skills. (Daubigney et
al., 2010) proposes a Kalman Temporal Differ-
ences based algorithm to learn efficiently in an off-
policy manner a strategy for a large scale dialogue
system. In (Emmanuel et al., 2013), authors pro-
pose a scheme to utilize a socially-based reward
function for reinforcement learning and use it to
fit the user adaptation issue for DM. (Young et al.,

2013) provides an overview of the current state of
the art in the development of POMDP-based spo-
ken dialog systems. (Hao et al., 2014) presents a
dialog manager based on a log-linear probabilistic
model and uses context-free grammars to impart
hierarchical structure to variables and features.

As we know, sentences in human-human dia-
logues are extremely complicated. The sentences
labeled with the same DA might contain differ-
ent extra meanings. Thus, it is difficult for DA
to represent the nuanced meaning of sentence in
dialogue. In this paper, we propose a novel DM
scheme based on sentence clustering. The contri-
butions of this work are as follows.

• Semantic representation of sentence in dia-
logue is defined as sentence cluster which
could represent more nuanced semantic in-
formation than DA. Sentence similarity for
clustering is calculated via internal informa-
tion such as words and sentence structures
and external information such as the dis-
tributed representation of sentence (vector)
from Recurrent Neural Networks (RNN).

• The DM problem is modeled as a POMD-
P, where state is defined as sequence of sen-
tence clusters, reward is defined as slot-filling
efficiency and sentence popularity, and state
transition probability is calculated by the pre-
diction model based on RNN, considering
historical dialogue information sufficiently.

The rest of this paper is organized as follows.
In Section 2, system model is introduced. Sec-
tion 3 describes sentence clustering and prediction
model based on RNN, and Section 4 models the
DM problem as a POMDP. Extensive experimen-
tal results are provided in Section 5 to illustrate the
performance comparison, and Section 6 concludes
this study.
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A1: I need to record the quantity of clients.

B1: Perhaps 3 persons.

A2: please tell me the number of clients.

B2: Is it necessary?

A3: Yes, I need to record this.

B3: OK, 3 persons, maybe.

request (client_quantity)

I have to know how many persons will live in.

It is necessary to record the number of clients.

...

DA1

Cluster 1

request (client_quantity)DA1

Do you mind telling me the quantity of clients?

Please let me know how many persons will live in.

...

Cluster 2

Figure 1: sentence cluster vs. DA

user

ASR
Sentence

Matching

TTS
Sentence

Selecting

DM

Sentence ClusteringDialogue Corpus

voice

offline

text cluster

clustertextvoiceonline

Figure 2: system model

2 System Model

In this paper, we establish a SDS via human-
human dialogue corpus, where sentence cluster
rather than DA is utilized to represent sentence in-
tention due to its ability of catching finer-grained
semantic information. For example, Fig. 1
shows some dialogue segments in hotel reserva-
tion. Both A1 and A2 could be labeled with “re-
quest (client quantity)”, because the aims of them
are requesting the quantity of clients. Howev-
er, A1 has an extra meaning that it is a necessity
for the reception to record the quantity of clients,
while A2 not, which might lead to different evo-
lutions of dialogues. Probably, we could add this
necessity to the DA corresponding to A1 manual-
ly, but it is infeasible for all the sentences to dis-
tinguish the fine-grained semantic information by
adding abstract symbol to DA. Thus, in this paper,
we automatically cluster all the sentences in dia-
logues, and utilize sentence clusters to represent
sentence intentions, which has more powerful ca-
pability to capture semantic information.

The SDS based on sentence clustering could be
divided into offline stage and online stage, illus-
trated in Fig. 2.

In offline stage:
Sentence Clustering: The sentence similarity

is calculated based on not only internal informa-
tion such as words and sentence structure, but also
external information such as the distributed rep-
resentation from RNN. And then the sentences in
dialogue corpus are clustered into different tiny
groups, which will be discussed in section 3.

Hello, I want to reserve a double room

Two double room. Your check-in time?

I need only one double room.

I am sorry. One double room. OK.

C27: 0.63

C15: 0.37

C15: 0.88

C79: 0.12

ASR+SM

ASR+SM

C283

C125

TTS+SS

TTS+SS

...

DM

room type double room

room num 2

... ...

room type double room

room num 1

... ...

slot filling

slot filling

User:

Machine:

User:

Machine:

Figure 3: an online example

Dialogue Policy Training: We label the dia-
logues in corpus with the sentence clusters gen-
erated in the previous process. Thus, these labeled
dialogues could be utilized to train the optimal dia-
logue policy with Reinforcement Learning, which
will be introduced in section 4.

In online stage:
Automatic Speech Recognition (ASR): When

receiving user voice, ASR module transforms it in-
to text (Vinyals et al., 2012). As there might be
ambiguity and errors in ASR, it is difficult to ob-
tain the exact text corresponding to the input voice.
Thus, the distribution over possible texts is used to
represent the result of ASR.

Sentence Matching (SM): the function of SM
is to establish a mapping from the distribution over
possible texts to the distribution over possible sen-
tence clusters.

DM: Based on the distribution of clusters, D-
M model updates the belief state in POMDP and
selects the optimal action, namely the optimal ma-
chine sentence cluster, according to the dialogue
policy. The relevant slots are also filled based on
the user and machine sentence clusters.

Sentence Selection: This module selects the
most appropriate sentence from the output ma-
chine sentence cluster according to the user profile
such as personality character (Ball et al., 2000).

Text To Speech (TTS): This model transforms
the selected sentence text into the output voice as
a response (Zen et al., 2007).

Fig. 3 is a human-machine dialogue example in
online stage.

3 Sentence Clustering based on RNN

In this section, we cluster the sentences for DM
modeling, which might be different from general
sentence clustering. Sentence similarity for clus-
tering are calculated from two aspects. Firstly,
it is calculated traditionally based on internal in-
formation such as words and sentence structures,
which is widely researched in (Li et al., 2006)
(Achananuparp et al., 2008). (Word embedding
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...

A4: Please tell me your phone number.

B4: Well, my cellphone is broken.

A5: I am sorry. We need a phone number to contact you. 

Could you please give me your friend’s phone number?

…

...

A6: Please give me your phone number.

B6: Unfortunately, I lost my cellphone.

A7: I am sorry. We need a phone number to contact you. 

Could you please tell me your friend’s phone number?

...

Figure 4: an example of sentence similarity

and sentence parsing might be used for this cal-
culation.) Additionally, for DM-based sentence
clustering, the sentences that we intend to put into
the same cluster are not only the sentences with
similar surface meaning, but also the sentences
with similar intention (Semantics or Pragmatics),
even if they might be different in surface meaning
sometimes. For example, illustrated in Fig. 4, B4
and B6 are different in surface meaning, but they
have similar intention, namely he or she might not
provide his or her phone number right now. Thus,
in the sentence clustering for DM modeling, they
should be clustered into the same group. It is diffi-
cult to give a high similarity score between B4 and
B6 only according to the internal information, but
we could observe that the sentences around them
in the context are similar. Thus, external informa-
tion is also important to the sentence clustering for
DM. In the following, we will discuss the cluster-
ing process.

We denote the sentence cluster set as C k ={
ck
1, c

k
2, · · · , ck

Nk
C

}
, and the dialogue set as Dk ={

dk
1, d

k
2, · · · , dk

Nk
D

}
in the k-th iteration. Thus, the

steps of sentence clustering are:
Step 1: Initially, we only utilize the internal

information to cluster the sentences via Affinity
Propagation (AP) algorithm (Brendan et al., 2007)
and denote the clustering result as C 0. If C 0 is
used to label the sentences in dialogues, the j-th
dialogue could be denoted as a sequence of clus-

ters, namely d0
j =

{
c0
1, c

0
2, · · · , c0

Nd
j

}
.

Step 2: In the k-th iteration, we use cluster set
C k to label dialogue set Dk.

Step 3: We utilize RNN to obtain the distribut-
ed representation of sentence, illustrated in Fig. 5.
The input of RNN is sentence cluster in each turn,
namely ck

t . The input layer I (t) is the one-hot rep-
resentation of ck

t . (Turian et al., 2010) (The size of
I (t) is equivalent to

∣∣C k
∣∣. There is only one 1 in

I (t) corresponding to the ck
t position, and other

elements are zeros.) H (t) is defined as the hidden
layer. The output layer O (t) is the distribution
over possible ck

t+1, which could be calculated as

 !O t !H t

 !1H t "

 !2H t "

 !I t

 !1I t "

 !2I t "

k

t
c

1

k

t
c

"

2

k
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Figure 5: RNN for sentence clustering

follow. (Mikolov et al., 2010){
H (t) = f (UI (t) + WH (t− 1))
O (t) = g (VH (t))

(1)

where f (x) = 1/(1 + e−x) and g (xi) =
exi

/∑Ne
i=1 exi . The parameters of this RNN could

be trained by the Back Propagation Through Time
(BPTT) algorithm. (Mikolov, 2012) From RNN,
we could obtain two significant results: one is the
distributed representation (vectors) of the sentence
clusters (U), which is used for sentence clustering;
the other is the prediction model for sentence clus-
ters, which is used for DM.

Step 4: we calculate the sentence similarity
based on vectors obtained in Step 3, and combine
it with the sentence similarity from internal infor-
mation (weighted mean), in order to cluster the set
C k via AP algorithm, which is denoted as C k+1.

Step 5: N̄C =
∑k+1

i=k−kth+2 N i
C is defined as

the average number of clusters in the last kth iter-
ation. If

∑k+1
i=k−kth+2

∣∣N i
C−N̄C

∣∣ < Nth, stop the
iteration of clustering, or go to Step 2, where Nth

is the variation threshold of quantity of clusters.
Thus, in the last iteration, we get the cluster set

C k̄ =
{

ck̄
1, c

k̄
2, · · · , ck̄

Nk
C

}
and prediction model

for these sentence clusters. We divide all the sen-
tences in dialogue corpus into the sentence set spo-
ken by customers and the sentence set spoken by
customer service representatives, and then utilize
C k̄ to label them respectively, which is denoted as
C u =

{
cu
1 , cu

2 , · · · , cu
Nu

}
, namely the clusters of

user sentences, and C m =
{
cm
1 , cm

2 , · · · , cm
Nm

}
,

namely the clusters of machine sentences.

4 DM based on Sentence Clustering

The dialogue process mentioned in section 2 could
be formulized as follows, illustrated in Fig. 6. It
is defined X = {x1, · · · , xT } as inner (or exac-
t) sentence cluster corresponding to the user in-
put in each turn, which is unobservable and xt ∈
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Figure 6: dialogue process

C u. E = {e1, · · · , eT } is defined as the input
voice, which is observable to infer xt in each turn.
Y = {y1, · · · , yT } is defined as the output clus-
ter of machine, where yt ∈ C m. Thus, the DM
problem is to find out the optimal yt according to
{e1, y1, · · · , et}. In the following, the DM prob-
lem is modeled as a POMDP.

State in the t-th epoch is defined
as the sequence of clusters, namely
st = {xt−τ , yt−τ , · · · , xt−1, yt−1, xt}, where
st ∈ S . Action in the t-th epoch is defined as
at = yt, where at ∈ A . The state transition
probability Pr {st+1 |st, at } could be shown as

Pr {st+1 |st, at }
= Pr {xt+1 |yt, xt, · · · , yt−τ , xt−τ } (2)

which is calculated by the prediction model based
on RNN in section 3.

Observation is defined as ot = {et−τ , · · · , et},
where ot ∈ O . As {xt−τ , · · · , xt} in state st is
unobservable, belief state is defined to represent
the distribution over possible states, which is de-
noted as b (t) ∈ B. According to (Kaelbling et
al., 1998), the belief state updating could be repre-
sented as

bt+1 (st+1) =
Pr {ot+1 |st+1, at } pst+1

Pr {ot+1 |bt, at } (3)

where pst+1 =
∑

st∈S Pr {st+1 |st, at } bt (st).
According to Fig. 5, Pr {ot+1 |st+1, at } could be
shown as

Pr {ot+1 |st+1, at }
= Pr {ot+1 |st+1 }
= Pr {et−τ+1, · · · , et+1 |xt−τ+1, · · · , yt, xt+1 }
= Pr {et−τ+1, · · · , et+1 |xt−τ+1, · · · , xt+1 }
=

t+1∏
i=t−τ+1

Pr {ei |xi }
(4)

However, it is difficult to obtain the probabili-
ty Pr {et |xt }, as different people have different
habits of expression and pronunciation. Fortunate-
ly, Pr {xt |et } could be estimated based on ASR

and SM. Thus, based on Bayes Rules, we have the
following equation.

Pr {ei |xi } =
Pr {xi |ei }Pr {ei}

Pr {xi} (5)

where Pr {xt} is the prior distribution of xt and
could be counted by corpus. With (4) and (5), (3)
could be rewritten as

bt+1 (st+1) =
κ · pst+1 ·

t+1∏
i=t−τ+1

Pr {xi |ei }
t+1∏

i=t−τ+1
Pr {xi}

(6)
where

κ =
∏t+1

i=t−τ+1
Pr {ei}

/
Pr {ot+1 |bt, at } (7)

is a normalization constant.
The reward function is defined as

rt (st, at, st+1) = λfrf
(st,at,st+1) + λpr

p
(st,at,st+1)

(8)
where λf + λp = 1 and rt (st, at, st+1) ∈ R.
Firstly, rf

(st,at,st+1) stands for the number of un-
filled slots that are filled by the sequence of sen-
tence clusters corresponding to (st, at, st+1). This
slot-filling process could be achieved by a clas-
sifier trained by the dialogues labeled with sen-
tence clusters and slot-filling information. (Input-
s are cluster sequences, and outputs are filled s-
lots.) Additionally, rp

(st,at,st+1) is defined as the
normalized quantity of st+1 conditioned by st and
at, which could be counted in corpus and stands
for the popularity features of human-human dia-
logues. Thus, for the belief state, the reward func-
tion could be represented as

rt (bt, at) =
∑

st+1∈S

∑
st∈S

rt (st, at, st+1)

· Pr (st+1 |st, at ) bt (st)
(9)

Therefore, if we define the policy as a mapping
from belief state to action, namely ζ ∈ Z : B →
A , the POMDP-based DM problem is shown as

max
ζ∈S

Eζ

[
T∑

t=1
βrt (bt, at)

]

s.t. bt+1 (st+1) =
κ

t+1∏
i=t−τ+1

Pr{xi|ei }
t+1∏

i=t−τ+1
Pr{xi}

· ∑
st∈S

Pr {st+1 |st, at } bt (st)

(10)
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where β is the time discount factor and 0 < β < 1.
This problem is a MDP problem with continuous
states, which could be solved by the Natural Actor
and Critic algorithm (Peters et al., 2008).

5 Experimental Results

In this section, we compare the performances of
the proposed Sentence Clustering based Dialogue
Management (SCDM) scheme and the existing D-
M scheme. The existing scheme is designed ac-
cording to (Young et al., 2013), where DA is uti-
lized to represent the semantic information of sen-
tence and the dialogue policy is trained via Rein-
forcement Learning. It is also an extrinsic (or end-
to-end) evaluation to compare the semantic repre-
sentation ability between sentence cluster and DA.

In order to compare the performances of the
DM schemes, we collect 171 human-human di-
alogues in hotel reservation and utilize 100 dia-
logues of them to establish a SDS. The residual
71 dialogues are used to establish a simulated user
for testing (Schatzmann et al., 2006). We define
the slots requested from machine to user as “room
type”, “room quantity”, “checkin time”, “check-
out time”, “client name” and “client phone”. We
also define the slots requested from users to ma-
chine as “hotel address = No.95 East St.”, “room
type set = single room, double room, and deluxe
room”, “single room price = $80”, “double room
price = $100”, “deluxe room price = $150”. The
hotel reservation task could be considered as a pro-
cess of exchanging the slot information between
machine and user to some extent.

Fig. 7 illustrates the dialogue turn in the DM
schemes, using different training corpus. Here,
we vary the size of training corpus from 10 dia-
logues to 100 dialogues and define average turn
as the average dialogue turn cost to complete the
task. From this picture, we find out that the SCD-
M scheme has lower average turn than the existing
scheme, partly because the sentence are automati-
cally clustered into many small groups that could
represent more nuanced semantic information than
DAs, partly because RNN could estimate next sen-
tence cluster according to the vector in hidden lay-
er that contains abundant historical dialogue in-
formation. As the number of sentence clusters is
greater than number of DAs, RNN could also solve
the scarcity problem and smoothing problem in the
predicting process. Additionally, with the incre-
ment of training dialogue size, the average turn
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Figure 7: comparison of average turn

of dialogue decreases, which ought to be ascribed
to the fact that more training data could let SD-
S reach more states with more times and increase
the accuracy of the parameter estimation in RNN
and POMDP. Furthermore, with the increment of
training dialogue size, the dialogue turn improve-
ment of the proposed scheme turns less obvious,
because the number of new sentence pattern de-
ceases with the training size increment.

6 Conclusion

In this paper, we focused on the DM scheme based
on sentence clustering. Firstly, sentence cluster is
defined as the semantic representation of sentence
in dialogue, which could describe more naunced
sentence intention than DA. Secondly, RNN is es-
tablished for sentence clustering, where sentence
similarity is calculated not only based on the inter-
nal information such as words and sentence struc-
ture, but also based on the external information
such as context in dialogue. Thirdly, the DM prob-
lem is modeled as a POMDP, where the state is
defined as the sequence of sentence clusters and
the state transition probability is estimated by RN-
N, considering the whole information of historical
dialogue. Finally, the experimental results illus-
trated that the proposed DM scheme is superior to
the existing one.
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Abstract

In this paper, we introduce the task of se-
lecting compact lexicon from large, noisy
gazetteers. This scenario arises often in
practice, in particular spoken language un-
derstanding (SLU). We propose a simple
and effective solution based on matrix de-
composition techniques: canonical corre-
lation analysis (CCA) and rank-revealing
QR (RRQR) factorization. CCA is first
used to derive low-dimensional gazetteer
embeddings from domain-specific search
logs. Then RRQR is used to find a sub-
set of these embeddings whose span ap-
proximates the entire lexicon space. Ex-
periments on slot tagging show that our
method yields a small set of lexicon en-
tities with average relative error reduction
of > 50% over randomly selected lexicon.

1 Introduction

Discriminative models trained with large quanti-
ties of arbitrary features are a dominant paradigm
in spoken language understanding (SLU) (Li et
al., 2009; Hillard et al., 2011; Celikyilmaz et al.,
2013; Liu and Sarikaya, 2014; Sarikaya et al.,
2014; Anastasakos et al., 2014; Xu and Sarikaya,
2014; Celikyilmaz et al., 2015; Kim et al., 2015a;
Kim et al., 2015c; Kim et al., 2015b). An impor-
tant category of these features comes from entity
dictionaries or gazetteers—lists of phrases whose
labels are given. For instance, they can be lists
of movies, music titles, actors, restaurants, and
cities. These features enable SLU models to ro-
bustly handle unseen entities at test time.

However, these lists are often massive and very
noisy. This is because they are typically obtained
automatically by mining the web for recent en-
tries (such as newly launched movie names). Ide-
ally, we would like an SLU model to have access

to this vast source of information at deployment.
But this is difficult in practice because an SLU
model needs to be light-weight to support fast user
interaction. It becomes more challenging when
we consider multiple domains, languages, and lo-
cales.

In this paper, we introduce the task of selecting
a small, representative subset of noisy gazetteers
that will nevertheless improve model performance
nearly as much as the original lexicon. This will
allow an SLU model to take full advantage of
gazetteer resources at test time without being over-
whelmed by their scale.

Our selection method is two steps. First, we
gather relevant information for each gazetteer ele-
ment using domain-specific search logs. Then we
perform CCA using this information to derive low-
dimensional gazetteer embeddings (Hotelling,
1936). Second, we use a subset selection method
based on RRQR to locate gazetteer embeddings
whose span approximates the the entire lexicon
space (Boutsidis et al., 2009; Kim and Snyder,
2013). We show in slot tagging experiments that
the gazetteer elements selected by our method not
only preserve the performance of using full lexi-
con but even improve it in some cases. Compared
to random selection, our method achieves average
relative error reduction of > 50%.

2 Motivation

We motivate our task by describing the process
of lexicon construction. Entity dictionaries are
usually automatically mined from the web us-
ing resources that provide typed entities. On
a regular basis, these dictionaries are automati-
cally updated and accumulated based on local data
feeds and knowledge graphs. Local data feeds
are generated from various origins (e.g., yellow
pages, Yelp). Knowledge graphs such as www.
freebase.com are resources that define a se-
mantic space of entities (e.g., movie names, per-
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sons, places and organizations) and their relations.
Because of the need to keep dictionaries up-

dated to handle newly emerging entities, lexicon
construction is designed to aim for high recall at
the expense of precision. Consequently, the result-
ing gazetteers are noisy. For example, a movie dic-
tionary may contain hundreds of thousands movie
names, but many of them are false positives.

While this large base of entities is useful as a
whole, it is challenging to take advantage of at test
time. This is because we normally cannot afford
to consume so much memory when we deploy an
SLU model in practice. In the next section, we
will describe a way to filter these entities while
retaining their overall benefit.

3 Method

3.1 Row subset selection problem
We frame gazetteer element selection as the row
subset selection problem. In this framework, we
organize n gazetteer elements as matrixA ∈ Rn×d

whose rows Ai ∈ Rd are some representations
of the gazetteer members. Given m ≤ n, let
S(A,m) := {B ∈ Rm×d : Bi = Aπ(i)} be a set
of matrices whose rows are a subset of the rows
of A. Note that |S(A,m)| =

(
n
m

)
. Our goal is to

select 1

B∗ = arg min
B∈S(A,m)

∣∣∣∣A−AB+B
∣∣∣∣
F

That is, we want B to satisfy range(B>) ≈
range(A>). We can solve for B∗ exactly with
exhaustive search in O(nm), but this brute-force
approach is clearly not scalable. Instead, we turn
to the O(nd2) algorithm of Boutsidis et al. (2009)
which we review below.

3.1.1 RRQR factorization
A key ingredient in the algorithm of Boutsidis et
al. (2009) is the use of RRQR factorization. Recall
that a (thin) QR factorization of A expresses A =
QR where Q ∈ Rn×d has orthonormal columns
and R ∈ Rd×d is an upper triangular matrix. A
limitation of QR factorization is that it does not
assign a score to each of the d components. This is
in contrast to singular value decomposition (SVD)
which assigns a score (singular value) indicating
the importance of these components.

1The Frobenius norm ||M ||F is defined as the entry-wise

L2 norm:
√∑

i,j m2
ij . B+ is the Moore-Penrose pseudo-

inverse of B

Input: d-dimensional gazetteer representations A ∈ Rn×d,
number of gazetteer elements to select m ≤ n
Output: m rows of A, call B ∈ Rm×d, such that∣∣∣∣A−AB+B

∣∣∣∣
F

is small

• Perform SVD on A and let U ∈ Rd×m be a ma-
trix whose columns are the left singular vectors cor-
responding to the largest m singular values.

• Associate a probability pi with the i-th row of A as
follows:

pi := min

{
1, bm log mc ||Ui||2

m

}

• Discard the i-th row of A with probability 1 − pi.
If kept, the row is multiplied by 1/

√
pi. Let these

O(m log m) rows form the columns of a new matrix
Ā ∈ Rd×O(m log m).

• Perform RRQR on Ā to obtain ĀΠ = QR.

• Return the m rows of the original A corresponding to
the top m columns of ĀΠ.

Figure 1: Gazetteer selection based on the algo-
rithm of Boutsidis et al. (2009).

RRQR factorization is a less well-known vari-
ant of QR that addresses this limitation. Let
σi(M) denote the i-th largest singular value of
matrix M . Given A, RRQR jointly finds a
permutation matrix Π ∈ {0, 1}d×d, orthonor-
mal Q ∈ Rn×d, and upper triangular R =
[R11 R12; 0 R22] ∈ Rd×d such that

AΠ = Q

[
R11 R12

R22

]
satisfying σk(R11) = O(σk(A)) and σ1(R22) =
Ω(σk+1(A)) for k = 1 . . . d. Because of this rank-
ing property, RRQR “reveals” the numerical rank
of A. Furthermore, the columns of AΠ are sorted
in the order of decreasing importance.

3.1.2 Gazetteer selection algorithm
The algorithm is a two-stage procedure. In the first
step, we randomly sample O(m logm) rows of A
with carefully chosen probabilities and scale them
to form columns of matrix Ā ∈ Rd×O(m logm).
In the second step, we perform RRQR factoriza-
tion on Ā and collect the gazetteer elements cor-
responding to the top components given by the
RRQR permutation. The algorithm is shown in
Figure 1. The first stage involves random sam-
pling and scaling of rows, but it is shown that Ā
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has O(m logm) columns with constant probabil-
ity.

This algorithm has the following optimality
guarantee:

Theorem 3.1 (Boutsidis et al. (2009)). Let B̂ ∈
Rm×d be the matrix returned by the algorithm in
Figure 1. Then with probability at least 0.7,∣∣∣∣∣∣A−AB̂+B̂

∣∣∣∣∣∣
F
≤ O(m

√
logm)×

min
Ã∈Rn×d:

rank(Ã)=m

∣∣∣∣∣∣A− Ã∣∣∣∣∣∣
F

In other words, the selected rows are not arbi-
trarily worse than the best rank-m approximation
of A (given by SVD) with high probability.

3.2 Gazetteer embeddings via CCA
In order to perform the selection algorithm in Fig-
ure 1, we need a d-dimensional representation for
each of n gazetteer elements. We use CCA for its
simplicity and generality.

3.2.1 Canonical Correlation Analysis (CCA)
CCA is a general statistical technique that char-
acterizes the linear relationship between a pair of
multi-dimensional variables. CCA seeks to find k
dimensions (k is a parameter to be specified) in
which these variables are maximally correlated.

Let x1 . . . xn ∈ Rd and y1 . . . yn ∈ Rd′ be n
samples of the two variables. For simplicity, as-
sume that these variables have zero mean. Then
CCA computes the following for i = 1 . . . k:

arg max
ui∈Rd, vi∈Rd′ :
u>i ui′=0 ∀i′<i
v>i vi′=0 ∀i′<i

∑n
l=1(u>i xl)(v

>
i yl)√∑n

l=1(u>i xl)2
√∑n

l=1(v>i yl)2

In other words, each (ui, vi) is a pair of projec-
tion vectors such that the correlation between the
projected variables u>i xl and v>i yl is maximized,
under the constraint that this projection is uncor-
related with the previous i− 1 projections.

This is a non-convex problem due to the inter-
action between ui and vi. However, a method
based on singular value decomposition (SVD) pro-
vides an efficient and exact solution to this prob-
lem (Hotelling, 1936). The resulting solution
u1 . . . uk ∈ Rd and v1 . . . vk ∈ Rd′ can be used
to project the variables from the original d- and
d′-dimensional spaces to a k-dimensional space:

x ∈ Rd −→ x̄ ∈ Rk : x̄i = u>i x

y ∈ Rd′ −→ ȳ ∈ Rk : ȳi = v>i y

The new k-dimensional representation of each
variable now contains information about the other
variable. The value of k is usually selected to be
much smaller than d or d′, so the representation is
typically also low-dimensional.

3.2.2 Inducing gazetteer embeddings
We now describe how to use CCA to induce vec-
tor representations for gazetteer elements. Using
the same notation, let n be the number of elements
in the entire gazetteers. Let x1 . . . xn be the orig-
inal representations of the element samples and
y1 . . . yn be the original representations of the as-
sociated features in the element.

We employ the following definition for the orig-
inal representations. Let d be the number of dis-
tinct element types and d′ be the number of distinct
feature types.

• xl ∈ Rd is a zero vector in which the entry
corresponding to the element type of the l-th
instance is set to 1.

• yl ∈ Rd′ is a zero vector in which the en-
tries corresponding to features generated by
the element are set to 1.

In our case, we want to induce gazetteer (ele-
ment) embeddings that correlate with the relevant
features about gazetteers. For this purpose, we use
three types of features: context features, search
click log features, and knowledge graph features.

Context features: For each gazetteer element g
of domain l, we take sentences from search logs
on domain l containing g and extract five words
each to the left and the right of the element g in
the sentences. For instance, if g = “The Matrix”
is a gazetteer element of domain l = “Movie”,
we collect sentences from movie-specific search
logs involving the phrase “The Matrix”. Such
domain-specific search logs are collected using a
pre-trained domain classifier.

Search click log features: Large-scale search
engines such as Bing and Google process mil-
lions of queries on a daily basis. Together with
the search queries, user clicked URLs are also
logged anonymously. These click logs have been
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used for extracting semantic information for var-
ious NLP tasks (Kim et al., 2015a; Tseng et al.,
2009; Hakkani-Tür et al., 2011). We used the
clicked URLs as features to determine the likeli-
hood of an entity being a member of a dictionary.
These features are useful because common URLs
are shared across different names such as movie,
business and music. Table 1 shows the top five
most frequently clicked URLs for movies “Furi-
ous 7” and “The age of adaline”.

Furious 7 The age of adaline
imdb.com imdb.com

en.wikipedia.org en.wikipedia.org
furious7.com youtube.com

rottentomatoes.com rottentomatoes.com
www.msn.com movieinsider.com

Table 1: Top clicked URLs of two movies.

One issue with using only click logs is that some
entities may not be covered in the query logs since
logs are extracted from a limited time frame (e.g.
six months). Even the big search engines employ
a moving time window for processing and stor-
ing search logs. Consequently, click logs are not
necessarily good evidence. For example, “apollo
thirteen” is a movie name appearing in the movie
training data, but it does not appear in search logs.
One way to solve the issue of missing logs for en-
tities is to search bing.com at real time. Given
that the search engine is updated on a daily ba-
sis, real-time search can make sure we capture the
newest entities. We run live search for all entities
no matter if they appear in search logs or not. Each
URL returned from the live search is considered to
have an additional click.

Knowledge graph features: The graph in
www.freebase.com contains a large set of tu-
ples in a resource description framework (RDF)
defined by W3C. A tuple typically consists of two
entities: a subject and an object linked by some
relation.

An interesting part of this resource is the entity
type defined in the graph for each entity. In the
knowledge graph, the “type” relation represents
the entity type. Table 2 shows some examples of
entities and their relations in the knowledge graph.
From the graph, we learn that “Romeo & Juliet”
could be a film name or a music album since it has
two types: “film.film” and “music.album”.

Subject Relation Object
Jason Statham type film.actor
Jason Statham type tv.actor
Jason Statham type film.producer

Romeo & Juliet type film.film
Romeo & Juliet type music.album

Table 2: Entities & relation in the knowledge graph.

4 Experiments

To test the effectiveness of the proposed gazetteer
selection method, we conduct slot tagging experi-
ments across a test suite of three domains: Movies,
Music and Places, which are very sensitive do-
mains to gazetteer features. The task of slot tag-
ging is to find the correct sequence of tags of
words given a user utterance. For example, in
Places domain, a user could say “search for home
depot in kingsport” and the phrase “home depot”
and “kingsport” are tagged with Place Name
and Location respectively. The data statistics
are shown in Table 3. One domain can have var-
ious kinds of gazetteers. For example, Places do-
main has business name, restaurant name, school
name and etc. Candidate dictionaries are mined
from the web and search logs automatically using
basic pattern matching approaches (e.g. entities
sharing the same or similar context in queries or
documents) and consequently contain significant
amount of noise. As the table indicates, the num-
ber of elements in total across all the gazetteers
(#total gazet elements) in each domain are too
large for models to consume.

In all our experiments, we trained conditional
random fields (CRFs) (Lafferty et al., 2001) with
the following features: (1) n-gram features up to
n = 3, (2) regular expression features, and (3)
Brown clusters (Brown et al., 1992) induced from
search logs. With these features, we compare the
following methods to demonstrate the importance
of adding appropriate gazetteers:

• NoG: train without gazetteer features.

• AllG: train with all gazetteers.

• RandG: train with randomly selected
gazetteers.

• RRQRG: train with gazetteers selected from
RRQR.

• RankAllG: train with all ranked gazetteers.
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Domains #labels #kinds of gazets #total gazet elements #training queries #test queries
Movies 25 21 14,188,527 43,784 12,179
Music 7 13 62,231,869 31,853 8,615
Places 32 31 34,227,612 22,345 6,143

Table 3: Data statistics

Here gazetteer features are activated when a
phrase contains an entity in a dictionary. For
RandG, we first sample a category of gazetteers
uniformly and then choose a lexicon from
gazetteers in that category. The results when we
use selected gazetteer randomly in whole cate-
gories are very low and did not include them here.
For selecting gazetteer methods (NoG, RnadG and
RRQRG), we select 500,000 elements in total.

Places Music Movies AVG.
NoG 89.10 81.53 84.78 85.14
AllG 92.11 84.24 88.56 88.30
RRQRG 91.80 83.83 87.41 87.68
RandG 86.20 76.53 77.23 79.99

Table 4: Comparison of models evaluated on three do-
mains. The numbers are F1-scores.

4.1 Results across Domains
First, we evaluate all models across three do-
mains. Note that the both training and test data
are collected from the United States. The results
are shown in Table 4. Not surprisingly, using
all gazetteer features (AllG) boosts the F1 score
from 85.14 % to 88.30%, confirming the power
of gazetteer features. However, with a random
selection of gazetteers, the model does not per-
form well, only achieving 79.99% F1-score. In-
terestingly, we see that across all domains our
method (RRQRG) fares better than both RandG
and NoG, almost reaching the AllG performance
with gazetteer size dramatically reduced.

4.2 Results across Locales
In the next experiments, we run experiments
across three different locales in Places domain:
United Kingdom (GB), Australia (AU), and In-
dia (IN). The Places is a very sensitive domain to
locales2. For example, restaurant names in India
are very different from Australia. Here we assume
that unlike the previous experiments, the training
data is collected from the United States and test
data is collected from different locales. We used
same training data in the previous experiments and

2Since it is very difficult to create all locale specific train-
ing data, gazetteer features are very crucial.

the size of test data is about 5k for each locale.
The results are shown in Table 5. Interestingly, the
RRQR even outperforms the AllG. This is because
some noisy entities are filtered.

Finally, we show that the proposed method is
useful even in all gazetteer scenario (AllG). Us-
ing RRQR, we can order entities according to
their importance and transform a gazetteer fea-
ture into a few ones by binning the entities with
their rankings. For example, instead of having
one single big business names gazetteer, we can
divide them into lexicon with first 1000 entities,
10000 entities and so on. Results using ranked
gazetteers are shown in Table 6. We see that the
Ranked gazetteers approach (RankAllG) has con-
sistent gains across domains over AllG.

GB AU IN
NoG 87.70 82.20 80.30
AllG 90.12 86.98 89.77
RRQRG 90.18 87.48 90.28
RandG 86.20 65.34 64.20

Table 5: Comparison of models across different locales.

Places Music Movies AVG.
AllG 92.11 84.24 88.56 88.30
RankAllG 92.78 86.30 89.1 89.40

Table 6: Comparison of models with or without ranked
gazetteers. These are evaluated on three domains collected
in the United States.

5 Conclusion

We proposed the task of selecting compact lexi-
cons from large and noisy gazetteers. This sce-
nario arises often in practice. We introduced a sim-
ple and effective solution based on matrix decom-
position techniques: CCA is used to derive low-
dimensional gazetteer embeddings and RRQR is
used to find a subset of these embeddings. Experi-
ments on slot tagging show that our method yields
relative error reduction of > 50% on average over
the random selection method.
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Abstract

We investigate the impact of listener’s
gaze on predicting reference resolution in
situated interactions. We extend an ex-
isting model that predicts to which entity
in the environment listeners will resolve
a referring expression (RE). Our model
makes use of features that capture which
objects were looked at and for how long,
reflecting listeners’ visual behavior. We
improve a probabilistic model that consid-
ers a basic set of features for monitoring
listeners’ movements in a virtual environ-
ment. Particularly, in complex referential
scenes, where more objects next to the tar-
get are possible referents, gaze turns out to
be beneficial and helps deciphering listen-
ers’ intention. We evaluate performance at
several prediction times before the listener
performs an action, obtaining a highly sig-
nificant accuracy gain.

1 Introduction

Speakers tend to follow the listener’s behavior in
order to determine whether their communicated
message was received and understood. This phe-
nomenon is known as grounding, it is well estab-
lished in the dialogue literature (Clark, 1996), and
it plays an important role in collaborative tasks
and goal–oriented conversations. Solving a col-
laborative task in a shared environment is an ef-
fective way of studying the alignment of commu-
nication channels (Clark and Krych, 2004; Hanna
and Brennan, 2007).

In situated spoken conversations ambiguous lin-
guistic expressions are common, where additional
modalities are available. While Gargett et al.
(2010) studied instruction giving and following in
virtual environments, Brennan et al. (2013) ex-
amined pedestrian guidance in outdoor real envi-
ronments. Both studies investigate the interaction

of human interlocutors but neither study exploits
listeners’ eye movements. In contrast, Koller et
al. (2012) designed a task in which a natural lan-
guage generation (NLG) system gives instructions
to a human player in virtual environment whose
eye movements were tracked. They outperformed
similar systems in both successful reference res-
olution and listener confusion. Engonopoulos et
al. (2013) attempted to predict the resolution of
an RE, achieving good performance by combining
two probabilistic log–linear models: a semantic
model Psem that analyzes the semantics of a given
instruction, and an observational model Pobs that
inspects the player’s behavior. However, they did
not include listener’s gaze. They observed that the
accuracy for Pobs reaches its highest point at a rel-
atively late stage in an interaction. Similar obser-
vations are reported by Kennington and Schlangen
(2014): they compare listener gaze and an incre-
mental update model (IUM) as predictors for the
resolution of an RE, noting that gaze is more ac-
curate before the onset of an utterance, whereas
the model itself is more accurate afterwards.

In this paper we report on the extension of the
Pobs model to also consider listener’s visual be-
haviour. More precisely we implement features
that encode listener’s eye movement patterns and
evaluate their performance on a multi–modal data
collection. We show that such a model as it
takes an additional communication channel pro-
vides more accurate predictions especially when
dealing with complex scenes. We also expand on
concepts from the IUM, by applying the conclu-
sions drawn from its behaviour to a dynamic task
with a naturalistic interactive scenario.

2 Problem definition

We address the research question of how to auto-
matically predict an RE resolution, i.e., answer-
ing the question of which entity in a virtual en-
vironment has been understood by the listener af-
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ter receiving an instruction. While the linguistic
material in instructions carries a lot of informa-
tion, even completely unambiguous descriptions
may be misunderstood. A robust NLG system
should be capable of detecting misunderstandings
and preventing its users from making mistakes.

Language comprehension is mirrored by inter-
locutors’ non verbal behavior, and this can help
when decoding the listener’s interpretation. Pre-
cise automatic estimates may be crucial when de-
veloping a real–time NLG system, as such a mech-
anism would be more robust and capable at avoid-
ing misunderstandings. As mentioned in section 1,
Engonopoulos et al. (2013) propose two statistical
models to solve that problem: a semantic model
Psem based on the linguistic content, and an ob-
servation model Pobs based on listener behavior
features.

More formally, let’s assume a system generates
an expression r that aims to identify a target ob-
ject ot among a setO of possible objects, i.e. those
available in the scene view. Given the state of the
world s at time point t, and the observed listener’s
behavior σ(t) of the user at time t ≥ tb (where
tb denotes the end of an interaction), we estimated
the conditional probability p(op|r, s, σ(t)) that in-
dicates how probable it is that the listener resolved
r to op. This probability can be also expressed as
follows:

P (op|r, s, σ(t)) ∝ Psem(op|r, s)Pobs(op|σ(t))
P (op)

Following Engonopoulos et al. (2013) we make
the simplifying assumption that the distribution of
the probability among the possible targets is uni-
form and obtain:

P (op|r, s, σ(t)) ∝ Psem(op|r, s)Pobs(op|σ(t))

We expect an NLG system to compute and out-
put an expression that maximizes the probability
of op. Due to the dynamic nature of our scenar-
ios, we also require the probability value to be up-
dated at certain time intervals throughout an in-
teraction. Tracking the probability changes over
time, an NLG system could proactively react to
changes in its environment. Henderson and Smith
(2007) show that accounting for both fixation lo-
cation and duration are key to identify a player’s
focus of attention.

The technical contribution of this paper is to ex-
tend the Pobs model of Engonopoulos et al. (2013)
with gaze features to account for these variables.

3 Episodes and feature functions

The data for our experiment was obtained from
the GIVE Challenge (Koller et al., 2010), an inter-
active task in a 3D virtual environment in which
a human player (instruction follower, IF) is navi-
gated through a maze, locating and pressing but-
tons in a predefined order aiming to unlock a safe.
While pressing the wrong button in the sequences
doesn’t always have negative effects, it can also
lead to restarting or losing the game. The IF re-
ceives instructions from either another player or
an automated system (instruction giver, IG). The
IF’s behavior was recorded every 200ms, along
with the IG’s instructions and the state of the
virtual world. The result is an interaction cor-
pus comprising over 2500 games and spanning
over 340 hours of interactions. These interactions
were mainly collected during the GIVE-2 and the
GIVE-2.5 challenges. A laboratory study con-
ducted by Staudte et al. (2012) comprises a data
collection that contains eye-tracking records for
the IF. Although the corpus contains both success-
ful and unsuccessful games, we have decided to
consider only the successful ones.

We define an episode over this corpus as a typ-
ically short sequence of recorded behavior states,
beginning with a manipulation instruction gener-
ated by the IG and ending with a button press by
the IF (at time point tb). In order to make sure
that the recorded button press is a direct response
to the IG’s instruction, an episode is defined such
that it doesn’t contain further utterances after the
first one. Both the target intended by the IG (ot)
and the one selected by the IF (op) were recorded.

Figure 1: The structure of the interactions.

Figure 1 depicts the structure of an episode
when eye-tracking data is available. Each episode
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can be seen as a sequence of interaction states
(s1, . . . , sn), and each state has a set of visible
objects ({o1, o2, o3, o10, o12}). We then compute
the subset of fixated objects ({o2, o3, o12}). We
update both sets of visible and fixated objects dy-
namically in each interaction state with respect to
the change in visual scene and the corresponding
record of the listener’s eye movements.

We developed feature functions over these
episodes. Along with the episode’s data, each
function takes two parameters: an object op for
which the function is evaluated, and a parameter
d seconds that defines how much of the episode’s
data is the feature allowed to analyze. Each feature
looks only at the behavior that happens in the time
interval −d to 0. Henceforth we refer to the value
of a feature function over this interval as its value
at time −d. The value of a feature function evalu-
ated on episodes with length less than d seconds is
undefined.

4 Prediction models

Given an RE uttered by an IG, the semantic model
Psem estimates the probability for each possible
object in the environment to have been understood
as the referent, ranks all candidates and selects the
most probable one in a current scene. This prob-
ability represents the semantics of the utterance,
and is evaluated at a single time point immediately
after the instruction (e.g. “press the blue button”)
has been uttered. The model takes into account
features that encode the presence or absence of ad-
jectives carrying information about the spatial or
color properties (like the adjective “blue”), along
with landmarks appearing as post modifiers of the
target noun.

In contrast to the semantic model, the observa-
tional model Pobs evaluates the changes in the vi-
sual context and player’s behavior after an instruc-
tion has been received. The estimated probabil-
ity is updated constantly before an action, as the
listener in our task–oriented interactions is con-
stantly in motion, altering the visual context. The
model evaluates the distance of the listener posi-
tion to a potential target, whether it is visible or
not, and also how salient an object is in that par-
ticular time window.

As we have seen above, eye movements pro-
vide useful information indicating language com-
prehension, and also how to map a semantic repre-
sentation to an entity in a shared environment. In-

terlocutors constantly interact with their surround-
ing and point to specific entities with gestures.
Gaze behaviour is also driven by the current state
of an interaction. Thus, we extend the basic set
of Pobs features and implement eye–tracking fea-
tures that capture gaze information. We call this
the extended observational model PEobs and con-
sider the following additional features:

1. Looked at: feature counts the number of
interaction states in which an object has
been fixated at least once during the current
episode.

2. Longest Sequence: detects the longest con-
tinuous sequence of interaction states in
which a particular object has been fixated.

3. Linear Distance: returns the euclidean dis-
tance dist on screen between the gaze cursor
and the center of an object.

4. Inv-Squared Distance: returns 1
1+dist2

.

5. Update Fixated Objects: expands the list of
fixated objects in order to consider the IF’s
focus of attention. It successively searches in
10 pixel steps and stops as soon as an object
is found (the threshold is 100 pixels). This
feature evaluates to 1 if the list of fixated ob-
jects is been expanded and 0 otherwise.

When training our model at time −dtrain, we
generate a feature matrix. Given a training
episode, each possible (located in the same room)
object op is added as a new row, where each col-
umn contains the value of a different feature func-
tion for op over this episode at time −dtrain. Fi-
nally, the row based on the target selected by the
IF is marked as a positive example. We then train
a log-linear model, where the weights assigned
to each feature function are learned via optimiza-
tion with the L-BFGS algorithm. By training our
model to correctly predict a target button based
only on data observed up until −dtrain seconds
before the actual action tb, we expect our model to
reliably predict which button the user will select.
Analogously, we define accuracy at testing time
−dtest as the percentage of correctly predicted tar-
get objects when predicting over episodes at time
−dtest. This pair of training and test parameters is
denoted as the tuple (dtrain, dtest).
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5 Dataset

We evaluated the performance of our improved
model over data collected by Staudte et al. (2012)
using the GIVE Challenge platform. Both training
and testing were performed over a subset of the
data obtained during a collection task involving
worlds created by Gargett et al. (2010), designed
to provide the task with varying levels of diffi-
culty. This corpus provides recorded eye-tracking
data, collected with a remote faceLAB system. In
contrast, the evaluation presented by Engonopou-
los et al. (2013) uses only games collected for the
GIVE 2 and GIVE 2.5 challenges, for which no
eye-tracking data is available. Here, we do not in-
vestigate the performance of Psem and concentrate
on the direct comparison between Pobs and PEobs

in order to find out if and when eye–tracking can
improve the prediction of an RE resolution.

We further filtered our corpus in order to re-
move noisy games following Koller et al. (2012),
considering only interactions for which the eye-
tracker calibration detected inspection of either the
target or another button object in at least 75% of all
referential scenes in an interaction. The resulting
corpus comprises 75 games, for a combined length
of 8 hours. We extracted 761 episodes from this
corpus, amounting to 47m 58s of recorded interac-
tions, with an average length per episode of 3.78
seconds (σ = 3.03sec.). There are 261 episodes
shorter than 2 sec., 207 in the 2-4 sec. range, 139
in the 4-6 sec. range, and 154 episodes longer than
6 sec.

6 Evaluation and results

The accuracy of our probabilistic models depends
on the parameters (dtrain, dtest). At different
stages of an interaction the difficulty to predict an
intended target varies as the visual context changes
and in particular the number of visible objects. As
the weights of the features are optimized at time
−dtrain, it would be expected that testing also at
time −dtest = −dtrain yields the highest accu-
racy. However, the difficulty to make a predic-
tion decreases as tb − dtest approaches tb, i.e. as
the player moves towards the intended target. We
expect that testing at −dtrain works best, but we
need to be able to update continuously. Thus we
also evaluate at other timepoints and test several
combinations of the (dtrain, dtest) parameters.

Given the limited amount of eye-tracking data
available in our corpus, we replaced the cross-

corpora-challenge test setting from the original
Pobs study with a ten fold cross validation setup.
As training and testing were performed over in-
stances of a certain minimum length according to
(dtrain, dtest), we first removed all instances with
length less than max(dtrain, dtest), and then per-
form the cross validation split. In this way we
ensure that the number of instances in the folds
are not unbalanced. Moreover, each instance was
classified as easy or hard depending on the num-
ber of visible objects at time tb. An instance
was considered easy if no more than three objects
were visible at that point, or hard otherwise. For
−dtest = 0, 59.5% of all instances are considered
hard, but this proportion decreases as −dtest in-
creases. At −dtest = −6, the number of hard in-
stances amounts to 72.7%.

We evaluated both the original Pobs model and
the PEobs model on the same data set. We also cal-
culated accuracy values for each feature function,
in order to test whether a single function could out-
perform Pobs. We included as baselines two ver-
sions of Pobs using only the features InRoom and
Visual Salience proposed by Engonopoulos et al.
(2013).

The accuracy results on Figure 2 show our ob-
servations for−6 ≤ −dtrain ≤ −2 and−dtrain ≤
−dtest ≤ 0. The graph shows that PEobs performs
similarly as Pobs on the easy instances, i.e. the
eye-tracking features are not contributing in those
scenarios. However, PEobs shows a consistent im-
provement on the hard instances over Pobs.

For each permutation of the training and test-
ing parameters (dtrain, dtest), we obtain a set of
episodes that fulfil the length criteria for the given
parameters. We apply Pobs and PEobs on the ob-
tained set of instances and measure two corre-
sponding accuracy values. We compared the ac-
curacy values of Pobs and PEobs over all 25 differ-
ent (dtrain, dtest) pairs, using a paired samples t-
test. The test indicated that the PEobs performance
(M = 83.72, SD = 3.56) is significantly better
than the Pobs performance (M = 79.33, SD =
3.89), (t(24) = 9.51, p < .001, Cohen′s d =
1.17). Thus eye-tracking features seem to be par-
ticularly helpful for predicting to which entity an
RE is resolved in hard scenes.

The results also show a peak in accuracy near
the -3 seconds mark. We computed a 2x2 con-
tingency table that contrasts correct and incorrect
predictions for Pobs and PEobs, i.e. whether oi was
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Figure 2: Accuracy as a function of training and testing time.

classified as target object or not. Data for this ta-
ble was collected from all episode judgements for
models trained at times in the [−6 sec.,−3 sec.]
range and tested at -3 seconds. McNemar’s test
showed that the marginal row and column frequen-
cies are significantly different (p < 0.05). This
peak is related to the average required time be-
tween an utterance and the resulting target manip-
ulation. This result shows that our model is more
accurate precisely at points in time when we ex-
pect fixations to a target object.

7 Conclusion

In this paper we have shown that listener’s gaze
is useful by showing that accuracy improves over
Pobs in the context of predicting the resolution of
an RE. In addition, we observed that our model
PEobs proves to be more robust than Pobs when the
time interval between the prediction (tb − dtest)
and the button press (tb) increases, i.e. gaze is
especially beneficial in an early stage of an in-
teraction. This approach shows significant ac-
curacy improvement on hard referential scenes
where more objects are visible.

We have also established that gaze is particu-
larly useful when combined with some other sim-
ple features, as the features that capture listeners
visual behaviour are not powerful enough to out-
perform even the simplest baseline. Gaze only
benefits the model when it is added on top of fea-
tures that capture the visual context, i.e. the current
scene.

The most immediate future line of research is
the combination of our PEobs model with the se-

mantic model Psem, in order to test the impact of
the extended features in a combined model. If suc-
cessful, such a model could provide reliable pre-
dictions for a significant amount of time before an
action takes place. This is of particular importance
when it comes to designing a system that auto-
matically generates and online outputs feedback to
confirm correct and reject incorrect intentions.

Testing with users in real time is also an area
for future research. An implementation of the Pobs

model is currently in the test phase, and an exten-
sion for the PEobs model would be the immediate
next step. The model could be embedded in an
NLG system to improve the automatic language
generation in such scenarios.

Given that our work refers only to NLG sys-
tems, there’s no possible analysis of speaker’s
gaze. However, it may be interesting to ask
whether a human IG could benefit from the pre-
dictions of PEobs. We could study whether pre-
dictions based on the gaze (mis-)match between
both interlocutors are more effective than simply
presenting the IF’s gaze to the IG and trusting the
IG to correctly interpret this data. If such a sys-
tem proved to be effective, it could point misun-
derstandings to the IG before either of the partici-
pants becomes aware of them.
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Abstract 

The intelligent personal assistant soft-

ware such as the Apple’s Siri and Sam-

sung’s S-Voice has been issued these 

days. This paper introduces a novel Spo-

ken Language Understanding (SLU) 

module to predict user’s intention for de-

termining system actions of the intelli-

gent personal assistant software. The 

SLU module usually consists of several 

connected recognition tasks on a pipeline 

framework, whereas the proposed SLU 

module simultaneously recognizes four 

recognition tasks on a recognition 

framework using Conditional Random 

Fields (CRF). The four tasks include 

named entity, speech-act, target and op-

eration recognition. In the experiments, 

the new simultaneous recognition method 

achieves the higher performance of 4% 

and faster speed of about 25% than other 

method using a pipeline framework. By a 

significance test, this improvement is 

considered to be statistically significant 

as a p-value of smaller than 0.05. 

1 Introduction 

Currently, one of the most issued and promising 

software is the intelligent personal assistant 

software such as Apple’s Siri (Wikipedia, 2011) 

and Samsung’s S-Voice (Wikipedia, 2012). This 

kind of software provides users a natural lan-

guage user interface to answer questions, make 

recommendations and perform actions. One of 

the core modules to develop this software is the 

Spoken Language Understanding (SLU) module. 

The SLU module predicts the user’s intention of 

user utterance, and one of the various software 

actions is selected to provide appropriate infor-

mation to a user (Wang et al., 2005). 

The SLU model of the intelligent personal as-

sistant software has several different aspects 

from the previous other SLU modules, such as 

ones of ATIS (Automatic Terminal Information 

Service) and DARPA (Defense Advanced Re-

search Project Agency) projects, which are based 

on rule-based methods (Ward et al. 1994; Wang 

et al. 2001) and statistical methods (Wang et al. 

2006; Raymond et al. 2007). Because the SLU 

module is operated for various applications 

(Apps) of mobile devices such as weather, trans-

portation, etc., it has to be able to deal with more 

heterogeneous domains than the ATIS and 

DARPA projects and it does more detailed anal-

ysis for each domain in order to offer users accu-

rate information. In addition, since the SLU 

module in the previous dialogue systems has a 

complicated architecture that is composes of 

many sub-modules, it is difficult for them to be 

directly applied into the SLU module of intelli-

gent personal assistant software with those many 

domains for mobile devices. That is, building up 

a complicated architecture for each domain can 

make a heavy system and this kind of system is 

not proper to mobile devices. 

In this paper, we propose a new SLU module 

with a simultaneous recognition framework for 

the intelligent personal assistant software. The 

proposed SLU module consists of four compo-

nents:  named entity (NE), speech-act, target and 

operator recognition. Each component of the 

proposed SLU module has different recognition 

unit, e.g. the named entity recognition is based 

on a morpheme/phrase unit, whereas the target, 

operator and speech-act are on an utterance unit. 

To integrate these recognition units into the same 

unit, we develop a new tag addition approach 

that represents a user utterance as a tag sequence 

for an input to CRF (Lafferty et al. 2001). 
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In the experiments, the proposed simultaneous 

recognition module showed the better perfor-

mance of 4% than a pipeline module. And it has 

an additional benefit that it is composed of a 

simple architecture with only one recognition 

module so it can be more efficient than other 

methods with respect to processing time, etc. As 

a result, the processing time of our system was 

reduced about 25% when compared to the pipe-

line system. 
The remainder of the paper is organized as the 

follows. Section 2 describes related work. In the 

section 3, we define four components of our SLU 

module for the intelligent personal assistant 

software. Section 4 introduces our simultaneous 

recognition framework in detail. Section 5 ex-

plains our experimental settings and results. Fi-

nally, section 6 draws conclusions. 

2 Related Work 

The approaches for developing the SLU mod-

ules are largely divided into the rule-based meth-

ods and the statistical methods. The rule-based 

modules have typically been implemented via 

hand-crafted semantic level grammar rules and 

some robust parsers (Seneff. 1992; Ward et al. 

1999). However, these semantic grammar ap-

proaches carry a high development cost and they 

can also lead to fragile operations since users do 

not typically know what grammatical construc-

tions are supported by the system. An alternative 

approach is to use some statistical methods to 

directly map from word strings to the intended 

meaning structures. Statistical methods are at-

tractive because they can be easily adapted to 

new conditions using only annotated training 

data. Statistical methods for SLU have been stud-

ied in a Hidden Vector State (HVS) Model (He 

et al., 2005) and a data-driven statistical models 

(Miller et al. 1994; Pieraccini et al. 1992; Wang 

et al. 2006). In addition, Jeong and Lee (2008) 

proposed a unified probabilistic model (triangu-

lar-chain CRF) combining the named entity and 

dialog-act of SLU. This method achieved the 

high performance for SLU. But the triangular-

chain CRF has a complicated architecture with a 

modified CRF. And this method was built only 

to combine the named entity and dialog-act, 

whereas we need to combine four components. 

In practical, the triangular-chain CRF showed 

low performance when combining four compo-

nents in the experiments. As a result, the pro-

posed SLU module achieved high performance 

in spite of its simple architecture. 

3 Components of the Proposed SLU 

Module for the Intelligent Personal 

Assistant Software 

Since the SLU module of intelligent personal 

assistant software needs to determine the actions 

of Apps of smart phone according to user needs, 

they require more elaborate user intent analysis. 

Thus we define four components of the SLU 

module. An analysis result of our SLU module is 

shown in Figure 1 as follows: 
 

 
Figure 1: Example of analysis results  

 

Named Entity (NE) recognition: NE recogni-

tion extracts keywords from user utterances, such 

as person, time, location, etc.  

Target recognition: target describes the ob-

ject of system action. In Figure 1, the target is 

“Temperature_Information.” By this recognized 

target, the software can offer users accurate in-

formation. 

Operator recognition: operator is to detect 

one of the various software actions (Lookup, Set, 

Delete, etc.). In Figure 1, the operator is identi-

fied as “Lookup”. 

Speech-act recognition: speech-act tries to 

designate a surface level speech-act. 

“Wh_Question” as speech-act in Figure 1 pro-

vides the user’s intention of surface level to dia-

logue systems. 

4 Simultaneous Recognition Frame-

work 

We assume that four components of our SLU 

module are correlated with each other. In order 

to improve the performance and speed of the 

SLU module, we propose a new framework to 

simultaneously recognize the four components. 

But these components have different recognition 

units; NE has a morpheme/phrase unit and target, 

operator and speech-act have an utterance unit. A 

new tag addition method is proposed to solve this 

problem. Using this method, we can construct a 

novel simultaneous recognition framework for 

SLU. 
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4.1 New tag addition method 

Target, operator and speech-act are based on 

an utterance unit. In order to construct a simulta-

neous recognition framework, we attach pseudo 

morphemes with target, operator and speech-act 

tags in front of each user utterance. Using these 

pseudo morphemes, target, operator and speech-

act can utilize the features of NE, and NE can 

also do target, operator and speech-act infor-

mation as additional features. Figure 2 shows an 

example of the new tag addition method. 
 

 
Figure 2: Example of the new tag addition method 

 

4.2 Simultaneous recognition framework  

On the simultaneous recognition framework 

with the new tag addition method, an input utter-

ance is analyzed by a sequential labeling classifi-

er, CRF. It is possible to use all of component 

labels as additional features in this classification 

method. We think that this is a main reason why 

the proposed method improves recognition per-

formances. 

Our framework needs only NE dictionary and 

BIO annotated training corpus; BIO tags were 

used in (Ramshaw and Marcus. 1995). It is very 

simple and fast because it can output all of four 

different SLU results in one classification execu-

tion. The architecture of our framework is shown 

in Figure 3. Our SLU module is widely divided 

into a training step and a test step.  

4.3 Feature Sets 

The three feature sets are extracted for SLU: 

basis features (Lee et al. 2010), NE dictionary 

features and target/operator/speech-act features. 

All the basic and NE dictionary features are ana-

lyzed based on the morpheme unit. 
 

 Basis features  

Current lexicon/POS tag information 

Based on the position of the current lexicon, lexicon 

contextual information. window size : -2~2 

Based on the position of the current POS tag, POS tag 

contextual information. window size : -2~2 

The words of Korean language can consist of one or 

more morphemes; 

- current morpheme position information in a word 

- current morpheme POS tag/word length information 

 NE dictionary features 
Based on current morpheme, NE tag information 

matched from NE dictionary 

 Target/operator/speech-act features 

Verb information in the utterance 

Lexicon unigram information in the utterance 

Lexicon & POS tag bigram information in the utterance 

Lexicon & POS tag trigram information in the utterance 

5 Experiments 

5.1 Experimental settings 

The MADS data set (Multi-Applications Dia-

logues for Smart phones) was constructed and 

used to develop the SLU modules for the intelli-

gent personal assistant software. The MADS data 

set was annotated by 8 NEs, 28 targets, 5 opera-

tors and 6 speech-act tags. In addition, The 

MADS data set consists of 1,925 user utterance 

in 6 domains: weather, clock, alarm, schedule, 

exchange and traffic. The Mallet toolkit was 

chosen for our CRF model (McCallum. 2002). 

All experiments were evaluated by accuracy in 

the utterance level. When the proposed SLU 

module generates all the correct labels of NE, 

target, operator and speech-act of an input utter-

ance, the utterance is considered as correct. The 

performance of the SLU module is averaged on 

5-fold cross validation. In addition, we used the 

paired t-test and Wilcoxon singed rank test to 

Figure 3: Architecture for the simultaneous recognition framework 
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verify statistically significant between our 

framework and compared baseline framework. 

The pipeline framework (Moreira et al., 2011) is 

used a baseline system in our experiments be-

cause it is the most common method for multi-

domains SLU module.  

5.2 Experimental results 

Each component of the SLU module is first 

evaluated by comparison of accuracies between 

the proposed and baseline frameworks. Figure 4 

illustrates the accuracies of each component. 
 

 
Figure 4: Comparison of the accuracies of each com-

ponent for SLU 
 

A pipeline framework commonly has some 

disadvantage that the errors of previous compo-

nent are propagated to the next components. It 

can cause a cascade of performance degradation.  

Figure 5 shows the accuracies of entire SLU 

modules in an utterance level. 
 

 
Figure 5: Comparison of accuracies of entire SLU 

modules on the utterance level 
 

The proposed framework achieved significant-

ly better performance than the baseline frame-

work. 

To verify statistically significant on accuracy 

difference between the proposed and baseline 

frameworks, we performed significant test using 

the t-test and Wilcoxon singed rank test (Demsar. 

2006). Table 1 shows the results of significant 

test. 

 

p-value < 0.05 (95%) 

Our framework 

vs. 

Pipeline framework 

paired t-test 0.00001 

Wilcox signed rank test 0.021 

Table 1: Results of significant tests 
 

In both of two significance tests, our framework 

was statistically significantly better than the 

pipeline framework (p<0.05). 

In the comparison of processing time, our 

framework obtained faster processing speed than 

pipeline framework with about 25% reduction. 
 

Test user utterance (388 utterances) 

Our framework 15 sec. 

Pipeline framework 19 sec. 

Table 2: Results of processing time comparison 

 

In addition, we tried to compare our module and 

the triangular-chain CRF (Jeong and Lee, 2008). 

Table 3 shows the performances when NE and 

speech-act recognition tasks are combined and 

all four recognition tasks are combined. As a re-

sult, our module outperformed the triangular-

chain CRF in both of cases. 

 

 NE+Speech-act All (four tasks) 

Our framework 90.61 83.48 
Triangular-chain CRF 87.07 16.4 

Table 3: comparison of our module and triangular-

chain CRF 

6 Conclusions 

In this paper, we have presented a novel SLU 

framework to predict user’s intention for deter-

mining system actions of the intelligent personal 

assistant software. The proposed SLU module 

with a simultaneous recognition framework 

achieved higher performance and faster pro-

cessing speed than the existing pipeline system. 

In addition, our module outperformed other 

method, the triangular-chain CRF, especially 

when four components were all analyzed. 

Acknowledgement  

This research was supported by Basic Science 

Research Program through the National Research 

Foundation of Korea (NRF) funded by the Min-

istry of Education, Science and Technology (No. 

NRF-2013R1A1A2009937) 

821



References 

Janez Demsar. 2006. Statistical comparisons of 

classifiers over multiple data sets. Journal of Ma-

chine Learning Research, Vol. 7. pp.1–30. 

Yulan He and Steve Young. 2005. Semantic Pro-

cessing using the Hidden Vector State Model. 

Computer Speech and Language, Vol. 19, No. 1, pp. 

85-106. 

Minwoo Jeong and Gary-Geunbae Lee, 2008. Trian-

gular-chain conditional random fields. IEEE 

Transactions on Audio, Speech, and Language 

Processing, Vol. 16, pp. 1287-1302. 

John Lafferty, Andrew McCallum and Fernando C.N. 

Pereira. 2001. Conditional random fields: Probabil-

istic models for segmenting and labeling sequence 

data, In Proceedings of the Eighteenth Internation-

al Conference on Machine Learning.” Morgan 

Kaufmann Publishers Inc., SanFrancisco, CA, USA, 

pp. 282-289. 

Changki Lee and Myung-Gil Jang. 2010. Named Enti-

ty Recognition with Structural SVMs and Pegasos 

algorithm. Korean Journal of Cognitive Science. 

Vol. 21. No. 4, 655-667. 

Andrew McCallum. 2002. Mallet: A machine learning 

for language kit, http://mallet.cs.umass.edu. 

Scott Miller, Revert Bobrow, Robert Ingria, and Rob-

ert Schwartz. 1994. Hidden understanding models 

of natural language. In Proceedings of the ACL, 

Association for Computational Linguistics, pp. 25–

32. 

Catarina Moreira, Ana Cristina Mendes, Lu´ısa Co-

heur and Bruno Martins, 2011. Towards the rapid 

development of a natural language understanding 

module. In Proceedings of 10th international con-

ference on Intelligent virtual agents, pp. 309–315. 

Roberto Pieraccini, Evelyne Tzoukermann, Zakhar 

Gorelov, Jean-Luc Gauvain, Esther Levin, Chine-

Hui Lee and Jay G. Wilpon. 1992. A speech under-

standing system based on statistical representation 

of semantics. In Proceedings of the ICASSP, San 

Francisco, CA. 

Launce A. Ramshaw and Mitchell P. Marcus. 1995. 

Text Chunking using Transformation-Based Learn-

ing. In Proceedings of the Third Workshop on Very 

Large Corpora, pp. 82-94. 

Christian Raymond and Giuseppe Riccardi. 2007. 

Generative and discriminative algorithms for spo-

ken language understanding. In Proceedings of the 

Interspeech, Antwerp, Belgium. 

Stephanie Seneff. 1992. TINA: A Natural Language 

System for Spoken Language Applications. Com-

putational Linguistics. 

 

Ye-Yi Wang. 2001. Robust Spoken Language Under-

standing in MiPad. In proceedings of Eurospeech, 

Aalborg, Denmark. 

Ye-Yi Wang and Alex Acero. 2006. Discriminative 

models for spoken language understanding. In Pro-

ceedings of the ICSLP, Pittsburgh, PA. 

Ye-Yi Wang, Li Deng and Alex Acero. 2005. Spoken 

language understanding : an introduction to the sta-

tistical framework. IEEE Signal Processing Maga-

zine 22(5): 16-31. 

Wayne Ward, Bryan Pellom, and Sameer Pradhan. 

1999. The CU Communicator System, IEEE Work-

shop on ASRU Proc., Keystone, Colorado. 

Wayne Ward and Sunil lssar. 1994. Recent Improve-

ments in the CMU Spoken language Understanding 

System. in Human Language Technology Work-

shop, Plainsboro, New Jersey.  

Wikipedia Contributors. 2011. Siri, Wikipedia, the 

Free Encyclopedia. 

Wikipedia Contributors. 2012. S-Voice, Wikipedia, 

the Free Encyclopedia. 

 

 

 

 

822



Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Short Papers), pages 823–828,

Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

A Deeper Exploration of the Standard PB-SMT Approach
to Text Simplification and its Evaluation
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Abstract

In the last few years, there has been a
growing number of studies addressing the
Text Simplification (TS) task as a mono-
lingual machine translation (MT) problem
which translates from ‘original’ to ‘sim-
ple’ language. Motivated by those re-
sults, we investigate the influence of qual-
ity vs quantity of the training data on the
effectiveness of such a MT approach to
text simplification. We conduct 40 ex-
periments on the aligned sentences from
English Wikipedia and Simple English
Wikipedia, controlling for: (1) the sim-
ilarity between the original and simpli-
fied sentences in the training and develop-
ment datasets, and (2) the sizes of those
datasets. The results suggest that in the
standard PB-SMT approach to text simpli-
fication the quality of the datasets has a
greater impact on the system performance.
Additionally, we point out several impor-
tant differences between cross-lingual MT
and monolingual MT used in text sim-
plification, and show that BLEU is not a
good measure of system performance in
text simplification task.

1 Introduction

In the last few years, a growing number of studies
have addressed the text simplification (TS) task as
a monolingual machine translation (MT) problem
of translating sentences from ‘original’ to ‘sim-
ple’ language. Several studies reported promising
results using standard phrase-based statistical ma-
chine translation (PB-SMT) for this task (Specia,
2010; Coster and Kauchak, 2011a; Wubben et al.,
2012), but made no attempt to explain the reasons
behind the success of their systems. Specia (2010)
obtained reasonably good results (BLEU = 60.75)

despite the small size of the datasets used (4,483
original sentences and their corresponding simpli-
fications). Her results indicated that in this spe-
cific monolingual MT task, we do not need such
large datasets (as in cross-lingual MT) in order to
achieve good results.

At the moment, the scarcity and very limited
sizes of the available TS datasets (usually only
up to 1,000 sentence pairs) are the main factors
which impede the use of data-driven approaches to
text simplification for all languages except English
(for which English Wikipedia and Simple English
Wikipedia offer a large comparable TS dataset).
Therefore, in this paper, we decided to investigate
several important issues in MT-based text simpli-
fication:

1. The impact of the size of the training and de-
velopment datasets;

2. The impact of the similarity between the orig-
inal and simplified sentences in the training
and development datasets; and

3. The suitability of using the BLEU score for
the automatic evaluation of system’s perfor-
mance.

To the best of our knowledge, there have been no
studies which address those important questions.

In order to explore the first two issues, we con-
duct 40 translation experiments using the aligned
sentence pairs from the largest existing TS cor-
pus (Wikipedia TS corpus), controlling the train-
ing and development datasets for: (1) sentence
similarity (in terms of the S-BLEU score), and (2)
size. Our results indicate that only the former can
influence the MT output significantly. In order to
explore the last issue, we test our models on two
different test sets and perform human evaluation
of the output of several systems.
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2 Related Work

Specia (2010) used the standard PB-SMT model
provided by the Moses toolkit (Koehn et al., 2007)
to translate from ‘original’ to ‘simple’ sentences
in Brazilian Portuguese. The dataset contained
manual simplifications aimed at people with low
literacy levels. The most commonly used sim-
plifications (by human editors) were lexical sub-
stitutions and splitting sentences (Gasperin et al.,
2009). In terms of the automatic BLEU evalua-
tion (Papineni et al., 2002), the results were rea-
sonably good (BLEU = 60.75) despite the small
size of the corpora (4,483 original sentences and
their corresponding simplifications). However, the
TS system was overcautious in performing simpli-
fications, i.e. the simplifications produced by the
systems were closer to the source than to the ref-
erence segments (Specia, 2010).

Coster and Kauchak (2011a) used the same
approach for English. Additionally, they ex-
tended the PB-SMT system by adding phrasal
deletion to the probabilistic translation model
in order to better cover deletion, which is a
frequent phenomenon in TS. The system was
trained on 124,000 aligned sentences from En-
glish Wikipedia and Simple English Wikipedia.
The analysis of the Wikipedia TS corpus (Coster
and Kauchak, 2011b) reported that rewordings
(1–1 lexical substitutions) are the most common
simplification operation (65%). The system with
added phrasal deletion achieved the BLEU score
of 60.46, while the the standard model with-
out phrasal deletion achieved the BLEU score
of 59.87. However, the baseline (BLEU score
when the system does not perform any simplifica-
tion on the original sentence) was 59.37, indicat-
ing that the systems often leave the original sen-
tences unchanged. In order to address that prob-
lem, Wubben et al. (2012) performed post-hoc re-
ranking on the Moses’ output (simplification hy-
potheses) based on their dissimilarity to the input
(original sentences), while at the same time con-
trolling for its adequacy and fluency.

Štajner (2014) applied the same PB-SMT model
to two different TS corpora in Spanish, which con-
tained different levels of simplification. The re-
sults, which should be regarded only as prelim-
inary as both corpora have fewer than 1,000 sen-
tence pairs, imply that the level of simplification in
the training datasets has a greater impact than the
size of the datasets on the system’s performance.

3 Methodology

We focus on the two TS corpora available for En-
glish (Wikipedia and EncBrit) and train a series
of translation models on training and development
datasets of varying size and quality.

3.1 Corpora

Wikipedia is a comparable TS corpus of 137,000
automatically aligned sentence pairs from English
Wikipedia and Simple English Wikipedia1, previ-
ously used by Coster and Kauchak (2011a). We
use a small portion of this corpus (240 sentence
pairs) to build the first test set (WikiTest), and
88,000 sentence pairs from the remaining sentence
pairs to build translation models.

EncBrit is a comparable TS corpus of original
sentences from Encyclopedia Britannica and their
manually simplified versions for children (Barzi-
lay and Elhadad, 2003).2 Given its small size (601
sentence pairs) this dataset is not used in the trans-
lation experiments. It is only used as the second
test set (EncBritTest).

3.2 Experimental Setup

In all experiments, we use the same standard PB-
SMT model (Koehn et al., 2007), the GIZA++
implementation of IBM word alignment model
4 (Och and Ney, 2003), and the refinement and
phrase-extraction heuristics described further by
Koehn et al. (2003). We tune the systems using
minimum error rate training (MERT) (Och, 2003).
For the language model (LM) we use the corpus
of 60,000 Simple English Wikipedia articles3 and
build a 3-gram language model with Kneser-Ney
smoothing trained with SRILM (Stolcke, 2002).
We limit our stack size to 500 hypotheses during
decoding.

3.3 Training and development datasets

We tokenise and shuffle the initial dataset of
167,689 aligned sentences from the Wikipedia
dataset.4 Using the simplified sentences as ref-
erences and the original sentences as hypotheses,

1http://www.cs.middlebury.edu/
˜dkauchak/simplification/

2http://www.cs.columbia.edu/˜noemie/
alignment/

3Version 2.0 document-aligned data, available at:
http://www.cs.middlebury.edu/˜dkauchak/
simplification/

4Version 2.0 sentence-aligned data, available at:
http://www.cs.middlebury.edu/˜dkauchak/
simplification/
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Table 1: Examples of sentences pairs with various S-BLEU scores from the training sets

S-BLEU Original sentence Simpler version
0.08 In women, the larger mammary glands within the

breast produce the milk.
The breast contains mammary glands.

0.38 Built as a double-track railroad bridge, it was com-
pleted on January 1, 1889, and went out of service on
May 8, 1974.

It was built for trains and was completed on January
1, 1889. It closed down on May 8, 1974 after a bad
fire.

0.55 In 2000, the series sold its naming rights to Internet
search engine Northern Light for five seasons, and
the series was named the Indy Racing Northern Light
Series.

In 2000, the series sponsor became the Internet
search engine Northern Light. The series was named
the Indy Racing Northern Light Series.

0.63 Wildlife which eat acorns as an important part of
their diets include birds, such as jays, pigeons, some
ducks, and several species of woodpeckers.

Creatures that make acorns an important part of their
diet include birds, such as jays, pigeons, some ducks
and several species of woodpeckers.

0.77 It was discovered by Brett J. Gladman in 2000, and
given the temporary designation S2000 S 5.

It was found by Brett J. Gladman in 2000, and given
the designation S2000 S 5.

0.87 Austen was not well known in Russia and the first
Russian translation of an Austen novel did not appear
until 1967.

Austen was not well known in Russia. The first Rus-
sian translation of an Austen novel did not appear un-
til 1967.

we rank each sentence pair by its sentence-wise
BLEU (S-BLEU) score and categorise the sen-
tence pairs into eight different sets depending on
the interval in which their S-BLEU scores lie ((0,
0.3], (0.3, 0.4], (0.4, 0.5], (0.5, 0.6], (0.6, 0.7],
(0.7, 0.8], (0.8, 0.9], (0.9, 1]). With each of the
eight sets, we train five translation models, vary-
ing the number of sentences used for training and
tuning (2,000, 4,000, 6,000, 8,000, and 10,000 for
training and 200, 400, 600, 800, and 1,000 for
tuning, respectively). That leads to a total of 40
translation models varying by number of sentence
pairs and similarity between original and simpli-
fied sentences (in terms of the S-BLEU score)
in the datasets used for their training and tuning.
Several examples of sentence pairs with various
S-BLEU scores are presented in Table 1.

3.4 Test datasets
We test our models on two different test sets:

1. The WikiTest which contains a total of 240
sentence pairs, with 30 sentence pairs from
each of the eight categories with different
intervals for the S-BLEU scores ([0,0.3],
(0.3,0.4], ... , (0.9,1]);

2. The EncBritTest which contains all 601
sentence pairs present in the EncBrit cor-
pus (with an unbalanced number of sentence
pairs from each of the eight S-BLEU inter-
vals).

The sizes of both test sets and their BLEU
scores (calculated using the original sentences as

Table 2: Test sets for all translation experiments

Test set Size BLEU
WikiTest 240 62.27
EncBritTest 601 12.40

simplification/translation hypotheses and the cor-
responding manually simplified sentences as sim-
plification/translation references) are given in Ta-
ble 2. Note that those BLEU scores can be re-
garded as the baselines for the translation exper-
iments, as they correspond to the BLEU score
obtained when the systems do not perform any
changes to the input.

4 Automatic Evaluation

The BLEU scores for all 40 experiments tested
on the WikiTest dataset, are presented in Table 3.
The baseline BLEU score (when no simplification
is performed) for this test set is 62.27 (Table 2).
As shown in Table 3, none of the 40 experiments
have even reached that baseline. We compare S-
BLEU scores for each pair of experiments (240
reference sentences in the test set and their corre-
sponding automatically simplified sentences) us-
ing the paired t-test in SPSS in order to check
whether the differences in the obtained results are
significant. The only results that are significantly
lower than the rest are those obtained for the ex-
periments in which the training and development
datasets consist only of the sentence pairs with S-
BLEU scores between 0 and 0.3. The results sug-
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Table 3: BLEU scores on the WikiTest dataset

S-BLEU
Size of the training set

2,000 4,000 6,000 8,000 10,000
[0, 0.3] 56.38 56.38 56.15 57.75 57.89
(0.3, 0.4] 60.89 61.35 61.76 61.52 61.37
(0.4, 0.5] 61.27 61.36 61.74 61.55 62.11
(0.5, 0.6] 60.96 61.30 61.52 61.77 61.98
(0.6, 0.7] 60.96 61.30 61.60 61.69 61.80
(0.7, 0.8] 61.56 61.38 61.67 61.77 61.89
(0.8, 0.9] 61.54 61.49 61.51 61.57 61.61
(0.9, 1] 61.57 61.57 61.59 61.55 61.55

The rows represent intervals of the S-BLEU scores on the
training and development datasets, while the columns repre-
sent the number of the sentence pairs used for training. The
highest score is presented in bold; the baseline (no simplifi-
cation performed) is 62.27.

gest that the sizes of the training and development
datasets do not influence the translation results sig-
nificantly on any type of sentence pairs used.

The results of the experiments tested on
EncBritTest (Table 4) again show that the quan-
tity of the training data does not influence sys-
tem performance. There are no statistically sig-
nificant differences (measured by the paired t-test
on S-BLEU scores on all 601 reference sentences
and the corresponding automatic simplifications)
among experiments which differ only in the size
of the training and development datasets. How-
ever, the models trained and tuned on the datasets
consisting of the sentence pairs with the high-
est and the lowest S-BLEU scores ([0,0.3] and
(0.9,1]) perform significantly worse than the mod-
els trained and tuned on the sentence pairs with
S-BLEU scores belonging to other intervals.

5 Human Evaluation

The results presented in Tables 3 and 4 indicate
that the BLEU score, in MT-based text simplifica-
tion, mostly reflects the surface similarity of the
original and simplified sentences in the test set
and does not give an informative evaluation of the
systems. Therefore, we conducted a human as-
sessment of the generated sentences. Following
the standard procedure for human evaluation of
TS systems used in previous studies (Coster and
Kauchak, 2011a; Drndarević et al., 2013; Wubben
et al., 2012; Saggion et al., 2015), three human
evaluators were asked to assess the generated sen-
tences on a 1–5 scale (where the higher mark al-
ways denotes better output) according to three cri-

Table 4: BLEU scores on the EncBritTest dataset

S-BLEU
Size of the training set

2,000 4,000 6,000 8,000 10,000
[0, 0.3] 13.84 13.84 13.87 13.68 13.59
(0.3, 0.4] 14.05 13.95 14.08 14.06 14.01
(0.4, 0.5] 14.02 14.09 14.17 14.15 14.12
(0.5, 0.6] 14.09 14.22 14.27 14.16 14.13
(0.6, 0.7] 14.25 14.30 14.35 14.35 14.32
(0.7, 0.8] 14.30 14.29 14.30 14.30 14.28
(0.8, 0.9] 14.38 14.40 14.40 14.40 14.41
(0.9, 1] 12.71 12.52 12.46 12.39 12.54

The rows represent intervals of the S-BLEU scores on the
training and development datasets, while the columns repre-
sent the number of the sentence pairs used for training. The
highest score is presented in bold; the baseline (no simplifi-
cation performed) is 12.40.

Table 5: Systems used in human evaluation

System Training size Dev. size S-BLEU
S-03-200 2,000 200 [0,0.3]
S-03-1000 10,000 1,000 [0,0.3]
S-06-200 2,000 200 (0.5,0.6]
S-06-1000 10,000 1,000 (0.5,0.6]
S-10-200 2,000 200 [0.9,1]
S-10-1000 10,000 1,000 [0.9,1]

teria: grammaticality (G), meaning preservation
(M), and simplicity (S).

We decided that the same person has to rate
all simplified versions of the same original sen-
tence (shown always in a random order), in order
to make a fairer comparison among the systems.
That decision, however, limited the number of sys-
tems we can evaluate. Therefore, we focused only
on six out of 40 trained systems (Table 5). Sev-
eral examples of the automatically simplified sen-
tences and their scores are presented in Table 6.

The results of the human evaluation are given
in Table 7. It seems that the use of the sentence
pairs with the S-BLEU score between 0.5 and 0.6
leads to the best system performances in terms of
grammaticality and meaning preservation, while
at the same time improving the simplicity of the
sentences.5 Furthermore, the differences in human
scores between the systems differing only in size
of the datasets used were not statistically signifi-
cant. At the same time, the differences in human

5The details of the human evaluation and examples can be
found in (Štajner, 2015).
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Table 6: Outputs of different systems and their human evaluation scores

System Sentence G M S
Original Madrid was occupied by French troops during the Napoleonic Wars, and Napoleon’s

brother Joseph was installed on the throne.
5 / 4

S-03-200 Madrid was occupied by French his soldiers during the Napoleonic Wars, and Napoleon’s
brother Joseph was installed on the throne.

4 4 4

S-03-1000 Madrid was occupied by French troops during the Napoleonic Wars, and Napoleon’s
brother Joseph was put on the throne.

5 5 5

S-10-1000 Madrid was occupied by French troops during the Napoleonic Wars, and Napoleon’s
brother Joseph was -RRB- installed on them on the throne.

3 3 3

Original Although largely of postwar construction, this central area retains its old street pattern,
and most of the surviving historical and architectural monuments are located there.

5 / 2

S-03-200/1000 Although largely of postwar construction, this central area retains its old street pattern,
and most of the surviving and architectural historical monuments are located there.

5 4 3

S-06-1000 Although mostly of postwar construction, this central area retains its old street pattern, and
most of the surviving historical and architectural monuments are located there.

5 5 2

S-10-200 Although largely of postwar construction, this central area retains its old street pattern,
and most of the surviving historical monuments and architectural are a instead.

3 3 2

S-10-1000 As of the postwar construction, in this central area uses its old street pattern, and most of
the historical monuments and and architectural are located there.

2 3 2

The columns G, M, S contain the mean value of the human scores for grammaticality, meaning preservation, and simplicity,
respectively. Differences to the original versions are shown in italics. Systems which are not presented did not make any
changes to these two original sentences.

Table 7: Results of the human evaluation
System G M S
Original 4.85 / 2.60
S-03-200 4.03 3.95 2.57
S-03-1000 4.20 4.03 2.85
S-06-200 4.50 4.45 2.68
S-06-1000 4.43 4.48 2.72
S-10-200 3.25 2.92 2.45
S-10-1000 2.92 2.95 2.53

The mean value of the human scores for grammaticality (G),
meaning preservation (M), and simplicity (S). The highest
achieved scores (excluding the scores for original sentences)
on each aspect (G, M, and S) are presented in bold.

scores between the systems differing only in sim-
ilarity of the sentence pairs (the interval of the S-
BLEU score) used were statistically significant.

6 Conclusions

Recently, there have been several attempts at ad-
dressing the TS task as a monolingual translation
problem, translating from ‘original’ to ‘simple’
sentences. However, they did not try to seek rea-
sons for the success or the failure of their systems.

Our experiments, conducted on 40 different,
carefully designed datasets from the largest avail-
able sentence-aligned TS corpus (Wikipedia TS
corpus), provide valuable insights into how much
of an effect the size and the quality of the training
data have on the performance of the PB-SMT sys-

tem which tries to learn to translate from ‘original’
to ‘simple’ sentences. The results indicate that us-
ing the sentence pairs with low S-BLEU scores
for training and tuning of PB-SMT models for TS
tend to cause the fluency to deteriorate and even
change the meaning of the output. Furthermore, it
seems that the sizes of the training and develop-
ment datasets do not play a significant role in how
successful the model is. It appears that carefully
selected sentence pairs in the training and develop-
ment datasets (i.e. sentence pairs with a moderate
similarity) lead to best performances of PB-SMT
systems regardless of the size of the datasets.

Our results open up new directions for enhanc-
ing the current PB-SMT models for TS, indicat-
ing that their performance can be significantly im-
proved by carefully filtering sentence pairs used
for training and tuning.
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Abstract

In this paper, we propose the concept
of summary prior to define how much
a sentence is appropriate to be selected
into summary without consideration of
its context. Different from previous
work using manually compiled document-
independent features, we develop a novel
summary system called PriorSum, which
applies the enhanced convolutional neu-
ral networks to capture the summary
prior features derived from length-variable
phrases. Under a regression framework,
the learned prior features are concate-
nated with document-dependent features
for sentence ranking. Experiments on the
DUC generic summarization benchmarks
show that PriorSum can discover different
aspects supporting the summary prior and
outperform state-of-the-art baselines.

1 Introduction

Sentence ranking, the vital part of extractive
summarization, has been extensively investigated.
Regardless of ranking models (Osborne, 2002;
Galley, 2006; Conroy et al., 2004; Li et al.,
2007), feature engineering largely determines the
final summarization performance. Features often
fall into two types: document-dependent features
(e.g., term frequency or position) and document-
independent features (e.g., stopword ratio or word
polarity). The latter type of features take effects
due to the fact that, a sentence can often be judged
by itself whether it is appropriate to be included
in a summary no matter which document it lies in.
Take the following two sentences as an example:

1. Hurricane Emily slammed into Dominica on
September 22, causing 3 deaths with its wind
gusts up to 110 mph.

∗Contribution during internship at Microsoft Research

2. It was Emily, the hurricane which caused 3
deaths and armed with wind guests up to 110
mph, that slammed into Dominica on Tues-
day.

The first sentence describes the major information
of a hurricane. With similar meaning, the second
sentence uses an emphatic structure and is some-
what verbose. Obviously the first one should be
preferred for a news summary. In this paper, we
call such fact as summary prior nature1 and learn
document-independent features to reflect it.

In previous summarization systems, though not
well-studied, some widely-used sentence ranking
features such as the length and the ratio of stop-
words, can be seen as attempts to measure the
summary prior nature to a certain extent. Notably,
Hong and Nenkova (2014) built a state-of-the-art
summarization system through making use of ad-
vanced document-independent features. However,
these document-independent features are usually
hand-crafted, difficult to exhaust each aspect of
the summary prior nature. Meanwhile, items rep-
resenting the same feature may contribute differ-
ently to a summary. For example, “September 22”
and “Tuesday” are both indicators of time, but the
latter seldom occurs in a summary due to uncer-
tainty. In addition, to the best of our knowledge,
document-independent features beyond word level
(e.g., phrases) are seldom involved in current re-
search.

The CTSUM system developed by Wan and
Zhang (2014) is the most relevant to ours. It at-
tempted to explore a context-free measure named
certainty which is critical to ranking sentences in
summarization. To calculate the certainty score,
four dictionaries are manually built as features and
a corpus is annotated to train the feature weights
using Support Vector Regression (SVR). How-

1In this paper, “summary prior features” and “document-
independent features” hold the same meaning.
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ever, a low certainty score does not always rep-
resent low quality of being a summary sentence.
For example, the sentence below is from a topic
about “Korea nuclear issue” in DUC 2004: Clin-
ton acknowledged that U.S. is not yet certain that
the suspicious underground construction project
in North Korea is nuclear related. The under-
lined phrases greatly reduce the certainty of this
sentence according to Wan and Zhang (2014)’s
model. But, in fact, this sentence can summarize
the government’s attitude and is salient enough in
the related documents. Thus, in our opinion, cer-
tainty can just be viewed as a specific aspect of the
summary prior nature.

To this end, we develop a novel summarization
system called PriorSum to automatically exploit
all possible semantic aspects latent in the sum-
mary prior nature. Since the Convolutional Neural
Networks (CNNs) have shown promising progress
in latent feature representation (Yih et al., 2014;
Shen et al., 2014; Zeng et al., 2014), PriorSum
applies CNNs with multiple filters to capture a
comprehensive set of document-independent fea-
tures derived from length-variable phrases. Then
we adopt a two-stage max-over-time pooling op-
eration to associate these filters since phrases
with different lengths may express the same as-
pect of summary prior. PriorSum generates the
document-independent features, and concatenates
them with document-dependent ones to work for
sentence regression (Section 2.1).

We conduct extensive experiments on the DUC
2001, 2002 and 2004 generic multi-document
summarization datasets. The experimental results
demonstrate that our model outperforms state-
of-the-art extractive summarization approaches.
Meanwhile, we analyze the different aspects sup-
porting the summary prior in Section 3.3.

2 Methodology

Our summarization system PriorSum follows the
traditional extractive framework (Carbonell and
Goldstein, 1998; Li et al., 2007). Specifically, the
sentence ranking process scores and ranks the sen-
tences from documents, and then the sentence se-
lection process chooses the top ranked sentences
to generate the final summary in accordance with
the length constraint and redundancy among the
selected sentences.

Sentence ranking aims to measure the saliency
score of a sentence with consideration of both

document-dependent and document-independent
features. In this study, we apply an enhanced ver-
sion of convolutional neural networks to automati-
cally generate document-independent features ac-
cording to the summary prior nature. Meanwhile,
some document-dependent features are extracted.
These two types of features are combined in the
sentence regression step.

2.1 Sentence Ranking

PriorSum improves the standard convolutional
neural networks (CNNs) to learn the summary
prior since CNN is able to learn compressed rep-
resentation of n-grams effectively and tackle sen-
tences with variable lengths naturally. We first
introduce the standard CNNs, based on which
we design our improved CNNs for obtaining
document-independent features.

The standard CNNs contain a convolution oper-
ation over several word embeddings, followed by
a pooling operation. Let vi ∈ Rk denote the k-
dimensional word embedding of the ith word in
the sentence. Assume vi:i+j to be the concatena-
tion of word embeddings vi, · · · , vi+j . A convo-
lution operation involves a filter Wh

t ∈ Rl×hk,
which operates on a window of h words to pro-
duce a new feature with l dimensions:

chi = f(Wh
t × vi:i+h−1) (1)

where f is a non-linear function and tanh is used
like common practice. Here, the bias term is
ignored for simplicity. Then Wh

t is applied to
each possible window of h words in the sentence
of length N to produce a feature map: Ch =
[ch1 , · · · , chN−h+1]. Next, we adopt the widely-
used max-over-time pooling operation (Collobert
et al., 2011) to obtain the final features ĉh from
Ch. That is, ĉh = max{Ch}. The idea behind
this pooling operation is to capture the most im-
portant features in a feature map.

In the standard CNNs, only the fixed-length
windows of words are considered to represent a
sentence. As we know, the variable-length phrases
composed of a sentence can better express the sen-
tence and disclose its summary prior nature. To
make full use of the phrase information, we design
an improved version of the standard CNNs, which
use multiple filters for different window sizes as
well as two max-over-time pooling operations to
get the final summary prior representation. Specif-
ically, let W1

t , · · · ,Wm
t be m filters for window
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sizes from 1 to m, and correspondingly we can
obtainm feature maps C1, · · · ,Cm. For each fea-
ture map Ci, We first adopt a max-over-time pool-
ing operationmax{Ci}with the goal of capturing
the most salient features from each window size i.
Next, a second max-over-time pooling operation
is operated on all the windows to acquire the most
representative features. To formulate, the docu-
ment independent features xp can be generated by:

xp = max{max{C1}, · · · ,max{Cm}}. (2)

Kim (2014) also uses filters with varying win-
dow sizes for sentence-level classification tasks.
However, he reserves all the representations gen-
erated by filters to a fully connected output layer.
This practice greatly enlarges following parame-
ters and ignores the relation among phrases with
different lengths. Hence we use the two-stage
max-over-time pooling to associate all these fil-
ters.

Besides the features xp obtained through
the CNNs, we also extract several document-
dependent features notated as xe, shown in Table
1. In the end, xp is combined with xe to con-
duct sentence ranking. Here we follow the regres-
sion framework of Li et al. (2007). The sentence
saliency y is scored by ROUGE-2 (Lin, 2004)
(stopwords removed) and the model tries to esti-
mate this saliency.

φ = [xp, xe] (3)

ŷ = wT
r × φ (4)

where wr ∈ Rl+|xe| is the regression weights.
We use linear transformation since it is convenient
to compare with regression baselines (see Section
3.2).

Feature Description
POSITION The position of the sentence.
AVG-TF The averaged term frequency values of

words in the sentence.
AVG-CF The averaged cluster frequency values of

words in the sentence.

Table 1: Extracted document-dependent features.

2.2 Sentence Selection
A summary is obliged to offer both informative
and non-redundant content. Here, we employ a
simple greedy algorithm to select sentences, simi-
lar to the MMR strategy (Carbonell and Goldstein,
1998). Firstly, we remove sentences less than 8

words (as in Erkan and Radev (2004)) and sort the
rest in descending order according to the estimated
saliency scores. Then, we iteratively dequeue one
sentence, and append it to the current summary if
it is non-redundant. A sentence is considered non-
redundant if it contains more new words compared
to the current summary content. We empirically
set the cut-off of new word ratio to 0.5.

3 Experiments

3.1 Experiment Setup
In our work, we focus on the generic multi-
document summarization task and carry out ex-
periments on DUC 2001 2004 datasets. All the
documents are from newswires and grouped into
various thematic clusters. The summary length is
limited to 100 words (665 bytes for DUC 2004).
We use DUC 2003 data as the development set and
conduct a 3-fold cross-validation on DUC 2001,
2002 and 2004 datasets with two years of data as
training set and one year of data as test set.

We directly use the look-up table of 25-
dimensional word embeddings trained by the
model of Collobert et al. (2011). These small
word embeddings largely reduces model param-
eters. The dimension l of the hidden document-
independent features is experimented in the range
of [1, 40], and the window sizes are experimented
between 1 and 5. Through parameter experiments
on development set, we set l = 20 and m = 3 for
PriorSum. To update the weights W h

t and wr, we
apply the diagonal variant of AdaGrad with mini-
batches (Duchi et al., 2011).

For evaluation, we adopt the widely-used auto-
matic evaluation metric ROUGE (Lin, 2004), and
take ROUGE-1 and ROUGE-2 as the main mea-
sures.

3.2 Comparison with Baseline Methods
To evaluate the summarization performance of Pri-
orSum, we compare it with the best peer systems
(PeerT, Peer26 and Peer65 in Table 2) participat-
ing DUC evaluations. We also choose as baselines
those state-of-the-art summarization results on
DUC (2001, 2002, and 2004) data. To our knowl-
edge, the best reported results on DUC 2001,
2002 and 2004 are from R2N2 (Cao et al., 2015),
ClusterCMRW (Wan and Yang, 2008) and REG-
SUM2 (Hong and Nenkova, 2014) respectively.
R2N2 applies recursive neural networks to learn

2REGSUM truncates a summary to 100 words.
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feature combination. ClusterCMRW incorporates
the cluster-level information into the graph-based
ranking algorithm. REGSUM is a word regres-
sion approach based on some advanced features
such as word polarities (Wiebe et al., 2005) and
categories (Tausczik and Pennebaker, 2010). For
these three systems, we directly cite their pub-
lished results, marked with the sign “*” as in Ta-
ble 2. Meanwhile, LexRank (Erkan and Radev,
2004), a commonly-used graph-based summariza-
tion model, is introduced as an extra baseline.
Comparing with this baseline can demonstrate the
performance level of regression approaches. The
baseline StandardCNN means that we adopt the
standard CNNS with fixed window size for sum-
mary prior representation.

To explore the effects of the learned summary
prior representations, we design a baseline sys-
tem named Reg Manual which adopts manually-
compiled document-independent features such as
NUMBER (whether number exist), NENTITY
(whether named entities exist) and STOPRATIO
(the ratio of stopwords). Then we combine these
features with document-dependent features in Ta-
ble 1 and tune the feature weights through LIB-
LINEAR3 support vector regression.

From Table 2, we can see that PriorSum can
achieve a comparable performance to the state-
of-the-art summarization systems R2N2, Cluster-
CMRW and REGSUM. With respect to baselines,
PriorSum significantly4 outperforms Reg Manual
which uses manually compiled features and
the graph-based summarization system LexRank.
Meanwhile, PriorSum always enjoys a reasonable
increase over StandardCNN, which verifies the ef-
fects of the enhanced CNNs. It is noted that Stan-
dardCNN can also achieve the state-of-the-art per-
formance, indicating the summary prior represen-
tation really works.

3.3 Analysis
In this section, we explore what PriorSum learns
according to the summary prior representations.
Since the convolution layer follows a linear regres-
sion output, we apply a simple strategy to measure
how much the learned document-independent fea-
tures contribute to the saliency estimation. Specif-
ically, for each sentence, we ignore its document-
dependent features through setting their values as

3http://www.csie.ntu.edu.tw/˜cjlin/
liblinear/

4T -test with p-value ≤ 0.05

Year System ROUGE-1 ROUGE-2
2001 PeerT 33.03 7.86

R2N2∗ 35.88 7.64
LexRank 33.43 6.09
Reg Manual 34.55 7.18
StandardCNN 35.19 7.63
PriorSum 35.98 7.89

2002 Peer26 35.15 7.64
ClusterCMRW∗ 38.55 8.65
LexRank 35.29 7.54
Reg Manual 34.81 8.12
StandardCNN 35.73 8.69
PriorSum 36.63 8.97

2004 Peer65 37.88 9.18
REGSUM∗ 38.57 9.75
LexRank 37.87 8.88
Reg Manual 37.05 9.34
StandardCNN 37.90 9.93
PriorSum 38.91 10.07

Table 2: Comparison results (%) on DUC datasets.

Meanwhile, Yugoslavia’s P.M. told an emer-
gency session Monday that the country is faced
with war.

high
scored

The rebels ethnic Tutsis, disenchanted members
of President Laurent Kabila’s army took up arms,
creating division among Congo’s 400 tribes.
The blast killed two assailants, wounded 21 Is-
raelis and prompted Israel to suspend implemen-
tation of the peace accord with the Palestinians.
The greatest need is that many, many of us have
been psychologically traumatized, and very, very
few are receiving help.

low
scored

Ruben Rivera: An impatient hitter who will
chase pitches out of the strike zone.
I think we should worry about tuberculosis and
the risk to the general population.

Table 3: Example sentences selected by prior
scores.

zeros and then apply a linear transformation using
the weight wr to get a summary prior score xp.
The greater the score, the more possible a sentence
is to be included in a summary without context
consideration. We analyze what intuitive features
are hidden in the summary prior representation.

From Table 3, first we find that high-scored
sentences contains more named entities and num-
bers, which conforms to human intuition. By
contrast, the features NENTITY and NUMBER
in Reg Manual hold very small weights, only
2%, 3% compared with the most significant fea-
ture AVG-CF. One possible reason is that named
entities or numbers are not independent features.
For example, “month + number” is a common
timestamp for an event whereas “number + a.m.”
is over-detailed and seldom appears in a summary.
We can also see that low-scored sentences are rel-
atively informal and fail to provide facts, which
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are difficult for human to generalize some spe-
cific features. For instance, informal sentences
seem to have more stopwords but the feature STO-
PRATIO holds a relatively large positive weight in
Reg Manual.

4 Conclusion and Future Work

This paper proposes a novel summarization sys-
tem called PriorSum to automatically learn sum-
mary prior features for extractive summariza-
tion. Experiments on the DUC generic multi-
document summarization task show that our pro-
posed method outperforms state-of-the-art ap-
proaches. In addition, we demonstrate the dom-
inant sentences discovered by PriorSum, and the
results verify that our model can learn different as-
pects of summary prior.
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Abstract

Timeline generation is a summarisation
task which transforms a narrative, roughly
chronological input text into a set of
timestamped summary sentences, each ex-
pressing an atomic historical event. We
present a methodology for evaluating sys-
tems which create such timelines, based
on a novel corpus consisting of 36 human-
created timelines. Our evaluation relies on
deep semantic units which we call histori-
cal content units. An advantage of our ap-
proach is that it does not require human
annotation of new system summaries.

1 Introduction

A timeline of historical events is a special kind of
summary. We define a timeline as a list of textual
event descriptions, each paired with a date (see
Figure 1). A timeline is different from a standard
single- or multi-document summary: Each event
description is accompanied by a timestamp, and
event descriptions themselves are independent lin-
guistic units which should be understandable on
their own. Additionally, a good timeline satis-
fies conflicting constraints: it should contain only
salient events, and the overall time period consid-
ered should be covered well by events. Timeline
construction is not a new task. It has been per-
formed, for example, in a multi-document sum-
marisation (Chieu and Lee, 2004; Yan et al., 2011;
Nguyen et al., 2014) or in a single-document clas-
sification context (Chasin et al., 2013).

It is crucial to reliably evaluate algorithms that
create such timelines automatically. Of course,
any summary can be evaluated by surface meth-
ods such as ROUGE (Lin, 2004). But even for
traditional summaries, ROUGE-based evaluation
has been criticised for being too shallow, and it is
even less adequate for timelines, because of their
special properties described above.

(...) In the 1997 unrest in Albania the general elections
of June 1997 brought the Socialists and their allies to
power. President Berisha resigned from his post, and
Socialists elected Rexhep Meidani as president of Al-
bania. Albanian Socialist Party Chairman Fatos Nano
was elected Prime Minister, (...)

1997 There was unrest in Albania.
June 1997 Fatos Nano was elected Prime Minister.

Figure 1: Extract from a Wikipedia article and two
lines of a corresponding timeline.

We therefore opt for a “deep” method which
attempts to measure to which degree a system-
generated timeline contains semantic units found
in gold-standard timelines. Our content units re-
semble those of van Halteren and Teufel (2003)
and Nenkova and Passonneau (2004), but are
larger in that they correspond to historical events.

Traditional deep summarisation evaluation is
expensive because it involves annotation of gold-
standard summaries as well as annotation of each
system summary. A major operational advantage
of our approach is that we require human anno-
tation only for gold-standard summaries, not for
system summaries. After a one-time effort of cre-
ating semantic units and mapping them to the orig-
inal text, the quality of a system’s content selection
can be evaluated for infinitely many new system
summaries for free. Our method is the following:

1. Ask timeline writers to create timelines with
a fixed number of date-event pairs.

2. An HCU creator (the first author) transforms
these timelines into HCUs, historical content
units, which are defined based on semantic
overlap between timeline text.

3. We then create a mapping between HCUs and
the source text, or more precisely, TimeML
events in the source text. This mapping be-
tween HCUs and source text allows us to
evaluate new systems without a human ever
inspecting system output at all.
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HCU 16
Action Fatos Nano is elected Prime Minister
Agent not given
Patient Fatos Nano
Time June 1997
Location Albania

Figure 2: HCU for one event from Figure 1

Any summarisation evaluation based on human
judgment is inherently subjective, but we restrict
this subjectivity in three ways. First, timeline cre-
ation (step 1) involves the selection of important
content, which is by far the most subjective of the
decisions involved in our evaluation method. We
therefore ask three independent timeline writers to
perform this task. Second, the generation of HCUs
(step 2) is prescribed by fixed rules and definitions
inspired by the methodology of van Halteren and
Teufel (2003). With this method, the timeline writ-
ers, not the HCU creators, decide which material is
available for creating the HCUs. Third, for the cre-
ation of mappings between HCUs and the source
text (step 3), which was performed using a differ-
ent set of detailed guidelines, we report agreement
between the first and second author.

In section 2, we explain and contrast our con-
cept of HCUs to existing work. In section 3,
we present our new evaluation corpus and explain
how we derived it. In section 4, we give details on
how system scores for individual HCUs are calcu-
lated. In section 5, we analyse agreement of time-
line writers on HCUs using two 3-person groups
of annotators. We do not present our own algo-
rithm for timeline generation here, but we sanity-
check our evaluation methodology for a number
of baseline timeline generation algorithms (sec-
tion 6), where we demonstrate how systems are
scored with our method.

2 Historical Content Units

Our event representation is called Historical Con-
tent Unit (HCU), which is inspired by the Sum-
mary Content Units (SCU) used in the pyra-
mid method of Nenkova and Passonneau (2004)
(henceforth NP04). Their approach is based on
the idea that, due to the inherent subjectivity of
summarisation tasks, there is no such thing as a
single best gold standard summary. Instead, there
are many equally good gold standard summaries.
The way to differentiate between a good and a bad
system summary is to consider each content unit

selected by a system and count how many gold
standard summaries it appears in. SCUs that are
mentioned by many annotators contribute more to
a system’s score than less frequently chosen units.
We follow this general weighting idea, but our
HCUs are more abstract than SCUs, which are tied
to a clause in the summary text without any further
semantic characterisation by the annotator.

HCUs are more abstract in that they express an
event, i.e. a concrete real-world action (France
invades Algeria) or state change (Obama be-
comes president), while SCUs are more textual,
not semantically defined and generally represent a
smaller unit of meaning. State descriptions, opin-
ions, wishes, aspirations, intentions and utterances
do not constitute events. HCUs normally contain
a logical agent (for actions) or a patient (for state
changes), plus possibly other semantic roles. The
action occurs at a given point in time, not as a
continuous (e.g. “species adapt”) or regular action
(“the sun sets”), and the location of the event has
to be delimitable, too (e.g., “in France” is accept-
able, but not “on coral reefs”). An example HCU
is given in Figure 2. Our HCU definition implies
that each historical event is considered equally im-
portant. For system evaluation, this means that a
system can score at most one point per HCU (ex-
actly one point if it gives a perfect rendition of that
HCU). This is different to evaluation based on the
SCUs in NP04. Their method of linking words to
SCUs may lead to a situation where some events
are represented by multiple SCUs, and hence are
effectively considered more important than others.

HCU construction proceeds by treating each
line in each timeline as a single HCU candidate. If
a line contains more than one event (for instance
an event plus additional information), we decide
what the main event is based on syntactic criteria
and discard the additional information. We then
have to decide whether two or more surface string
descriptions of events by different timeline authors
correspond to the same HCU. For this, we follow
the method described by van Halteren and Teufel
(2003). As long as two event descriptions do not
contain conflicting information about an event and
as long as their timestamps do not disagree, we can
safely assume they refer to the same real-world ac-
tion and map them to the same HCU, for instance,
the two sentences “Nano was elected Prime Minis-
ter” and “Party Chairman Nano was elected PM”.

This matching process results in a number of
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HCUs for a source text, each with associated sur-
face representations by human timeline authors. In
the future, these gold standard event realisations
could be used to evaluate the surface form of sys-
tem timelines. This paper, however, is mainly con-
cerned with content selection evaluation.

We now use the number of surface representa-
tions available to assign a weight to each HCU
(following NP04), and the following formula is
used to calculate the total score for a system:

score =

∑
i∈HCUs

wi·scorei

scoremax

where scorei denotes the individual scores (be-
tween 0 and 1) calculated for each HCU i andwi is
the number of annotators whose timeline contains
that HCU. scoremax is the sum of the weighted
maximum scores of the n most highly weighted
HCUs in the pyramid, where n is the desired time-
line length.

3 Corpus construction

To find suitable historical articles for our corpus,
we created the intersection of all Wikipedia arti-
cles whose title starts with “History of” with the
articles in a large collection of timelines described
by Bauer et al. (2014). Articles with errors in
their Wikitext were removed. We also excluded
articles that were incomplete, did not contain
narrative text or were not chronologically struc-
tured. None of these criteria aim at hand-picking
well-written articles or articles that describe well-
attested topics. The final set consists of 408
articles. We manually grouped these according
to their general topic area (GEO-POLITICAL
ENTITY, SCIENCE, ...). From these, we select a
set of 11 articles representative in terms of length
and subject area. For each of the articles in our
corpus, we removed the introductions (which tend
to contain a summary of the entire article). We
then asked 3 annotators per text1 to produce a his-
torical digest with a given maximum length deter-
mined by the number of verbs in each article (re-
sulting in 25-40 events). For one text, we asked an
additional 3 annotators to provide timelines, such
that this one text was covered by six annotators.
This means that in total, we had 36 combinations
of texts and timeline writers.

Our instructions do not tell the timeline writers
how content selection (in the source text) and sur-

1The annotators recruited included both computational
linguists and students in higher education.

face realisation (in the timelines produced) should
be performed. We merely state that the timeline
should strike a balance between mentioning all
and only important events and still giving a com-
plete account of the time period covered. Anno-
tators are also told that each line should contain
exactly one event and must be given a timestamp.

Our approach brings with it the challenge of de-
ciding when an algorithm operating on the source
text has correctly selected an HCU. We assume
that individual words in the text – verbs, nominal-
isations and certain other event-like nouns (such
as “war”) – are associated with the core action or
state change expressed by an HCU and that we or
a system can find those. While our methodology
does not presuppose any particular event definition
or event extraction paradigm, we make use of the
TimeML project (Pustejovsky et al., 2003), which
has provided a substantial body of work on how
to extract events and timestamps in the form of
TimeML EVENT and TIMEX instances (cf. the
TempEval shared tasks (Verhagen et al., 2007;
Verhagen et al., 2010; UzZaman et al., 2013)).

To construct the links between the HCUs we
found in the texts (between 32 and 80 per text2)
and the surface text, we first run a publicly avail-
able, recent TimeML-based extraction system,
TIPSem-B (Llorens et al., 2010), over our texts.
We then manually annotate each HCU with all
surface sentences that express the action or state
change described by the HCU, and manually de-
cide which TimeML event(s) identified in any
such matching sentence express(es) the HCU’s
content. This results in a 1:n mapping between
HCUs and events. For this matching process, we
use a detailed set of guidelines. A subset of the
2066 matchings (all matchings for 60 HCUs) was
re-annotated independently by the second author;
inter-annotator agreement was 87.9%.

Where the TimeML system failed to recognise
what we consider to be the correct event anchor,
we manually tagged this event anchor, and we pro-
vide this information with our corpus. This is be-
cause we want our gold standard to be independent
of any particular event extraction package.

4 Scoring system

As stated above, the reward a system may receive
for a single HCU is capped to one. This is true re-
gardless of how many TimeML events represent-

2We obtain 100 HCUs for the text annotated by 6 humans.
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ing the HCU are retrieved by the system. We up-
hold this principle because we aim to evaluate how
many HCUs a system returns, not how many tex-
tual elements representing them are retrieved.

Apart from this global constraint, the general
principle is to treat the contribution of each indi-
vidual TimeML event additively. For example, if
three events have been found to represent a third
of the meaning of the HCU, respectively, and two
of them are selected by the system, the total score
obtained for this HCU will be 2

3 .
For some pairs of TimeML events, however, this

additive paradigm is not the desired behaviour:
The TimeML software sometimes tends to mark
two very closely related words, e.g. a verb
(“start”) and its object (“war”), as events. In this
case, we do not want these two events, which we
consider to be members of an event group, to con-
tribute additively (AND); instead, an OR logic is
appropriate, meaning that it is irrelevant whether
one or both of the participating events are chosen.
The human matcher may impose such constraints
between multiple events linked to the same HCU.

In general, an event group E is a set which
may contain individual events e1, e2, ... and fur-
ther subgroups E1, E2, ... of events.

E = {E1, E2, ..., En, e1, e2, ..., en}
Each event and subgroup inE is associated with

a number v ∈ [0, 1] that denotes how much the
event or subgroup contributes to the total mean-
ing of event group E in context of HCU i; these
numbers are set by the human matcher.

The total scorei that a system will receive for
an HCU i is calculated using the function S(i, E),
where E is an event group that includes all events
linked to HCU i by a human:
S(i, E) = min(1,

∑
Ej∈E

vEj ·S(i, Ej)+
∑

ej∈E

vej · s(i, ej))

S(i, Ej) represents the contribution made by all
TimeML events in an event subgroup Ej ∈ E,
which is again capped to 1 via the recursive def-
inition of the score function. s(i, e) is a function
for an individual event in group E which, if the
system to be evaluated has chosen the event, re-
turns one, and zero otherwise:

s(i, e) =

{
1 if the system has chosen event e

0 otherwise

Note that S(i, E) simplifies to s(i, e) if there is
only one event e linked to HCU i (and if ve = 1).

See Figure 3 for an example of an HCU along
with all TimeML events in a sentence from the

source article and their respective contributions
to the HCU’s meaning (in brackets). Here, the
matcher has decided, according to our guidelines,
that “began” fully represents the HCU’s mean-
ing, while “recording” only represents half of the
meaning. Importantly, a system selecting both
these events will still only receive a total score of
1.0 for this HCU since it is capped to that number.

5 Data analysis

While we do not expect perfect agreement for
timeline generation, we hope to observe a pyra-
mid form like in NP04; i.e. a situation where few
HCUs are chosen by all three annotators, a higher
number are chosen by two annotators, and so on.
Indeed this was the case for 9 of the documents.

We also investigated how different the gold
standard would have been if a different set of three
humans had annotated the texts. We asked three
further annotators to create historical digests of
one text and then considered all possible splits into
two groups of three annotators each. For illustra-
tion, Tables 1 and 2 represent two examples out of
the 10 possible configurations, showing the num-
ber of annotators per group that agreed on HCUs.
The grey areas in the tables capture cases where
the two annotator teams chose an HCU with the
same frequency or where the two frequencies dif-
fer only by one. Averaged across the 10 splits,
91.9% of all HCUs fall into this area.

Consider cell (#0, #0): These are the cases
where all six annotators decided that these events
are not worthy of being mentioned in the timeline.
Since we do not annotate non-selected HCUs, we
can only give an approximation for this number
based on the average observed HCU frequency
per sentence. We do this since these cases should
arguably also contribute posivitely to the agree-
ment. Using these tables, we calculate Krippen-
dorff’s α across annotator groups; i.e. each HCU
can receive a score between 0 and 3, depending on
how many annotators expressed it in their time-
line. We use an interval difference function and
obtain α = 0.530. This is arguably a non-standard
use of α; we provide this number to give the reader
a rough idea of the agreement across groups.

6 Baseline results

To illustrate our method, we now present the re-
sults of a number of baseline algorithms. We only
evaluate the systems’ choice of events, not the sur-
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Action The Southern Semites began recording their history
Agent the Southern Semites
Patient their history
Time 800 BC
Surface text This led (0.0) to contact (0.0) with the Phoenicians and from them , the Southern Semites adopted

(0.0) their writing script in 800 BCE and began (1.0) recording (0.5) their history .

Figure 3: Example HCU with links into the surface text (the HCU’s location is not given)

Team 2
#0 #1 #2 #3

Team 1

#0 87 19 2 1
#1 18 15 10 1
#2 6 8 9 4
#3 1 0 3 3

Table 1: Best split (94.1% in grey area)

Team 2
#0 #1 #2 #3

Team 1

#0 87 17 6 0
#1 20 9 6 3
#2 8 14 5 1
#3 0 2 6 3

Table 2: Worst split (89.8% in grey area)

face realisation or the timestamps. In the future,
a more sophisticated mechanism may be devised
which takes these aspects into account as well.

Our algorithms are listed in Table 3. They may
select individual TimeML events from the source
text (1-6), or entire sentences (7-10); in the lat-
ter case, all events in the sentences count as se-
lected. Some of the baselines select events from
anywhere in the article (4, 5, 6, 10); others pro-
ceed in a round-robin fashion by iteratively select-
ing one event or sentence per section (1, 1b, 2, 3,
7, 8, 9, “RR”). For the latter methods, in each iter-
ation we can proceed from the top (1, 1b, 7) or the
bottom (2, 8) of the section, or we randomly select
any event or sentence in the section (3, 9). Choos-
ing the first or the last events of the entire article
(5, 6) does not look like a good method, since the
timeline needs to cover the entire timespan. Fi-
nally, we examine whether selecting only events
with a date in the same sentence has any effect; re-
sults can only be calculated over 10 articles since
one of the articles does not contain enough such
events. The result in Table 3 is therefore marked
with a star (*). The results of methods that involve
randomly selecting items were averaged over 100
runs. In principle, existing systems such as that by
Chasin et al. (2013) could also be evaluated with
our method, but we do not do this here.

ID Method Scores
1 RR, first events in section 0.23

1b like 1, events with dates only 0.33*
2 RR, last events in section 0.13
3 RR, random events in section 0.13
4 Random events in article 0.11
5 First events in article 0.13
6 Last events in article 0.11
7 RR, first sentences in section 0.22
8 RR, last sentences in section 0.11
9 RR, random sentences in section 0.12

10 Random sentences in article 0.10

Table 3: Baseline results (average pyramid
scores); the result with a * is based on 10 articles

Algorithms inspired by the well-established
“first n words” baseline for summarisation of
newswire articles perform best here too, when ap-
plied on a section level (1, 1b, 7). All these al-
gorithms perform significantly better when com-
pared to any of the other algorithms (2-6, 8-10);
statistical significance is measured for each pair
of algorithms at α = 0.05 using the Wilcoxon
signed-rank test (p < 0.05). This suggests that im-
portant events tend to be placed at the beginning of
a section. Selecting the first events from the entire
article (5) produces worse results than selecting
the first events from each section. The best results
are obtained when selecting only events with dates
in their proximity (1b); however, this result is
based only on 10 of the 11 articles, and the differ-
ence to algorithm 1 is not significant (p = 0.1391).

7 Conclusion

We have introduced a novel methodology for eval-
uating timeline generation algorithms based on
deep semantic content units, including a new cor-
pus of 36 human-written timelines and associated
HCUs. Our evaluation focuses on a deeper model
of meaning (based on events) rather than n-gram
overlap, and provides links between each HCU
and the source text. This allows us to subse-
quently evaluate an unlimited number of system
summaries without any further cost, rationalising
the evaluation of timeline construction algorithms.
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Abstract

Coverage maximization with bigram con-
cepts is a state-of-the-art approach to un-
supervised extractive summarization. It
has been argued that such concepts are ad-
equate and, in contrast to more linguistic
concepts such as named entities or syn-
tactic dependencies, more robust, since
they do not rely on automatic process-
ing. In this paper, we show that while this
seems to be the case for a commonly used
newswire dataset, use of syntactic and se-
mantic concepts leads to significant im-
provements in performance in other do-
mains.

1 Introduction
State-of-the-art approaches to extractive summa-
rization are based on the notion of coverage max-
imization (Berg-Kirkpatrick et al., 2011). The
assumption is that a good summary is a selec-
tion of sentences from the document that contains
as many of the important concepts as possible.
The importance of concepts is implemented by as-
signing weights wi to each concept i with binary
variable ci, yielding the following coverage maxi-
mization objective, subject to the appropriate con-
straints:

N∑
i

wici (1)

In proposing bigrams as concepts for their system,
Gillick and Favre (2009) explain that:

[c]oncepts could be words, named enti-
ties, syntactic subtrees or semantic re-
lations, for example. While deeper se-
mantics make more appealing concepts,
their extraction and weighting are much
more error-prone. Any error in concept

extraction can result in a biased objec-
tive function, leading to poor sentence
selection. (Gillick and Favre, 2009)

Several authors, e.g., Woodsend and Lapata
(2012), and Li et al. (2013), have followed Gillick
and Favre (2009) in assuming that bigrams would
lead to better practical performance than more
syntactic or semantic concepts, even though bi-
grams serve as only an approximation of these.

In this paper, we revisit this assumption and
evaluate the maximum coverage objective for ex-
tractive text summarization with syntactic and se-
mantic concepts. Specifically, we replace bigram
concepts with new ones based on syntactic depen-
dencies, semantic frames, as well as named enti-
ties. We show that using such concepts can lead
to significant improvements in text summariza-
tion performance outside of the newswire domain.
We evaluate coverage maximization incorporating
syntactic and semantic concepts across three dif-
ferent domains: newswire, legal judgments, and
Wikipedia articles.

2 Concept coverage maximization for
extractive summarization

In extractive summarization, the unsupervised ver-
sion of the task is sometimes set up as that of find-
ing a subset of sentences in a document, within
some relatively small budget, that covers as many
of the important concepts in the document as pos-
sible. In the maximum coverage objective, con-
cepts are considered as independent of each other.
Concepts are weighted by the number of times
they appear in a document. Moreover, due the
NP-hardness of coverage maximization, for an ex-
act solution to the concept coverage optimization
problem, we resort to fast solvers for integer linear
programming, under some appropriate constraints.

Bigrams. Gillick and Favre (2009) proposed to
use bigrams as concepts, and to weight their con-
tribution to the objective function in Equation (1)

840



by the frequency with which they occur in the doc-
ument. Some pre-processing is first carried out to
these bigrams: all bigrams consisting uniquely of
stop-words are removed from consideration, and
each word is stemmed. They also require bigrams
to occur with a minimal frequency (cf. Section
3.2).

Named entities. We consider three new types of
concepts, all suggested, but subsequently rejected
by Gillick and Favre (2009). The first is simply
to use named entities, e.g., Court of Justice of the
European Union, as concepts. This reflects the in-
tuition that persons, organizations, and locations
are particularly important for extractive summa-
rization. We use an NER maximum entropy tag-
ger1 to augment documents with named entities.

Syntactic dependencies. The second type of
concept is dependency subtrees. In particular,
we extract labeled and unlabeled syntactic depen-
dencies, e.g., DEPENDENCY(walks,John) or SUB-
JECT(walks,John), from sentences and represent
them by such syntactic concepts. We use the Stan-
ford parser2 to augment documents with syntac-
tic dependencies. As was done for bigrams, each
word in the dependency is stemmed. Syntactic
dependency-based concepts are intuitively a closer
approximation than bigrams to concepts in gen-
eral.

Semantic frames. The intuition behind our use
of frame semantics is that a summary should rep-
resent the most central semantic frames (Fillmore,
1982; Fillmore et al., 2003) present in the cor-
responding document—indeed, we consider these
frames to be actual types of concepts. We ex-
tract frame names from sentences for a further
type of concepts under consideration. We use SE-
MAFOR3 to augment documents with semantic
frames.

3 Experiments
3.1 Data

In order to investigate the importance of concept
types across different domains, we evaluate our
systems across three distinct domains, which we
refer to as ECHR, TAC08, and WIKIPEDIA.

ECHR consists of judgment-summary pairs
scraped from the European Court of Hu-

1http://www.nltk.org/
2http://nlp.stanford.edu/software/

lex-parser.shtml
3http://www.ark.cs.cmu.edu/SEMAFOR/

man Rights case-law website, HUDOC4. The
document-summary pairs were split into training,
development and test sets, consisting of 1018, 117,
and 138 pairs, respectively. In the training set
(pruning sentences of length less than 5), the aver-
age document length is 13,184 words or 455 sen-
tences. The average summary length is 806 words
or 28 sentences. For both documents and sum-
maries, the average sentence length is 29 words.

TAC08 consists of 48 queries and 2 newswire
document sets for each query, each set contain-
ing 10 documents. Document sets contain 235 in-
put sentences on average, and the mean sentence
length is 25 words. Summaries consist of 4 sen-
tences or 100 words on average.

WIKIPEDIA consists of 992 Wikipedia articles
(all labeled “good article”5) from a comprehen-
sive dump of English language Wikipedia arti-
cles6. We use the Wikipedia abstracts (the leading
paragraphs before the table of contents) as sum-
maries. The (document,summary) pairs were split
into training, development and test sets, consist-
ing of 784, 97, and 111 pairs, respectively. In the
training set (pruning sentences of length less than
5), the average document length is around 8918
words or 339 sentences. The average summary
length is 335 words or 13 sentences. For both
documents and summaries, the average sentence
length is around 26 words.

In our main experiments, we use unsupervised
summarization techniques, and we only use the
training summaries (and not the documents) to de-
termine output summary lengths.

3.2 Baseline and systems

Our baseline is the bigram-based extraction sum-
marization system of Gillick and Favre (2009),
icsisumm7. Their system was originally in-
tended for multi-document update summarization,
and summaries are extracted from document sen-
tences that share more than k content words with
some query. We follow this approach for the
TAC08 data. For ECHR and WIKIPEDIA, the
task is single document summarization, and the
now irrelevant topic-document intersection pre-
processing step is eliminated.

4http://hudoc.echr.coe.int/
5http://en.wikipedia.org/wiki/

Wikipedia:Good_articles
6https://dumps.wikimedia.org/

enwiki/latest/enwiki-latest-pages
-articles-multistream.xml.bz2

7https://code.google.com/p/icsisumm/
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The original system uses the GNU linear pro-
gramming kit8 with a time limit of 100 sec-
onds. For all experiments presented in this pa-
per, we double this time limit; we experimented
with longer time limits on the development set
for the ECHR data, without any performance im-
provements. Once the summarizer reaches the
time limit, a summary is output based on the cur-
rent feasible solution, whether the solution is op-
timal or not. Moreover, the current icsisumm
(v1) distribution prunes sentences shorter than 10
words. We note that we also tried replacing glpk
by gurobi9, for which no time limit was neces-
sary, but found poorer results on the development
set of the ECHR data.

The original system takes several important in-
put parameters.

1. Summary length, for TAC08, is specified
by the TAC 2008 conference guidelines as
100 words. For WIKIPEDIA and ECHR, we
have access to training sets which gave an
average summary length of around 335 and
805 words respectively, which we take as the
standard output summary length.

2. Concept count cut-off is the minimum fre-
quency of concepts from the document (set)
that qualifies them for consideration in cov-
erage maximization. For bigrams of the orig-
inal system on TAC08, there are two types
of document sets: ‘A’ and ‘B’. For ‘A’ type
documents, Gillick and Favre (2009) set this
threshold to 3 and for ‘B’ type documents,
they set this to 4. For WIKIPEDIA and ECHR,
we take the bigram threshold to be 4. In our
extension of the system to other concepts, we
do not use any threshold.

3. First concept weighting: in multi-document
summarization, there is the possibility for
repeated sentences. Concepts from first-
encountered sentences may be weighted
higher: these concept counts from first-
encountered sentences are doubled for ‘B’
documents and remain unchanged for ‘A’
documents in the original system on TAC08.
For other concepts, we do not alter frequen-
cies in this manner, which is justified by the
task change to single-document summariza-
tion.

8http://www.gnu.org/software/glpk/
9http://www.gurobi.com/

4. Query-sentence intersection threshold, is
set to 1 for ‘A’ documents and 0 to ‘B’
documents in the original system on TAC08.
This threshold is only for the update summa-
rization task and therefore does not concern
ECHR and WIKIPEDIA.

In addition to our baseline, we consider five
single-concept systems using (a) named entities,
(b) labeled dependencies, (c) unlabeled dependen-
cies, (d) semantic frame names, and (e) seman-
tic frame dependencies, as well as the five sys-
tems combining each of these new concept types
with bigrams. For the combination of these new
concepts with bigrams, we extend the objective
function to maximise in, Equation (1), into two
sums—one for bigram concepts and the other for
the new concept type—with their relative impor-
tance controlled by a parameter α. N1 and N2 are
the number of bigram and other concept types oc-
curring with the permitted threshold frequency in
the document, relatively. Given that we are carry-
ing out unsupervised summarization, rather than
tune α, we set α = 0.5, so the concepts are con-
sidered in their totality (i.e., N1 +N2 concepts to-
gether) with no explicit favouring of one over the
other that does not naturally fall out of concept fre-
quency.

(1−α)
N1∑
i

wibigrami+α
N2∑
j

wjnew conceptj

3.3 Results

We evaluate output summaries using ROUGE-1,
ROUGE-2, and ROUGE-SU4 (Lin, 2004), with
no stemming and retaining all stopwords. These
measures have been shown to correlate best with
human judgments in general, but among the au-
tomatic measures, ROUGE-1 and ROUGE-2 also
correlate best with the Pyramid (Nenkova and Pas-
sonneau, 2004; Nenkova et al., 2007) and Re-
sponsiveness manual metrics (Louis and Nenkova,
2009). Moreover, ROUGE-1 has been shown to
best reflect human-automatic summary compar-
isons (Owczarzak et al., 2012).

For single concept systems, the results are
shown in Table 1, and concept combination sys-
tem results are given in Table 2.

We first note that our runs of the current dis-
tribution of icsisumm yield significantly worse
ROUGE-2 results than reported in (Gillick and
Favre, 2009) (see Table 1, BIGRAMS): 0.081 com-
pared to 0.110 respectively.
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On the TAC08 data, we observe no improve-
ments over the baseline BIGRAM system for any
ROUGE metric here. Hence, Gillick and Favre
(2009) were right in their assumption that syntac-
tic and semantic concepts would not lead to perfor-
mance improvements, when restricting ourselves
to this dataset. However, when we change domain
to the legal judgments or Wikipedia articles, using
syntactic and semantic concepts leads to signifi-
cant gains across all the ROUGE metrics.

For ECHR, replacing bigrams by frame names
(FRAME) results in an increase of +0.1 in
ROUGE-1, +0.031 in ROUGE-2 and +0.046 in
ROUGE-SU4. We note that FrameNet 1.5 covers
the legal domain quite well, which may explain
why these concepts are particularly useful for the
ECHR dataset. However, labeled (LDEP) and unla-
beled (UDEP) dependencies also significantly out-
perform the baseline.

For WIKIPEDIA, replacing bigrams by labeled
or unlabeled syntactic dependencies results in sig-
nificant improvements: an increase of +0.088
for ROUGE-1, +0.015 for ROUGE-2, and +0.03
for ROUGE-SU4. Interestingly, the NER sys-
tem also yields significantly better performance
over the baseline, which may reflect the nature
of Wikipedia articles, often being about historical
figures, famous places, organizations, etc.

We observe in Table 2, that for concept combi-
nation systems as well, ROUGE scores on TAC08
do not indicate any improvement in performance.
However, best ROUGE-1 scores are produced
for both ECHR and WIKIPEDIA data with sys-
tems that incorporate semantic frame names. For
WIKIPEDIA, best ROUGE-2 and ROUGE-SU4
scores incorporate named-entity information.

4 Related work
Most researchers have used bigrams as concepts in
coverage maximization-based approaches to unsu-
pervised extractive summarization. Filatova and
Hatzivassiloglou (2004), however,use relations be-
tween named entities as concepts in extractive
summarization. They use slightly different extrac-
tion algorithms, but their work is similar in spirit
to ours. Nishikawa et al. (2010), also, use opin-
ions – tuples of targets, aspects, and polarity –
as concepts in opinion summarization. In early
work on summarization, Silber and McCoy (2000)
used WordNet synsets as concepts. Kitajima and
Kobayashi (2011) replace words by syntactic de-
pendencies in the Maximal Marginal Relevance

ECHR

R-1 R-2 R-SU4
concept (95% conf.) (95% conf.) (95% conf.)

BIGRAMS 0.544 0.204 0.266
(0.528-0.562) (0.195-0.215) (0.257-0.277)

NER 0.549 0.184 0.254
(0.534-0.564) (0.174-0.193) (0.244-0.264)

LDEP 0.609 0.225 0.293
(0.597-0.621) (0.217-0.235) (0.285-0.302)

UDEP 0.612 0.227 0.295
(0.6-0.626) (0.218-0.238) (0.287-0.305)

FRAMES 0.643 0.235 0.312
(0.63-0.657) (0.224-0.248) (0.302-0.323)

TAC08

R-1 R-2 R-SU4
concept (95% conf.) (95% conf.) (95% conf.)

BIGRAMS 0.35 0.081 0.119
(0.34-0.36) (0.073-0.089) (0.113-0.126)

NER 0.307 0.054 0.093
(0.297-0.317) (0.049-0.06) (0.089-0.099)

LDEP 0.335 0.072 0.109
(0.325-0.346) (0.065-0.08) (0.103-0.116)

UDEP 0.342 0.075 0.113
(0.331-0.353) (0.067-0.083) (0.106-0.12)

FRAMES 0.301 0.048 0.089
(0.292-0.31) (0.042-0.053) (0.085-0.094)

WIKIPEDIA

R-1 R-2 R-SU4
concept (95% conf.) (95% conf.) (95% conf.)

BIGRAMS 0.391 0.103 0.152
(0.364-0.415) (0.094-0.113) (0.134-0.163)

NER 0.473 0.114 0.178
(0.46-0.487) (0.105-0.123) (0.169-0.186)

LDEP 0.478 0.116 0.179
(0.461-0.495) (0.107-0.125) (0.169-0.188)

UDEP 0.479 0.118 0.18
(0.462-0.497) (0.109-0.128) (0.17-0.189)

FRAMES 0.476 0.102 0.172
(0.461-0.494) (0.094-0.112) (0.164-0.182)

Table 1: Single concept results on ECHR, TAC08,
and WIKIPEDIA.

Multidocument measure first proposed by Gold-
stein et al. (2000) for evaluating the importance
of sentences in query-based extractive summa-
rization, yielding improvements for their Japanese
newswire dataset.

5 Conclusions

This paper challenges the assumption that bigrams
make better concepts for unsupervised extractive
summarization than syntactic and semantic con-
cepts relying on automatic processing. We show
that using concepts relying on syntactic dependen-
cies or semantic frames instead of bigrams leads
to significant performance improvements of cover-
age maximization summarization across domains.
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Abstract

Training a high-accuracy dependency
parser requires a large treebank. How-
ever, these are costly and time-consuming
to build. We propose a learning method
that needs less data, based on the observa-
tion that there are underlying shared struc-
tures across languages. We exploit cues
from a different source language in order
to guide the learning process. Our model
saves at least half of the annotation effort
to reach the same accuracy compared with
using the purely supervised method.

1 Introduction

Dependency parsing is a crucial component of
many natural language processing systems, for
tasks such as text classification (Özgür and
Güngör, 2010), statistical machine translation (Xu
et al., 2009), relation extraction (Bunescu and
Mooney, 2005), and question answering (Cui et
al., 2005). Supervised approaches to dependency
parsing have been successful for languages where
relatively large treebanks are available (McDonald
et al., 2005). However, for many languages, anno-
tated treebanks are not available. They are costly
to create, requiring careful design, testing and
subsequent refinement of annotation guidelines,
along with assessment and management of annota-
tor quality (Böhmová et al., 2001). The Universal
Treebank Annotation Guidelines aim at providing
unified annotation for many languages enabling
cross-lingual comparison (Nivre et al., 2015). This
project provides a starting point for developing a
treebank for resource-poor languages. However, a
mature parser requires a large treebank for train-
ing, and this is still extremely costly to create. In-
stead, we present a method that exploits shared
structure across languages to achieve a more accu-
rate parser. Structural information from the source

resource-rich language is incorporated as a prior
in the supervised training of a resource-poor tar-
get language parser using a small treebank. When
compared with a supervised model, the gain is as
high as 8.7%1 on average when trained on just
1,000 tokens. As we add more training data, the
gains persist, though they are more modest. Even
at 15,000 tokens we observe a 2.9% improvement.

There are two main approaches for building
dependency parsers for resource-poor languages:
delexicalized parsing and projection (Täckström et
al., 2013). The delexicalized approach was pro-
posed by Zeman et al. (2008). A parser is built
without any lexical features, and trained on a tree-
bank in a resource-rich source language. It is
then applied directly to parse sentences in the tar-
get resource-poor languages. Delexicalized pars-
ing relies on the fact that identical part-of-speech
(POS) inventories are highly informative of de-
pendency relations, enough to make up for cross-
lingual syntactic divergence.

In contrast, projection approaches use parallel
data to project source language dependency rela-
tions to the target language (Hwa et al., 2005).
McDonald et al. (2011) and Ma and Xia (2014) ex-
ploit both delexicalized parsing and parallel data.
They use parallel data to constrain the model
which is usually initialized by the English delexi-
calized parser.

In summary, existing work generally starts with
a delexicalized parser and uses parallel data to im-
prove it. In this paper, we start with a source lan-
guage parser and refine it with help from depen-
dency annotations instead of parallel data. This
choice means our method can be applied in cases
where linguists are dependency-annotating small
amounts of field data, such as in Karuk, a nearly-
extinct language of Northwest California (Garrett
et al., 2013).

1We use absolute values herein.
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Figure 1: Neural Network Parser Architecture from Chen and Manning (2014) (left). Our model (left
and right) with soft parameter sharing between the source and target language shown with dashed lines.

2 Supervised Neural Network Parser

In this section we review the parsing model which
we use for both the source language and target lan-
guage parsers. It is based on the work of Chen
and Manning (2014). This parser can take advan-
tage of target language monolingual data through
word embeddings, data which is usually available
for resource-poor languages. Chen and Manning’s
parser also achieved state-of-the-art monolingual
parsing performance. They built a transition-based
dependency parser (Nivre, 2006) using a neural-
network. The neural network classifier decides
which transition is applied for each configuration.

The architecture of the parser is illustrated in
Figure 1 (left), where each layer is fully connected
to the layer above. For each configuration, the se-
lected list of words, POS tags and labels from the
Stack, Queue and Arcs are extracted. Each word,
POS or label is mapped to a low-dimension vec-
tor representation (embedding) through the Map-
ping Layer. This layer simply concatenates the
embeddings which are then fed into a two-layer
neural network classifier to predict the next pars-
ing action. The set of parameters for the model
is Eword, Epos, Elabels for the mapping layer, W1

for the cubic hidden layer and W2 for the softmax
output layer.

3 Cross-lingual parser

Our model takes advantage of underlying structure
shared between languages. Given the source lan-
guage parsing structure as in Figure 1 (left), the
set of parameters Eword will be different for the
target language parser shown in Figure 1 (right)
but we hypothesize that Epos, Earc,W1 and W2

can be shared as indicated with dashed lines. In
particular we expect this to be the case when lan-
guages use the same POS tagset and arc label sets,

as we presume herein. This assumption is moti-
vated by the development of unified annotation for
many languages (Nivre et al., 2015; Petrov et al.,
2012; McDonald et al., 2013).

To allow parameter sharing between languages
we could jointly train the parser on the source
and target language simultaneously. However,
we leave this for future work. Here we take an
alternative approach, namely regularization in a
similar vein to Duong et al. (2014). First we
train a lexicalized neural network parser on the
source resource-rich language (English), as de-
scribed in Section 2. The learned parameters are
Een

word, E
en
pos, E

en
arc,W

en
1 ,W en

2 . Second, we incor-
porate English parameters as a prior for the tar-
get language training. This is straightforward
when we use the same architecture, such as a
neural network parser, for the target language.
All we need to do is modify the learning objec-
tive function so that it includes the regularization
part. However, we don’t want to regularize the
part related to Een

word since it will be very differ-
ent between source and target language. Letting
W1 = (Wword

1 ,W pos
1 ,W arc

1 ), the learning objec-
tive over training data D = {x(i), y(i)}Ni=1, be-
comes:2

L =
N∑

i=1

logP (y(i)|x(i))− λ1

2

[
‖W pos

1 −W en:pos
1 ‖2F

+ ‖W arc
1 −W en:arc

1 ‖2F + ‖W2 −W en
2 ‖2F

]
− λ2

2

[
‖Epos − Een

pos‖2F + ‖Earc − Een
arc‖2F

]
(1)

This is applicable where we use the same POS
2All other parameters, i.e. Wword

1 and Eword, are regu-
larized using a zero-mean Gaussian regularization term, with
weight λ = 10−8, as was done in the original paper.
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Train Dev Test Total

cs 1173.3 159.3 173.9 1506.5
de 269.6 12.4 16.6 298.6
en 204.6 25.1 25.1 254.8
es 382.4 41.7 8.5 432.6
fi 162.7 9.2 9.1 181.0
fr 354.7 38.9 7.1 400.7
ga 16.7 3.2 3.8 23.7
hu 20.8 3.0 2.7 26.5
it 194.1 10.5 10.2 214.8
sv 66.6 9.8 20.4 96.8

Table 1: Number of tokens (× 1,000) for each lan-
guage in the Universal Dependency Treebank col-
lection.

tagset and arc label annotation for the source and
target language. The same POS tagset is required
so that the source language parser has similar
structure with the target language parser. The re-
quirement of same arc label annotation is mainly
needed for evaluation using the Labelled Attach-
ment Score (LAS).3 We fit two separate regular-
ization sensitivity parameters, λ1 and λ2, since
they correspond to different parts of the model. λ1

is used for the shared (universal) part, while λ2

is used for the language specific parts. Together
λ1 and λ2 control the contribution of the source
language parser towards the target resource-poor
model. In the extreme case where λ1 and λ2 are
large, the target model parameters are tied to the
source model, except for the word embeddings
Eword. In the opposite case, where they are small,
the target language parser is similar to the purely
supervised model. We expect that the best values
fall between these extremes. We use stochastic
gradient descent to optimize this objective func-
tion with respect to W1,W2, Eword, Epos, Earc.

4 Experiments

In this part we want to see how much our cross-
lingual model helps to improve the supervised
model, for various data sizes.

4.1 Dataset

We experimented with the Universal Depen-
dency Treebank collection V1.0 (Nivre et al.,
2015) which contains treebanks for 10 languages.4

3However, same arc-label set also informs some informa-
tion about the structure.

4Czech (cs), German (de), English (en), Spanish (es),
Finnish (fi), French (fr), Irish (ga), Hungarian (hu), Italian

These treebanks have many desirable properties
for our model: the dependency types and coarse
POS are the same across languages. This removes
the need for mapping the source and target lan-
guage tagsets to a common tagset. Moreover, the
dependency types are also common across lan-
guages allowing LAS evaluation. Table 1 shows
the dataset size of each language in the collection.
Some languages have over 400k tokens such as cs,
fr and es, meanwhile, hu and ga have only around
25k tokens.

4.2 Monolingual Word Embeddings
We initialize the target language word embeddings
Eword of our neural network cross-lingual model
with pre-trained embeddings. This is an advantage
since we can incorporate monolingual data which
is usually available for resource-poor languages.
We collect monolingual data for each language
from the Machine Translation Workshop (WMT)
data,5 Europarl (Koehn, 2005) and EU Bookshop
Corpus (Skadiņš et al., 2014). The size of mono-
lingual data also varies significantly. There are
languages such as English and German with more
than 400 million words, whereas, Irish only has
4 million. We use the skip-gram model from
word2vec to induce 50-dimension word embed-
dings (Mikolov et al., 2013).

4.3 Coarse vs Fine-Grain POS
Our model uses the source language parser as the
prior for the target language parser. The require-
ment is that the source and target should use the
same POS tagset. It is clear that information will
be lost when using the coarser shared-POS tagset.
Here, we simply want to quantify this loss. We
run the supervised neural network parser on the
coarse-grained Universal POS (UPOS) tagset, and
the language-specific fine-grained POS tagset for
languages where both are available in the Univer-
sal Dependency Treebank.6 Table 2 shows the
average LAS for coarse- and fine-grained POS
tagsets with various data sizes. For the smaller
dataset, using the coarse-grained POS tagset per-
formed better. Even when we used all the data,
the coarse-grained POS tagset still performed rea-
sonably well, approaching the performance ob-
tained using the fine-grained POS tagset. Thus, the
choice of the coarse-grained Universal POS tagset

(it), Swedish (sv)
5http://www.statmt.org/wmt14/
6Czech, English, Finnish, Irish, Italian, and Swedish
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Tokens Coarse UPOS Fine POS

1k 46.8 42.3
3k 54.3 52.4
5k 56.9 55.8
10k 59.9 59.8
15k 61.5 61.4
All 74.7 75.2

Table 2: Average LAS for supervised learning us-
ing the modified version of the Universal POS
tagset and the fine-grained POS tagset across vari-
ous training data sizes.

instead of the original POS tagset is relevant, given
that we assume there will only be a small tree-
bank in the target language. Moreover, even when
we have a bigger treebank, using the UPOS tagset
does not hurt the performance much.7

4.4 Tuning regularization sensitivity

As shown in equation 1, λ1 and λ2 control the
contribution of the source language parser toward
the target language parser. We tune these parame-
ters separately using development data. Firstly, we
tune λ1 by fixing λ2 = 0.1. The reason for choos-
ing such a large value of 0.1 is that we expect the
POS and arc label embeddings to be fairly simi-
lar across languages. Figure 2 shows the average
LAS for all 9 languages (except English) on dif-
ferent data sizes using different values of λ1. We
observed that λ1 = 0.001 gives the optimum value
on the development data consistently across differ-
ent data sizes. We compare the performance at two
extreme values of λ1. For small data size, at 1k to-
kens, λ1 = 100 is better than when λ1 = 10−8.
This shows that when trained using a small data
set, the source language parser is more accurate
than the supervised model. However, at 3k tokens,
the supervised model is starting to perform better.

We now fix λ1 = 0.001 to tune λ2 in the same
range as λ1. However, the average LAS didn’t
change much for different values of λ2. It ap-
pears that λ2 has very little effect on parsing accu-
racy. This is understandable since λ2 affects only a
small number of parameters (POS and arc embed-
dings). Thus, we choose λ1 = 0.001 and λ2 = 0.1
for our experiments.

7This is because UPOS generalizes better, and when ag-
gregating with lexical information, it has similar distinguish-
ing power compared with the fine-grained POS tagset.
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Figure 2: Sensitivity of regularization parameter
λ1 against the average LAS measured on all 9 lan-
guages (except English) on the development set
for various data sizes (tokens)

4.5 Learning Curve

We choose English as our source language to build
different target parsers for each language in the
Universal Dependency Treebank collection. We
train the supervised neural network parser as men-
tioned in Section 2 on the Universal Dependency
English treebank using UPOS tagset. The UAS
and LAS for the English parser is 85.2% and
82.9% respectively, when evaluated on the English
test set. We use the English parser as the prior for
our cross-lingual model, as described in Section 3.
Figure 3 shows the learning curve for both the
supervised neural network parser and our cross-
lingual model with respect to our implemention
of McDonald et al.’s (2011) delexicalized parser,
i.e. their basic model which uses no parallel data
and no target language supervision. Overall, both
the supervised model and the cross-lingual model
are much better than this baseline. For small data
sizes, our cross-lingual model is superior when
compared with the supervised model, giving as
much as an 8.7% improvement. This improvement
lessens as the size of training data increases. This
is to be expected, because the supervised model
becomes stronger as the size of training data in-
creases, while the contribution of the source lan-
guage parser is reduced. However, at 15k tokens
we still observed a 2.9% average improvement,
demonstrating the robustness of our cross-lingual
model. Using our model also reduced the standard
deviation ranges on each data point from 12% to
7%.

Using our cross-lingual model can save the an-
notation effort that is required in order to reach
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Figure 3: Learning curve for cross-lingual model
and supervised model with respect to the baseline
delexicalized parser from McDonald et al. (2011):
the x-axis is the size of data (number of tokens);
the y-axis is the average LAS measured on 9 lan-
guages (except English).

the same accuracy compared with the supervised
model. For example, we only need 1k tokens
in order to surpass the supervised model perfor-
mance on 3k tokens, and we only need 5k tokens
to match the supervised model trained on 10k to-
kens. The error rate reduction is from 15.8% down
to 6.5% for training data sizes from 1k to 15k to-
kens. However, when we use all the training data,
the supervised model is slightly better.

5 Conclusions

Thanks to the availability of the Universal Depen-
dency Treebank, creating a treebank for a target
resource-poor language has becoming easier. This
fact motivates the work reported here, where we
assume that only a tiny treebank is available in the
target language. We tried to make the most out
of the target language treebank by incorporating
a source-language parser as a prior in learning a
neural network parser. Our results show that we
can achieve a more accurate parser using the same
training data. In future work, we would like to
investigate joint training on the source and target
languages.
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Anne Abeillé, editor, Treebanks: Building and Us-
ing Syntactically Annotated Corpora, pages 103–
127. Kluwer Academic Publishers.

Razvan C. Bunescu and Raymond J. Mooney. 2005.
A shortest path dependency kernel for relation ex-
traction. In Proceedings of the Conference on Hu-
man Language Technology and Empirical Methods
in Natural Language Processing, HLT ’05, pages
724–731, Stroudsburg, PA, USA. ACL.

Danqi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 740–750, Doha, Qatar. ACL.

Hang Cui, Renxu Sun, Keya Li, Min-Yen Kan, and
Tat-Seng Chua. 2005. Question answering passage
retrieval using dependency relations. In Proceed-
ings of the 28th Annual International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’05, pages 400–407, New
York, NY, USA. ACM.

Long Duong, Trevor Cohn, Karin Verspoor, Steven
Bird, and Paul Cook. 2014. What can we get from
1000 tokens? a case study of multilingual pos tag-
ging for resource-poor languages. In Proceedings of
the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 886–897,
Doha, Qatar. ACL.

Andrew Garrett, Clare Sandy, Erik Maier, Line
Mikkelsen, and Patrick Davidson. 2013. Develop-
ing the Karuk Treebank. Fieldwork Forum, Depart-
ment of Linguistics, UC Berkeley.

Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara
Cabezas, and Okan Kolak. 2005. Bootstrapping
parsers via syntactic projection across parallel texts.
Natural Language Engineering, 11:311–325.

Philipp Koehn. 2005. Europarl: A Parallel Corpus for
Statistical Machine Translation. In Proceedings of
the Tenth Machine Translation Summit (MT Summit
X), pages 79–86, Phuket, Thailand.

Xuezhe Ma and Fei Xia. 2014. Unsupervised depen-
dency parsing with transferring distribution via par-
allel guidance and entropy regularization. In Pro-
ceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1337–1348. Association for Compu-
tational Linguistics.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. In Proceedings of the 43rd An-
nual Meeting on Association for Computational Lin-
guistics, ACL ’05, pages 91–98, Stroudsburg, PA,
USA. ACL.

849



Ryan McDonald, Slav Petrov, and Keith Hall. 2011.
Multi-source transfer of delexicalized dependency
parsers. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP ’11, pages 62–72.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuz-
man Ganchev, Keith Hall, Slav Petrov, Hao
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Abstract

We propose a method for semantic struc-
ture analysis of noun phrases using Ab-
stract Meaning Representation (AMR).
AMR is a graph representation for the
meaning of a sentence, in which noun
phrases (NPs) are manually annotated
with internal structure and semantic re-
lations. We extract NPs from the AMR
corpus and construct a data set of NP
semantic structures. We also propose a
transition-based algorithm which jointly
identifies both the nodes in a semantic
structure tree and semantic relations be-
tween them. Compared to the baseline,
our method improves the performance of
NP semantic structure analysis by 2.7
points, while further incorporating exter-
nal dictionary boosts the performance by
7.1 points.

1 Introduction

Semantic structure analysis of noun phrases (NPs)
is an important research topic, which is beneficial
for various NLP tasks, such as machine transla-
tion and question answering (Nakov and Hearst,
2013; Nakov, 2013). Among the previous works
on NP analysis are internal NP structure analy-
sis (Vadas and Curran, 2007; Vadas and Curran,
2008), noun-noun relation analysis of noun com-
pounds (Girju et al., 2005; Tratz and Hovy, 2010;
Kim and Baldwin, 2013), and predicate-argument
analysis of noun compounds (Lapata, 2002).

The goal of internal NP structure analysis is
to assign bracket information inside an NP (e.g.,
(lung cancer) deaths indicates that the phrase lung
cancer modifies the head deaths). In noun-noun
relation analysis, the goal is to assign one of the
predefined semantic relations to a noun compound
consisting of two nouns (e.g., assigning a relation

disaster! prevention! awareness!

ARG1!

prevent-01!disaster! awareness!

topic!

Figure 1: disaster prevention awareness in AMR.
Predicate-argument relation ARG1, noun-noun re-
lation topic, and internal structure (disaster pre-
vention) awareness are expressed.

purpose to a noun compound cooking pot, mean-
ing that pot is used for cooking). On the other
hand, in predicate-argument analysis, the goal is
to decide whether the modifier noun is the subject
or the object of the head noun (e.g., car is the ob-
ject of love in car lover, while child is the subject
of behave in child behavior).

Previous NP researches have mainly focused on
these different subproblems of NP analysis using
different data sets, rather than targeting general
NPs simultaneously. However, these subproblems
of NP analysis tend to be highly intertwined when
processing texts. For the purpose of tackling the
task of combined NP analysis, we make use of the
Abstract Meaning Representation (AMR) corpus.

AMR is a formalism of sentence semantic
structure by directed, acyclic, and rooted graphs,
in which semantic relations such as predicate-
argument relations and noun-noun relations are
expressed. In this paper, we extract substructures
corresponding to NPs (shown in Figure 1) from
the AMR Bank1, and create a data set of NP se-
mantic structures. In general, AMR substructures
are graphs. However, since we found out that NPs
mostly form trees rather than graphs in the AMR
Bank, we can assume that AMR substructures cor-
responding to NPs are trees. Thus, we define our
task as predicting the AMR tree structure, given a
sequence of words in an NP.

The previous method for AMR parsing takes a
1http://amr.isi.edu/
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Train Dev Test
3504 463 398

Table 1: Statistics of the extracted NP data

two-step approach: first identifying distinct con-
cepts (nodes) in the AMR graph, then defin-
ing the dependency relations between those con-
cepts (Flanigan et al., 2014). In the concept iden-
tification step, unlike POS tagging, one word is
sometimes assigned with more than one concept,
and the number of possible concepts is far more
than the number of possible parts-of-speech. As
the concept identification accuracy remains low,
such a pipeline method suffers from error propaga-
tion, thus resulting in a suboptimal AMR parsing
performance.

To solve this problem, we extend a transition-
based dependency parsing algorithm, and propose
a novel algorithm which jointly identifies the con-
cepts and the relations in AMR trees. Compared
to the baseline, our method improves the perfor-
mance of AMR analysis of NP semantic structures
by 2.7 points, and using an external dictionary fur-
ther boosts the performance by 7.1 points.

2 Abstract Meaning Representation

2.1 Extraction of NPs

We extract substructures (subtrees) correspond-
ing to NPs from the AMR Bank (LDC2014T12).
In the AMR Bank, there is no alignment be-
tween the words and the concepts (nodes) in the
AMR graphs. We obtain this alignment by using
the rule-based alignment tool by Flanigan et al.
(2014). Then, we use the Stanford Parser (Klein
and Manning, 2003) to obtain constituency trees,
and extract NPs that contain more than one noun
and are not included by another NP. We ex-
clude NPs that contain named entities, because
they would require various kinds of manually
crafted rules for each type of named entity. We
also exclude NPs that contain possessive pronouns
or conjunctions, which prove problematic for the
alignment tool. Table 1 shows the statistics of the
extracted NP data.

2.2 Previous Method for AMR Analysis

We adopt the method proposed by Flanigan et
al. (2014) as our baseline, which is a two-step
pipeline method of concept identification step and

retired!

retire-01!

plant!

plant!

worker!

work-01!

person!

ARG0-of!

a

"!

Figure 2: Concept identification step of (Flanigan
et al., 2014) for a retired plant worker. ∅ denotes
an empty concept.

relation identification step. Their method is de-
signed for parsing sentences into AMR, but here,
we use this method for parsing NPs.

In their method, concept identification is formu-
lated as a sequence labeling problem (Janssen and
Limnios, 1999) and solved by the Viterbi algo-
rithm. Spans of words in the input sentence are
labeled with concept subgraphs. Figure 2 illus-
trates the concept identification step for an NP a
retired plant worker.

After the concepts have been identified, these
concepts are fixed, and the dependency rela-
tions between them are identified by an algorithm
that finds the maximum spanning connected sub-
graph (Chu and Liu, 1965), which is similar to the
maximum spanning tree (MST) algorithm used for
dependency parsing (McDonald et al., 2005).

They report that using gold concepts yields
much better performance, implying that joint iden-
tification of concepts and relations can be helpful.

3 Proposed Method

In this paper, we propose a novel approach for
mapping the word sequence in an NP to an AMR
tree, where the concepts (nodes) corresponding to
the words and the dependency relations between
those concepts must be identified. We extend the
arc-standard algorithm by Nivre (2004) for AMR
parsing, and propose a transition-based algorithm
which jointly identifies concepts and dependency

retired!

retire-01!

plant!

plant!

worker!

work-01!

person!

ARG0-of!

a

ARG0-of!

ARG2!

Figure 4: a retired plant worker in AMR
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Previous action σ1 σ0 β R
0 (initial state) [a retired plant worker] ∅
1 SHIFT(EMPTY(a)) ∅ [retired plant worker] ∅
2 EMPTY-REDUCE [retired plant worker] ∅
3 SHIFT(DICTPRED(retired)) retire-01 [plant worker] ∅

4 SHIFT(LEMMA(plant)) retire-01 plant [worker] ∅

5 SHIFT(KNOWN(worker)) plant

person

work-01

  ARG0-of [ ] ∅

6 LEFT-REDUCE(ARG2, nchild) retire-01

person

work-01

  ARG0-of [ ] {(work-01) ARG2−−−→ (plant)}

7 LEFT-REDUCE(ARG0-of, nroot)
person

work-01

  ARG0-of [ ] {(work-01) ARG2−−−→ (plant),
(person) ARG0-of−−−−→ (retire-01)}

Figure 3: Derivation of an AMR tree for a retired plant worker (σ0 and σ1 denote the top and the second
top of the stack, respectively.)

Action Current state Next state
SHIFT(c(wi)) (σ, [wi|β], R) ([σ|c(wi)], β, R)

LEFT-REDUCE(r, n) ([σ|ci|cj ], β, R) ([σ|cj ], β, R ∪ {nroot(ci)
r←− n(cj)})

RIGHT-REDUCE(r, n) ([σ|ci|cj ], β, R) ([σ|ci], β, R ∪ {n(ci)
r−→ nroot(cj)})

EMPTY-REDUCE ([σ|φ], β, R) (σ, β, R)

Table 2: Definitions of the actions

relations. Our algorithm is similar to (Hatori et al.,
2011), in which they perform POS tagging and de-
pendency parsing jointly by assigning a POS tag
to a word when performing SHIFT, but differs in
that, unlike POS tagging, one word is sometimes
assigned with more than one concept. In our al-
gorithm, the input words are stored in the buffer
and the identified concepts are stored in the stack.
SHIFT identifies a concept subtree associated with
the top word in the buffer. REDUCE identifies the
dependency relation between the top two concept
subtrees in the stack. Figure 3 illustrates the pro-
cess of deriving an AMR tree for a retired plant
worker, and Figure 4 shows the resulting AMR
tree.

Table 2 shows the definition of each action and
state transition. A state is a triple (σ, β,R), where
σ is a stack of identified concept subtrees, β is a
buffer of words, and R is a set of identified rela-
tions. SHIFT(c(wi)) extracts the top word wi in
the buffer, generates a concept subtree c(wi) from
wi, and pushes c(wi) onto the stack. The concept
subtree c(wi) is generated from wi by using one of
the rules defined in Table 3. LEFT-REDUCE(r, n)
pops the top two subtrees ci, cj from the stack,

identifies the relation r between the root nroot(ci)
of ci and the node n(cj) in cj , adds r to R, and
pushes cj back onto the stack. Here, n denotes a
mapping from a subtree to its specific node, which
allows for attachment to an arbitrary concept in
a subtree. Since the sizes of the subtrees were
at most two in our data set, n ∈ {nroot, nchild},
where nroot is a mapping from a subtree to its root,
and nchild is a mapping from a subtree to the direct
child of its root. RIGHT-REDUCE(r, n) is defined
in the same manner. EMPTY-REDUCE removes an
empty subtree ∅ at the top of the stack. EMPTY-
REDUCE is always performed immediately after
SHIFT(∅) generates an empty subtree ∅. In the
initial state, the stack σ is empty, the buffer β con-
tains all the words in the NP, and the set of the
identified relations R is empty. In the terminal
state, the buffer β is empty and the stack σ con-
tains only one subtree. The resulting AMR tree is
obtained by connecting all the subtrees generated
by the SHIFT actions with all the relations in R.

The previous method could not generate un-
seen concepts in the training data, leading to low
recall in concept identification. In contrast, our
method defines five rules (Table 3), three of which
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Rule Concept subtree to generate Example of subtree generation
EMPTY an empty concept subtree ∅ fighters→ ∅
KNOWN a subtree aligning to the word in the training data fighters→ (person) ARG0-of−−−−→ (fight-01) | ...
LEMMA a subtree with the lemma of the word as the only concept fighters→ (fighter)
DICTPRED a subtree with a predicate form of the word as the only concept fighters→ (fight-01) | (fight-02) | ...
DICTNOUN a subtree with a noun form of the word as the only concept fighters→ (fight)

Table 3: Rules for generating a concept subtree (Vertical lines indicate multiple candidate subtrees.)

(LEMMA, DICTPRED, and DICTNOUN) allow for
generation of unseen concepts from any word.

3.1 Features

The feature set φ(s, a) for the current state s and
the next action a is the direct product (all-vs-all
combinations from each set) of the feature set
φstate(s) for the current state and the feature set
φaction(s, a) for the next action.

φ(s, a) = φstate(s)× φaction(s, a)

φstate(s) is the union of the feature sets defined
in Table 4, where w(c) denotes the word from
which the subtree c was generated.

Table 5 shows the feature set
φaction((σ, [wi|β], R), a) for each action a, where
rule(wi, c) is a function that returns the rule
which generated the subtree c from the top word
wi in the buffer. In order to allow different SHIFT

actions and different LEFT-RIGHT/REDUCE

actions to partially share features, Table 5 de-
fines features of different granularities for each
action. For example, although SHIFT((run-01))
and SHIFT((sleep-01)) are different actions, they
share the features “S”, “S”◦“DICTPRED” because
they share the generation rule DICTPRED.

4 Experiments

We conduct an experiment using our NP data set
(Table 1). We use the implementation 2 of (Flani-
gan et al., 2014) as our baseline. For the baseline,
we use the features of the default settings.

The method by Flanigan et al. (2014) can only
generate the concepts that appear in the training
data. On the other hand, our method can gen-
erate concepts that do not appear in the training
data using the concept generation rules LEMMA,
DICTPRED, and DICTNOUN in Table 3. For a fair
comparison, first, we only use the rules EMPTY
and KNOWN. Then, we add the rule LEMMA,
which can generate a concept of the lemma of the

2https://github.com/jflanigan/jamr

Name Definition
LEM {w(σ1).lem, w(σ0).lem, β0.lem,

w(σ1).lem◦w(σ0).lem, w(σ0).lem◦β0.lem}
SUF {w(σ1).suf, w(σ0).suf, β0.suf,

w(σ1).suf ◦ w(σ0).suf, w(σ0).suf ◦ β0.suf}
POS {w(σ1).pos, w(σ0).pos, β0.pos,

w(σ1).pos ◦w(σ0).pos, w(σ0).pos ◦ β0.pos}
DEP {w(σ1).dep, w(σ0).dep, β0.dep,

w(σ1).dep◦w(σ0).dep, w(σ0).dep◦β0.dep}
HEAD {w(σ1).off, w(σ0).off, β0.off,

w(σ1).off ◦ w(σ0).off, w(σ0).off ◦ β0.off}
ROOT {nroot(σ1), nroot(σ0), nroot(σ1) ◦ nroot(σ0)}
MID all words between w(σ1) and w(σ0) ∪

all words between w(σ0) and β0

Table 4: Feature sets for the state (.lem is the
lemma, .suf is the prefix of length 3, .pos is the
part-of-speech, .dep is the dependency label to the
parent word, .off is the offset to the parent word,
and ◦ denotes concatenation of features.)

Action a φaction((σ, [wi|β], R), a)
SHIFT(c) {“S”, “S” ◦ rule(wi, c),

“S” ◦ rule(wi, c) ◦ c}
LEFT-REDUCE(r, n) {“L-R”, “L-R”◦r, “L-R”◦r◦n}
RIGHT-REDUCE(r, n) {“R-R”, “R-R”◦r, “R-R”◦r◦n}
EMPTY-REDUCE {“E-R”}

Table 5: Feature sets for the action

word. Finally, we add the rules DICTPRED and
DICTNOUN. These two rules need conversion from
nouns and adjectives to their verb and noun forms,
For this conversion, we use CatVar v2.1 (Habash
and Dorr, 2003), which lists categorial variations
of words (such as verb run for noun runner). We
also use definitions of the predicates from Prop-
Bank (Palmer et al., 2005), which AMR tries to
reuse as much as possible, and impose constraints
that the defined predicates can only have semantic
relations consistent with the definition.

During the training, we use the max-violation
perceptron (Huang et al., 2012) with beam size 8
and average the parameters. During the testing, we
also perform beam search with beam size 8.

Table 6 shows the overall performance on NP
semantic structure analysis. We evaluate the per-
formance using the Smatch score (Cai and Knight,
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Method P R F1

(Flanigan et al., 2014) 75.5 61.1 67.5
Our method (EMPTY/KNOWN) 78.0 63.8 70.2
Our method+LEMMA 75.7 75.2 75.4
Our method+LEMMA/DICT 77.3 77.3 77.3

Table 6: Performance on NP semantic structure
analysis

Method P R F1

(Flanigan et al., 2014) 88.4 71.4 79.0
Our method (EMPTY/KNOWN) 88.9 72.2 79.7
Our method+LEMMA 84.8 84.2 84.5
Our method+LEMMA/DICT 85.8 85.6 85.7

Table 7: Performance on concept identification

2013), which reports precision, recall, and F1-
score for overlaps of nodes, edges, and roots in
semantic structure graphs. Compared to the base-
line, our method improves both the precision and
recall, resulting in an increasing of F1-score by 2.7
points. When we add the LEMMA rule, the re-
call increases by 11.4 points because the LEMMA
rule can generate concepts that do not appear in
the training data, resulting in a further increase of
F1-score by 5.2 points. Finally, when we add the
DICT rules, the F1-score improves further by 1.9
points.

Table 7 shows the performance on concept iden-
tification. We report precision, recall, and F1-
score against the correct set of concepts. For each
condition, we observe the same tendency in per-
formance increases as Table 6. Thus, we conclude
that our method improves both the concept identi-
fication and relation identification performances.

5 Conclusion

In this paper, we used Abstract Meaning Repre-
sentation (AMR) for semantic structure analysis
of noun compounds (NPs). We extracted substruc-
tures corresponding to NPs from the AMR Bank,
and created a data set of NP semantic structures.
Then, we proposed a novel method which jointly
identifies concepts (nodes) and dependency rela-
tions in AMR trees. We confirmed that our method
improves the performance on NP semantic struc-
ture analysis, and that incorporating an external
dictionary further boosts the performance.
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Abstract

We report improved AMR parsing results
by adding a new action to a transition-
based AMR parser to infer abstract con-
cepts and by incorporating richer features
produced by auxiliary analyzers such as
a semantic role labeler and a coreference
resolver. We report final AMR parsing
results that show an improvement of 7%
absolute in F1 score over the best pre-
viously reported result. Our parser is
available at: https://github.com/
Juicechuan/AMRParsing

1 Introduction

AMR parsing is the task of taking a sentence as
input and producing as output an Abstract Mean-
ing Representation (AMR) that is a rooted, di-
rected, edge-labeled and leaf-labeled graph that is
used to represent the meaning of a sentence (Ba-
narescu et al., 2013). AMR parsing has drawn
an increasing amount of attention recently. The
first published AMR parser, JAMR (Flanigan et
al., 2014), performs AMR parsing in two stages:
concept identification and relation identification.
Flanigan et al. (2014) treat concept identification
as a sequence labeling task and utilize a semi-
Markov model to map spans of words in a sen-
tence to concept graph fragments. For relation
identification, they adopt graph-based techniques
similar to those used in dependency parsing (Mc-
Donald et al., 2005). Instead of finding maximum
spanning trees (MST) over words, they propose an
algorithm that finds the maximum spanning con-
nected subgraph (MSCG) over concept fragments
identified in the first stage.

A competitive alternative to the MSCG ap-
proach is transition-based AMR parsing. Our
previous work (Wang et al., 2015) describes a
transition-based system that also involves two
stages. In the first step, an input sentence is

parsed into a dependency tree with a dependency
parser. In the second step, the transition-based
AMR parser transforms the dependency tree into
an AMR graph by performing a series of actions.
Note that the dependency parser used in the first
step can be any off-the-shelf dependency parser
and does not have to trained on the same data set
as used in the second step.

visit-01

person country

name

“South” “Korea”

have-org-role-91

country

name

“Israel”

minister

foreign

ARG0 ARG1

name

op1 op2

ARG0-of

ARG1

name

op1

ARG2

mod

Figure 1: An example showing abstract concept
have-org-role-91 for the sentence “Israel
foreign minister visits South Korea.”

Unlike a dependency parse where each leaf
node corresponds to a word in a sentence and there
is an inherent alignment between the words in a
sentence and the leaf nodes in the parse tree, the
alignment between the word tokens in a sentence
and the concepts in an AMR graph is non-trivial.
Both JAMR and our transition-based parser rely
on a heuristics based aligner that can align the
words in a sentence and concepts in its AMR with
a 90% F1 score, but there are some concepts in
the AMR that cannot be aligned to any word in a
sentence.

This is illustrated in Figure 1 where the concept
have-org-role-91 is not aligned to any word
or word sequence. We refer to these concepts as
abstract concepts, and existing AMR parsers do
not have a systematic way of inferring such ab-
stract concepts.
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Current AMR parsers are in their early stages of
development, and their features are not yet fully
developed. For example, the AMR makes heavy
use of the framesets and semantic role labels used
in the Proposition Bank (Palmer et al., 2005), and
it would seem that information produced by a se-
mantic role labeling system trained on the Prop-
Bank can be used as features to improve the AMR
parsing accuracy. Similarly, since AMR repre-
sents limited within-sentence coreference, coref-
erence information produced by an off-the-shelf
coreference system should benefit the AMR parser
as well.

In this paper, we describe an extension to our
transition-based AMR parser (Wang et al., 2015)
by adding a new action to infer the abstract
concepts in an AMR, and new features derived
from an off-the-shelf semantic role labeling sys-
tem (Pradhan et al., 2004) and coreference system
(Lee et al., 2013). We also experimented with
adding Brown clusters as features to the AMR
parser. Additionally, we experimented with us-
ing different syntactic parsers in the first stage.
Following our previous work, we use the aver-
aged perceptron algorithm (Collins, 2002) to train
the parameters of the model and use the greedy
parsing strategy during decoding to determine the
best action sequence to apply for each training in-
stance. Our results show that (i) the transition-
based AMR parser is very stable across the dif-
ferent parsers used in the first stage, (ii) adding
the new action significantly improves the parser
performance, and (iii) semantic role information
is beneficial to AMR parsing when used as fea-
tures, while the Brown clusters do not make a dif-
ference and coreference information slightly hurts
the AMR parsing performance.

The rest of the paper is organized as follows. In
Section 2 we briefly describe the transition-based
parser, and in Section 3 we describe our exten-
sions. We report experimental results in Section
4 and conclude the paper in Section 5.

2 Transition-based AMR Parser

The transition-based parser first uses a depen-
dency parser to parse an input sentence, and then
performs a limited number of highly general ac-
tions to transform the dependency tree to an AMR
graph. The transition actions are briefly described
below but due to the limited space, we cannot
describe the full details of these actions, and the
reader is referred to our previous work (Wang et

al., 2015) for detailed descriptions of these ac-
tions:

• NEXT-EDGE-lr (ned): Assign the current
edge with edge label lr and go to next edge.
• SWAP-lr (sw): Swap the current edge, make

the current dependent as the new head, and
assign edge label lr to the swapped edge.
• REATTACHk-lr (reat): Reattach current de-

pendent to node k and assign edge label lr.
• REPLACE-HEAD (rph): Replace current head

node with current dependent node.
• REENTRANCEk-lr (reen): Add another head

node k to current dependent and assign label
lr to edge between k and current dependent.
• MERGE (mrg): Merge two nodes connected

by the edge into one node.

From each node in the dependency tree, the parser
performs the following 2 actions:

• NEXT-NODE-lc (nnd): Assign the current
node with concept label lc and go to next
node.
• DELETE-NODE (dnd): Delete the current

node and all edges associated with current
node.

Crucially, none of these actions can infer the
types of abstract concepts illustrated in Figure 1.
And this serves as our baseline parser.

s0,1:ROOT

s4,5:visit-01

person s5,7:country+name

have-org-role-91

s1,2:country+name s3,4:minister

s2,3:foreign

ARG0 ARG1

ARG0-of

ARG1 ARG2

mod

Figure 2: Enhanced Span Graph for AMR in Fig-
ure 1, “Israel foreign minister visits South Korea.”
sx,y corresponds to sentence span (x, y).

3 Parser Extensions

3.1 Inferring Abstract Concepts
We previously create the learning target by repre-
senting an AMR graph as a Span Graph, where
each AMR concept is annotated with the text span
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of the word or the (contiguous) word sequence it is
aligned to. However, abstract concepts that are not
aligned to any word or word sequence are simply
ignored and are unreachable during training. To
address this, we construct the span graph by keep-
ing the abstract concepts as they are in the AMR
graph, as illustrated in Figure 2.

In order to predict these abstract concepts, we
design an INFER-lc action that is applied in the fol-
lowing way: when the parser visits an node in de-
pendency tree, it inserts an abstract node with con-
cept label lc right between the current node and its
parent. For example in Figure 3, after applying ac-
tion INFER-have-org-role-91 on node min-
ister, the abstract concept is recovered and subse-
quent actions can be applied to transform the sub-
graph to its correct AMR.

visits

minister

Israel foreign

visits

have-org-role-91

minister

Israel foreign

Figure 3: INFER-have-org-role-91 action

3.2 Feature Enrichment

In our previous work, we only use simple lexi-
cal features and structural features. We extend the
feature set to include (i) features generated by a
semantic role labeling system—ASSERT (Prad-
han et al., 2004), including a frameset disam-
biguator trained using a word sense disambigua-
tion system—IMS (Zhong and Ng, 2010) and a
coreference system (Lee et al., 2013) and (ii) fea-
tures generated using semi-supervised word clus-
ters (Turian et al., 2010; Koo et al., 2008).

Coreference features Coreference is typically
represented as a chain of mentions realized as
noun phrases or pronouns. AMR, on the other
hand, represents coreference as re-entrance and
uses one concept to represent all co-referring enti-
ties. To use the coreference information to inform
AMR parsing actions, we design the following two
features: 1) SHARE DEPENDENT. When applying
REENTRANCEk-lr action on edge (a, b), we check
whether the corresponding head node k of a candi-
date concept has any dependent node that co-refers
with current dependent b. 2) DEPENDENT LABEL.
If SHARE DEPENDENT is true for head node k and
assuming k’s dependent m co-refers with the cur-

rent dependent, the value of this feature is set to
the dependency label between k and m.

For example, for the partial graph shown in Fig-
ure 4, when examining edge (wants, boy), we
may consider REENTRANCEbelieve-ARG1 as one
of the candidate actions. The candidate head
believe has dependent him which is co-referred
with current dependent boy, therefore the value of
feature SHARE DEPENDENT is set to true for this
candidate action. Also the value of feature DE-
PENDENT LABEL is dobj given the dependency la-
bel between (believe, him).

wants

boy believe

girl him

ARG1

semantic role labeling:
wants, want-01, ARG0:the boy, ARG1:the girl to believe him
coreference chain: {boy, him}

For action NEXT-NODE-want-01
EQ FRAMESET: true

For action REENTRANCEbelieve-ARG1
SHARE DEPENDENT: true
DEPENDENT LABEL: dobj

Figure 4: An example of coreference feature and
semantic role labeling feature in partial parsing
graph of sentence,“The boy wants the girl to be-
lieve him.”

Semantic role labeling features We use the
following semantic role labeling features: 1)
EQ FRAMESET. For action that predicts the con-
cept label (NEXT-NODE-lc), we check whether the
candidate concept label lc matches the frameset
predicted by the semantic role labeler. For ex-
ample, for partial graph in Figure 4, when we
examine node wants, one of the candidate ac-
tions would be NEXT-NODE-want-01. Since
the candidate concept label want-01 is equal
to node wants’s frameset want-01 as predicted
by the semantic role labeler, the value of feature
EQ FRAMESET is set to true. 2) IS ARGUMENT.
For actions that predicts the edge label, we check
whether the semantic role labeler predicts that the
current dependent is an argument of the current
head. Note that the arguments in semantic role la-
beler output are non-terminals which corresponds
to a sentence span. Here we simply take the head
word in the sentence span as the argument.

Word Clusters For the semi-supervised word
cluster feature, we use Brown clusters, more
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specifically, 1000 classes word cluster trained
by Turian et al. (2010). We use prefixes of lengths
4,6,10,20 of the word’s bit-string as features.

4 Experiments

We first tune and evaluate our system on the
newswire section of LDC2013E117 dataset. Then
we show our parser’s performance on the recent
LDC2014T12 dataset.

4.1 Experiments on LDC2013E117
We first conduct our experiments on the
newswire section of AMR annotation corpus
(LDC2013E117). The train/dev/test split of
dataset is 4.0K/2.1K/2.1K, which is identical to
the settings of JAMR. We evaluate our parser with
Smatch v2.0 (Cai and Knight, 2013) on all the
experiments.

System P R F1

Charniak (ON) .67 .64 .65
Charniak .66 .62 .64
Stanford .64 .62 .63
Malt .65 .61 .63
Turbo .65 .61 .63

Table 1: AMR parsing performance on develop-
ment set using different syntactic parsers.

System P R F1

Charniak (ON) .67 .64 .65
+INFER .71 .67 .69
+INFER+BROWN .71 .68 .69
+INFER+BROWN+SRL .72 .69 .71
+INFER+BROWN+SRL+COREF .72 .69 .70

Table 2: AMR parsing performance on the devel-
opment set.

4.1.1 Impact of different syntactic parsers
We experimented with four different parsers: the
Stanford parser (Manning et al., 2014), the Char-
niak parser (Charniak and Johnson, 2005) (Its
phrase structure output is converted to dependency
structure using the Stanford CoreNLP converter),
the Malt Parser (Nivre et al., 2006), and the Turbo
Parser (Martins et al., 2013). All the parsers we
used are trained on the 02-22 sections of the Penn
Treebank, except for CHARNIAK(ON), which is
trained on the OntoNotes corpus (Hovy et al.,
2006) on the training and development partitions
used by Pradhan et al. (2013) after excluding a few

documents that overlapped with the AMR corpus1.
All the different dependency trees are then used as
input to our baseline system and we evaluate AMR
parsing performance on the development set.

From Table 1, we can see that the perfor-
mance of the baseline transition-based system
remains very stable when different dependency
parsers used are trained on same data set. How-
ever, the Charniak parser that is trained on a
much larger and more diverse dataset (CHARNIAK

(ON)) yields the best overall AMR parsing perfor-
mance. Subsequent experiments are all based on
this version of the Charniak parser.

4.1.2 Impact of parser extensions

In Table 2 we present results from extending the
transition-based AMR parser. All experiments are
conducted on the development set. From Table
2, we can see that the INFER action yields a 4
point improvement in F1 score over the CHAR-
NIAK(ON) system. Adding Brown clusters im-
proves the recall by 1 point, but the F1 score re-
mains unchanged. Adding semantic role features
on top of the Brown clusters leads to an improve-
ment of another 2 points in F1 score, and gives us
the best result. Adding coreference features actu-
ally slightly hurts the performance.

4.1.3 Final Result on Test Set

We evaluate the best model we get from §4.1 on
the test set, as shown in Table 3. For comparison
purposes, we also include results of all published
parsers on the same dataset: the updated version of
JAMR, the old version of JAMR (Flanigan et al.,
2014), the Stanford AMR parser (Werling et al.,
2015), the SHRG-based AMR parser (Peng et al.,
2015) and our baseline parser (Wang et al., 2015).

1Documents in the AMR corpus have some overlap with
the documents in the OntoNotes corpus. We excluded these
documents (which are primarily from Xinhua newswirte)
from the training data while retraining the Charniak parser,
ASSERT semantic role labeler, and IMS frameset
disambiguation tool). The full list of overlapping documents
is available at http://cemantix.org/ontonotes/ontonotes-
amr-document-overlap.txt
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System P R F1

Our system .71 .69 .70
JAMR (GitHub)2 .69 .58 .63
JAMR (Flanigan et al., 2014) .66 .52 .58
Stanford .66 .59 .62
SHRG-based .59 .58 .58
Wang et al. (2015) .64 .62 .63

Table 3: AMR parsing performance on the news
wire test set of LDC2013E117.

From Table 3 we can see that our parser has sig-
nificant improvement over all the other parsers and
outperforms the previous best parser by 7% points
in Smatch score.

4.2 Experiments on LDC2014T12

In this section, we conduct experiments on
the AMR annotation release 1.0 (LDC2014T12),
which contains 13,051 AMRs from newswire,
weblogs and web discussion forums. We use
the training/development/test split recommended
in the release: 10,312 sentences for training,
1,368 sentences for development and 1,371 sen-
tences for testing. We re-train the parser on the
LDC2014T12 training set with the best parser con-
figuration given in §4.1, and test the parser on the
test set. The result is shown in Table 4. For com-
parison purposes, we also include the results of the
updated version of JAMR and our baseline parser
in (Wang et al., 2015) which are also trained on
the same dataset. There is a significant drop-off
in performance compared with the results on the
LDC2013E117 test set for all the parsers, but our
parser outperforms the other parsers by a similar
margin on both test sets.

System P R F
Our system .70 .62 .66
Wang et al. (2015) .63 .56 .59
JAMR (GitHub) .64 .53 .58

Table 4: AMR parsing performance on the full test
set of LDC2014T12.

We also evaluate our parser on the newswire
section of LDC2014T12 dataset. Table 5 com-
pares the performance of JAMR, the Stanford
AMR parser and our system on the same dataset.

2This is the updated JAMR from
https://github.com/jflanigan/jamr

System P R F
Our system .72 .67 .70
Stanford .67 .58 .62
JAMR (GitHub) .67 .53 .59

Table 5: AMR parsing performance on newswire
section of LDC2014T12 test set

And our system still outperforms the other
parsers by a similar margin.

5 Conclusion

We presented extensions to a transition-based
AMR parser that leads to an improvement of 7%
in absolute F1 score over the best previously pub-
lished results. The extensions include designing a
new action to infer abstract concepts and training
the parser with additional semantic role labeling
and coreference based features.
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Abstract

We propose a neural network model for
scalable generative transition-based de-
pendency parsing. A probability distri-
bution over both sentences and transi-
tion sequences is parameterised by a feed-
forward neural network. The model sur-
passes the accuracy and speed of previ-
ous generative dependency parsers, reach-
ing 91.1% UAS. Perplexity results show
a strong improvement over n-gram lan-
guage models, opening the way to the ef-
ficient integration of syntax into neural
models for language generation.

1 Introduction

Transition-based dependency parsers that perform
incremental local inference with a discrimina-
tive classifier offer an appealing trade-off be-
tween speed and accuracy (Nivre, 2008; Zhang
and Nivre, 2011; Choi and Mccallum, 2013).
Recently neural network transition-based depen-
dency parsers have been shown to give state-of-
the-art performance (Chen and Manning, 2014;
Dyer et al., 2015; Weiss et al., 2015). However,
the downstream integration of syntactic structure
in language understanding and generation tasks is
often done heuristically.

Neural networks have also been shown to be
powerful generative models for language mod-
elling (Bengio et al., 2003; Mikolov et al., 2010)
and machine translation (Kalchbrenner and Blun-
som, 2013; Devlin et al., 2014; Sutskever et al.,
2014). However, currently these models lack
awareness of syntax, which limits their ability to
include longer-distance dependencies even when
potentially unbounded contexts are used.

In this paper we propose a generative model for
incremental parsing that offers an efficient way to
incorporate syntactic information into a generative
model. It relies on the strength of neural networks
to overcome sparsity in the long conditioning con-
texts required for an accurate model, while also of-
fering a principled approach to learn dependency-
based word representations (Levy and Goldberg,
2014; Bansal et al., 2014).

Generative models for graph-based dependency
parsing (Eisner, 1996; Wallach et al., 2008) are
much less accurate than their discriminative coun-
terparts. Syntactic language models based on
PCFGs (Roark, 2001; Charniak, 2001) and incre-
mental parsing (Chelba and Jelinek, 2000; Emami
and Jelinek, 2005) have been proposed for speech
recognition and machine translation. However,
these models are also limited in either scalability,
expressiveness, or both. A generative transition-
based dependency parser based on recurrent neu-
ral networks (Titov and Henderson, 2007) obtains
high accuracy, but training and decoding is pro-
hibitively expensive.

We perform efficient linear-time decoding with
a particle filtering-based beam-search method
where derivations after pruned after every word
generation and the beam size depends on the un-
certainty in the model (Buys and Blunsom, 2015).

The model obtains 91.1% UAS on the WSJ,
which is 0.2% UAS better than the previous high-
est accuracy generative dependency parser (Titov
and Henderson, 2007), while also being much
more efficient. As a language model its perplex-
ity reaches 111.8, a 23% reduction over an n-
gram baseline, when combining supervised train-
ing with unsupervised fine-tuning. Finally, we find
that the model is able to generate sentences that
display both local and syntactic coherence.
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2 Generative Transition-based Parsing

Our parsing model is based on transition-based
arc-standard projective dependency parsing (Nivre
and Scholz, 2004). The generative formulation
is similar to previous generative transition-based
parsers (Titov and Henderson, 2007; Cohen et al.,
2011; Buys and Blunsom, 2015), and also related
to the joint tagging and parsing model of Bohnet
and Nivre (2012).

The model predicts a sequence of parsing tran-
sitions: A shift transition generates a word (and
its POS tag), while a reduce transition adds an arc
(i, l, j), where i is the head node, j the dependent
and l is the dependency label.

The joint probability distribution over a sen-
tence with words w1:n, tags t1:n and a transition
sequence a1:2n is defined as

n∏
i=1

(
p(ti|hmi)p(wi|ti,hmi)

mi+1∏
j=mi+1

p(aj |hj)
)
,

where mi is the number of transitions that have
been performed when (ti, wi) is shifted and hj is
the conditioning context at the jth transition.

A parser configuration (σ, β,A) for sentence s
consists of a stack σ of indices in s, an index β to
the next word to be generated, and a set of arcs A.
The stack elements are referred to as σ1, . . . , σ|σ|,
where σ1 is the top element. For any node a,
lc1(a) refers to the leftmost child of a in A, and
rc1(a) to its rightmost child. A root node is added
to the beginning of the sentence, and the head
word of the sentence (we assume there is only one)
is the dependent of the root.

The initial configuration is ([], 0, ∅), while A
terminal configuration is reached when β > |s|
and |σ| = 1.

The transition types are shift, left-arc and right-
arc. Shift generates the next word of the sentence
and pushes it on the stack. Left-arc adds an arc
(σ1, l, σ2) and removes σ2 from the stack. Right-
arc adds (σ2, l, σ1) and pops σ1.

The parsing strategy adds arcs bottom-up. In
a valid transition sequence the last transition is a
right-arc from the root to the head word, and the
root node is not involved in any other dependen-
cies. We use an oracle to extract transition se-
quences from the training data: The oracle prefers
reduce over shift transitions when both may lead
to a valid derivation.

Order Elements
1 σ1, σ2, σ3, σ4

2 lc1(σ1), rc1(σ1), lc1(σ2), rc1(σ2)
lc2(σ1), rc2(σ1), lc2(σ2), rc2(σ2)

3 lc1(lc1(σ1)), rc1(rc1(σ1))
lc1(lc1(σ2)), rc1(rc1(σ2))

Table 1: Conditioning context elements for neural
network input: First, second and third order de-
pendencies are used.

3 Neural Network Model

Our probability model is based on neural net-
work language models with distributed represen-
tations (Bengio et al., 2003; Mnih and Hinton,
2007), as well as feed-forward neural network
models for transition-based dependency pars-
ing (Chen and Manning, 2014; Weiss et al., 2015).
We estimate the distributions p(ti|hi), p(wi|ti,hi)
and p(aj |hj) with neural networks with shared in-
put and hidden layers but separate output layers.

The templates for the conditioning context used
are defined in Table 1. In the templates we ob-
tain sentence indexes, which are then mapped to
the corresponding words, tags and labels (for the
dependencies of 2nd and 3rd order elements). The
neural network allows us to include a large number
of elements without suffering from sparsity.

In the input layer we make use of additive rep-
resentations (Botha and Blunsom, 2014) so that
for each word input position i we can include the
word type, tag and other features, and learn input
representations for each of these. Each context
feature f has an input representation qf ∈ RD.
The composite representation is computed as qi =∑

f∈µ(wi)
qf , where µ(wi) are the word features.

The hidden layer is then defined as

φ(h) = g(
L∑
j=1

Cjqhj
),

where Cj ∈ RD×D are transformation matrices
defined for each position in sequence h, L = |h|
and g is a (usually non-linear) activation function
applied element-wise. The matrices Cj can be ap-
proximated to be diagonal to reduce the number
of model parameters and speed up the model by
avoiding expensive matrix multiplications.

For the output layer predicting the next transi-
tion a, the hidden layer is mapped with a scoring
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function

χ(a,h) = kTa φ(h) + ea,

where ka is the transition output representation
and ea is the bias weight. The score is normalised
with the soft-max function:

p(a|h) =
exp(χ(a,h))∑

a′∈A exp(χ(a′,h))
.

The output layer for predicting the next tag has
a similar form, using the scoring function

τ(t,h) = tTt φ(h) + ot

for tag representation tt and bias ot.
The probability p(w|t,h) can be estimated

similarly. However, to reduce the computa-
tional cost of normalising over the entire vocab-
ulary, we factorize the probability as P (w|h) =
P (c|t,h)P (w|c, t,h), where c = c(w) is the
unique class of word w. For each c, let Γ(c) be
the set of words in that class. The vocabulary is
clustered into approximately

√|V | classes using
Brown clustering (Brown et al., 1992), reducing
the number of items to sum over in the normal-
isation factor from O(|V |) to O(

√|V |). Class-
based factorization has been shown to be an effec-
tive strategy in normalizing neural language mod-
els (Baltescu and Blunsom, 2015),

The class prediction score is defined as
ψ(c,h) = sTc φ(h) + dc, where sc ∈ RD is the
output weight vector for class c and dc is the class
bias weight. The output layer then consists of a
softmax function for p(c|h) and another softmax
for the word prediction

p(w|c,h) =
exp(Φ(w,h))∑

w′∈Γ(c) exp(Φ(w′,h))
,

where Φ(w,h) = rTwφ(h)+bw is the word scoring
function with output word representation rw and
bias weight bw.

The model is trained with minibatch stochas-
tic gradient descent (SGD) with Adagrad (Duchi
et al., 2011) and L2 regularisation, to minimise
the negative log likelihood of the joint distribu-
tion over parsed training sentences. For our ex-
periments we train the model while the training
objective improves, and choose the parameters of
the iteration with the best development set accu-
racy (early stopping). The model obtains high ac-
curacy with only a few training iterations.

4 Decoding

Beam-search decoders for transition-based pars-
ing (Zhang and Clark, 2008) keep a beam of par-
tial derivations, advancing each derivation by one
transition at a time. When the size of the beam
exceeds a set threshold, the lowest-scoring deriva-
tions are removed. However, in an incremental
generative model we need to compare derivations
with the same number of words shifted, rather than
transitions performed. To let the decoding time re-
main linear, we also need to bound the total num-
ber of reduce transitions that can be performed
over all derivations between two shift transitions.

To achieve this, we use a decoding method re-
cently proposed for generative incremental pars-
ing (Buys and Blunsom, 2015) based on particle
filtering (Doucet et al., 2001), a sequential Monte
Carlo sampling method.

In the algorithm, a fixed number of particles
are divided among the partial derivations in the
beam. Suppose iwords have been shifted in all the
derivations on the beam. To predict the next tran-
sition from derivation dj , its particles are divided
according to p(a|h). In practice, adding only shift
and the most likely reduce transition leads to al-
most no accuracy loss. After all the derivations
have been advanced to shift word i+1, a selection
step is performed: The number of particles of each
derivation is redistributed according to its proba-
bility, weighted by its current number of particles.
Some derivations may be assigned 0 particles, in
which case they are removed.

The particle filtering method lets the beam size
depend of the uncertainty of the model, somewhat
similar to Choi and Mccallum (2013), while fixing
the total number of particles constrains the decod-
ing time to be linear. The particle filter also allow
us to sample outputs, and to marginalise over the
syntax when generating.

5 Experiments

We evaluate our model for parsing and language
modelling on the English Penn Treebank (Marcus
et al., 1993) WSJ parsing setup1. Constituency
trees are converted to projective CoNLL syntac-
tic dependencies (Johansson and Nugues, 2007)
with the LTH converter2. For some experiments

1Training on sections 02-21, development on section 22,
and testing on section 23.

2http://nlp.cs.lth.se/software/treebank converter/
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Activation UAS LAS
linear 88.40 86.48
rectifier 89.99 88.31
tanh 90.91 89.22
sigmoid 91.48 89.94

Table 2: Parsing accuracies using different neural
network activation functions.

we also use the Stanford dependency representa-
tion (De Marneffe and Manning, 2008) (SD)3.

Our neural network implementation is partly
based on the OxLM neural language modelling
framework (Baltescu et al., 2014). The model pa-
rameters are initialised randomly by drawing from
a Gaussian distribution with mean 0 and variance
0.1, except for the bias weights, which are ini-
tialised by the unigram distributions of their out-
put. We use minibatches of size 128, the L2 regu-
larization parameter is 10, and the word represen-
tation and hidden layer of size is 256. The Ada-
grad learning rate is initialised to 0.05.

POS tags for the development and test sets are
obtained with the Stanford POS tagger (Toutanova
et al., 2003), with 97.5% test set accuracy. Words
that occur only once in the training data are treated
as unknown words. Unknown words are replaced
by tokens representing morphological surface fea-
tures (based on capitalization, numbers, punctua-
tion and common suffixes) similar to those used
in the implementation of generative constituency
parsers (Klein and Manning, 2003).

5.1 Parsing results

We report unlabelled attachment score (UAS) and
labelled attachment score (LAS) in our results,
excluding punctuation. On the development set,
we consider the effect of the choice of activation
function (Table 2), finding that a sigmoid activa-
tion (logistic function) performs best, following by
tanh. Under our training setup the model can ob-
tain up to 91.0 UAS after only 1 training iteration,
thereby performing pure online learning.

We found that including third order depen-
dencies in the conditioning context performs just
0.1% UAS better than including only first and sec-
ond order dependencies. Including additional ele-
ments does not improve performance further. The
model can obtain 91.18 UAS, 89.02 LAS when

3Converted with version 3.4.1 of the Stanford parser,
available at http::/nlp.stanford.edu/software/lex-parser.shtml.

Model UAS LAS
Wallach et al. (2008) 85.7 -
Titov and Henderson (2007) 90.93 89.42
NN-GenDP 91.11 89.41
Chen and Manning (2014) 92.0 90.7

Table 3: Parsing accuracies for dependency
parsers on the WSJ test set, CoNLL dependencies.

trained only on words, not POS tags. Dependency
parsers that do not use distributed representations
tend to rely much more on the tags.

Test set results comparing generative depen-
dency parsers are given in Table 3 (our model is
refered to as NN-GenDP). The graph-based gen-
erative baseline (Wallach et al., 2008), parame-
terised by Pitman-Yor Processes, is quite weak.
Our model outperforms the generative model of
Titov and Henderson (2007), which we retrained
on our dataset, by 0.2%, despite that model be-
ing able to condition on arbitrary-sized contexts.
The decoding speed of our model is around 20 sen-
tences per second, against less than 1 sentence per
second for Titov and Henderson’s model. Using
diagonal transformation matrices further increases
our model’s speed, but reduces parsing accuracy.

On the Stanford dependency representation our
model obtains 90.63% UAS, 88.27% LAS. Al-
though this performance is promising, it is still
below the discriminative neural network models of
Dyer et al. (2015) and Weiss et al. (2015), who ob-
tained 93.1% UAS and 94.0% UAS respectively.

5.2 Language modelling
We also evaluate our parser as a language model,
on the same WSJ data used for the parsing eval-
uation4. We perform unlabelled parsing, as ex-
periments show that including labels in the con-
ditioning context has a very small impact on per-
formance. Neither do we use POS tags, as they
are too expensive to predict in language genera-
tion applications.

Perplexity results on the WSJ are given in Ta-
ble 4. As baselines we report results on modified
Knesser-Ney (Kneser and Ney, 1995) and neu-
ral network 5-gram models. For our dependency-
based language models we report perplexities
based on the most likely parse found by the de-
coder, which gives an upper bound on the true

4However instead of using multiple unknown word
classes, we replace all numbers by 0 and have a single un-
known word token.
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the u.s. union board said revenue rose 11 % to $ NUM million , or $ NUM a share .
mr. bush has UNK-ed a plan to buy the company for $ NUM to NUM million , or $ NUM a share .
the plan was UNK-ed by the board ’s decision to sell its $ NUM million UNK loan loan funds .
in stocks coming months , china ’s NUM shares rose 10 cents to $ NUM million , or $ NUM a share .
in the case , mr. bush said it will sell the company business UNK concern to buy the company .
it was NUM common shares in addition , with $ NUM million , or $ NUM a share , according to mr. bush .
in the first quarter , 1989 shares closed yesterday at $ NUM , mr. bush has increased the plan .
last year ’s retrenchment price index index rose 11 cents to $ NUM million , or $ NUM million is asked .
last year earlier , net income rose 11 million % to $ NUM million , or 91 cents a share .
the u.s. union has UNK-ed $ NUM million , or 22 cents a share , in 1990 , payable nov. 9 .

Table 5: Sentences of length 20 or greater generated by the neural generative dependency model.

Model Perplexity
KN 5-gram 145.7
NN 5-gram 142.5
NN-GenDP 132.2
NN-GenDP + unsup 111.8

Table 4: WSJ Language modelling test results.
We compare our model, with and without unsu-
pervised tuning, to n-gram baselines.

value of the model perplexity.
First we only perform standard supervised train-

ing with the model - this already leads to an im-
provement of 10 perplexity points over the neu-
ral n-gram model. Second we consider a train-
ing setup where we first perform 5 supervised it-
erations, and then perform unsupervised training,
treating the transition sequence as latent. For each
minibatch parse trees are sampled with a parti-
cle filter. This approach further improves the per-
plexity to 111.8, a 23% reduction relative to the
Knesser-Ney model.

The unsupervised training stage lets the parsing
accuracy fall from 91.48 to 89.49 UAS. We pos-
tulate that the model is learning to make small ad-
justments to favour of parsing structures that ex-
plain the data better than the annotated parse trees,
leading to the improvement in perplexity.

To test the scalability of our model, we also
trained it on a larger unannotated corpus – a sub-
set (of around 7 million words) of the billion word
language modeling benchmark dataset (Chelba et
al., 2013). After training the model on the WSJ,
we parsed the unannotated data with the model,
and continued to train on the obtained parses.
We observed a small increase in perplexity, from
203.5 for a neural n-gram model to 200.7 for the
generative dependency model. We expect larger
improvements when training on more data and
with more sophisticated inference.

To evaluate our generative model qualitatively,

we perform unconstrained generation of sentences
(and parse trees) from the model, and found that
sentences display a higher degree of syntactic co-
herence than sentences generated by an n-gram
model. See Table 5 for examples generated by the
model. The highest-scoring sentences of length 20
or more are given, from 1000 samples generated.
Note that the generation includes unknown word
tokens (here NUM, UNK and UNK-ed are used).

6 Conclusion

We presented an incremental generative depen-
dency parser that can obtain accuracies competi-
tive with discriminative models. The same model
can be applied as an efficient syntactic language
model, and for future work it should be integrated
into language generation tasks such as machine
translation.
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Abstract

Nearly all work in unsupervised grammar
induction aims to induce unlabeled de-
pendency trees from gold part-of-speech-
tagged text. These clean linguistic classes
provide a very important, though unreal-
istic, inductive bias. Conversely, induced
clusters are very noisy. We show here,
for the first time, that very limited hu-
man supervision (three frequent words per
cluster) may be required to induce labeled
dependencies from automatically induced
word clusters.

1 Introduction

Despite significant progress on inducing
part-of-speech (POS) tags from raw text
(Christodoulopoulos et al., 2010; Blunsom
and Cohn, 2011) and a small number of notable
exceptions (Seginer, 2007; Spitkovsky et al.,
2011; Christodoulopoulos et al., 2012), most
approaches to grammar induction or unsupervised
parsing (Klein and Manning, 2004; Spitkovsky
et al., 2013; Blunsom and Cohn, 2010) are
based on the assumption that gold POS tags are
available to the induction system. Although most
approaches treat these POS tags as arbitrary, if
relatively clean, clusters, it has also been shown
that the linguistic knowledge implicit in these
tags can be exploited in a more explicit fashion
(Naseem et al., 2010). The presence of POS tags
is also essential for approaches that aim to return
richer structures than the standard unlabeled
dependencies. Boonkwan and Steedman (2011)
train a parser that uses a semi-automatically
constructed Combinatory Categorial Grammar
(CCG, Steedman (2000)) lexicon for POS tags,

while Bisk and Hockenmaier (2012; 2013) show
that CCG lexicons can be induced automatically
if POS tags are used to identify nouns and verbs.
However, assuming clean POS tags is highly
unrealistic for most scenarios in which one would
wish to use an otherwise unsupervised parser.

In this paper we demonstrate that the simple
“universal” knowledge of Bisk and Hockenmaier
(2013) can be easily applied to induced clus-
ters given a small number of words labeled as
noun, verb or other, and that this small amount
of knowledge is sufficient to produce labeled syn-
tactic structures from raw text, something that has
not yet been proposed in the literature. Specifi-
cally, we will provide a labeled evaluation of in-
duced CCG parsers against the English (Hock-
enmaier and Steedman, 2007) and Chinese (Tse,
2013) CCGbanks. To provide a direct compari-
son to the dependency induction literature, we will
also provide an unlabeled evaluation on the 10 de-
pendency corpora that were used for the task of
grammar induction from raw text in the PASCAL
Challenge on Grammar Induction (Gelling et al.,
2012).

The system of Christodoulopoulos et al. (2012)
was the only participant competing in the PAS-
CAL Challenge that operated over raw text (in-
stead of gold POS tags). However, their approach
did not outperform the six baseline systems pro-
vided. These baselines were two versions of the
DMV model (Klein and Manning, 2004; Gillen-
water et al., 2011) run on varying numbers of in-
duced Brown clusters (described in section 2.1).
We will therefore compare against these baselines
in our evaluation.

Outside of the shared task, Spitkovsky et al.
(2011) demonstrated impressive performance us-
ing Brown clusters but did not provide evaluation
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for languages other than English.
The system we propose here will use a coarse-

grained labeling comprised of three classes, which
makes it substantially simpler than traditional
tagsets, and uses far fewer labeled tokens than
is customary for weakly-supervised approaches
(Haghighi and Klein, 2006; Garrette et al., 2015).

2 Our Models

Our goal in this work will be to produce la-
beled dependencies from raw text. Our approach
is based on the HDP-CCG parser of Bisk and
Hockenmaier (2015) with their extensions to cap-
ture lexicalization and punctuation, which, to our
knowledge, is the only unsupervised approach to
produce labeled dependencies. It first induces a
CCG from POS-tagged text, and then estimates a
model based on Hierarchical Dirichlet Processes
(Teh et al., 2006) over the induced parse forests.
The HDP model uses a hyperparameter which
controls the amount of smoothing to the base mea-
sure of the HDP. Setting this value will prove im-
portant when moving between datasets of drasti-
cally different sizes.

The induction algorithm assumes that a) verbs
may be predicates (with category S), b) verbs can
take nouns (with category N) or sentences as ar-
guments (leading to categories of the form S|N,
(S|N)|N, (S|N)|S etc.), c) any word can act as a
modifier, i.e. have a category of the form X|X
if it is adjacent to a word with category X or
X|Y, and d) modifiers X|X can take nouns or sen-
tences as arguments ((X|X)|N). Our contribution
in this paper will be to show that we can replace
the gold POS tags used by Bisk and Hockenmaier
(2013) with automatically induced word clusters,
and then use very minimal supervision to identify
noun and verb clusters.

2.1 Inducing Word Clusters

We will evaluate three clustering approaches:
Brown Clusters Brown clusters (Brown et al.,

1992) assign each word to a single cluster using an
aglomerative clustering that maximizes the proba-
bility of the corpus under a bigram class condi-
tional model. We use Liang’s implementation1.

BMMM The Bayesian Multinomial Mixture
Model2 (BMMM, Christodoulopoulos et al. 2011)
is also a hard clustering system, but has the ability

1https://github.com/percyliang/brown-cluster
2https://github.com/christos-c/bmmm

to incorporate multiple types of features either at
a token level (e.g. ±1 context word) or at a type
level (e.g. morphology features derived from the
Morfessor system (Creutz and Lagus, 2006)). The
combination of these features allows BMMM to
better capture morphosyntactic information.

Bigram HMM We also evaluate unsupervised
bigram HMMs, since the soft clustering they pro-
vide may be advantageous over the hard Brown
and BMMM clusters. But it is known that un-
supervised HMMs may not find good POS tags
(Johnson, 2007), and in future work, more sophis-
ticated models (e.g. Blunsom and Cohn (2011)),
might outperform the systems we use here.

In all cases, we assume that we can identify
punctuation marks, which are moved to their own
cluster and ignored for the purposes of tagging and
parsing evaluation.

2.2 Identifying Noun and Verb Clusters

To induce CCGs from induced clusters, we need
to label them as {noun, verb, other}. This needs
to be done judiciously; providing every cluster the
verb label, for example, leads to the model iden-
tifying prepositions as the main sentential predi-
cates.

We demonstrate here that labeling three fre-
quent words per cluster is sufficient to outperform
state-of-the-art performance on grammar induc-
tion from raw text in many languages. We emu-
late having a native speaker annotate words for us
by using the universal tagset (Petrov et al., 2012)
as our source of labels for the most frequent three
words per cluster (we map the tags NOUN, NUM,
PRON to noun, VERB to verb, and all others to
other). The final labeling is a majority vote, where
each word type contributes a vote for each label it
can take (see Table 4 for some examples). This ap-
proach could easily be scaled to allow more words
per cluster to vote. But we will see that three per
cluster is sufficient to label most tokens correctly.

3 Experimental Setup

We will focus first on producing CCG labeled
predicate-argument dependencies for English and
Chinese and will then apply our best settings to
produce a comparison with the tree structures of
the languages of the PASCAL Shared Task. All
languages will be trained on sentences of up to
length 20 (not counting punctuation). All clus-
ter induction algorithms are treated as black boxes

871



and run over the complete datasets in advance.
This alleviates having to handle tagging of un-
known words.

To provide an intuition for the performance of
the induced word clusters, we provide two stan-
dard metrics for unsupervised tagging:

Many-to-one (M-1) A commonly used mea-
sure, M-1 relies on mapping each cluster to the
most common POS tag of its words. However, M-
1 can be easily inflated by inducing more clusters.

V-Measure Proposed by Rosenberg and
Hirschberg (2007), V-Measure (VM) measures
the information-theoretic distance between two
clusterings and has been shown to be robust to the
number of induced clusters (Christodoulopoulos
et al., 2010). Both of these metrics are known
to be highly dependent on the gold annotation
standards they are compared against, and may
not correlate with downstream performance at
parsing.

Of more immediate relevance to our task is the
ability to accurately identify nouns and verbs:

Noun, Verb, and Other Recall We measure
the (token-based) recall of our three-way labeling
scheme of clusters as noun/verb/other against the
universal POS tags of each token.

4 Experiment 1: CCG-based Evaluation

Experimental Setup For our primary experi-
ments, we train and test our systems on the English
and Chinese CCGbanks, and report directed la-
beled F1 (LF1) and undirected unlabeled F1 (UF1)
over CCG dependencies (Clark et al., 2002). For
the labeled evaluation, we follow the simplifica-
tion of CCGbank categories proposed by Bisk and
Hockenmaier (2015): for English to remove mor-
phosyntactic features, map NP to N and change
VP modifiers (S\NP)|(S\NP) to sentential modi-
fiers (S|S); for Chinese we map both M and QP to
N. In the CCG literature, UF1 is commonly used
because undirected dependencies do not penalize
argument vs. adjunct distinctions, e.g. for prepo-
sitional phrases. For this reason we will include
UF1 in the final test set evaluation (Table 2).

We use the published train/dev/test splits, using
the dev set for choosing a cluster induction algo-
rithm, and then present final performance on the
test data. We induce 36 tags for English and 37
for Chinese to match the number of tags present in
the treebanks (excluding symbol and punctuation
tags).

Tagging Labeling Parsing
M-1 VM N / V / O LF1 Gold

E
ng

lis
h Brown 62.4 56.3 85.6 59.4 81.2 23.3

BMMM 66.8 58.7 81.0 81.2 82.7 26.6 38.8
HMM 51.1 41.7 76.3 63.3 82.6 25.8

C
hi

ne
se Brown 66.0 50.1 88.9 28.6 91.3 10.2

BMMM 64.8 50.0 94.4 48.7 87.0 10.5 16.6
HMM 46.3 30.8 68.0 44.6 76.7 3.13

Table 1: Tagging evaluation (M-1, VM, N/V/O
Recall) and directed labeled CCG-Dependency
performance (LF1) as compared to the use of gold
POS tags (Gold) for three clustering algorithms.

Results Table 1 presents the parsing and tagging
development results on the two CCG corpora. In
terms of tagging performance, we can see that the
two hard clustering systems significantly outper-
form the HMM, but the relative performance of
Brown and BMMM is mixed.

More importantly, we see that, at least for En-
glish, despite clear differences in tagging perfor-
mance, the parsing results (LF1) are much more
similar. In Chinese, we see that the performance
of the two hard clustering systems is almost iden-
tical, again, not representative of the differences
in the tagging scores. The N/V/O recall scores in
both languages are equally poor predictors of pars-
ing performance. However, these scores show that
having only three labeled tokens per class is suffi-
cient to capture most of the necessary distinctions
for the HDP-CCG. All of this confirms the ob-
servations of Headden et al. (2008) that POS tag-
ging metrics are not correlated with parsing per-
formance. However, since BMMM seems to have
a slight overall advantage, we will be using it as
our clustering system for the remaining experi-
ments.

Since the goal of this work was to produce la-
beled syntactic structures, we also wanted to eval-
uate our performance against that of the HDP-
CCG system that uses gold-standard POS tags. As
we can see in the last two columns of our develop-
ment results in Table 1 and in the final test results
of Table 2, our system is within 2/3 of the labeled
performance of the gold-POS-based HDP-CCG3.

Figure 1 shows an example labeled syntactic
structure induced by the model. We can see
the system successfully learns to attach the final

3To put this result into its full perspective, the LF1 perfor-
mance of a supervised CCG system (Hockenmaier and Steed-
man, 2002), HWDep model, trained on the same length-20
dataset and tested on the simplified CCGbank test set is 80.3.
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This Gold

English 26.0 / 51.1 37.1 / 64.9
Chinese 10.3 / 33.5 15.6 / 39.8

Table 2: CCG parsing performance (LF1/UF1) on
the test set with and without gold tags.
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Figure 1: A sample derivation from the WSJ Sec-
tion 22 demonstrating the system is learning most
of the correct categories of CCGbank but has in-
correctly analyzed the determiner as a preposition.

prepositional phrase, but mistakes the verb for in-
transitive and treats the determiner a as a prepo-
sition. The labeled and undirected recall for this
parse are 5/8 and 7/8 respectively.

5 Experiment 2: PASCAL Shared Task

Experimental Setup During the PASCAL
shared task, participants were encouraged to train
over the complete union of the data splits. We
do the same here, use the dev set for choosing
a HDP-CCG hyperparameter, and then present
final results for comparison on the test section.
We vary the hyperparamter for this evaluation
because the datasets fluctuate dramatically in
size from 9K to 700K tokens on sentences up to
length 20. Rather than match all of the tagsets, we
simply induce 49 (excluding punctuation) classes
for every language. The actual tagsets vary from
20 to 304 tags (median 39, mean 78).

Results We now present results for the 10 cor-
pora of the PASCAL shared task (evaluated on all
sentence lengths). Table 3 presents the test per-
formance for each language with the best hyper-
parameter chosen from the set {100, 1000, 2500}.
Also included are the best published results from
the joint tag/dependency induction shared task
(ST) as well as the results from Bisk and Hock-
enmaier (2013), the only existing numbers for
multilingual CCG induction (BH) with gold part-
of-speech tags. Note that the systems in ST do
not have access to any gold-standard POS tags,
whereas our system has access to the gold tags for

VM N / V / O This ST @15 BH

Czech2500 42 86 / 67 / 67 9.49 33.2 12.2 50.7
English2500 59 87 / 76 / 85 43.8 24.4 51.6 62.9
CHILDES2500 68 84 / 97 / 89 47.2 42.2 47.5 73.3
Portuguese2500 55 88 / 81 / 69 55.5 31.7 55.8 70.5
Dutch1000 50 81 / 81 / 82 39.9 33.7 43.8 54.4
Basque1000 52 2 / 78 / 95 31.1 28.7 35.2 45.0
Swedish1000 50 89 / 74 / 85 45.8 28.2 52.9 66.9
Slovene1000 50 83 / 75 / 79 18.5 19.2 23.6 46.4
Danish100 59 95 / 79 / 82 16.1 31.9 17.8 58.5
Arabic100 51 85 / 76 / 90 34.5 44.4 43.7 65.1

Average 54 78 / 78 / 82 34.2 31.8 38.4 59.4

Table 3: Tagging VM and N/V/O Recall along-
side Directed Accuracy for our approach and the
best shared task baseline. Additionally, we pro-
vide results for length 15 to compare to previ-
ously published results ([ST]: Best of the PAS-
CAL joint tag/dependency induction shared task
systems; [BH]: Bisk and Hockenmaier (2013).

the three most frequent words of each cluster.
The languages are sorted by the number of non-

punctuation tokens in sentences of up to length
20. Despite our average performance (34.2) being
slightly higher than the shared task (31.8), the st.
deviation is substantial (σ = 15.2 vs σST = 7.5).
It seems apparent from the results that while data
sparsity may play a role in affecting performance,
the more linguistically interesting thread appears
to be morphology. Czech is perhaps a prime ex-
ample, as it has twice the data of the next largest
language (700K tokens vs 336K in English), but
our approach still performs poorly.

Finally, while we saw that the hard clustering
systems outperformed the HMM for our experi-
ments, this is perhaps best explained by analyzing
the average number of gold fine-grained tags per
lexical type in each of the corpora. We found,
counterintuitively, that the “difficult” languages
had lower average number of tags per type (1.01
for Czech, 1.03 for Arabic) than English (1.17)
which was the most ambiguous. This is likely due
to morphology distinguishing otherwise ambigu-
ous lemmas.

6 Cluster Analysis

In Table 4, we present the three most frequent
words from several clusters produced by the
BMMM for English and Chinese. We also pro-
vide a noun/verb/other label for each of the words
in the list. One can clearly see that there are many
ambiguous cases where having three labels voting

873



English Labels Chinese Chinese gloss Labels

shares, sales, business N, N, N 同时,政治,生产 simultaneously, politics, production O, N, N
the, its, their O, N, N 进行,举行,开始 advance, hold, begin V, V, V
other, interest, chief O, N, O 在,有,对 in, have, for O, V, O
of, in, on O, O, O 中国,台湾,美国 China, Taiwan, USA N, N, N
up, expected, made O, V, V 也,将,就 also, will, then O, O, O
be, make, sell V, V, V 大,多,高 big, many, high O, N, O *
offer, issue, work N, N, N * 是,希望,代表 is, desire, representative V, V, N

Table 4: The top three words in BMMM clusters with their noun/verb/other labels. In two cases (marked
with *) all three of the most frequent words also occurred as a verb at least one third of the time.

on the class label proves a beneficial signal. We
have also marked two classes with * to draw the
reader’s attention to a fully noun cluster in En-
glish and an other cluster in Chinese which are
highly ambiguous. Specifically, in both of these
cases the frequent words also occur frequently as
verbs, providing additional motivation for a better
soft-clustering algorithm in future work.

How to most effectively use seed knowledge
and annotation is still an open question. Ap-
proaches range from labeling frequent words like
the work of Garrette and Baldridge (2013) to the
recently introduced active learning approach of
Stratos and Collins (2015). In this work, we were
able to demonstrate high noun and verb recall with
the use of a very small set of labeled words be-
cause they correspond to an existing clustering.
In contrast, we found that labeling even the 1000
most frequent words led to very few clusters being
correctly identified; e.g. in English, using the 1000
most frequent words results in identifying 2 verb
and 5 noun clusters, compared to our method’s 9
verb and 16 noun clusters. This is because the
most frequent words tend to be clustered in a few
very large clusters resulting in low coverage.

Stratos and Collins (2015) demonstrated, simi-
larly, that using a POS tagger’s confidence score
to find ambiguous classes can lead to a highly ef-
fective adaptive learning procedure, which strate-
gically labels very few words for a very highly ac-
curate system. Our results align with this research,
leading us to believe that this paradigm of guided
minimal supervision is a fruitful direction for fu-
ture work.

7 Conclusions

In this paper, we have produced the first labeled
syntactic structures from raw text. There remains
a noticeable performance gap due to the use of in-
duced clusters in lieu of gold tags. Based on our

final PASCAL results, there are several languages
where our performance greatly exceeds the cur-
rently published results, but equally many where
we fall short. It also appears to be the case that this
problem correlates with morphology (e.g. Arabic,
Danish, Slovene, Basque, Czech) and some of the
lowest performing intrinsic evaluations of the clus-
tering and N/V/O labeling (Czech and Basque).

In principle, the BMMM is taking morphologi-
cal information into account, as it is provided with
the automatically produced suffixes of Morfessor.
Unfortunately, its treatment of them simply as fea-
tures from a “black box” appears to be too naive
for our purposes. Properly modeling the rela-
tionship between prefixes, stems and suffixes both
within the tag induction and parsing framework is
likely necessary for a high performing system.

Moving forward, additional raw text for train-
ing, as well as enriching the clustering with in-
duced syntactic information (Christodoulopoulos
et al., 2012) may close this gap.

8 Acknowledgments

We want to thank Dan Roth and Cynthia Fisher
for their insight on the task. Additionally, we
would like to thank the anonymous reviewers
for their useful questions and comments. This
material is based upon work supported by the
National Science Foundation under Grants No.
1053856, 1205627, 1405883, by the National In-
stitutes of Health under Grant HD054448, and by
DARPA under agreement number FA8750-13-2-
0008. Any opinions, findings, and conclusions
or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect
the views of the National Science Foundation, the
National Institutes of Health, DARPA or the U.S.
Government.

874



References
Yonatan Bisk and Julia Hockenmaier. 2012. Simple

Robust Grammar Induction with Combinatory Cat-
egorial Grammars. In Proceedings of the Twenty-
Sixth Conference on Artificial Intelligence (AAAI-
12), pages 1643–1649, Toronto, Canada, July.

Yonatan Bisk and Julia Hockenmaier. 2013. An HDP
Model for Inducing Combinatory Categorial Gram-
mars. Transactions of the Association for Computa-
tional Linguistics, pages 75–88.

Yonatan Bisk and Julia Hockenmaier. 2015. Prob-
ing the linguistic strengths and limitations of unsu-
pervised grammar induction. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics.

Phil Blunsom and Trevor Cohn. 2010. Unsupervised
Induction of Tree Substitution Grammars for De-
pendency Parsing. Proceedings of the 2010 Con-
ference on Empirical Methods of Natural Language
Processing, pages 1204–1213, October.

Phil Blunsom and Trevor Cohn. 2011. A hierarchi-
cal pitman-yor process hmm for unsupervised part
of speech induction. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
865–874, Portland, Oregon, USA, June.

Prachya Boonkwan and Mark Steedman. 2011. Gram-
mar Induction from Text Using Small Syntactic Pro-
totypes. In Proceedings of 5th International Joint
Conference on Natural Language Processing, pages
438–446, Chiang Mai, Thailand, November.

Peter F Brown, Peter V deSouza, Robert L Mercer,
Vincent J Della Pietra, and Jenifer C Lai. 1992.
Class-Based n-gram Models of Natural Language.
Computational Linguistics, 18.

Christos Christodoulopoulos, Sharon Goldwater, and
Mark Steedman. 2010. Two decades of unsuper-
vised PoS induction: How far have we come? In
Proceedings of EMNLP, pages 575–584.

Christos Christodoulopoulos, Sharon Goldwater, and
Mark Steedman. 2011. A Bayesian Mixture Model
for Part-of-Speech Induction Using Multiple Fea-
tures. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Process-
ing, Edinburgh, Scotland, UK., July.

Christos Christodoulopoulos, Sharon Goldwater, and
Mark Steedman. 2012. Turning the pipeline into
a loop: iterated unsupervised dependency parsing
and PoS induction. In WILS ’12: Proceedings of
the NAACL-HLT Workshop on the Induction of Lin-
guistic Structure, June.

Stephen Clark, Julia Hockenmaier, and Mark Steed-
man. 2002. Building deep dependency structures
using a wide-coverage ccg parser. In Proceedings

of 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 327–334, Philadelphia,
Pennsylvania, USA, July.

Mathias Creutz and Krista Lagus. 2006. Morfessor in
the Morpho challenge. In Proceedings of the PAS-
CAL Challenge Workshop on Unsupervised Segmen-
tation of Words into Morphemes, pages 12–17.

Dan Garrette and Jason Baldridge. 2013. Learning
a Part-of-Speech Tagger from Two Hours of Anno-
tation. In Proceedings of the 2013 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 138–147, Atlanta, Georgia, June.

Dan Garrette, Chris Dyer, Jason Baldridge, and Noah A
Smith. 2015. Weakly-Supervised Grammar-
Informed Bayesian CCG Parser Learning. In Pro-
ceedings of the Association for the Advancement of
Artificial Intelligence.

Douwe Gelling, Trevor Cohn, Phil Blunsom, and
João V Graca. 2012. The PASCAL Challenge
on Grammar Induction. In NAACL HLT Workshop
on Induction of Linguistic Structure, pages 64–80,
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Abstract
Ezafe construction is an idiosyncratic phe-
nomenon in the Persian language. It is a
good indicator for phrase boundaries and
dependency relations but mostly does not
appear in the text. In this paper, we show
that adding information about Ezafe con-
struction can give 4.6% relative improve-
ment in dependency parsing and 9% rela-
tive improvement in shallow parsing. For
evaluation purposes, Ezafe tags are man-
ually annotated in the Persian dependency
treebank. Furthermore, to be able to con-
duct experiments on shallow parsing, we
develop a dependency to shallow phrase
structure convertor based on the Persian
dependencies.

1 Introduction

There have been many studies on improving syn-
tactic parsing methods for natural languages. Al-
though most of the parsing methods are language-
independent, we may still require some language
specific knowledge for improving performance.
Besides many studies on parsing morphologically
rich languages (Seddah et al., 2013; Seeker and
Kuhn, 2013), syntactic parsing for the Persian lan-
guage is not yet noticeably explored. Concretely
speaking, there are some recent work on depen-
dency parsing for Persian (Seraji et al., 2012;
Ghayoomi, 2012; Khallash et al., 2013) and very
few studies on shallow parsing (Kian et al., 2009).

The main focus of this paper is on the usefulness
of Ezafe construction in Persian syntactic process-
ing. Ezafe is an unstressed vowel -e that occurs at
the end of some words (-ye in some specific occa-
sions) that links together elements belonging to a

single constituent (Ghomeshi, 1997). It often ap-
proximately corresponds in usage to the English
preposition “of” (Abrahams, 2004). In the follow-
ing example, the first word has an Ezafe vowel:{

montazere Ab

waitingEzafe water
waiting for water

This is an idiosyncratic construction that ap-
pears in the Persian language with Perso-Arabic
script. This construction is similar to Idafa con-
struction in Arabic and construct state in Hebrew
(Habash, 2010). It is mostly used for showing a
possessive marker, adjective of a noun or connect-
ing parts of a name (i.e. first and last name) or ti-
tle. As a general statement, Ezafe occurs between
any two items that have some sort of connection
(Ghomeshi, 1997). Ezafe vowel is attached to
the head noun and to the modifiers that follow
it: attributive nouns, adjectival and prepositional
phrases (Samvelian, 2006). As depicted in Figure
1, this construction is very useful for disambiguat-
ing syntactic structures. The main issue here is
that Ezafe rarely appears in the written text. This
relies on the fact that Persian is written in Perso-
Arabic script and vowels are mostly not written.

There are few studies (Noferesti and Shamsfard,
2014; Asghari et al., 2014) on automatically find-
ing Ezafe construction. In this work, we modify
the part of speech tagset for the Persian words.
This is done by adding an indicator of Ezafe to
each part of speech (POS) tag and then train a su-
pervised tagger on the modified tags. We show
that having this modified tagset can both improve
dependency parsing and shallow parsing (chunk-
ing). We achieve 12.8% and 4.6% relative error re-
duction in dependency parsing with gold and auto-
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[.] [ �I�@] [ èAJ
� 	Q��
Ó] [ø� ðP] [H. A�J»] root

. is black table+Ezafe on+Ezafe book

punc

root

mos

sbj

posdepnpostmod

(a) First reading: The book is on the black table.

[.] [ �I�@] [ èAJ
�] [ 	Q�
Ó ø� ðP H.� A�J»] root

. is black table on+Ezafe book+Ezafe

punc

root

npostmod

sbj

posdepmos

(b) Second reading: The book on the table is black.

Figure 1: This figure shows two different readings for the same sentence with different Ezafe construc-
tions. As shown in the trees, Ezafe affects both phrase boundaries and dependency relations.

matic POS tags. We also achieve 31% and 9% rel-
ative error reduction in shallow parsing with gold
and automatic POS tags.

Our work is not only restricted to the effect of
Ezafe in parsing, but as a byproduct, we create an
open-source rule-based dependency to chunk con-
verter for the Persian language. We have also man-
ually tagged all words in the Persian dependency
treebank (Rasooli et al., 2013) with 99.6% anno-
tator agreement. This dataset is available for re-
search purposes.1

The main contributions of this paper are: 1)
showing the usefulness of Ezafe construction on
dependency parsing and chunking, 2) developing
a statistical chunker for the Persian language, 3)
enriching the Persian treebank with manual Ezafe
tags. The remainder of this paper is organized as
the following: we describe our approach and data
preparation in §2 and then conduct experiments in
§3. Error analysis and conclusion are made in §4
and §5.

2 Data Preparation

We define a simple procedure to include the in-
formation about Ezafe construction in our data.
Concretely, we attach the Ezafe indicator to the
tags and train a POS tagger on the new tagset.
This idea is very similar to that of (Asghari et al.,
2014). Thanks to the presence of Ezafe feature in
the Peykare corpus (Bijankhan et al., 2011), we
can easily train a POS tagger on the new tagset.
We use the developed tagger to tag the dependency
treebank. Peykare corpus has approximately ten
million tokens and can give us a very accurate POS
tagger even with the finer-grained Ezafe tags. We
try this idea on two different tasks: dependency
parsing and shallow parsing.

1http://dadegan.ir/catalog/ezafe

2.1 Chunking Data Preparation

Unfortunately there is no standard chunking data
for the Persian language. To compensate for this,
we define the following rules to convert a depen-
dency tree (based on Dadegan treebank dependen-
cies (Rasooli et al., 2013)) to a shallow phrase
structure:

- We initialize every node (word) as a separate
chunk; e.g. verb creates a VP.

- If a node has a head or dependent belonging
to a chunk (without any gap), attach that node
to the same chunk.

- If a node is a preposition/postposition, attach
it to its next/previous dependent and create a
PP.

- A node with a dependency relation “non-
verbal element”, “verb particle”, or “enclitic
non-verbal element” belongs to the same VP
as its head.

- If a node is a particle, subordinating clause,
coordinating conjunction, or punctuation, we
should not create an independent chunk for
it.

- If a node is a “noun post modifier” or “Ezafe
dependent”, attach it to its parent chunk.

- If a node is a “conjunction of a noun” or
“conjunction of an adjective” and has a sib-
ling with either “Ezafe dependent” or “noun
post-modifier” dependency relation, it should
have the same chunk as its parent.

- If a node with pseudo-sentence POS has an
adverbial dependency with its parent, it cre-
ates an ADVP and otherwise a VP.
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Implementation of the above rules is available
in the Hazm toolkit.2 There are some minor excep-
tions in the above rules that are handled manually
in the toolkit.

3 Experiments

In this section we describe our experiments on
Ezafe tagging, parsing and also adding manual
Ezafe tags to the Persian dependency treebank.

3.1 Automatic Ezafe Tagging

As mentioned in §2, we attach Ezafe feature in-
dicator to the tags and train a POS tagger on the
new tagset. We use Wapiti tagger (Lavergne et al.,
2010) to train a standard trigram CRF sequence
tagger model with standard transition features and
the following emission features: word form of the
current, previous and next word, combination of
the current word and next word, combination of
the current word and previous word, prefixes and
suffixes up to length 3, indicator of punctuation
and number (digit) for the current, previous and
next word. The tagger has an accuracy of 98.71%
with the original tagset and 97.33% with the mod-
ified tagset.

3.2 Gold Standard Ezafe Tags

The Persian dependency treebank does not provide
gold Ezafe tags. In order to evaluate the effect of
gold Ezafe tags, we try to manually annotate Ezafe
in the treebank. This is done by six annotators
where all of them are native speakers and linguists.
The inter-annotator agreement of a small portion
of the data (one thousand sentences) is 99.6%. Our
manual investigation shows that almost half of the
disagreements was because of the mistakes and
not because of the complicated structure. Table
1 shows the statistics about the presence of Ezafe
tag for each specific POS.

3.3 Chunking

We use Wapiti tagger (Lavergne et al., 2010) to
train a standard CRF tagger with IOB tags for
phrase chunking. The features include third or-
der transition features and emission features of
word form and POS for the current word, previ-
ous word and the word before it, the next word and
the word after it. As shown in Table 2 and 3, our
intuition holds for both gold and automatic tags.
We observe that using Ezafe on gold tags, gives

2https://github.com/sobhe/hazm

Tag Freq. Relative Freq. Ezafe %
N 190048 39.24% 34.22%
PREP 56376 11.64% 12.04%
ADJ 35902 7.41% 17.45%
PRENUM 6018 1.24% 1.21%
IDEN 835 0.17% 5.03%
POSNUM 560 0.12% 30.71%
other 194572 40.18% 00.10%

Table 1: Statistics about Ezafe for each POS tag in
the Persian dependency treebank.

us better performance compared to using coarse-
grained POS tags and also fine-grained POS tags
(FPOS) provided by the dependency treebank an-
notators. The tagset in Peykare corpus is very dif-
ferent from the treebank. Because of this incon-
sistency, we could not reproduce the results with
automatic FPOS tags trained on Peykare corpus.
Our experiments on training solely on the tree-
bank FPOS tags do not give us a reliable FPOS
tagger and this leads to very low parsing accuracy.
Therefore we do not conduct experiments with au-
tomatic FPOS tags. Table 3 shows the results with
automatic tags. As shown in the table, using the
the Ezafe tagset improves the chunking accuracy.

Tagset Precision Recall F-Measure
POS 91.98% 90.37% 91.17%
FPOS 92.37% 90.92% 91.64%
POSe 93.88% 93.97% 93.92%

Table 2: Chunking results on the Persian de-
pendency treebank test data with gold POS tags.
FPOS refers to the fine-grained POS tags in the
Persian dependency treebank and POSe is the
modified Ezafe-enriched tagset.

Tagset Tag Acc. Precision Recall F-Measure
POS 98.71% 89.44% 88.02% 88.72%
POSe 97.33% 90.42% 89.13% 89.77%

Table 3: Chunking results on the Persian depen-
dency treebank test data with automatic POS tags.

3.4 Dependency Parsing

Similar to the chunking experiments, we provide
two sets of experiments to validate our hypothesis
about the importance of Ezafe construction. We
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Tagset MaltParser YaraParser TurboParser
LAS UAS LAS UAS LAS UAS

POS 88.13% 90.69% 88.60% 91.17% 89.88% 92.25%
FPOS 88.46% 91.01% 89.02% 91.56% 89.98% 92.30%
POSe 89.12% 91.64% 89.91% 92.42% 90.85% 93.24%

Table 4: Dependency Parsing results on the test data with different gold standard tagsets. UAS is the
unlabeled attachment score and LAS is the labeled attachment score.

Tagset Tag acc. MaltParser YaraParser TurboParser
LAS UAS LAS UAS LAS UAS

POS tagger 98.71% 85.34% 88.80% 85.90% 89.43% 87.28% 90.59%
POSe tagger 97.33% 85.74% 89.24% 86.35% 89.86% 87.73% 91.02%

Table 5: Dependency Parsing results on the test data with different automatic tagsets.

use three different off-the-shelf parsers: 1) Malt
parser v1.8 (Nivre et al., 2007), 2) Yara parser
v0.2 (Rasooli and Tetreault, 2015), and 3) Turbo
parser v2.2 (Martins et al., 2013). We train Malt
with Covington non-projective algorithm (Cov-
ington, 1990) after optimizing it with Malt opti-
mizer (Ballesteros and Nivre, 2012), Yara with the
default settings (64 beam) and 10 training epochs
and Turbo with its default settings. The main rea-
son for picking these three parsers is that we want
to see the effect of Ezafe construction on a greedy
parser (Malt), beam parser (Yara), and a graph-
based parser (Turbo). As shown in Table 4 and
5, the parsing accuracy is improved across all dif-
ferent parsers by using the Ezafe tagset.

4 Error Analysis

In this section we provide some error analysis for
showing the effectiveness of our approach.

Effect on the common POS tags Our investiga-
tion on the development data shows that the depen-
dency attachment accuracy is improved by 6.5%
for adjectives and 6.2% for nouns. This is consis-
tent with our intuition because Ezafe construction
mostly occurs in nouns and adjectives. It is worth
noting that for some tags such as determiners the
Ezafe construction does not help.

Ezafe indicator as a feature We try to use
Ezafe as an independent feature in Malt parser.
This is done by adding the indicator in the fea-
ture column in CoNLL dependency format. We
then use Malt optimizer (Ballesteros and Nivre,
2012) to find the optimized feature setting. We see
that adding this feature gives us the same accuracy

improvement as having the modified tagset. This
shows that we do not really need to have a parser
that uses extra features to add Ezafe information.

Manual data investigation We randomly
picked some sentences from the development data
and observed the same effect as we could expect
from adding Ezafe to the tagset: the main gain is
on those sentences where the presence/absence of
Ezafe construction is crucial for making correct
decisions by the parser. For example, in the
following sub-sentence, the word 	á�
g� means
“China” but the dependency parser without
knowing Ezafe tag, confused it with the other
meaning: “ruffle” and created a “non-verbal
element” (light verb) dependency with the verb,
instead of making it an Ezafe dependent to the
previous word (Ég@ñ�).

. . . XP@X 	á�
g� Ég@ñ� 	P@ ¨A 	̄ X . . . . . .
has China beaches+Ezafe from denfense

vcl

posdepnpp
posdepmoz

nve

Effect on the training data size For investigat-
ing the benefit of Ezafe construction, we train Malt
parser on different data sizes starting from 50% of
the original size. This trend is depicted in Figure 2.
The interesting fact is that we can leverage Ezafe
construction and use only 70% of the training data
while reaching the accuracy of the original part of
speech tagset trained on the whole data.
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Figure 2: Trend on the data size and accuracy. As
shown by the horizontal dashed line, Ezafe tags
can improve over standard tags while having ap-
proximately 70% of the data.

5 Conclusion

In this paper we showed the effectiveness of Ezafe
construction as a robust feature for syntactic pars-
ing in Persian. One interesting direction for fur-
ther research would be to show the effect of this
feature in other natural language processing tasks.
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